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Abstract

The rapid advancement of large multimodal models
(LMMs) has led to the rapid expansion of artificial in-
telligence generated videos (AIGVs), which highlights the
pressing need for effective video quality assessment (VQA)
models designed specifically for AIGVs. Current VQA mod-
els generally fall short in accurately assessing the percep-
tual quality of AIGVs due to the presence of unique distor-
tions, such as unrealistic objects, unnatural movements, or
inconsistent visual elements. To address this challenge, we
first present AIGVQA-DB, a large-scale dataset compris-
ing 36,576 AIGVs generated by 15 advanced text-to-video
models using 1,048 diverse prompts. With these AIGVs, a
systematic annotation pipeline including scoring and rank-
ing processes is devised, which collects 370k expert ratings
to date. Based on AIGVQA-DB, we further introduce AIGV-
Assessor, a novel VQA model that leverages spatiotempo-
ral features and LMM frameworks to capture the intricate
quality attributes of AIGVs, thereby accurately predicting
precise video quality scores and video pair preferences.
Through comprehensive experiments on both AIGVQA-DB
and existing AIGV databases, AIGV-Assessor demonstrates
state-of-the-art performance, significantly surpassing exist-
ing scoring or evaluation methods in terms of multiple per-
ceptual quality dimensions. The dataset and code are re-
leased at https://github.com/IntMeGroup/AIGV-Assessor.

1. Introduction

Text-to-video generative models [12, 27, 44, 64, 73], includ-
ing auto-regressive [23, 81] and diffusion-based [12, 27, 55]
approaches, have experienced rapid advancements in re-
cent years with the explosion of large multimodal models
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(LMMs). Given appropriate text prompts, these models
can generate high-fidelity and semantically-aligned videos,
commonly referred to as AI-generated videos (AIGVs),
which have significantly facilitated the content creation
in various domains, including entertainment, art, design,
and advertising, etc [11, 13, 43]. Despite the significant
progress, current AIGVs are still far from satisfactory. Un-
like natural videos, which are usually affected by low-level
distortions, such as noise, blur, low-light, etc, AIGVs gener-
ally suffer from degradations such as unrealistic objects, un-
natural movements, inconsistent visual elements, and mis-
alignment with text descriptions [25, 31, 43, 65, 79, 84, 85].

The unique distortions in AIGVs also bring challenges to
the video evaluation. Traditional video quality assessment
(VQA) methods [10, 18, 33, 35, 57, 70, 71] mainly focus on
evaluating the quality of professionally-generated content
(PGC) and user-generated content (UGC), thus struggling
to address the specific distortions associated with AIGVs,
such as spatial artifacts, temporal inconsistencies, and mis-
alignment between generated content and text prompts. For
evaluation of AIGVs, some metrics such as Inception Score
(IS) [52] and Fréchet Video Distance (FVD) [61] have
been widely used, which are computed over distributions of
videos and may not reflect the human preference for an in-
dividual video. Moreover, these metrics mainly evaluate the
fidelity of videos, while failing to assess the text-video cor-
respondence. Vision-language pre-training models, such as
CLIPScore [22], BLIPScore [37], and AestheticScore [53]
are frequently employed to evaluate the alignment between
generated videos and their text prompts. However, these
models mainly consider the text-video alignment at the im-
age level, while ignoring the dynamic diversity and motion
consistency of visual elements that are crucial to the video-
viewing experience.

In this paper, to facilitate the development of more com-
prehensive and precise metrics for evaluating AI-generated
videos, we present AIGVQA-DB, a large-scale VQA
dataset, including 36,576 AIGVs generated by 15 advanced
text-to-video models using 1,048 diverse prompts. An
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Figure 1. An overview of the AIGVQA-DB construction pipeline, illustrating the generation and the subjective evaluation procedures for
the AIGVs in the database. (a) Prompt categorization according to the spatial major content. (b) Prompt categorization according to the
temporal descriptions. (c) Prompt categorization according to the attribute control. (d) Prompt categorization according to the prompt
complexity. (e) The 15 generative models used in the database. (f) Four visual quality evaluation perspectives, including static quality,
temporal smoothness, dynamic degree, and text-video correspondence. (g) and (h) demonstrates the pair comparison and preference scoring
processes, respectively.

overview of the dataset construction pipeline is shown
in Figure 1. The prompts are collected from existing
open-domain text-video datasets [7, 8, 38, 43, 68, 76] or
manually-written, which can be categorized based on four
orthogonal aspects respectively, as shown in Figure 1(a)-
(d). Based on the AIGVs, we collect 370k expert ratings
comprising both mean opinion scores (MOSs) and pair-
wise comparisons, which are evaluated from four dimen-
sions, including: (1) static quality, (2) temporal smoothness,
(3) dynamic degree, and (4) text-video correspondence.
Equipped with the dataset, we propose AIGV-Assessor, a
large multimodal model-based (LMM-based) VQA method
for AIGVs, which reformulates the quality regression task
into an interactive question-and-answer (Q&A) framework
and leverages the powerful multimodal representation ca-
pabilities of LMMs to provide accurate and robust qual-
ity assessments. AIGV-Assessor not only classifies videos
into different quality levels through natural language output,
but also generates precise quality scores through regression,
thus enhancing the interpretability and usability of VQA
results. Moreover, AIGV-Assessor also excels in pairwise
video comparisons, enabling nuanced assessments that are
closer to human preferences. Extensive experimental results
demonstrate that AIGV-Assessor outperforms existing text-
to-video scoring methods in terms of multiple dimensions
relevant to human preference.

The main contributions of this paper are summarized as
follows:

• We construct AIGVQA-DB, a large-scale dataset com-
prising 36,576 AI-generated videos annotated with MOS
scores and pairwise comparisons. Compared with ex-
isting benchmarks, AIGVQA-DB provides a more com-
prehensive assessment of the capabilities of text-to-video
models from multiple perspectives.

Table 1. An overview of popular text-to-video (T2V) and image-
to-video (I2V) generation models. † Representative variable.

Model Year Mode Resolution Frames Open
CogVideo [23] 22.05 T2V 480×480 32 ✓
Make-a-Video [55] 22.09 T2V 256×256 16 ✓
LVDM [21] 22.11 T2V 256×256 16 ✓
Tune-A-Video [73] 22.12 T2V 512×512 8 ✓
VideoFusion [44] 23.03 T2V 128×128 16 ✓
Text2Video-Zero [27] 23.03 T2V 512×512 8 ✓
ModelScope [64] 23.03 T2V 256×256 16 ✓
Lavie [67] 23.09 T2V 512×320 16 ✓
VideoCrafter [12] 23.10 T2V, I2V 1024×576 16 ✓
Hotshot-XL [1] 23.10 T2V 672×384 8 ✓
StableVideoDiffusion [9] 23.11 I2V 576×1024 14 ✓
AnimateDiff [20] 23.12 T2V, I2V 384×256 20 ✓
Floor33 [2] 23.08 T2V,I2V 1024×640 16 −
Genmo [3] 23.10 T2V, I2V 2048×1536 60 −
Gen-2 [4] 23.12 T2V, I2V 1408×768 96 −
MoonValley [5] 24.01 T2V, I2V 1184×672 200† −
MorphStudio [6] 24.01 T2V, I2V 1920×1080 72 −
Sora [7] 24.02 T2V, I2V 1920×1080 600† −

• Based on AIGVQA-DB, we evaluate and benchmark
15 representative text-to-video models, and reveal their
strengths and weaknesses from four crucial preference di-
mensions, i.e., static quality, temporal smoothness, dy-
namic degree, and text-to-video correspondence.

• We present a novel LMM-based VQA model for AIGVs,
termed AIGV-Assessor, which integrates both spatial and
temporal visual features as well as prompt features into
a LMM to give quality levels, predict quality scores, and
conduct quality comparisions.

• Thorough analysis of our AIGV-Assessor is provided and
extensive experiments on our proposed AIGVQA-DB and
other AIGV quality assessment datasets have shown the
effectiveness and applicability of AIGV-Assessor.

2. Related Work
2.1. Text-to-video Generation
Recent advancements in text-to-video generative models
have substantially broadened video creation and modifica-
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Table 2. Summary of existing text-to-image and text-to-video evaluation datasets.
Dataset Types Name Numbers Prompts Models Annotators Dimensions MOSs / Pairs Annotation

AIGIQA

AGIQA-3k [34] 2,982 180 6 21 2 5,964 MOS
AIGCIQA2023 [63] 2,400 100 6 28 3 7,200 MOS

RichHF-18k [39] 17,760 17,760 3 3 4 71,040 MOS
HPS [75] 98,807 25,205 1 2,659 1 25,205 Pairs

Pick-a-Pic [29] - 37,523 3 4,375 1 584,247 Pairs

AIGVQA

MQT [15] 1,005 201 5 24 2 2,010 MOS
EvalCrafter [42] 2,500 700 5 7 4 1,024 MOS

FETV [43] 2,476 619 4 3 3 7,428 MOS
LGVQ [84] 2,808 468 6 20 3 8,424 MOS

T2VQA-DB [31] 10,000 1,000 9 27 1 10,000 MOS
GAIA [13] 9,180 510 18 54 3 27,540 MOS

AIGVQA-DB (Ours) 36,576 1,048 15 120 4 122,304 MOS and Pairs

tion possibilities. As shown in Table 1, these models exhibit
distinct characteristics and capacities, including modes, res-
olution, and total frames. CogVideo [23] is an early text-
to-video (T2V) model capable of generating short videos
based on CogView2 [16]. Make-a-video [55] adds effec-
tive spatial-temporal modules on a diffusion-based text-to-
image (T2I) model (i.e., DALLE-2 [50]). VideoFusion [44]
also leverages the DALLE-2 and presents a decomposed
diffusion process. LVDM [21], Text2Video-Zero [27],
Tune-A-Video [73], and ModelScope [64] are models that
inherit the success of Stable Diffusion (SD) [51] for video
generation. Lavie [67] extends the original transformer
block in SD to a spatio-temporal transformer. Hotshot-
XL [1] introduces personalized video generation. Beyond
these laboratory-driven advancements, the video generation
landscape has also been enriched by a series of commercial
products. Notable among them are Floor33 [2], Gen-2 [4],
Genmo [3], MoonValley [5], MorphStudio [6], and Sora [7],
which have gained substantial attention in both academia
and industry, demonstrating the widespread application po-
tential of AI-assisted video creation.

2.2. Text-to-video Evaluation
The establishment of the AI-generated image quality as-
sessment (AIGIQA) dataset is relatively well-developed,
including both mean opinion scores (MOSs) for absolute
quality evaluations, and pairwise comparisons for relative
quality judgments. Recent developments in text-to-video
generation models have also spurred the creation of various
AI-generated video quality assessment (AIGVQA) datasets,
addressing different aspects of the T2V generation chal-
lenge, as shown in Table 2. MQT [15] consists of 1,005
videos generated by 5 models using 201 prompts. Eval-
Crafter [42] and FETV [43] extend the scale of the videos,
prompts, and evaluation dimensions. LGVQ [84] increases
the number of annotators, providing more reliable MOSs.
T2VQA-DB [31] consists of 10,000 videos from 1,000
prompts representing a significant improvement in scale.
GAIA [13] collects 9,180 videos focusing on action qual-
ity assessment in AIGVs, but falls short in addressing the
consistency between the generated visuals and their textual
prompts. Most existing VQA datasets predominantly rely
on MOS, an absolute scoring method, which suffers from
the same drawback: absolute scores alone may cause am-

biguity and overlook subtle quality differences. In contrast,
our AIGVQA-DB includes both MOSs and pairwise com-
parisons, addressing the limitations of current works by pro-
viding fine-grained preference feedbacks.

3. Database Construction and Analysis
3.1. Data Collection

Prompt Scources and Categorization. Prompts of the
AIGVQA-DB are primarily sourced from existing open-
domain text-video pair datasets, including InternVid [68],
MSRVTT [76], WebVid [8], TGIF [38], FETV [43] and
Sora website [7]. We also manually craft prompts describ-
ing highly unusual scenarios to test the generalization abil-
ity of the generation models. As shown in Figure 1(a)-(d),
we follow the categorization principles from FETV [43] to
organize each prompt based on the “spatial major content”,
“temporal major content”, “attribute control”, and “prompt
complexity”.

Text-to-Video Generation. We utilize 15 latest text-to-
video generative models to create AI-generated videos as
shown in Figure 1(e). We leverage open-source website
APIs and code with default weights for these models to pro-
duce AIGVs. For the construction of the MOS subset, we
collect 48 videos from the Sora Website [7], along with their
corresponding text prompts. Using these prompts, we gen-
erate additional videos using 11 different generative mod-
els. This process results in a total of 576 videos (12 gener-
ative models × 48 prompts). In addition to the MOS sub-
set, we construct the pair-comparison subset using 1,000 di-
verse prompts, and 12 generative models including 8 open-
sourced and 4 close-sourced are employed for text-to-video
generation. Specifically, for each prompt, we generate four
distinct videos for each open-source generative model and
one video for each closed-source generative model. This
process yields a total of 36,000 videos. More details of the
database can be found in the supplementary material.

3.2. Subjective Experiment Setup and Procedure
Due to the unique and unnatural characteristics of AI-
generated videos and the varying target video spaces dic-
tated by different text prompts, relying solely on a single
score, such as “quality”, to represent human visual prefer-
ences is insufficient. In this paper, we propose to measure
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the human visual preferences of AIGVs from four perspec-
tives. Static quality assesses the clarity, sharpness, color
accuracy, and overall aesthetic appeal of the frames when
viewed as standalone images. Temporal smoothness eval-
uates the temporal coherence of video frames and the ab-
sence of temporal artifacts such as flickering or jittering.
Dynamic degree evaluates the extent to which the video
incorporates large motions and dynamic scenes, which con-
tributes to the overall liveliness and engagement measure-
ment of the content. Text-video (TV) correspondence as-
sesses how accurately the video content reflects the details,
themes, and actions described in the prompt, ensuring that
the generated video effectively translates the text input into

a visual narrative. Each of these four visual perception
perspectives is related but distinct, offering a comprehen-
sive evaluation for AIGVs. To evaluate the quality of the
videos in the AIGVQA-DB, we conduct subjective experi-
ments adhering to the guidelines outlined in ITU-R BT.500-
14 [17, 54]. For the MOS annotation type, we use a 1-5
Likert-scale judgment to score the videos. For the pairs an-
notation type, participants are presented with pairs of videos
and asked to choose the one they prefer, providing a di-
rect comparison method for evaluating relative video qual-
ity. The videos are displayed using an interface designed
with Python Tkinter, as illustrated in Figure 1(g)-(h). A to-
tal of 120 graduate students participate in the experiment.

3.3. Subjective Data Processing
In order to obtain the MOS for an AIGV, we linearly scale
the raw ratings to the range [0, 100] as follows:

zij =
rij − µij

σi
, z′ij =

100(zij + 3)

6
,

µi =
1

Ni

Ni∑
j=1

rij , σi =

√√√√ 1

Ni − 1

Ni∑
j=1

(rij − µij)2

where rij is the raw ratings given by the i-th subject to the
j-th video. Ni is the number of videos judged by subject i.
Next, the MOS of the video j is computed by averaging the
rescaled z-scores as follows:

MOSj =
1

M

M∑
i=1

z′ij
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decoder produces text-based feedback describing the video quality level for four evaluation dimensions, respectively. Simultaneously, the
last-hidden-states from the LLM are used to perform quality regression that outputs final quality scores in terms of four dimensions. (b)
AIGV-Assessor is fine-tuned on pairwise comparison, further allowing the model to output the evaluation comparison between two videos.

where MOSj indicates the MOS for the j-th AIGV, M is
the number of subjects, and z′ij are the rescaled z-scores.

For the pairs annotation type, given a text prompt pi,
and 12 video generation models labeled {A,B,C, ..., L},
we generate videos using each model, forming a group
of videos Gi,j = {Vi,A,j , Vi,B,j , Vi,C,j , ..., Vi,L,j}. For
each prompt pi, we generate four different videos ran-
domly for each of the eight open-source generative mod-
els and one video for each of the four closed-source
generative models, resulting in a group of 36 videos
{Gi,A,1, Gi,A,2, Gi,A,3, Gi,A,4, Gi,B,1, ...Gi,L,1}. For each
group, we create all possible pairwise combinations, re-
sulting in C2

36 pairs: (VA1, VB1), (VA1, VB2), (VA1, VB3),
(VA1, VB4), (VA1, VC1), ... , (VK1, VL1). In the AIGVQA-
DB construction pipeline, a prompt suite of 1000 prompts
results in 630,000 (1000×C2

36) pairwise video comparisons.
From this extensive dataset, we randomly sample 30,000
pairs for evaluation from four perspectives. Each pair is
judged by three annotators, and the final decision of the bet-
ter video in each pair is determined by the majority vote. Fi-
nally, we obtain a total of 46,080 reliable score ratings (20
annotators × 4 perspectives × 576 videos) and 360,000 pair
ratings (3 annotators × 4 perspectives × 30,000 pairs).

3.4. AIGV Analysis from Four Perspectives
As shown in Figure 2, the videos in the AIGVQA-DB cover
a wide range of perceptual quality. We further analyze the
win rates of various generation models across categories in
Figure 3, revealing the strengths and weaknesses of each
T2V model. As shown in Figure 3(a), the performances
of T2V models rank uniform for different prompt complex-
ity items in terms of static quality, which manifests current
T2V model rank consistently for different prompts, likely

due to shared architectures like diffusion-based systems,
with common strengths and limitations in handling com-
plex prompts. As shown in Figure 3(b), in terms of at-
tribute control, StableVideoDiffusion [9] excels in manag-
ing quantity over event order, as it first generates static im-
ages before animating them, preserving the original event
sequence. As shown in Figure 3(d), in terms of spatial con-
tent, most videos featuring “plants” and “people” show poor
T2V correspondence. More comparison and analysis can be
found in the supplementary material. We also launch com-
parisons among text-to-video generation models regarding
the MOS and pairwise win rates shown in Figure 4. No-
tably, models such as LVDM [21] demonstrate exceptional
performance in handling dynamic content, but exhibit rela-
tively lower performance in temporal smoothness. Sora [7]
and MorphStudio [6] perform well in static quality and tem-
poral smoothness while lagging in dynamic degree. Addi-
tionally, closed-source models exhibit much better perfor-
mance compared to open-source models.

4. Proposed Method
4.1. Model Structure

Spatial and Temporal Vision Encoder. As shown in Fig-
ure 5(a), the model leverages two different types of en-
coders to capture the spatial and temporal characteristics of
the video: (1) 2D Encoder: A pre-trained 2D vision trans-
former (InternViT [69]) is used to process individual video
frames. (2) 3D Encoder: A 3D network, i.e., SlowFast [19],
is employed to extract temporal features by processing se-
quences of video frames.

Spatiotemporal Projection Module. Once the spatial and
temporal features are extracted, they are projected into a
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Table 3. Performance comparisons of the state-of-the-art quality evaluation methods on the AIGVQA-DB from four perspectives. The best
performance results are marked in RED and the second-best performance results are marked in BLUE.

Dimension Static Quality Temporal Smoothness Dynamic Degree TV Correspondence

Methods / Metrics Pair Acc SRCC PLCC KRCC Pair Acc SRCC PLCC KRCC Pair Acc SRCC PLCC KRCC Pair Acc SRCC PLCC KRCC
NIQE [49] 54.32% 0.0867 0.1626 0.0615 52.67% 0.0641 0.1152 0.0451 45.64% 0.1765 0.2448 0.1194 46.99% 0.1771 0.2231 0.1193
QAC [80] 49.96% 0.1022 0.1363 0.0680 54.90% 0.1633 0.2039 0.1105 54.72% 0.0448 0.0427 0.0295 54.48% 0.0303 0.0197 0.2233
BRISQUE [48] 59.98% 0.2909 0.2443 0.1969 55.67% 0.2325 0.1569 0.1553 44.60% 0.1351 0.0959 0.0893 51.02% 0.1294 0.1017 0.0869
BPRI [46] 52.28% 0.2181 0.1723 0.1398 47.26% 0.1766 0.0880 0.1138 46.83% 0.1956 0.1688 0.1329 49.13% 0.1569 0.1548 0.1052
HOSA [77] 61.54% 0.2420 0.2106 0.1643 57.31% 0.2311 0.1757 0.1559 44.97% 0.0755 0.0449 0.0496 52.23% 0.1645 0.1324 0.1097
BMPRI [47] 53.71% 0.1690 0.1481 0.1075 49.31% 0.1434 0.0844 0.0894 45.07% 0.1153 0.0925 0.0777 48.43% 0.1567 0.1500 0.1041
V-Dynamic [25] 51.34% 0.0768 0.0792 0.0494 31.91% 0.3713 0.4871 0.2557 53.11% 0.1466 0.0253 0.0988 46.96% 0.0405 0.0576 0.0223
V-Smoothness [25] 61.63% 0.6748 0.4506 0.4590 76.59% 0.8526 0.8313 0.6533 47.63% 0.2446 0.2328 0.1580 61.28% 0.3188 0.3073 0.2214

CLIPScore [22] 47.09% 0.0731 0.0816 0.0473 46.33% 0.0423 0.0334 0.0271 52.99% 0.0675 0.0835 0.0439 55.62% 0.1519 0.1731 0.1014
BLIPScore [37] 53.24% 0.0492 0.0421 0.0330 53.07% 0.0659 0.0487 0.0437 53.03% 0.1786 0.1904 0.1205 61.53% 0.1813 0.1896 0.1219
AestheticScore [53] 70.24% 0.6713 0.6959 0.4784 54.82% 0.5154 0.4946 0.3484 52.96% 0.2295 0.2322 0.1527 59.64% 0.2381 0.2440 0.1602
ImageReward [78] 56.69% 0.2606 0.2646 0.1749 54.09% 0.2382 0.2305 0.1600 53.90% 0.1840 0.1836 0.1237 63.97% 0.2311 0.2450 0.1568
UMTScore [43] 48.93% 0.0168 0.0199 0.0117 49.93% 0.0302 0.0370 0.0207 52.69% 0.0168 0.0198 0.0117 53.82% 0.0172 0.0065 0.0108

Video-LLaVA [40] 50.90% 0.0384 0.0513 0.0297 50.36% 0.0431 0.0281 0.0347 50.34% 0.1561 0.1436 0.1176 50.54% 0.1364 0.1051 0.1009
Video-ChatGPT [45] 51.20% 0.1242 0.1587 0.0940 50.16% 0.0580 0.0533 0.0453 50.47% 0.0724 0.0436 0.0563 50.07% 0.0357 0.0124 0.0274
LLaVA-NeXT [36] 52.85% 0.1239 0.1625 0.0954 52.41% 0.4021 0.3722 0.3052 51.84% 0.1767 0.1655 0.1328 59.20% 0.4116 0.3428 0.3261
VideoLLaMA2 [14] 52.73% 0.2643 0.3271 0.1928 52.27% 0.3608 0.2450 0.2696 50.78% 0.1900 0.1561 0.1379 54.25% 0.1656 0.1633 0.1210
Qwen2-VL [66] 56.50% 0.4922 0.5291 0.3838 49.12% 0.1681 0.4219 0.1233 52.08% 0.1122 0.1335 0.0849 53.30% 0.3111 0.2775 0.2306

HyperIQA [56] 68.30% 0.7931 0.8093 0.5969 54.65% 0.7426 0.6630 0.5407 53.32% 0.2103 0.2100 0.1384 57.54% 0.6226 0.6250 0.4432
MUSIQ [26] 66.46% 0.7880 0.8044 0.5773 55.16% 0.7199 0.6920 0.5034 52.85% 0.5206 0.4846 0.3521 58.46% 0.4125 0.4093 0.2844
LIQE [83] 63.86% 0.8776 0.8691 0.7008 55.84% 0.7935 0.7720 0.6084 49.02% 0.5303 0.5840 0.3837 55.10% 0.3862 0.3639 0.2640
VSFA [35] 46.43% 0.3365 0.3421 0.2268 50.95% 0.3317 0.3273 0.2202 51.46% 0.1201 0.1362 0.0815 48.07% 0.1024 0.1064 0.0666
BVQA [33] 29.98% 0.4594 0.4701 0.3268 37.65% 0.3704 0.3819 0.2507 55.08% 0.4594 0.4701 0.3268 42.32% 0.3720 0.3978 0.2559
simpleVQA [57] 68.12% 0.8355 0.6438 0.8489 54.14% 0.7082 0.7008 0.4978 53.08% 0.4671 0.3160 0.3994 58.20% 0.4643 0.5440 0.3163
FAST-VQA [70] 70.64% 0.8738 0.8644 0.6860 62.93% 0.9036 0.9134 0.7166 54.34% 0.5603 0.5703 0.3895 65.05% 0.6875 0.6704 0.4978
DOVER [71] 72.92% 0.8907 0.8895 0.7004 58.83% 0.9063 0.9195 0.7187 53.16% 0.5549 0.5489 0.3800 62.35% 0.6783 0.6802 0.4969
Q-Align [72] 71.86% 0.8516 0.8383 0.6641 57.95% 0.8116 0.7025 0.6195 53.71% 0.5655 0.5012 0.3950 62.91% 0.5542 0.5647 0.3870
AIGV-Assessor (Ours) 79.83% 0.9162 0.9190 0.7576 76.60% 0.9232 0.9216 0.8038 60.30% 0.6093 0.6082 0.4435 70.32% 0.7500 0.7697 0.5591
Improvement + 6.9% +2.7% +3.0% + 5.7% 13.7% +1.7% +0.2% +8.5% +5.2% +4.4% +3.8% + 4.4% +5.3% +6.3% +9.9% +6.13%

shared feature space for alignment with text-based queries.
This is done through two projection modules that map the
spatial and temporal visual features respectively into the
language space. The mapped visual tokens are aligned with
text tokens, enabling the model to query the video content
in a multimodal fashion.

Feature Fusion and Quality Regression. We apply LLM
(InternVL2-8B [69]) to combine the visual tokens and user-
provided quality prompts to perform the following tasks:
(1) Quality level descriptions: the model generates a de-
scriptive quality level evaluation of the input video, such as
“The static quality of the video is (bad, poor, fair, good, ex-
cellent).” This initial categorization provides a preliminary
classification of the video’s quality, which is beneficial for
subsequent quality regression tasks. By obtaining a rough
quality level, the model can more accurately predict numer-
ical scores in later evaluations. (2) Regression score output:
the model uses the final hidden states from the LLM to per-
form a regression task, outputting numerical quality scores
for the video from four different dimensions.

4.2. Training and Fine-tuning Strategy
The training process of AIGV-Assessor follows a three-
stage approach to ensure high-quality video assessment
with quality level prediction, individual quality scoring, and
pairwise preference comparison capabilities. This process
includes: (1) training the spatial and temporal projectors to
align visual and language features, (2) fine-tuning the vision

encoder and LLM with LoRA [24], and training the quality
regression module to generate accurate quality scores, (3)
incorporating pairwise comparison training using the pair-
comparison subset with a pairwise loss function for robust
video quality comparison.

Spatiotemporal Projector Training. The first stage fo-
cuses on training the spatial and temporal projectors to ex-
tract meaningful spatiotemporal visual features and map
them into the language space. Through this process, the
LLM is able to produce the quality level descriptions i.e.,
bad, poor, fair, good, excellent.

Quality Regression Fine-tuning. Once the model can gen-
erate coherent descriptions of video quality level, the sec-
ond stage focuses on fine-tuning the quality regression mod-
ule. The goal here is to enable the model to output sta-
ble and precise numerical quality scores (MOS-like predic-
tions). The quality regression model takes the last-hidden-
state features from LLM as input and generates quality
scores from four perspectives. The training objective uses
an L1 loss function to minimize the difference between the
predicted quality score and the groundtruth MOS.

Pairwise Comparison Fine-tuning. The third stage mainly
focuses on integrating the pairwise comparison into the
training pipeline. As shown in Figure 5(b), two input video
pairs share network weights within the same batch. We
design a judge network inspired by LPIPS [82] to deter-
mine which video performs better. This network leverages
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Table 4. Performance comparisons on LGVQ [84] and FETV [43].

Aspects Methods
LGVQ FETV

SRCC PLCC KRCC SRCC PLCC KRCC

Spatial

MUSIQ [26] 0.669 0.682 0.491 0.722 0.758 0.613
StairIQA [59] 0.701 0.737 0.521 0.806 0.812 0.643
CLIP-IQA [62] 0.684 0.709 0.502 0.741 0.767 0.619
LIQE [83] 0.721 0.752 0.538 0.765 0.799 0.635
UGVQ [84] 0.759 0.795 0.567 0.841 0.841 0.685
AIGV-Assessor (Ours) 0.803 0.819 0.617 0.853 0.856 0.699
Improvement + 4.4% +2.4% +5.0% +1.2% +1.5% +1.4%

Temporal

VSFA [35] 0.841 0.857 0.643 0.839 0.859 0.705
SimpleVQA [57] 0.857 0.867 0.659 0.852 0.862 0.726
FastVQA [70] 0.849 0.843 0.647 0.842 0.847 0.714
DOVER [71] 0.867 0.878 0.672 0.868 0.881 0.731
UGVQ [84] 0.893 0.907 0.703 0.897 0.907 0.753
AIGV-Assessor (Ours) 0.900 0.920 0.717 0.936 0.940 0.815
Improvement +0.7% +1.3% +1.4% +3.9% +3.3% +6.2%

Alignment

CLIPScore [22] 0.446 0.453 0.301 0.607 0.633 0.498
BLIPScore [37] 0.455 0.464 0.319 0.616 0.645 0.505
ImageReward [78] 0.498 0.499 0.344 0.657 0.687 0.519
PickScore [28] 0.501 0.515 0.353 0.669 0.708 0.533
HPSv2 [74] 0.504 0.511 0.357 0.686 0.703 0.540
UGVQ [84] 0.551 0.555 0.394 0.734 0.737 0.572
AIGV-Assessor (Ours) 0.577 0.578 0.411 0.753 0.746 0.585
Improvement +2.6% +2.3% +1.7% +1.9% +0.9% +1.3%

learned features and evaluates the perceptual differences be-
tween the two videos, allowing more reliable quality assess-
ments in video pair comparison.

Loss Function. In the first stage, the spatial and temporal
projectors are trained to align visual and language features
using language loss. The second stage refines the vision en-
coder, LLM, and quality regression module’s scoring abil-
ity with an L1 loss. The third stage incorporates pairwise
comparison training with cross-entropy loss to improve the
model’s performance on relative quality evaluation.

5. Experiments

5.1. Experiment Settings

Evaluation Datasets and Metrics. Our proposed method
is validated on five AIGVQA datasets: AIGVQA-DB,
LGVQ [84], FETV [43], T2VQA [31], and GAIA [13]. To
evaluate the correlation between the predicted scores and
the ground-truth MOSs, we utilize three evaluation criteria:
Spearman Rank Correlation Coefficient (SRCC), Pearson
Linear Correlation Coefficient (PLCC), and Kendall’s Rank
Correlation Coefficient (KRCC). For pair comparison, we
adopt the comparison accuracy as the metric.

Reference Algorithms. To assess the performance of
our proposed method, we select state-of-the-art evalua-
tion metrics for comparison, which can be classified into
five groups: (1) Handcrafted-based I/VQA models, includ-
ing: NIQE [49], BRISQUE [48], QAC [80], BMPRI [47],
HOSA [77], BPRI [46], HIGRADE [32], etc. (2) Action-
related evaluation models, including: V-Dynamic [25],
V-Smoothness [25] which are proposed in VBench [25].
(3) Vision-language pre-training models, including: CLIP-
Score [22], BLIPScore [37], AestheticScore [53], ImageRe-
ward [78], and UMTScore [43]. (4) LLM-based models, in-

Table 5. Performance comparisons on T2VQA-DB [31].

Aspects Methods
T2VQA-DB Sora Testing

SRCC PLCC KRCC SRCC PLCC KRCC

zero-shot

CLIPScore [22] 0.1047 0.1277 0.0702 0.2116 0.1538 0.1406
BLIPScore [37] 0.1659 0.1860 0.1112 0.2116 0.1038 0.1515
ImageReward [78] 0.1875 0.2121 0.1266 0.0992 0.0415 0.0748
UMTScore [43] 0.0676 0.0721 0.0453 0.2594 0.0840 0.1680

finetuned

SimpleVQA [57] 0.6275 0.6388 0.4466 0.0340 0.2344 0.0237
BVQA [37] 0.7390 0.7486 0.5487 0.4235 0.2489 0.2635
FAST-VQA [70] 0.7173 0.7295 0.5303 0.4301 0.2369 0.2939
DOVER [71] 0.7609 0.7693 0.5704 0.4421 0.2689 0.2757
T2VQA [31] 0.7965 0.8066 0.6058 0.6485 0.3124 0.4874

AIGV-Assessor (Ours) 0.8131 0.8222 0.6364 0.6612 0.3318 0.5075
Improvement + 1.7% +1.6% +3.1% +1.3% +1.9% +2.0%

Table 6. Performance comparisons on GAIA [13].
Dimension Subject Completeness Interaction
Methods / Metrics SRCC PLCC SRCC PLCC SRCC PLCC
V-Smoothness [25] 0.2402 0.1913 0.1474 0.1625 0.1741 0.1693
V-Dynamic [25] 0.1285 0.0831 0.0903 0.0682 0.1141 0.0758
Action-Score [42] 0.2023 0.1823 0.2867 0.2623 0.2689 0.2432
Flow-Score [42] 0.1471 0.1541 0.0816 0.1273 0.1041 0.1309
CLIPScore [22] 0.3398 0.3330 0.3944 0.3871 0.3875 0.3821
BLIPScore [37] 0.3453 0.3386 0.4174 0.4082 0.4044 0.3994
LLaVAScore [41] 0.3484 0.3436 0.4189 0.4133 0.4077 0.4025
TLVQM [30] 0.5037 0.5137 0.4127 0.4158 0.4079 0.4093
VIDEVAL [60] 0.5237 0.5446 0.4283 0.4375 0.4121 0.4234
VSFA [35] 0.5594 0.5762 0.4940 0.5017 0.4709 0.4811
BVQA [37] 0.5702 0.5888 0.4876 0.4946 0.4761 0.4825
SimpleVQA [58] 0.5920 0.5974 0.4981 0.5078 0.4843 0.4971
FAST-VQA [70] 0.6015 0.6092 0.5157 0.5215 0.5154 0.5216
DOVER [71] 0.6173 0.6301 0.5198 0.5323 0.5164 0.5278
AIGV-Assessor (Ours) 0.6842 0.6897 0.6635 0.6694 0.6329 0.6340
Improvement +6.7% +6.0% +14.4% +13.7% +11.65% +10.6%

cluding: Video-LLaVA [40], Video-ChatGPT [45], LLaVA-
NeXT [36], VideoLLaMA2 [14], and Qwen2-VL [66]. (5)
Deep learning-based I/VQA models, including: Hyper-
IQA [56], MUSIQ [26], LIQE [83], VSFA [35], BVQA
[33], SimpleVQA [58], FAST-VQA [70], DOVER [71], and
Q-Align [72].

Training Settings. Traditional handcrafted models are di-
rectly evaluated on the corresponding databases, and the
average score of all frames is calculated. For vision-
language pre-training and LLM-based models, we load the
pre-trained weights for inference. CLIPscore [22], BLIP-
score [37], and other vision-language pre-training models
are calculated directly as the average cosine similarity be-
tween text and each video frame. SimpleVQA [58], BVQA
[33], FAST-VQA [70], DOVER [71], and Q-Align [72] are
fine-tuned on every test dataset. For deep learning-based
IQA and VQA models, all experiments for each method are
retrained on each dimension using the same training and
testing split as the previous literature at a ratio of 4:1. All
results are averaged after ten random splits.

5.2. Results and Analysis
Table 3 presents the pairwise win rates and the score pre-
diction correlation between predicted results and human
ground truths. The results indicate that handcrafted-based
methods consistently underperform across all four evalu-
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Figure 6. Comparison of win rates of different generation models across four dimensions evaluated by different VQA methods, demon-
strating our AIGV-Assessor has better win-rate evaluation ability aligned with Ground Truth (GT).

Table 7. Ablation study of the proposed AIGV-Assessor method.

Feature & Strategy Static Quality Temporal Smoothness Dynamic Degree T2V Correspondence

No. spatial temporal quality level LoRA finetuning SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC
(1) ✔ ✔ 0.864 0.866 0.726 0.870 0.868 0.727 0.556 0.572 0.432 0.616 0.620 0.492
(2) ✔ ✔ 0.874 0.876 0.723 0.875 0.876 0.736 0.558 0.573 0.431 0.723 0.734 0.533
(3) ✔ ✔ ✔ 0.887 0.884 0.722 0.881 0.883 0.706 0.562 0.575 0.433 0.739 0.758 0.544
(4) ✔ ✔ ✔ 0.887 0.888 0.753 0.917 0.910 0.796 0.569 0.536 0.438 0.688 0.673 0.557
(5) ✔ ✔ ✔ 0.905 0.908 0.754 0.919 0.917 0.799 0.589 0.587 0.441 0.742 0.763 0.549
(6) ✔ ✔ ✔ ✔ 0.916 0.919 0.758 0.923 0.922 0.804 0.609 0.608 0.444 0.750 0.770 0.559

ation perspectives. Vision-language pre-training methods
such as CLIPscore [22] and BLIPscore [37] demonstrate
moderate performance but are still surpassed by more spe-
cialized and fine-tuned VQA models. Specifically, deep
learning-based models like FAST-VQA [70] and DOVER
[71] achieve more competitive performances after fine-
tuning. However, they are still far away from satisfactory.
Notably, most VQA models perform better on quality eval-
uation than on text-video correspondence, as they lack text
prompts input used in video generation, making it chal-
lenging to extract relation features from the AI-generated
videos, which inevitably leads to the performance drop.
Finally, the performance exploration of recent LMMs on
our database shows that current LMMs are able to produce
meaningful evaluations, which can motivate future works to
further explore the use of LMMs for AIGV assessment.

The proposed AIGV-Assessor achieves the best perfor-
mance compared to the competitors for both MOS predic-
tion and pair ranking tasks in terms of all four dimensions.
To further validate the effectiveness and generalizability
of our proposed model, we also evaluate it on four other
AIGVQA datasets [13, 31, 43, 84]. From Tables 4-6, we
observe that AIGV-Assessor consistently achieves the best
performance across these datasets. As shown in Figure 6,
AIGV-Assessor achieves the highest overlap in area with
Ground Truth (GT), indicating that AIGV-Assessor can re-
liably perform T2V model benchmarking, outperforming
other assessment models in discerning quality differences
in AI-generated videos.

5.3. Ablation Study
We conduct ablation experiments to verify the effectiveness
of the main components in our AIGV-Assessor method, in-
cluding the spatial feature, the temporal feature, the qual-
ity level, and the LoRA finetuning strategy. Additionally,
we assess how each feature contributes to the performance

across different quality dimensions. The results of these
experiments are summarized in Table 7. Experiments (1),
(2), and (3) validate the effectiveness of the quality regres-
sion module and the LoRA finetuning strategy, confirming
that fine-tuning and quality regression significantly enhance
model performance over only regressing the generated text
outputs from the LLM. The addition of temporal features, as
seen in Experiments (4), (5), and (6), significantly improves
model performance. Experiment (6), which integrates all
components, yields the best overall performance, showing
that the combination of spatial and temporal features, qual-
ity level prediction, and LoRA finetuning provides the most
robust and accurate AIGV assessment.

6. Conclusion

In this paper, we study the human visual preference eval-
uation problem for AIGVs. We first construct AIGVQA-
DB, which includes 36,576 videos generated based on 1048
various text-prompts, with the MOSs and pair comparisons
evaluated from four perspectives. Our detailed manual eval-
uations reflect different aspects of human visual preferences
on AIGVs and reveal critical insights into the strengths and
weaknesses of various text-to-video models. Based on the
database, we evaluate the performance of state-of-the-art
quality evaluation models and establish a new benchmark,
revealing their limitations in measuring the perceptual pref-
erence of AIGVs. Finally, we propose AIGV-Assessor, a
novel VQA model that leverages the capabilities of LMMs
to give quality levels, predict quality scores, and compare
preferences from four dimensions. Extensive experiments
demonstrate that AIGV-Assessor achieves state-of-the-art
performance on both AIGVQA-DB and other AIGVQA
benchmarks, validating its robustness in understanding and
evaluating the AI-generated videos.
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