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ABSTRACT

Sparse training is often adopted in cross-device federated learning (FL) environ-
ments where constrained devices collaboratively train a machine learning model
on private data by exchanging pseudo-gradients across heterogeneous networks.
Although sparse training methods can reduce communication overhead and com-
putational burden in FL, they are often not used in practice for the following key
reasons: (1) data heterogeneity makes it harder for clients to reach consensus on
sparse models compared to dense ones, requiring longer training; (2) methods
for obtaining sparse masks lack adaptivity to accommodate very heterogeneous
data distributions, crucial in cross-device FL; and (3) additional hyperparameters
are required, which are notably challenging to tune in FL. This paper presents
SparsyFed, a practical federated sparse training method that critically addresses
the problems above. Previous works have only solved one or two of these chal-
lenges at the expense of introducing new trade-offs, such as clients’ consensus
on masks versus sparsity pattern adaptivity. We show that SparsyFed simultane-
ously (1) can produce 95% sparse models, with negligible degradation in accuracy,
while only needing a single hyperparameter, (2) achieves a per-round weight re-
growth 200 times smaller than previous methods, and (3) allows the sparse masks
to adapt to highly heterogeneous data distributions and outperform all baselines
under such conditions.

1 INTRODUCTION

Federated Learning (McMahan et al., 2017) has become a standard technique for distributed train-
ing on private data (Yang et al., 2018; Ramaswamy et al., 2019; Pati et al., 2022; Wang et al., 2023;
Huba et al., 2022; Bonawitz et al., 2019), particularly on edge devices. Given its application to con-
strained hardware, mitigating communication and computational overheads—significant in standard
FL infrastructures (Kairouz et al., 2021; Bellavista et al., 2021)—remains a key field focus. Practical
cross-device FL methods typically assume stateless clients with imbalanced, heterogeneous datasets
and constrained, diverse hardware (Wang et al., 2021). Restricted client hardware and low commu-
nication bandwidth significantly increase training time compared to centralized methods, elongating
hyperparameter tuning (Khodak et al., 2021). Additionally, unknown data distributions and dynamic
client availability demand robust optimization methods that can handle these variations. When de-
vice availability is constrained, the federated orchestrator may struggle to sample a representative
client subset (Eichner et al., 2019; Cho et al., 2020; Li et al., 2020b), inducing trade-offs between
sampling ratio and efficiency (Charles et al., 2021b).

Sparse training methods improve computational and communication efficiency by reducing (a)
memory footprint and FLOPs during training (Raihan & Aamodt, 2020), and (b) the communi-
cation costs (Bibikar et al., 2022). However, applying these methods in cross-device FL is challeng-
ing due to client availability and data heterogeneity, which can disrupt the binary mask structure
across clients (Qiu et al., 2022). Such inconsistencies hinder consensus on the binary mask, low-
ering global model performance (Babakniya et al., 2023). Recent approaches address these issues
using fixed sparse masks (Huang et al., 2022; Qiu et al., 2022) or dynamic methods involving mask
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warmup and refreshing (Babakniya et al., 2023). However, fixed masks reduce the adaptability to
unseen distributions, while dynamic methods require careful tuning of additional hyperparameters,
like warmup duration and refresh interval. Fixed-mask methods also limit model plasticity—the
ability to rewire and adapt to diverse distributions (Lyle et al., 2022; 2023). For example, it is known
that in a multi-task or continual learning setting, neural networks can be iteratively pruned to build
task-specific sub-networks (Mallya & Lazebnik, 2018), a lost ability when adopting a fixed-mask
method. This lack of adaptability makes fixed-mask approaches unsuitable for cross-device FL,
where unseen distributions frequently arise. Thus, we argue that sparse training methods for cross-
device FL should (a) adopt dynamic masking and (b) remain agnostic to optimization and selection
methods while minimizing hyperparameter complexity.
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Figure 1: SparsyFed pipeline. (1) Server broadcasts the global model ωt. (2) Client i re-
parameterizes local weights. (3) Executes a forward pass on batch B. (4a) Computes layer-wise spar-
sity st. (4b) Prunes activations using st and stores them. (5) Computes grads. (6) Applies grads. (7)
Computes model updates and applies Top-K pruning. (8) Sends sparse updates ∆ω̃t

i back to the
server. (9) Apply server optimizer to obtain the global model. Steps (2-6) repeat until convergence.

Our work addresses these challenges by introducing SparsyFed, a sparse training method for train-
ing global models in cross-device federated learning. During local training, as illustrated in Fig. 1,
SparsyFed uses an easy-to-tune approach to prune (1) activations with an adaptive layer-wise method
and (2) model weights before communication using the target sparsity. These strategies can reduce
FLOPs and memory usage, with suitable hardware support (Raihan & Aamodt, 2020), and the com-
munication costs by transmitting sparse updates. Our layer-wise approach prunes based on each
layer’s parameter proportion, unlike previous methods (Babakniya et al., 2023; Qiu et al., 2022),
which applied fixed global sparsity across layers. This approach removes more capacity from dense
layers while preserving parameter-efficient ones. SparsyFed also prunes models at the end of each
round, allowing the complete flexibility of the local optimization. SparsyFed provides robust initial-
ization for crucial layers, such as embeddings, without excluding layers to preserve performance as
done in past works (Qiu et al., 2022; Raihan & Aamodt, 2020). Additionally, SparsyFed employs
a sparsity-inducing weight re-parameterization (Schwarz et al., 2021) based on a single parameter,
enhancing the model’s resilience to sparsity and improving adaptivity, which enables changing the
global mask for new clients with diverse data distributions. SparsyFed is agnostic to the choice of
the outer optimizer, treating sparse model updates as pseudo-gradients. It is also compatible with
biased client selection policies, allowing training masks to adapt to the training data utilized. Our
work’s contributions are:

1. We introduce SparsyFed, a method which accelerates on-device training in FL. SparsyFed
achieves high sparsity (up to 95%) without sacrificing accuracy through a novel approach
combining hyperparameter-free activation pruning and weight re-parameterization.

2. We compare SparsyFed against the latest state-of-the-art techniques, demonstrating supe-
rior accuracy over sparse training baselines (including those using fixed sparse masks) and,
in some cases, surpassing non-pruned baselines at extreme sparsity levels.

3. SparsyFed quickly achieves consensus on client sparse model masks, enabling faster global
convergence and significantly reducing downlink communication costs (up to 19.29×).

4. We evaluate SparsyFed with ablation studies on typical cross-device FL datasets, including
CIFAR-10/100 (Krizhevsky, 2012) and Speech Commands (Warden, 2018), under various
data heterogeneity conditions.

We provide the developed code publicly available in this repository to facilitate result reproducibility
and for the community of researchers in the field.
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2 BACKGROUND

In the following, we describe typical sparse training and weight re-parametrization techniques,
which are key components of our work, and discuss their relevance to cross-device FL.

2.1 CROSS-DEVICE FEDERATED LEARNING

Cross-device FL (Kairouz et al., 2021) involves the distributed training of a machine learning (ML)
model across a population of edge devices exchanging model updates with a central server through
heterogeneous networks (McMahan et al., 2017; Li et al., 2020a). Clients in these settings usually
possess minimal data samples and very heterogeneous data distributions Kairouz et al. (2021). Given
the constraints of edge devices (e.g., limited processing power and battery life) and the heterogeneity
of networks (e.g., diverse bandwidth), computational- and communication-efficient training methods
are crucial for practical FL (Bonawitz et al., 2019). The research community has proposed means to
optimize FL for communication efficiency (Sattler et al., 2019; Jiang et al., 2023) and computational
efficiency (Horvath et al., 2021; Niu et al., 2022; Mei et al., 2022). Our approach aims to optimize
both by leveraging sparse training.

2.2 SPARSE TRAINING

In centralized settings, sparse training tries to learn a sparse model during training to achieve model
compression, lower computational demands during training, or faster inference. A typical sparse
training pipeline tends to start with a random sparse network and follow a cycle of regular training,
pruning, and regrowth (Mocanu et al., 2018; Mostafa & Wang, 2019; Dettmers & Zettlemoyer,
2019; Liu et al., 2020), acting only on model parameters. A more advanced technique relevant to
our work, Sparse Weight Activation Training (SWAT) (Raihan & Aamodt, 2020), tailors the forward
and backward passes, acting on both activations and model parameters, to induce a sparse weight
topology and reduce the computational burden. In each forward iteration, SWAT selects the Top-K
weights based on magnitude, using only these as the active weights. Only the highly activated
neurons associated with Top-K pruned activations are considered for backpropagation during the
backward pass. Notably, full gradients are still applied in the backward pass, allowing updates to
both active and inactive weights. This mechanism enables the dynamic exploration of different
network topologies throughout the training process.

2.3 WEIGHT RE-PARAMETRIZATION

Weight re-parametrization (Salimans & Kingma, 2016; Li et al., 2019; Gunasekar et al., 2017; Miy-
ato et al., 2018; Vaskevicius et al., 2019; Kusupati et al., 2020; Schwarz et al., 2021; Zhao et al.,
2022) in neural network training involves restructuring how weights are represented to improve
training dynamics, optimize convergence, or introduce specific properties such as sparsity, without
changing the network’s architecture. Particularly relevant to our work, Schwarz et al. (2021) pro-
pose a sparsity-inducing weight re-parametrization that aims to shift the weight distribution towards
higher density near zero, aiding in pruning low-magnitude weights. This simplification emerges by
raising the model parameters to the power of β > 1 during the forward pass while preserving their
sign. The re-parametrized weight vector component w is computed as w = sign(v) · |v|β−1, where
v represents the original weight vector component, and β is a scalar value. Due to the chain rule,
small-valued parameters receive smaller gradient updates, while large-valued parameters receive
more significant updates, reinforcing a “rich get richer” dynamic.

3 SPARSE ADAPTIVE FEDERATED TRAINING

In the following, we present our SparsyFed method for sparse training in cross-device FL settings.
Our method introduces a novel approach based on activation pruning and weight parametrization,
applicable to any cross-device FL setting for obtaining a sparse global model. SparsyFed reduces
the computational and communication overhead of highly heterogeneous FL environments, adapting
the sparse mask of the global model. The procedure is outlined in Algorithms 1 and 2.
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Algorithm 1 Sparse federated training pipeline of SparsyFed.
Require: ω0: initial model’s weights, β: weight re-parametrization exponent, ŝ: target sparsity
Require: T : number of federated rounds, E: number of client local epochs per round
Require: P : clients population, ηt = η(t): learning rate scheduler as function of round t
Require: {Di}i∈P : clients’ datasets, B: local batch size

1: procedure SparsyFed
2: for t = 0, . . . , T − 1 do
3: Server samples a subset of clients St ⊆ P
4: for each client i ∈ St in parallel do
5: ωi,0 ← ωt

6: for k = 0, . . . , E − 1 do
7: ωi,k+1 ← SparseClientOpt(ωi,k,Di, B, β, ηt) ▷ See Alg.2
8: ∆ωt

i ← ωi,E − ωt ▷ Compute pseudo-gradient
9: ∆ω̃t

i ← Top-K(∆ωt
i , ŝ) ▷ Prune ∆ωt

i w/ global unstructured Top-K using target ŝ
10: ωt+1 ← OuterOPT(ωt, {∆ω̃t

i}i∈St) ▷ Server optimization, e.g., Reddi et al. (2021)
11: return ωT

Assumptions on the FL setting. As in any cross-device FL setting, the training is orchestrated by
a parameter server (McMahan et al., 2017) that is in charge of initializing the global model, sam-
pling a subset of clients every federated round, aggregating the pseudo-gradients after clients have
trained on their local datasets. By following practical considerations (as extensively discussed in
Bonawitz et al. (2019); Wang et al. (2021)), SparsyFed does not require any particular assumption
on the client selection policy, nor on the server optimizer, nor the client optimizer. Thus, our algo-
rithm’s design allows it to benefit from any present or future federated optimizer practitioners, and
researchers may develop without losing its properties. In particular, SparsyFed only requires the
addition of one hyperparameter compared to standard dense training, whose sensitivity is discussed
in Appendix E.2, making it most suitable for cross-device FL where the hyperparameter optimiza-
tion (HPO) is challenging (Khodak et al., 2021). We also present a hyperparameter-free alternative
in Appendix E.2.2. After initialization, the parameter server iteratively samples clients, broadcasts
the latest version of the global model, collects the pseudo-gradients from clients, and aggregates
the updates for obtaining the new global model, as described in Algorithm 1. As such, we assume
agnosticism w.r.t. the server optimizer (line 10 in Algorithm 1) to allow practitioners to use their
preferred one, e.g., ServerOpt in Reddi et al. (2021).

Algorithm 2 Sparse Client Optimization of SparsyFed
Require: ω0: initial model’s weights, β: weight re-parametrization exponent, η: learning rate
Require: D = {xi, yi}i=1,...,N : dataset composed of N samples with inputs xi and outputs yi
Require: B: batch of data samples, B: batch size, T =

⌈
N
B

⌉
: number of batches, F : cost function

Require: s(θt,l): function computing the sparsity of the layer θt,l at time t
Require: size(θ): computes the number of layers in the model θ
Require: GetLayer(at, l): function extracts the weights and activations for the current layer.
Require: SetLayer(ãt,l, l): function updates the sparse weights and activations in the model.

1: procedure SPARSECLIENTOPT(ω0,D, B, β, η)
2: for each step t = 0, . . . , T − 1 do
3: Bt ← GetNextMiniBatch(D, B, t)
4: θt ← sign(ωt) · |ωt|β ▷ Point-wise weights re-parametrization (Schwarz et al., 2021)
5: at ← Forward(θt,Bt) ▷ Forward pass to compute activations
6: for each layer l = 0, . . . , size(θt)− 1 do
7: θt,l, at,l ← GetLayer(θt, l),GetLayer(at, l)
8: st,l = s(θt,l)
9: ãt,l ← Top-K(at,l, st,l) ▷ Prune at,l w/ unstructured Top-K using target st,l

10: ãt ← SetLayer(ãt,l, l)

11: gt ← ∇F (θt,l, ãt,Bt) ▷ Compute gradients using sparse activations
12: ωt+1 = ClientOpt(ωt, gt, η, t) ▷ Apply client optimizer, e.g., Reddi et al. (2021)
13: return ωT
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Sparsity-Inducing Weights Re-parametrization. Before the local forward pass at step t, we apply
a sparsity-inducing re-parametrization to the local model weights ωt, producing θt (line 4, Algo-
rithm 2). As discussed in Section 2.3, re-parametrization techniques have been widely studied for
various purposes. In our case, we aim to enhance pruning effectiveness and efficiency by inducing
sparsity directly through optimization and adapting to input data. These outcomes are particularly
beneficial in cross-device FL settings, where datasets are highly imbalanced, and some clients may
only have a few samples (Section 2.1). From the available sparsity-inducing methods, we adopt Pow-
erpropagation (Schwarz et al., 2021) due to its simplicity (introducing only one hyperparameter) and
its ability to preserve the neural network’s functional relationships during training. Furthermore, it
avoids introducing non-uniform biases across layers, which improves its compatibility with pruning.
Every parameter weight w ∈ ω is transformed into v = sign(w) · |w|β , where sign(w) is the sign of
w, |w| is its L1 norm, and β is the Powerpropagation parameter. This re-parametrization enhances
global training by promoting client consensus since the dynamics introduced naturally guide train-
ing toward the subset of non-zero weights in the model. Weights transitioning from zero to non-zero
during training typically have smaller magnitudes, limiting their impact on updates. This ensures
that clients focus on a shared subset of weights, facilitating aggregation.

Pruning Activations During Local Training. The local training procedure of SparsyFed is out-
lined in Algorithm 2 and relies on two main pillars. First, it ensures that the edge devices benefit
from the model’s sparsity by reducing memory footprint and FLOPs (depending on the underlying
implementation, see Appendix H). Second, it guarantees the retention of as much information as
possible during the training. We follow Raihan & Aamodt (2020) in three aspects. First, we use
dense activation vectors (at, line 5) to retain all learned information during the forward pass. Sec-
ond, we prune activations before the backward pass by aligning their sparsity with the weight vectors
(lines 7–10). Specifically, activations are pruned layer-wise using the Top-K method with a target
per-layer sparsity level (st,l, line 8), determined by the corresponding per-layer weight sparsity (line
9). Such pruning involves retrieving the weights and activations per layer (line 7) and updating the
pruned activations before computing gradients. The weight parametrization preserves high sparsity
throughout training (Fig. 12, in the appendix), ensuring consistent patterns between weights and ac-
tivations and seamless integration into the model’s sparse structure. Third, we keep gradient vectors
(gt, line 11) dense to avoid losing crucial information during updates. Pruning activations before
the backward pass reduces computational cost while maintaining dense gradients for robust updates.
Notably, initial model weights remain unpruned to allow meaningful training initialization, as clients
train a dense model in the first round. With these principles, the local training procedure is designed
to be optimizer-agnostic, e.g., compatible with ClientOpt (Reddi et al., 2021).

Pruning model parameters before communication. The data-driven and hyperparameter-less
pruning procedure described above requires a further step to ensure compliance with the communi-
cation requirements. Clients receive a model parameters target sparsity, ŝ, from the server, which
must be met before communicating the pseudo-gradient updates. Thus, the client applies a global
unstructured pruning step based on Top-K using the target value ŝ for the output sparsity, guaran-
teeing to save communication costs using a single parameter. Notably, this allows for non-uniform
sparsity across layers, which has been proved to help maintain performance (Kusupati et al., 2020).

4 EXPERIMENTAL DESIGN

Datasets and tasks. We selected three datasets to assess SparsyFed’s performance: CIFAR-10/100
(Krizhevsky, 2012), and Speech Commands (Warden, 2018). CIFAR-10 and CIFAR-100 datasets
contain 32 × 32 color images of 10 and 100 classes, respectively. The Speech Commands dataset
includes audio samples of 35 predefined spoken words and is used for a speech recognition task.
Since these datasets’ samples can be easily distributed across a pre-defined number of clients, they
are common for simulating the heterogeneous data distributions of federated learning settings. On
all datasets, we trained models for multi-label classification tasks.

Data partitioning and sampling. The datasets above are distributed among 100 clients and parti-
tioned using the method in Hsu et al. (2019), simulating various degrees of data heterogeneity. The
distribution of labels across clients is controlled via a concentration parameter α that rules a Latent
Dirichlet Allocation (LDA), where a low α value translates to non-IID distribution and a high value
to the IID distribution of labels. Specifically, we refer to data distributions as IID for α = 103 and
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non-IID for α = 1.0 and α = 0.1. To ensure reproducibility, we fixed the seed to 1337 for the LDA
partitioning process. The federated orchestrator randomly sampled 10 clients out of the 100 clients
in the population every round.

Model and training implementation. We employed a ResNet-18 (He et al., 2016) backbone for
all experiments, adapting the classification layer to each specific task depending on the number of
classes. ResNet-18 was chosen for its size, its popularity in the area, and the scalability of the
ResNet family. While our training pipeline is implemented with PyTorch (Paszke et al., 2019),
we designed custom layers and functions for some of SparsyFed’s components, such as layer-wise
activation pruning and weight parametrization. We used Flower (Beutel et al., 2022) to simulate
the federated learning setting. All models were trained from scratch without relying on any pre-
trained weights.

Sparsity ratios. In our experiments, we targeted different values for the sparsity ratio in the set
{0.9, 0.95, 0.99, 0.995, 0.999}. We chose 0.9 as the minimum value because it has been shown
to bring effective gains (Frankle & Carbin, 2019) for both memory footprints and FLOPs (Ap-
pendix H). Our investigation spans to the extreme value of 0.999 to fairly present the downsides
of these sparsity ratios. We applied the same target sparsity for all devices in the federation. For
completeness, we show in Appendix E.6 how SparsyFed performs when adopting heterogeneous
sparsity targets among devices in the federation.

Communication costs. Measuring the communication costs of SparsyFed is crucial for understand-
ing its practical implications on cross-device FL settings. To make our analysis agnostic to any
compression technique implementation for sparse unstructured models, we report the costs as the
number of non-zero parameters effectively exchanged during the FL. Therefore, the communication
cost is derived from the effective sparsity of the transmitted model, considering both the downlink
(server-to-clients) and uplink (clients-to-server) communication steps. For clarity, we calculate the
communication cost as if only one client participated, assuming all communication occurs in par-
allel. This ensures that our measurements reflect the total communication load without temporal
delays between clients and avoids any bias introduced by the varying sampling proportion of clients
in each round.

Reproducibility. Three different seeds were used for client sampling (5378, 9421, and 2035), while
other stochastic processes were seeded with 1337 for reproducibility purposes.

5 EVALUATION

This section discusses the evaluation of SparsyFed for adaptive sparse training in FL cross-device.
The experimental results shown here aim to answer the following research questions.

1. Can SparsyFed mitigate the expected accuracy degradation at high and very high sparsity
levels? We compare against the baselines, i.e., Top-K, ZeroFL (Qiu et al., 2022), and
FLASH (Babakniya et al., 2023), for both the accuracy and the communication costs (Sec-
tions 5.1 and 5.2, respectively).

2. How does our adaptive sparsity pattern interact with the heterogeneous data distributions
compared to other sparse training methods? Similarly to Babakniya et al. (2023), we ana-
lyze the consensus across clients on the sparse pattern (Section 5.3).

3. How do the main components of SparsyFed contribute to maintaining the accuracy at dif-
ferent sparsity levels? We ablate the activation pruning step (Section 5.5) and vary the
weight re-parameterization (Section 5.4) to answer this question.

To ensure a fair and comprehensive comparison, we reimplemented state-of-the-art methods in our
experiments, including ZeroFL, FLASH, and Top-K pruning. A detailed description of these base-
line methodologies and their comparisons against SparsyFed is presented in Appendix G.

5.1 ACCURACY DEGRADATION

The analysis discussed in this paragraph demonstrates SparsyFed’s resilience to the performance
degradation typically associated with pruning, as SparsyFed achieves competitive results even at
high sparsity levels. Compared to other competitive methods under the same sparsity constraints,
Table 1 shows that SparsyFed exhibits the lowest accuracy drop across all settings and target sparsity
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Dataset Sparsity α = 1.0 α = 0.1

ResNet-18 ZeroFL FLASH SparsyFed ResNet-18 ZeroFL FLASH SparsyFed

CIFAR-10

dense 83.70 ± 1.70 - - - 73.81 ± 4.84 - - -
0.9 80.56 ± 1.90 76.16 ± 1.30 81.15 ± 1.03 82.13 ± 1.53 69.79 ± 3.78 67.40 ± 4.11 71.87 ± 2.63 75.00 ± 2.78

0.95 74.71 ± 3.29 75.53 ± 2.27 79.36 ± 1.03 82.60 ± 1.58 60.00 ± 4.66 61.55 ± 4.18 72.08 ± 2.09 75.95 ± 3.39
0.99 66.27 ± 5.08 70.71 ± 0.15 73.45 ± 1.37 77.71 ± 1.69 43.96 ± 11.99 51.71 ± 3.54 56.91 ± 3.55 63.69 ± 3.90

0.995 63.82 ± 2.41 56.02 ± 3.95 69.15 ± 1.60 70.01 ± 0.43 19.02 ± 10.77 41.33 ± 3.64 52.15 ± 3.87 56.79 ± 3.97
0.999 31.79 ± 19.10 17.66 ± 8.34 36.07 ± 7.49 51.39 ± 3.19 11.50 ± 4.49 18.76 ± 4.28 29.31 ± 6.75 43.68 ± 7.61

CIFAR-100

dense 52.29 ± 1.14 - - - 48.34 ± 2.71 - - -
0.9 46.57 ± 1.71 40.70 ± 4.72 51.99 ± 0.21 53.08 ± 0.90 41.96 ± 2.16 31.92 ± 7.65 45.59 ± 0.75 48.37 ± 1.73

0.95 28.07 ± 23.27 38.82 ± 1.75 47.19 ± 1.88 52.81 ± 1.72 11.48 ± 17.51 34.21 ± 7.65 44.31 ± 2.14 48.27 ± 2.70
0.99 19.65 ± 16.30 18.97 ± 2.08 42.76 ± 4.08 46.64 ± 1.59 0.14 ± 0.72 13.07 ± 2.26 34.75 ± 3.38 41.03 ± 2.14

0.995 9.51 ± 14.81 6.01 ± 4.74 36.43 ± 4.97 42.21 ± 1.03 0.14 ± 0.72 7.04 ± 5.25 26.44 ± 17.35 35.72 ± 2.01
0.999 3.81 ± 2.18 1.96 ± 0.66 5.80 ± 2.86 15.96 ± 0.64 0.14 ± 0.72 1.66 ± 0.97 3.56 ± 2.07 13.84 ± 3.69
dense 91.49 ± 0.94 - - - 80.15 ± 2.69 - - -

0.9 84.28 ± 0.88 87.79 ± 1.40 88.68 ± 1.72 92.32 ± 1.59 65.44 ± 0.97 70.35 ± 2.65 77.15 ± 0.77 79.67 ± 2.78
Speech 0.95 78.58 ± 0.44 84.29 ± 1.50 84.89 ± 0.49 89.14 ± 1.15 57.39 ± 1.04 65.90 ± 1.88 71.28 ± 1.75 75.46 ± 2.24
Commands 0.99 65.01 ± 0.84 57.79 ± 0.82 69.22 ± 1.59 75.82 ± 3.72 50.42 ± 6.26 41.42 ± 1.60 53.55 ± 2.00 56.69 ± 4.56

0.995 56.73 ± 1.00 37.16 ± 2.71 58.23 ± 1.84 68.02 ± 3.14 34.20 ± 1.43 22.61 ± 3.45 43.16 ± 3.47 48.30 ± 5.39
0.999 21.56 ± 12.79 10.10 ± 4.01 17.70 ± 2.58 47.43 ± 1.66 19.25 ± 6.01 8.85 ± 3.76 17.14 ± 2.97 29.24 ± 2.34

Table 1: Aggregated results for CIFAR-10, CIFAR-100, and Speech Command datasets, with
ResNet-18, ZeroFL, FLASH, and SparsyFed implementations.

levels. A noticeable drop in performance compared to the dense model was observed only at 99%
sparsity. This advantage arises from using weight re-parameterization, which, in some cases, can
even enhance the performance of the dense model. Additionally, the minimal performance drop
at lower sparsity levels (90 − 95%) allows SparsyFed to outperform the dense model in specific
scenarios. To stress more our method capabilities, we increased the target sparsity to the point
(99.9%) where SparsyFed is no longer able to retain sufficient accuracy. Our results show that all the
baselines struggle to train effectively under such conditions. The adaptivity of SparsyFed’s sparsity
patterns promotes consistent performance across clients, even in highly sparse settings, leading to a
more synchronized and globally pruned model.

5.2 COMMUNICATION COSTS

The promising accuracy achieved at very high sparsity ratios makes SparsyFed particularly suit-
able for cross-device FL settings, where communication costs are a critical concern. As illustrated
in Fig. 2 (left), SparsyFed significantly outperforms the baselines regarding both communication
savings (19.29× less communication costs compared to the dense model and 1.66× compared
to ZeroFL) and preserving required accuracy (consistently above 45%). FLASH has comparable
communications costs, 0.97× ours, but results in lower accuracy. Notably, SparsyFed consistently
achieves higher accuracy for a given communication cost than the baselines, as shown in Fig. 2
(left). This advantage arises from SparsyFed’s ability to prune weights during client training and
maintain a close-to-target sparsity ratio during server aggregation, effectively reducing uplink and
downlink communication costs. Importantly, FLASH does not see an increase in model density af-
ter aggregation due to its fixed-mask local training regime, which prevents weight regrowth. This
characteristic results in stable communication costs. In contrast, ZeroFL experiences a substan-
tial increase in model density after aggregation, leading to a systematic and significant increase in
downlink communication costs.

5.3 CONSENSUS ON THE SPARSE MASKS ACROSS CLIENTS

Achieving consensus on the sparse masks of the clients’ updates after each training round is cru-
cial for achieving high accuracy. This consensus dynamic can be interpreted as the global model
stabilizing around the target sparsity level as federated rounds progress. As shown in Fig. 2 (right),
SparsyFed demonstrates minimal deviation from the target sparsity (90%), whereas ZeroFL and
Top-K drop below 47% and 83%, respectively, during the initial training stage. SparsyFed’s con-
sistency allows clients to effectively collaborate in training the same subset of parameters, which
reduces the need for excessive pruning after local training and helps retain more helpful informa-
tion. Such consistency appears despite our clients being allowed to dynamically change their mask
during training, unlike fixed-mask approaches. For all methods, local updates maintain consistent
sparsity due to post-training pruning; therefore, any increase in the global model’s density indicates
that local weight regrowth during training alters the local masks. Once these altered updates are ag-
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Figure 2: (left) The plot on the left compares accuracy versus communication cost for four imple-
mentations: ZeroFL, Top-K, FLASH, and SparsyFed, with the dense model as a reference. The
test is conducted on CIFAR-100 partitioned with LDA(α = 0.1) and 95% sparsity. SparsyFed out-
performs the baselines, achieving high accuracy and communicating less. (right) The plot on the
right shows the global model sparsity level, measured on the server after aggregating local updates
(CIFAR-100, α = 0.1). The density gain reflects mismatches between client updates, causing the
aggregated model to regain density, which can degrade performance and increase downlink commu-
nication. Note: FLASH maintains target sparsity after the first round with a fixed mask.
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Figure 3: Intersection over Union (IoU) of global model binary masks between training rounds for
SparsyFed, Top-K, and ZeroFL (CIFAR-100, α = 0.1, 95% target sparsity). The IoU is calculated
between each mask and all other masks across rounds to show changes over time. The x and y
axes represent training rounds indices–the diagonal indicates the identity. Higher IoU values (close
to 1.0) signify stronger similarity between masks, while lower values indicate significant changes.
SparsyFed shows consistent mask movement with minimal variation, suggesting strong consensus
on weight usage among clients. ZeroFL struggles to find mask consensus, with masks continuing to
shift even in later rounds. Note: FLASH is absent since the global mask is fixed.

gregated, the result is a denser global model on the server. This misalignment among clients’ masks
can negatively impact both communication efficiency and accuracy. Global training appears to ben-
efit from this consensus in terms of convergence, as shown in Fig. 2 (left), where both SparsyFed
and FLASH outperform Top-K despite similar overall communication costs.

5.3.1 SPARSITY PATTERN DYNAMICS

We analyze the global model’s sparse mask dynamics during training to shed light on SparsyFed’s
ability to maintain a stable sparse pattern driven by two key factors: (1) focused weight utiliza-
tion and (2) sparse mask adaptivity. First, the weight re-parameterization method targets a critical
subset of weights, concentrating information where it is most impactful. This targeted approach
improves training efficiency, enhances client collaboration, and reduces communication costs, as
shown in Fig. 2. Second, unlike fixed-mask methods like FLASH, SparsyFed promotes dynamic
mask adaptation, achieving robustness to heterogeneous data distributions throughout the training
process. This allows a natural warm-up phase during which the sparsity pattern emerges organically,
as shown in Fig. 3 (left). Clients rapidly converge on a stable shared mask, ensuring consistent per-
formance. In contrast, on Fig. 3 (center), Top-K never fully settles on a stable mask, resulting in
continuous variation across rounds while being faster in its initial rounds. In Fig. 3 (right), ZeroFL,
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though more robust initially, struggles to maintain performance as it forces weight regrowth to adjust
the mask, leading to instability in later rounds.

We do not consider FLASH in this comparison since it fixes its mask after the first round, elim-
inating any changes in the sparse mask pattern but reducing mask adaptivity entirely. While this
strategy ensures that the model adheres to a fixed sparse structure, it introduces potential drawbacks.
Specifically, since the mask is determined based on the data distribution observed in the first round,
FLASH becomes highly dependent on the initial client data. This lack of adaptivity contrasts with
our method, which allows continuous changes. Thus, it is more effective at handling shifts in data
distribution across rounds.

5.4 ABLATION ON WEIGHT RE-PARAMETERIZATION
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Figure 4: We report the test accuracy of dif-
ferent re-parameterization methods with sparse
activations during backpropagation. We de-
ployed a ResNet-18 trained on the CIFAR-10
dataset using LDA(α = 1). This plot illus-
trates the methods’ performance under differ-
ent sparsity levels. Powerpropagation exhib-
ited superior robustness to the applied sparsity
levels, achieving the best overall performance
among these methods.

In this ablation study, we evaluated various weight
re-parameterization techniques for their ability to
sustain a sparsity-driven model while preserving
dense-like performance. Since the sparse activa-
tions during the backward pass rely on a sparse
weight model, the model must maintain high spar-
sity levels throughout training while minimizing
accuracy loss.

We evaluated three approaches: fixed-mask train-
ing, spectral re-parameterization (Miyato et al.,
2018), and Powerpropagation (Schwarz et al.,
2021). We provide more details on the spectral
re-parameterization in Appendix D.3. Each tech-
nique was applied to a ResNet-18 model trained
with sparse activations for the backward pass and
Top-K unstructured pruning at the end of each
training round. This setup enabled direct com-
parison with a baseline model that lacked any re-
parameterization. Among the methods, Power-
propagation proved to be most effective for our
use case (Fig. 4), demonstrating superior resilience
to preserve the accuracy with minimal degrada-
tion. By leveraging a “rich get richer” dynamic,
Powerpropagation naturally induces sparsity dur-
ing training. This enables the model to remain
sparse during training, complementing our sparse
activation backward pass and improving the model’s overall efficiency and effectiveness.

5.5 ABLATION ON ACTIVATION PRUNING

The activation pruning step in SparsyFed (lines 6–10 in Algorithm 2) is designed to reduce compu-
tational costs of local training, which is particularly sensitive when executing on edge devices. This
decision is motivated by prior studies Section 2 and Appendix H. As part of our ablation studies,
we analyzed the impact of this pruning step on the accuracy and overall performance of the model.
Since pruning activations during the backward pass do not directly affect weight density, we focus
explicitly on its influence on test accuracy.

In Table 2, we compare SparsyFed with and without activation pruning during the backward pass.
Our results show that activation pruning minimally impacts test accuracy at higher density levels.
Significant performance degradation occurred only under extreme sparsity, where excessive pruning
in specific layers substantially reduced activations, leading to diminished overall performance. Ul-
timately, the computational speedup achieved through activation pruning validates its inclusion in
SparsyFed, as it balances efficiency with model accuracy.
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Sparsity
α = 103 (IID) α = 1.0 (non-IID) α = 0.1 (non-IID)

no Act. Pr. Act. Pr. no Act. Pr. Act. Pr. no Act. Pr. Act. Pr.

0.90 83.92 ± 1.58 84.31 ± 0.86 82.27 ± 2.21 82.13 ± 1.23 76.60 ± 1.54 75.00 ± 2.78
0.95 83.80 ± 0.90 84.25 ± 1.38 81.53 ± 2.10 82.6 ± 1.58 75.29 ± 2.64 75.95 ± 3.39
0.99 77.54 ± 1.98 77.16 ± 0.85 75.76 ± 1.78 77.71 ± 1.69 63.79 ± 3.96 63.69 ± 3.90
0.995 74.6 ± 1.01 72.71 ± 0.65 70.89 ± 2.22 70.01 ± 0.43 59.15 ± 2.49 56.79 ± 3.97
0.999 62.12 ± 1.74 55.24 ± 2.09 62.67 ± 2.19 51.39 ± 3.191 49.43 ± 2.45 43.68 ± 7.61

Table 2: Accuracy comparison between SparsyFed with and without the pruning of the activation,
on CIFAR-10 with LDA α = 103, α = 1.0, and α = 0.1.

6 RELATED WORK

Sparse training in centralized settings. Methods to enforce sparsity in neural networks can be
grouped into two main categories: (1) dense-to-sparse methods that train a dense model and achieves
a sparse model after training (Molchanov et al., 2017; Louizos et al., 2017), (2) sparse-to-sparse
methods where pruning happens during training (Louizos et al., 2018; Dettmers & Zettlemoyer,
2019; Evci et al., 2020; Jayakumar et al., 2021; Raihan & Aamodt, 2020), thus theoretically reducing
computational requirements (Bengio et al., 2015) and speeding up training. Our work introduces a
novel method to implement sparse training directly within FL clients, inspired by sparse-to-sparse
approaches in centralized settings such as Raihan & Aamodt (2020).

Pruning model updates in FL. After-training pruning, where clients first train dense models and
then prune updates, is a common approach in FL (Sattler et al., 2019; Wu et al., 2020; Malekijoo
et al., 2021). Sparse Ternary Compression (Sattler et al., 2019) combines Top-K pruning with
ternary quantization to compress client updates, while FedZip (Malekijoo et al., 2021) uses layer-
wise pruning, and FedSCR (Wu et al., 2020) employs patterns in client updates for more aggressive
compression. However, these methods primarily improve communication efficiency without reduc-
ing computational overhead, as they still train dense models. In contrast, our method trains sparse
models from the start, resulting in sparse updates and maintaining sparsity even after server aggre-
gation, ensuring efficient upstream and downstream communication.

Sparse training in FL. Several studies have explored sparse learning in federated settings (Bibikar
et al., 2022; Huang et al., 2022; Jiang et al., 2023; Qiu et al., 2022; Babakniya et al., 2023), but each
has limitations. FedDST (Bibikar et al., 2022) applies RigL (Evci et al., 2020) to train sparse models,
focusing on heterogeneous data without addressing extreme sparsity levels. FedSpa (Huang et al.,
2022) uses a fixed sparse mask throughout training without a clear rationale behind it. PruneFL
(Jiang et al., 2023) computes a sparse mask using biased client data and requires full gradient
uploads, increasing communication costs. ZeroFL (Qiu et al., 2022) integrates SWAT (Raihan &
Aamodt, 2020) for local training but struggles with weight regrowth, requiring pruning after each
round, which can cause information loss. FLASH (Babakniya et al., 2023) introduces a fixed mask
after a warm-up phase, but it depends heavily on the chosen clients during the first sampling and
does not adapt to concept drift. In contrast, our method uses a dynamic sparse mask, offering more
flexibility and better performance in highly non-IID FL settings.

7 CONCLUSIONS

This work presents SparsyFed, an adaptive sparse training method tailored for cross-device federated
learning (FL). We show that SparsyFed can achieve impressive sparsity levels while minimizing the
accuracy drop due to the compression. SparsyFed outperforms in accuracy three federated sparse
training baselines, Top-K, ZeroFL, and FLASH, using adaptive and fixed sparsity for three typical
datasets used in cross-device FL. We were able to ensure a limited drop in accuracy at sparsity
levels of up to 95%, achieving up to a 19.29× reduction in communication costs compared to dense
baselines. The results presented in this work make our proposal particularly suitable for cross-device
FL settings, which may require extreme communication cost reductions and the capability to adapt
to heterogeneous distributions across federated rounds.
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Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Gar-
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ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
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Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konečný, Sanmi
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A IMPLEMENTATION

We implemented all experiments using a ResNet-18 backbone (He et al., 2016), which was adjusted
to accommodate the number of classes for each task. The training pipeline was developed using
PyTorch (Paszke et al., 2019), and specific components of the various methods, such as layer-wise
activation pruning and weight re-parameterization, were implemented through custom layers and
functions.

To simulate the federated learning environment, we used the Flower framework (Beutel et al.,
2022). All models were trained from scratch, without pre-trained weights, to ensure a fair evaluation
of SparsyFed’s performance under different sparsity settings. We only performed fine-tuning of a
pre-trained model for the experiments on Visual Transformer (ViT) models.

We utilized a template from CaMLSys Lab to structure the code and ensure easy reproducibility.
The complete code for the implementation is available in this repository.

B RELATED WORK

Sparse training in centralized settings. Methods to enforce sparsity in neural networks can be
grouped into two main categories: (1) dense-to-sparse methods that train a dense model and achieves
a sparse model after training (Molchanov et al., 2017; Louizos et al., 2017), (2) sparse-to-sparse
methods where pruning happens during training (Louizos et al., 2018; Dettmers & Zettlemoyer,
2019; Evci et al., 2020; Jayakumar et al., 2021; Raihan & Aamodt, 2020), thus theoretically reducing
computational requirements (Bengio et al., 2015) and speeding up training. Our work introduces
a novel method inspired by sparse-to-sparse approaches in centralized settings such as Raihan &
Aamodt (2020) to implement sparse training directly within FL clients.

Pruning model updates in FL. After-training model pruning, where clients regularly train their
dense model and then apply pruning to the resulting updates, has been widely explored in the FL lit-
erature (Sattler et al., 2019; Wu et al., 2020; Malekijoo et al., 2021). Sattler et al. (2019) introduced
Sparse Ternary Compression, which combines Top-K pruning with ternary quantization on client
updates. Similarly, FedZip (Malekijoo et al., 2021) applies a layer-wise pruning approach, while
FedSCR (Wu et al., 2020) leverages patterns in client updates for more aggressive compression.
However, these methods primarily focus on enhancing communication efficiency without tackling
the issue of reducing computational overhead during training, as they conduct regular training on a
dense model before pruning weight updates. Our approach simultaneously addresses both concerns,
as training a sparse model naturally yields sparse updates. Furthermore, existing after-training prun-
ing methods typically focus solely on upstream communications or experience performance degra-
dation when applied downstream. In contrast, our method effectively maintains sparsity after server-
side aggregation, as clients rapidly converge on a shared sparsity mask, ensuring that server-to-client
payloads remain sparse.

Sparse training in FL. Few studies have investigated the benefits of sparse learning in federated
settings (Bibikar et al., 2022; Huang et al., 2022; Jiang et al., 2023; Qiu et al., 2022; Babakniya
et al., 2023). Specifically, FedDST (Bibikar et al., 2022) used RigL (Evci et al., 2020) to train sparse
models on clients but mainly focused on highly heterogeneous data distributions without considering
extreme sparsity levels. FedSpa (Huang et al., 2022) employed a randomly initialized sparse mask
that remained fixed throughout training, providing no clear justification for this approach. PruneFL
(Jiang et al., 2023) computes the sparse mask during the initial round on a designated client using
its potentially biased data. Qiu et al. (2022) empirically found that, after local training, the Top-K
weights differ across clients, particularly at higher sparsity levels, leading to divergent sparse masks.
This divergence makes aggregation inefficient and results in downstream dense models. In response,
Qiu et al. (2022) proposed ZeroFL, which integrates unstructured SWAT during local client training.
However, this alone does not guarantee achieving the desired sparsity level, as SWAT often leads to
weight regrowth with each optimizer step. To address this, ZeroFL applies Top-K pruning before
sending the model back to the server, ensuring the model meets the targeted sparsity. It is essential
to highlight that ZeroFL applies the same sparsity level uniformly across all model layers, regardless
of their sensitivity. The recent work in Babakniya et al. (2023) introduces FLASH, which employs
a fixed binary mask throughout the training process. This mask is established during a warm-up
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phase where a subset of clients ([10, 20]) train their model for a non-negligible number of epochs
([10, 20, 40]), and compute their per-layer sensitivity. The server aggregates the client’s sensitivities
to determine the mask. This mask’s fixed nature means no weight regrowth is allowed, and no
further pruning is required after the warm-up phase.

Cross-device federated learning. Federated Learning (FL) has emerged as a paradigm shift
from traditional machine learning approaches, improving data privacy and moving the computation
load to the network’s edge. FL enables collaborative model training across decentralized devices
while keeping data localized, thereby mitigating risks associated with centralized data aggregation
(McMahan et al., 2017). In FL, client devices participate in model training via iterative rounds,
aggregating local updates to build a global model. This distributed approach is advantageous for
scenarios involving edge devices with limited computational resources and intermittent connectiv-
ity (Kairouz et al., 2021). Cross-device Federated Learning (FL) is particularly challenging due to
the heterogeneous and resource-constrained nature of client devices, such as smartphones and IoT
devices. The variability in hardware capabilities and data distributions across devices necessitates
specialized techniques to optimize computation and communication techniques, such as quantiza-
tion and model pruning, which have shown promise in reducing the amount of data that must be
transmitted during each communication round. However, these methods often face challenges in
maintaining model performance and achieving consensus on the sparsity patterns among clients.

Model pruning. Sattler et al. (2019) propose Sparse Ternary Compression (STC), a lossy com-
pression scheme able to reduce the per-round communication cost of FL iterations significantly.
STC first applies Top-K pruning after unaltered on-device training and then further compresses the
weight updates using a ternary quantization. Other types of work have followed the idea proposed in
Rigging the Lottery Ticket (Evci et al., 2020), where an initial sparse mask is fixed at the beginning
of the training and remains primarily unchanged throughout. This approach allows clients to train
only the initially fixed weights (Jiang et al., 2023; Babakniya et al., 2023).

Weight parametrization. Re-parameterization of weights in machine learning refers to the pro-
cess of altering the re-parameterization of a model’s weights to achieve various goals or facilitate
specific training strategies (Li et al., 2019; Gunasekar et al., 2017; Zhao et al., 2022; Vaskevicius
et al., 2019). This approach can be beneficial for enhancing the model’s robustness to the applica-
tion of sparsity. This work considers a re-parameterization based on Weight Spectral Normalization
(Miyato et al., 2018) and Powerpropagation (Schwarz et al., 2021). The former re-parameterizes the
weights based on the proportion of each weight relative to the one with the highest magnitude. At the
same time, the latter applies an alpha power to the weights, inducing a “rich get richer” mechanism.

Wrefactor = W · W

σ(W )

C ADDITIONAL EXPLANATIONS ON SparsyFed COMPONENTS

Model preparation for pruning. The first step is to prepare the model for pruning by applying
a re-parameterization to the weights at the layer level, as proposed in Schwarz et al. (2021). This
approach leverages the information already present in the model by applying power to a specific
value, β, to the network weights. This re-parameterization aims to induce a sparse representation of
the weight of the network.

Following the original approach, each weight wi is replaced by wβ
i . This transformation only applies

to the neural network weights, leaving other parameters unchanged. Given the re-parameterized loss
function L(wβ), the gradient with respect to w becomes:

∇wL(wβ) = ∇wβL(wβ) · βwβ−1

Here, ∇wβL(wβ) is the gradient concerning the re-parameterized weights. This gradient is scaled
element-wise by βwβ−1, which adjusts the step size proportionally to the magnitude of each weight.
This update is distinct from simply scaling the gradients in the original re-parameterization, as it
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directly modifies the re-parameterized weights, not the original weights. This modified gradient
step enables a “rich-get-richer” dynamic where the gap between high and low-magnitude weights
increases, creating a natural separation between them. This makes the model relatively insensitive
to pruning.

Weight pruning. Our first concern was to reduce the model’s size during communication rounds
to speed up FL training. In this context, a compression mechanism is typically used to reduce
the payload size that has to be exchanged. To achieve this, reducing the number of parameters in
the network is necessary, inducing a high level of sparsity. We used a Top-K pruning method to
remove all low-magnitude weights from the network. This pruning operation is implemented at the
end of each local training on the client. This decision is based on several observations: (a) since
the parametrization affects gradient descent, pruning before training would not be beneficial, (b) the
server is not aware of the features of the data on the clients, and initializing the sparsity mask on the
server side could cause a significant drop in performance.

We also decided to induce sparsity from the very first round. The clients would only use a small
portion of the weights during training, so they must start training with the restricted fraction to
maximize their effectiveness. Sparsity is induced from the first round of local training on each
device, allowing the local updates to be sparse from the beginning of the federated training.

During the following training rounds, a second quality of Powerpropagation comes into play, dras-
tically reducing the regrowth of new weights during training. This results in minimal shifts of the
model’s sparsity mask from the global one received from the server. Thus, the sparsity mask of the
new model update sent to the server will differ very little from the global one. In other words, using
Powerpropagation, we are forcing all clients to converge towards a shared sparsity mask, similar
to Evci et al. (2020), without inhibiting the regrowth of new paths. The clients decide the mask in
the first round of training based on their local data. This means that the global model will remain
highly sparse even after aggregating new local updates from the clients. This result allows for signif-
icant compression during the downlink communication from the server to the clients in subsequent
training rounds.

Activation pruning. To further reduce the computation footprint during the training, we imple-
mented a layer-wise pruning similar to the one proposed in Raihan & Aamodt (2020). The original
proposal was to speed up inference and training by reducing the number of computational opera-
tions, inducing a fixed level of sparsity on the weights of each layer during both the forward and
backward passes. However, this could cause a significant drop in performance with high sparsity
levels, as not all layers retain the same level of information. Applying the same sparsity to all layers
could negatively impact those that naturally retain more information. In our implementation, we
heavily modified the approach, retaining only key concepts. Since we keep the model sparse during
almost all training rounds, except for the first, pruning the weights during the forward pass is not
necessary.

For the pruning of activations during the backward pass, instead of applying the same level of spar-
sity to all layers of the model, the global sparsity mask is used to determine the pruning sensitivity
of each layer. The level of pruning applied to the activations is directly proportional to the level of
the sparsity of the weights in the same layer, allowing layers that retain more information to main-
tain denser activations while drastically reducing the activations in layers that reach a high level of
sparsity.

D ADDITIONAL BACKGROUND

D.1 POWERPROPAGATION

Powerpropagation is a weight re-parameterization technique that induces sparsity in neural net-
works. Essentially, it causes gradient descent to update the weights in proportion to their magnitude,
leading to a “rich get richer” dynamic where small-valued parameters remain largely unaffected
by learning. As a result, models trained with Powerpropagation exhibit a weight distribution with
significantly higher density at zero, allowing more parameters to be pruned without compromising
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performance. Powerpropagation involves raising model parameters to the power of β (where β > 1)
in the forward pass while preserving their sign. This re-parameterization can be expressed as

w = v · |v|β−1

where w represents the weights, and v are the re-parameterized parameters. Due to the chain rule,
this re-parameterization causes the magnitude of the parameters (raised to β−1) to appear in the gra-
dient computation. Consequently, small-valued parameters receive smaller gradient updates, while
large-valued parameters receive larger updates, thus amplifying the “rich get richer” dynamic. Pow-
erpropagation leads to intrinsically sparse networks, meaning that a significant portion of the weights
converge to values near zero during training. This property allows for the pruning (removal) of
many weights without significantly compromising model performance. Powerpropagation can also
be easily integrated with existing sparsity algorithms to enhance performance further. Studies show
the benefits of combining Powerpropagation with popular methods such as Iterative Pruning and
TopKAST (Gale et al., 2019; Jayakumar et al., 2021).

D.2 FIXED MASK SPARSE TRAINING (FLASH)

Training a fixed subset of weights can be a practical approach for sparse model training in Feder-
ated Learning (FL), offering several significant benefits. Limiting the number of active (non-zero)
weights reduces the computational and memory demands compared to dense models, which is par-
ticularly advantageous given the resource constraints often found in client devices within FL. In ad-
dition to these resource savings, sparse models enhance communication efficiency between clients
and servers. Since only the active weights need to be transmitted, the message size is reduced,
leading to faster training and lower bandwidth usage.

Another advantage of this method is its potential to uncover “winning tickets” within neural net-
works Frankle & Carbin (2019). Research indicates that dense, randomly initialized networks often
contain sparse sub-networks, known as “winning tickets”, which, when trained independently, can
achieve performance similar to the full model. Training a fixed subset of weights promotes this
sparsity and encourages the model to learn more efficient representations, potentially revealing these
sub-networks.

Despite these benefits, specific challenges arise when using a fixed subset of weights in FL. If the
mask is not initialized correctly or fails to adapt during training, the model’s performance may be
compromised. To mitigate these issues, strategies such as sensitivity-based pruning and selective
mask updates are crucial for fully leveraging the advantages of sparse learning in FL Babakniya
et al. (2023). The training process for sparse models can be formalized as:

Wsparse = M ⊙W

where Wsparse represents the sparse weights, M is the binary mask (with values 0 or 1), and ⊙
denotes element-wise multiplication.

D.3 SPECTRAL NORMALIZATION

Spectral Normalization (SN) is a weight normalization technique that aims to limit the most signif-
icant singular value of each weight matrix, thereby controlling the Lipschitz constant of the func-
tion represented by the network. This is achieved by constraining the spectral norm of each layer
g : hin → hout. Formally, given a weight matrix W , its spectral norm is defined as the most
significant singular value σ(W ), i.e.,

σ(W ) = max
h̸=0

∥Wh∥2
∥h∥2

SN normalizes the weight matrix W by dividing it by its spectral norm:

W̄ =
W

σ(W )
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This ensures that the Lipschitz constant of each layer remains bounded, promoting stability during
training, particularly in scenarios where gradients may explode. Originally proposed as a regular-
ization technique to stabilize discriminator training in Generative Adversarial Networks (GANs)
Miyato et al. (2018), SN has since found broader applications, including improvements in genera-
tive neural networks Zhao et al. (2018), and has been theoretically linked to enhanced generalization
and adversarial robustness Farnia et al. (2018); Sokolic et al. (2017); Cisse et al. (2017).

In the context of federated learning and sparse training, SN can significantly improve the resilience
of models to pruning. SN regularizes the model mappings by enforcing the Lipschitz constraint,
reducing sensitivity to high sparsity levels. This effect has been observed in prior work on pruning,
where SN was used to prune redundant mappings and enforce a spectral-normalized identity prior
Lin et al. (2020).

However, by strictly constraining the Lipschitz constant, SN may reduce the model’s flexibility
during training, potentially affecting convergence in some cases. To address this, following an
approach similar to those proposed in other re-parameterization works Vaskevicius et al. (2019), we
propose a slightly different method where the spectral norm is modified to enhance the distribution
of the weights. Specifically, we redefine the weight update rule as:

w = w · |w|
σ(W )

This approach allows us to maintain most of the model’s performance while improving its resilience
to pruning.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 NAIVE POWERPROPAGATION FEDERATED ADAPTATION

In the original Powerpropagation paper, pruning was applied at the end of centralized training after
training a dense model. To create a baseline for comparison, we implemented a naive federated
version of Powerpropagation that follows this methodology. In this version, pruning is not applied
during local training at the client level. Instead, clients train with the full model, sending and receiv-
ing full model updates. At the end of the federated training (after the final round), pruning is applied
to the global model using the Top-K method.

We compare this naive version of federated Powerpropagation to our proposed method, SparsyFed,
across various sparsity levels and different levels of data heterogeneity, in Table 3. As shown in
the results, SparsyFed significantly outperforms the naive federated Powerpropagation in terms of
performance and stability, even in sparsity.

Sparsity α = 103 (IID) α = 1.0 (non-IID) α = 0.1 (non-IID)

Naive PP SparsyFed Naive PP SparsyFed Naive PP SparsyFed
0.000 84.69 ± 1.57 - 84.31 ± 1.01 - 74.86 ± 2.28 -
0.900 71.41 ± 7.01 84.31 ± 0.86 66.70 ± 3.76 82.13 ± 1.53 45.82 ± 6.32 75.00 ± 2.78
0.950 35.02 ± 6.37 84.25 ± 1.38 33.84 ± 13.71 82.60 ± 1.58 24.28 ± 8.79 75.95 ± 3.39
0.990 12.40 ± 4.17 77.16 ± 0.85 12.30 ± 3.68 77.71 ± 1.69 9.28 ± 2.52 63.69 ± 3.90
0.995 10.33 ± 0.57 72.71 ± 0.65 10.03 ± 0.05 70.01 ± 0.43 9.74 ± 3.24 56.79 ± 3.97
0.999 9.86 ± 0.25 55.24 ± 2.09 10.01 ± 0.02 51.39 ± 3.19 11.67 ± 6.66 43.68 ± 7.61

Table 3: Accuracy comparison for Naive Powerpropagation and SparsyFed on CIFAR-10 with dif-
ferent LDA settings (α = 103, α = 1.0, and α = 0.1).

E.2 POWERPROPAGATION EXPONENT IN SparsyFed

Applying Powerpropagation in SparsyFed introduces a new hyperparameter that must be tuned
alongside others. To address this, we explored different approaches. The first follows the methodol-
ogy of the original paper, where a series of fixed exponents were proposed for re-parameterization.
In the latter approach, we propose a novel method for determining the exponent dynamically, mak-
ing it dependent on the network’s weights rather than being predefined. This follows a strategy
similar to spectral normalization.

E.2.1 SENSITIVITY ANALYSIS OF FIXED POWERPROPAGATION EXPONENT

Following the approach of the original paper, we evaluated different values of β to assess their impact
on model performance. Preliminary tests suggest that the sensitivity of this hyperparameter is not
as critical as initially expected. We tested several values proposed in the original paper to evaluate
their effectiveness in sparse training within a federated learning setting. As shown in Fig. 5, any β
value between 1 and 2 significantly improves performance in dynamic sparse training compared to
the baseline without re-parameterization.

E.2.2 HYPERPARAMETER-FREE POWERPROPAGATION EXPONENT

To eliminate the need for an additional hyperparameter, we propose an alternative version of
SparsyFed where β is computed at runtime. Instead of a fixed β for Powerpropagation, a tailored ex-
ponent is derived based on the layer-wise weight magnitude distribution, leveraging concepts from
the spectral norm.

We denote the spectral norm of a weight matrix W as spectral norm(W), which computes the
maximum magnitude of the elements in W and normalizes it by dividing W by its maximum
value Wmax. Thus, spectral norm(W) results in a matrix of positive values ranging between 0 and
1. Using spectral norm(W), we construct a tailored exponent matrix for the network’s weights by
implementing custom convolutional and linear layers, where the matrix is computed at the beginning
of the forward pass. The exponentiation process raises each weight w in a layer to the power of
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1+ spectral norm(w), ensuring that each weight is scaled by a factor between 1 and 2, proportional
to its relative magnitude compared to the largest weight in the network.

To reduce computational overhead, the exponent matrix is calculated only during the first forward
pass and stored for subsequent iterations. Additionally, to minimize memory usage, we avoid storing
the full exponent matrix and instead compute and store only the average value per layer, reducing
memory requirements to a single scalar per layer. This averaging approach results in higher values
for denser layers with more nonzero weights, while highly sparse layers tend to have significantly
smaller values. The sparsest layers, often found toward the end of the network, tend to be larger and
more sparsely populated, amplifying this effect.

The overall computational cost remains marginal and comparable to the standard Powerpropaga-
tion implementation, as the computation is only performed during the first forward pass. Perfor-
mance analysis in Fig. 5 shows that this method outperforms naive Top-K pruning without re-
parameterization and matches or surpasses most fixed alpha values. However, it still falls short of
the best-performing fixed β, suggesting that further refinements would be necessary to bridge this
performance gap. While more extensive experiments are needed, this represents a useful insight into
potential enhancements for this approach.
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Figure 5: Test Accuracy with different β values, with 95% sparsity on CIFAR-10 LDA α = 1.0.
The accuracy of the dense model (gray), the hyperparameter-free Spectral Exponent version, and
the Top-K method are also reported for reference.

E.3 WEIGHT MOVEMENT METRICS IN FEDERATED LEARNING

To better understand the aftermath of SparsyFed on the weight of the model during training, a com-
prehensive evaluation of the weight evolution throughout training has been conducted by comparing
the initial global model, the local updates sent to the server at the end of each round, and the sub-
sequently obtained aggregated global model. This allows for gated metrics that capture the overall
training progression and the round-specific dynamics. We focus on two primary metrics: the L2
norm between weight matrices and cosine similarity. The former (L2) quantifies the magnitude of
weight changes. It is measured as follows: (i) the cumulative L2 norm between the initial model and
the aggregated model at each round for long-term evolution, and (ii) the L2 norm between consecu-
tive global models to assess round-level variation. In contrast, cosine similarity captures functional
consistency in the updates. It is measured as (i) the similarity between client updates to assess
alignment across non-IID data distributions and (ii) between consecutive global models to evaluate
directional stability in weight updates.

Experiments were conducted using ResNet18 on CIFAR-10, CIFAR-100 and Speech Commands,
with data partitioned using LDA (α = 0.1) to simulate non-IID distributions. The model was trained
for 200 rounds using SparsyFed and Top-K under sparsity levels of 95%. The results reveal distinct
training behaviors across methods.

As shown in Fig. 6, the global L2 distance—measuring the deviation from the initial
model—smoothly increases in SparsyFed, whereas in other implementations, it rises sharply before
stabilizing after several rounds, indicating excessive drift in the early stages. In contrast, SparsyFed
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Figure 6: Global L2 Norm – This metric tracks how far the global model moves from its initial state
throughout training. A smoother increase indicates more stable updates, while sharp rises suggest
rapid drift.
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Figure 7: Round L2 Norm – By measuring the L2 norm between consecutive global models, this
metric highlights the magnitude of updates applied at each training round, revealing how steadily or
abruptly the model evolves.

exhibits a more gradual trajectory, suggesting stable and incremental updates. A similar trend is
observed when examining round-by-round evolution, highlighting the steps taken by the model af-
ter each aggregation. Fig. 7 illustrates the high variance in updates for Top-K, whereas SparsyFed
maintains stable and smaller updates.
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Figure 8: Round Cosine Similarity – This captures the consistency of global model updates across
rounds. A high and stable similarity suggests smooth training dynamics, while fluctuations may
indicate instability in model aggregation.

Cosine similarity metrics provide complementary insights. The round-wise cosine similarity (Fig. 8)
represents the cosine similarity between the global model before local training and after aggregation.
This measurement shows how much the model is modified by a training round. The results highlight
that SparsyFed quickly attains high alignment and maintains stability throughout training, while
Top-K exhibits more significant fluctuations in the initial rounds, suggesting inconsistent updates
across rounds.

Figure 9 shows client round-wise cosine similarity, which measures the similarity among updates
sent to the server by clients at the end of each training round. The results indicate that SparsyFed
tends to have a faster and smoother trajectory. In both cases—client and round— all methods eventu-
ally achieve high similarity, though at different stages of training. Notably, SparsyFed demonstrates
the fastest convergence and smoother dynamics. A slightly lower final similarity value in the CIFAR-
10 experiment is not concerning, provided it remains consistent and stable throughout training, as
this may indicate better handling of data heterogeneity, allowing clients to adapt more effectively to
their respective data distributions.
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Figure 9: Client Cosine Similarity – This measure assesses how similar client updates are. Higher
similarity suggests greater alignment across different clients, while lower values indicate more di-
verse local updates due to data heterogeneity.

E.4 GLOBAL MODELS SPARSITY LEVELS

The global model’s sparsity fluctuates during training due to the mismatch in client updates. As a
result, the global model’s sparsity is not always fixed and can fluctuate significantly throughout the
training process. The following figures show that the sparsity target directly influences the sparsity
level. Higher sparsity targets tend to lead to more significant weight regrowth during training, as
seen in Fig. 12, which results in a more considerable mismatch on the server, leading to a denser
model. This effect is particularly noticeable at the beginning of training, when the model is more
susceptible to significant changes in shape, as illustrated in Fig. 3. Following this, we present a plot
of the sparsity measure on the global model for different sparsity targets during training.
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Figure 10: (a) From the top left to the bottom right, we present the plots of the sparsity levels
for ZeroFL, SparsyFed, and Top-K at sparsity levels of 95%, 99%, 99.5%, and 99.9%. ZeroFL
struggles to reach the target sparsity in all cases, partially due to its aggregation method, which
only aggregates non-zero weights. This leads to large magnitude weights, even if they are present
in only a fraction of the clients. SparsyFed and Top-K tend to reach the target more quickly, with
SparsyFed showing a small fluctuation in the initial training phase due to the movement of the mask,
as shown in Fig. 3.

E.5 DISTRIBUTION OF THE SPARSITY THROUGH THE LAYERS.

Sparsity distribution is crucial as the sparsity achieved in the weights of each layer is used to de-
termine the sparsity level applied to the activations during the backward pass. Each layer is pruned
with a distinct sparsity level based on the information it contains, leveraging layer sensitivity to
implement an effective pruning strategy for activations. This ensures that the sensitivity observed
in the weights is reflected in the activation pruning, allowing for dynamic sparsity for both weights
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Figure 11: Different sparsity ration of some relevant layer, ZeroFL (red) vs SparsyFed with Pow-
erpropagation and sparsity ratio of 60%. The first layers are not shown as they are kept dense in
ZeroFL. Empirical observation regarding the nature of the pruning procedure (constant across lay-
ers for ZeroFL, variable unstructured across layers for SparsyFed). We could use this in the main
paper only if we make the case that our method performs better because of this. We consider this
appendix material for now.

and activations based on the natural sensitivity of each layer. Empirical evidence, shown in Fig. 11,
supports this approach, showing that in ZeroFL implementations, the sparsity of the layers remains
uniform across all layers of the model, while in others, the sparsity levels vary significantly between
layers. The first layers tend to be nearly fully dense, while the deeper layers exceed the global
sparsity target, indicating that the first layers retain more information than the deeper layers.

A key factor in this behavior is the limited weight regrowth observed in SparsyFed, where only a
small number of weights transition from zero to non-zero values after each training round. As de-
picted in Fig. 12, SparsyFed exhibits minimal regrowth, stabilizing quickly over a few rounds. This
is directly attributable to using Powerpropagation during training, drastically reducing the impact
of smaller weights. Although this behavior was not highlighted in the original paper, it represents
empirical evidence supporting the effectiveness of an inherited sparse model training procedure.

As illustrated in Fig. 3, our implementation shows that the global model’s mask shifts slightly during
the initial training rounds. This suggests that overly rigid approaches, such as those proposed in
FLASH, may negatively impact performance by failing to accommodate necessary flexibility. On
the other hand, SparsyFed’s approach maintains flexibility while still converging toward a consistent
global mask.

E.6 HETEROGENEOUS SPARSITY EXPERIMENTS

In this experimental setup, we aim to evaluate heterogeneous sparsity by using two distinct sets of
model sparsity:

1. [0.9,0.85,0.8]: These sparsity levels are based on the settings proposed by FLASH in
their heterogeneous setup. These values represent a moderate range of sparsity, which does
not significantly impact the model’s performance in this task.

2. [0.99,0.95,0.9]: These denser models previously tested in other experiments offer a more
challenging setup. SparsyFed outperforms FLASH in these settings due to its ability to
adapt efficiently to varying sparsity levels across clients.
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Figure 12: Number of weights regrown (weights switching from zero to non-zero) with one local
epoch, compared between SparsyFed and ZeroFL. ZeroFL performs the worst of all tested imple-
mentations, with 50-80% of weights regrowing after local training. In contrast, SparsyFed shows
near-zero regrowth (200× lower than ZeroFL). This ensures that the movement of the mask fo-
cuses on important weights rather than being distributed across many. Note: FLASH does not allow
weight regrowth due to its fixed-mask training approach, so it is excluded from this graph.

The clients are partitioned into three groups containing [40, 30, 30] clients. Each group trains on a
different level of sparsity in the model. They receive a model matching their capability and send
back an update of the same dimensions. For clarity, a client in group 0 in the first setting will receive
a model with 0.9, train on it, and then send back a sparse update with 0.9. As shown in Table 4, we
achieve high performance in all the settings, with a clear margin in the more extreme setting

Lower Sparsity Higher Sparsity

Setting LDA FLASH SparsyFed FLASH SparsyFed

Moderate α = 103 83.15 ± 0.96 83.28 ± 0.44 83.77 ± 0.84 83.27 ± 0.44
α = 0.1 70.9 ± 0.92 74.97 ± 2.39 74.65 ± 0.96 74.98 ± 2.39

Extreme α = 103 74.72 ± 0.49 81.04 ± 0.26 74.72 ± 0.67 81.20 ± 0.39
α = 0.1 57.63 ± 4.83 69.74 ± 0.28 59.82 ± 2.99 69.96 ± 0.19

Table 4: Performance comparison between FLASH and SparsyFed across different heterogeneous
sparsity settings and LDA values. The model has been evaluated on all the sparsity-level trained.
For simplicity, we show the test accuracy for the denser model (which reaches a density equal
to the target density trained, 0.8 and 0.95 for moderate and extreme settings) and the less dense
models (0.9 and 0.99 for moderate and extreme). While in the moderate setting, the performances
are similar and in line with the dense model’s performance (see Table 1), in the extreme setting,
SparsyFed demonstrated more versatility, achieving high performance even with the sparsest model.
It is important to note that in such a setting, the model’s performance would align with the sparsest
model trained, especially considering it is trained from a larger (though not majority) group of clients
compared to the others.
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E.7 WIDE FEDERATED CIFAR10

In this experiment, we aimed to address the challenge of training a model in a setting where the
number of samples per client is extremely low. To do this, following an approach similar to the one
proposed in Charles et al. (2021a), we partitioned the CIFAR-10 dataset into 1000 clients following
an LDA distribution with α = 0.1. As shown in Table 5, SparsyFed significantly outperformed the
alternative in this setting, where clients retain minimal information. Notably, both sparse methods
outperformed the dense one in this setting, likely due to the dilution of information in the dense
model when such a small amount of data is used at each round.

Method Accuracy (%)

Dense 47.11 ± 2.77
FLASH 51.96 ± 2.84
SparsyFed 54.37 ± 1.28

Table 5: Performance comparison of the dense model, FLASH, and SparsyFed. Both FLASH and
SparsyFed have been trained with a sparsity of 0.95. The experiments were conducted on CIFAR-
10, partitioned across 1000 clients following LDA with α = 0.1, and a participation rate of 0.1%.

E.8 VISION TRANSFORMER

To extend our experimental evaluation, we designed an experiment using a Vision Transformer
(ViT) (Dosovitskiy et al., 2021) on the CUB-200-2011 dataset (Welinder et al., 2010), following the
setup proposed in (Hu et al., 2023). Specifically, we use a pre-trained ViT-Base model on ImageNet-
21k (Deng et al., 2009) and fine-tuned on CIFAR-100.1 The data is partitioned using LDA with
α = 1000.0 among 100 clients, each receiving approximately 60 samples. The participation rate for
training and evaluation is set to 10%. The experiments were conducted using the AdamW optimizer
with various settings. While hyperparameter tuning can be challenging and resource-intensive in
this context, initial results indicate a noticeable advantage of using SparsyFed over a naive Top-K
approach in federated learning. The following results compare four different combinations of learn-
ing rate and the number of local epochs. In the first case, only one local epoch is performed per
round, while in the other cases, three local epochs are used, with the first two serving as a warm-up
phase. Additionally, two different learning rate strategies are evaluated: one with a fixed learning
rate of 0.01 and another with a server-side decay schedule that reduces the learning rate from 0.01
to 0.001. The global sparsity is set to 50%, and the SparsyFed and Top-K implementations are
compared. Overall, SparsyFed leads to a consistent improvement in performance, with more evi-
dent benefits in some instances. In all settings, SparsyFed can remarkably maintain a sparsity level
close to the target throughout training. In contrast, the Top-K implementation tends to drift away
from the desired sparsity as training progresses. Our method thus reduces communication overhead
during training while effectively achieving the target sparsity level in the final model.

1The pre-trained model was sourced on the Hugginface Hub from this repository
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Figure 13: Experiment using a Vision Transformer (ViT) on the CUB-200-2011 dataset with LDA
α = 1000.0, 100 clients, and 10% partial participation rate for training and evaluation. For each
experimental setting (rows), we show the training loss, distributed evaluation loss, and sparsity level
on the left, central, and right columns, respectively. The training loss is measured during training.
The distributed evaluation loss is collected during the client data evaluation. The sparsity level refers
to the global model after aggregation on the server. Different settings are shown, from top to bottom:
(first row) one local epoch with a fixed learning rate, (second row) one local epoch with server-side
learning rate decay from 0.01 to 0.001, (third row) three local epochs with a fixed learning rate, and
(fourth row) three local epochs with server-side learning rate decay from 0.01 to 0.001. The number
of local epochs and the final learning rate are reported at the top of each plot.
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E.9 FULL TABLES ACCURACY RESULTS

Dataset Sparsity Resnet18 ZeroFL FLASH SparsyFed

dense 85.14 ± 1.18 - - -
0.9 82.16 ± 0.80 78.67 ± 1.52 82.57 ± 2.05 84.31 ± 0.86

CIFAR10 0.95 77.92 ± 0.97 76.16 ± 1.28 82.22 ± 0.14 84.25 ± 1.38
(α = 103) 0.99 68.11 ± 3.50 72.40 ± 1.08 77.48 ± 2.86 77.16 ± 0.85

0.995 54.49 ± 8.70 60.31 ± 4.11 71.85 ± 1.63 72.71 ± 0.65
0.999 17.87 ± 6.22 21.91 ± 1.11 46.43 ± 16.73 55.24 ± 2.09

dense 53.79 ± 1.63 - - -
0.9 46.47 ± 1.74 44.11 ± 0.93 53.06 ± 1.10 54.44 ± 1.33

CIFAR100 0.95 13.45 ± 21.45 33.67 ± 3.34 49.25 ± 1.63 54.33 ± 1.48
(α = 103) 0.99 1.54 ± 1.22 10.59 ± 2.48 44.40 ± 1.77 47.62 ± 1.67

0.995 0.97 ± 0.64 4.04 ± 3.43 36.82 ± 1.72 42.05 ± 1.21
0.999 0.97 ± 0.64 0.87 ± 0.21 9.61 ± 3.61 13.85 ± 1.01

dense 92.98 ± 0.67 - - -
0.9 85.53 ± 0.84 89.12 ± 1.11 89.89 ± 0.74 91.34 ± 0.52

Speech Commands 0.95 80.19 ± 1.92 85.63 ± 1.12 88.16 ± 1.37 89.79 ± 0.21
(α = 103) 0.99 67.67 ± 2.32 60.79 ± 2.44 76.41 ± 1.31 77.00 ± 0.73

0.995 36.69 ± 1.45 41.16 ± 3.10 67.54 ± 1.15 70.03 ± 1.14
0.999 63.63 ± 3.24 16.77 ± 6.23 31.83 ± 2.18 49.27 ± 0.50

Table 6: Aggregated results for CIFAR10, CIFAR100, and Google Speech Command datasets.

Dataset Sparsity Resnet18 ZeroFL FLASH SparsyFed

dense 83.70 ± 1.70 - - -
0.9 80.56 ± 1.90 76.16 ± 1.30 81.15 ± 1.03 82.13 ± 1.53

CIFAR10 0.95 74.71 ± 3.29 75.53 ± 2.27 79.36 ± 1.03 82.60 ± 1.58
(α = 1.0) 0.99 66.27 ± 5.08 70.71 ± 0.15 73.45 ± 1.37 77.71 ± 1.69

0.995 63.82 ± 2.41 56.02 ± 3.95 69.15 ± 1.60 70.01 ± 0.43
0.999 31.79 ± 19.10 17.66 ± 8.34 36.07 ± 7.49 51.39 ± 3.19

dense 52.29 ± 1.14 - - -
0.9 46.57 ± 1.71 40.70 ± 4.72 51.99 ± 0.21 53.08 ± 0.90

CIFAR100 0.95 28.07 ± 23.27 38.82 ± 1.75 47.19 ± 1.88 52.81 ± 1.72
(α = 1.0) 0.99 19.65 ± 16.30 18.97 ± 2.08 42.76 ± 4.08 46.64 ± 1.59

0.995 9.51 ± 14.81 6.01 ± 4.74 36.43 ± 4.97 42.21 ± 1.03
0.999 3.81 ± 2.18 1.96 ± 0.66 5.80 ± 2.86 15.96 ± 0.64

dense 91.49 ± 0.94 - - -
0.9 84.28 ± 0.88 87.79 ± 1.40 88.68 ± 1.72 92.32 ± 1.59

Speech Commands 0.95 78.58 ± 0.44 84.29 ± 1.50 84.89 ± 0.49 89.14 ± 1.15
(α = 1.0) 0.99 65.01 ± 0.84 57.79 ± 0.82 69.22 ± 1.59 75.82 ± 3.72

0.995 56.73 ± 1.00 37.16 ± 2.71 58.23 ± 1.84 68.02 ± 3.14
0.999 21.56 ± 12.79 10.10 ± 4.01 17.70 ± 2.58 47.43 ± 1.66

Table 7: Aggregated results for CIFAR10, CIFAR100, and Google Speech Command datasets.
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Dataset Sparsity Resnet18 ZeroFL FLASH SparsyFed

dense 73.81 ± 4.84 - - -
0.9 69.79 ± 3.78 67.40 ± 4.11 71.87 ± 2.63 75.00 ± 2.78

CIFAR 10 0.95 60.00 ± 4.66 61.55 ± 4.18 72.08 ± 2.09 75.95 ± 3.39
(α = 0.1) 0.99 43.96 ± 11.99 51.71 ± 3.54 56.91 ± 3.55 63.69 ± 3.90

0.995 19.02 ± 10.77 41.33 ± 3.64 52.15 ± 3.87 56.79 ± 3.97
0.999 11.5 ± 4.494 18.76 ± 4.28 29.31 ± 6.75 43.68 ± 7.61

dense 48.34 ± 2.71 - - -
0.9 41.96 ± 2.16 31.92 ± 7.65 45.59 ± 0.75 48.37 ± 1.73

CIFAR100 0.95 11.48 ± 17.51 34.21 ± 7.65 44.31 ± 2.14 48.27 ± 2.70
(α = 0.1) 0.99 0.14 ± 0.72 13.07 ± 2.26 34.75 ± 3.38 41.03 ± 2.14

0.995 0.14 ± 0.72 7.04 ± 5.25 26.44 ± 17.35 35.72 ± 2.01
0.999 0.14 ± 0.72 1.66 ± 0.97 3.56 ± 2.07 13.84 ± 3.69

dense 80.15 ± 2.69 - - -
0.9 65.44 ± 0.97 70.35 ± 2.65 77.15 ± 0.77 79.67 ± 2.78

Speech Commands 0.95 57.39 ± 1.04 65.90 ± 1.88 71.28 ± 1.75 75.46 ± 2.24
(α = 0.1) 0.99 50.42 ± 6.26 41.42 ± 1.60 53.55 ± 2.00 56.69 ± 4.56

0.995 34.20 ± 1.43 22.61 ± 3.45 43.16 ± 3.47 48.30 ± 5.39
0.999 19.25 ± 6.01 8.85 ± 3.76 17.14 ± 2.97 29.24 ± 2.34

Table 8: Aggregated results for CIFAR10, CIFAR100, and Google Speech Command datasets.

F ADDITIONAL EXPERIMENTAL CONFIGURATION DETAILS

Learning rate scheduler. The learning rate follows a scheduled pattern defined by the function:

ηt = ηstart exp

(
t

T
ln

(
ηend

ηstart

))
(1)

Reproducibility. Seeds were used for client sampling, while others were fixed for reproducibility
purposes. All simulations were conducted using three different client sampling seeds: 5378, 9421,
and 2035.

Experimental Setting. Each round consisted of one local epoch with a local batch size of 16 sam-
ples. The initial learning rate was set to 0.5, gradually decreasing to a final value of 0.01 following
Eq. (1). For SparsyFed, the exponent for re-parameterization was set to β = 1.25 for the CIFAR-
10/100 experiments and β = 1.15 for the Speech Commands experiment. The CIFAR experiments
were run for 700 rounds, while the Speech Commands experiment was run for 500 rounds.

G COMPARATIVE ANALYSIS ON ALGORITHMS AND BASELINES

Here is a brief description of the implementation used during the experiments for Top-K, ZeroFL
Qiu et al. (2022), FLASH Babakniya et al. (2023), and SparsyFed:

G.1 TOP-K

1. Pruning: The model is pruned per round at clients after executing the (local) training
on their own data, i.e., just before sending the updated model to the server. The pruning
method used is global unstructured Top-K, which prunes all the model parameters except
for the k largest values.

2. Aggregation strategy: FedAvg. Alternatively, other aggregation strategies acting on the
pseudo-gradients can also be applied straightforwardly.
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G.2 ZEROFL

1. Pruning: Pruning is performed during the local training at clients and before sending the
model update back to the central server. During training, the SWAT unstructured (per-
layer, in contrast to standard global unstructured Top-K) approach is used to prune the
weights before the forward pass and the activations during the forward pass. This alone
doesn’t ensure obtaining a model with the targeted degree of sparsity because SWAT often
results in weight regrowth per optimizer step. To achieve the target sparsity, the model is
pruned again before sending it back to the server, using the same approach as Top-K, i.e.,
global unstructured. In the original work, three levels of masks ([0.0, 0.1, 0.2]) have been
proposed to increase the density of the model before the uplink communication. For our
experiments, we used the smaller one (0.0) since it is more in line with

2. Aggregation strategy: A slight variation of FedAvg is used, where the averaging is exe-
cuted among the non-zero weights to avoid excessive dilution of information in the pres-
ence of highly sparse models. Adapting the aggregation function to act only on non-zero
weights supports alternative aggregation strategies acting on the pseudo-gradients.

G.3 FLASH - SPDST (SENSITIVITY-DRIVEN PRE-DEFINED SPARSE TRAINING)

(THE ONE USED IN THE EXPERIMENTS)

1. Pruning: Pruning is performed at the end of the first round of training (similar to Top-K),
which, in the original paper, is referred to as a warm-up phase. Thus, the first round of
training is executed using the dense model, producing the initial mask. The binary mask
obtained during the warm-up phase is fixed for the subsequent federated rounds, and only
the non-zero weights are trained. This means there is no need for further pruning of the
weights in subsequent rounds since no regrowth is allowed (in this version of Flash).

2. Aggregation strategy: The aggregation is performed only among the non-zero weights,
similar to ZeroFL. During the first aggregation, at the end of the initial training round, the
model is further pruned on a per-layer basis to counter the regained density caused by the
mismatch in local masks. The pruning uses the average sparsity level all clients achieve for
each layer. For example, if the average sparsity of layer l is dl, adjusted by a factor r, then
layer l of the pruned global model will have sparsity dl. The factor r helps to maintain the
target global sparsity by ensuring that the sum of individual layer sparsity levels meets the
overall goal. The resulting binary mask becomes the final one, preserved for all subsequent
training rounds. This process, defined in the original paper as sensitivity analysis, is applied
only in the first round, as fixed mask training prevents further mask modification in later
rounds.

G.4 FLASH - JMWST (JOINT MASK WEIGHT SPARSE TRAINING)

1. Pruning: A normal training procedure is applied (NO FIXED MASKS). Pruning is per-
formed at the end of each local training session.

2. Aggregation strategy: The server aggregates and then prunes the model, applying the
same sensitivity analysis introduced in SPDST to address the regained density. This is
done every r round, as the training method allows for the regrowth of the clients. The
original paper proposed two values for r: r = 1 and r = 5.

G.5 SparsyFed

1. Pruning: Powerpropagation is applied to re-parameterize the weights during the forward
pass executed at clients. Pruning during training is applied only to the activations during
the backward pass. At the end of the local training, the model is pruned and returned to the
server. The first round of training executes using a full-size model.

2. Aggregation strategy: FedAvg. Alternatively, other aggregation strategies acting on the
pseudo-gradients can also be applied straightforwardly.
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H FLOPS REDUCTIONS FOR UNSTRUCTURED SPARSE TRAINING.

Unstructured sparsity can theoretically reduce FLOPs linearly in the percentage of zero
weights (Dettmers & Zettlemoyer, 2019; Singh et al., 2024) if an optimal sparse algorithm exists
for a given operation. However, such gains are fully realized only when the hardware can effi-
ciently skip zero-valued operations. In contrast, structured sparsity methods—such as block-sparsity
pruning (Gray et al., 2017)—yield more predictable speed-ups on standard GPUs due to optimized
kernels despite typically achieving lower overall sparsity than unstructured sparsity. Emerging ac-
celerators and libraries increasingly support unstructured sparsity (Jeong et al., 2024), bridging the
gap between theoretical FLOP reductions and actual runtime improvements.
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