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Abstract

We propose a new regularization scheme for the optimization of deep learning architectures,
G-TRACER ("Geometric TRACE Ratio"), which promotes generalization by seeking flat
minima, and has a sound theoretical basis as an approximation to a natural-gradient descent
based optimization of a generalized Bayes objective. By augmenting the loss function with a
TRACER, curvature-regularized optimizers (eg SGD-TRACER and Adam-TRACER) are
simple to implement as modifications to existing optimizers and don’t require extensive
tuning. We show that the method converges to a neighborhood (depending on the reg-
ularization strength) of a local minimum of the unregularized objective, and demonstrate
competitive performance on a number of benchmark computer vision and NLP datasets,
with a particular focus on challenging low signal-to-noise ratio problems.

1 Introduction

1.1 Problem setting

The connection between generalization performance and the loss-surface geometry of deep-learning archi-
tectures in the neighborhood of local minima has long been the subject of interest and speculation, dating
back to the MDL-based arguments of (Hinton & van Campl) [1993) and (Hochreiter & Schmidhuber, 1997)).
The connection is an intuitively appealing one, in that the sharp local minima of the highly nonlinear, non-
convex optimization problems associated with modern overparameterized deep learning architectures are
more likely to be brittle and sensitive to perturbations in the parameters and training data, and thus lead
to worse performance on unseen data. We can build some intuition for this from a probabilistic modelling
perspective, given a dataset D = {(z;, ;)7 } consisting of n independent input random variables z; with
distribution p(x) and corresponding targets (or labels) y; with distribution p(y|z) and treating the param-
eters w € © C RP of a deep neural network (DNN) f(-,w) : R% — R% as a random variable. Given a
loss function I(y;, f(z;,w)) our goal is to find a w* that minimizes the expected loss: Ep, ) [[(y, f(z,w))].
Writing the finite-sample version of this expected loss as L(w) = Y1, l(y:, f(z;,w)), we can form a gen-
eralized posterior distribution (Bissiri et al., 2016) p(w|D) = p(w)+ exp{—L(w))} (with normalizer Z) over
the weights, which coincides with the Bayesian posterior in the special case that the loss is the negative
log-likelihood L(w) = —1 3" logp(yi|z;,w) and then, together with an output (conditional predictive)
probability distribution p(y|z,w), we can form the predictive distribution by marginalization:

Pyl D) = / Py, w)p(w| D)dw (1)

At a local maximum (or mode) wy, of p(w|D) we can can form the Laplace approximation (valid asymptoti-
cally, for large n):

pi(w|D) =~ Zikp(wkﬂ)) exp <—;(w - wk)TH(w — wk)) (2)

where (assuming, for simplicity, a flat prior) H = V2 L|,y—y, and the normalizer (which for the negative log-
likelihood loss is the evidence, or marginal likelihood, and which we will also refer to as the pseudo-marginal
likelihood) is given by Z; = p(wg|D)(27)% det(H)~z. Thus, in the neighborhood of each local maximum
of p(w|D), we approximate the posterior by a multivariate Gaussian with covariance given by the inverse
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Hessian of the negative loss: p(wg|D) ~ N (wy, H~1). Modern DNNs are characterized by multimodal losses
(Wilson & Izmailov, [2020), and so, informally, we can decompose the posterior predictive distribution into
disjoint contributions from each of the local maxima, the sum of which dominate the overall integral:

pole D)~ 5 3 [ byl w) Zupi(wlD)de 3)
k’e{k}

where Z = ), (5} Zr, which is an expectation with respect to a probability measure with density given
by: % Zk,e{k} Zypr (w]|D), and which, by writing:

Z Zwpe (WD) = > mrp (w|D) (4)

k'e{k} k'e{k}
can be viewed as a Gaussian mixture model (GMM) with mixing coefficients:
Zy,

Thus the relative contribution of each component is given by the relative size of the pseudo-marginal likeli-
hoods Zj. For very high-dimensional w € R? (modern DNN architectures often have billions or even trillions
of parameters) even small differences in the width of the Gaussian approximation will have exponentially
large effects on the magnitude of Z; (which can be thought of as the the volume associated with the local
maximum). How does all this relate to flatness? The Gaussian curvature K, providing an intrinsic (and
thus coordinate-free) measure of curvature is given by:

T —

(5)

K =TI;)\; = det(H) (6)

and contributions to the mixture thus scale inversely with v/K. In other words, the flatter the solution, the
more it contributes to the mixture model against which the output probability distribution is integrated, in
order to form the posterior predictive distribution. In a typical high-dimensional setting, the effect of small
differences in curvature (or flatness) is exponentially magnified. To see this, we can consider two local minima
i) with Hessian H, and ii) an e-flattened minimum (0 < € < 1) with Hessian H' = (1 —¢)H, (such that each
eigenvalue of H is simply shrunk by a constant factor (1—¢)). We have K’ = det(H') = (1—¢)? det(H), so that
the e-flattened minimum with curvature K’ has exponentially lower Gaussian curvature. The corresponding
Gaussian approximations have covariances ¥’ &~ (1 + €)X and X, and the ratio of the corresponding pseudo-
marginal likelihoods scales as:

det ((1+¢)X)

det(X)

Thus we can see that the contribution from the flatter minimum dominates in the high-dimensional limit. In
an empirical study, [Huang et al.|(2019) trained a ResNet18 architecture on the Street View House Number
(SVHN) dataset and estimate the volume around local minima using Monte-Carlo integration, finding that
the volumes of basins surrounding minima that generalize well are at least 10,000 orders of magnitude larger
than those of minima that generalize poorly.

p—o0

=(14¢f —> (7)

A complementary approach is to characterize the loss-surface Hessian, since, at such local minimum of the
loss, for a perturbation Aw, we have:

L(w + Aw) — L(w) = AwT V?L(w)Aw + O(||Aw|)?) (8)

There has therefore been a large literature attempting to characterize the loss-surface Hessian V2L (w) and
to relate these characteristics to generalization. In many practically relevant cases, multiple minima are
associated with zero (or close to zero) training error, and explicit or implicit regularization is needed to find
solutions with the best generalization error. Overparameterization is associated with the bulk of the Hessian
spectrum lying close to zero and thus to highly degenerate minima (Sagun et all 2017)). Wei & Schwab
(2020) further show that given a degenerate valley in the loss surface, SGD on average decreases the trace of
the Hessian, which is strongly suggestive of a connection between locally flat minima, overparameterization
and generalization.
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1.2 Sharpness-Aware Minimization

Despite the intuitive appeal and plausible justifications for flat solutions to be a goal of DNN optimization
algorithms, there have been few practical unqualified successes in exploiting this connection to improve
generalization performance. A notable exception is a recent algorithm, Sharpness Aware Minimization
(SAM) (Foret et all 2020), which seeks to improve generalization by optimizing a saddle-point problem of
the form:
min max L(w+ Aw) 9)
w o ||Aw|<p

An approximate solution to this problem is obtained by differentiating through the inner maximization, so

k
that, given an approximate solution Aw™* := p% to the inner maximization (dual norm) problem:

arg max L(w+ Aw 10
gI\AWHSP ( ) (10)

the gradient of the SAM objective is approximated as follows:

w < max L(w+ Aw)) ~ Vi L(w+ Aw*) & Vi L(w) | wt+ Aw= (11)
[Aw||Fr<e

While the method has gained widespread attention, and state-of-the-art performance has been demonstrated
on several benchmark datasets, it remains relatively poorly understood, and the motivation and connection to
sharpness is questionable given that the Euclidian norm-ball isn’t invariant to changes in coordinates. Given a
1-1 mapping g : ©' — © we can reparameterize our DNN f(-, w) using the "pullback" ¢*(f)(-,v) := f(-,9(v))
under which, crucially, the underlying prediction function f(-,w) : R% — R% (and therefore the loss) itself
is invariant, since, for v = g7!(w), we have f(-,w) = f(,g(v)). Under this coordinate transformation,
however, the Hessian at a critical point transforms as (Dinh et al., [2017)):

V2L(v) = Vg(v)TV2LVg(v) (12)

In particular, Dinh et al| (2017) explicitly show, using layer-wise transformations T, : (wi,ws2) —
(awr, a~twy), that deep rectifier feedforward networks possess large numbers of symmetries which can be
exploited to control sharpness without changing the network output. The existence of these symmetries in
the loss function, under which the geometry of the local loss can be substantially modified (and in particular,
the spectral norm and trace of the Hessian) means that the relationship between the local flatness of the loss
landscape and generalization is a subtle one.

It’s instructive to consider the PAC Bayes generalization bound that motivates SAM, the derivation of which
starts from a PAC-Bayesian generalization bound (McAllester, |1999; [Dziugaite & Roy), 2017):

Theorem 1. For any distribution D and prior p over the parameters w, with probability 1 — § over the
choice of the training set S ~ D, and for any posterior q over the parameters:

KL(q|lp) + log §
2(n—1)

Eq[Lp(w)] < Eq[Ls(w)] + \/ (13)

where the KL divergence:
w

DKL[Qap] = IEp(u)) |:10g (zgwi)} (14)
defines a statistical distance D [q,p] (though not a metric, as it’s symmetric only to second order) on
the space of probability distributions. Assuming an isotropic prior p = N (0, af)I ) for some o, an isotropic
posterior ¢ = N(w,021), so that Eq[Lp(w)] = Een(o,02n[Lp(w + €)], applying the covering approach of
Langford & Caruanal (2001) to select the best (closest to ¢ in the sense of KL divergence) from a set of pre-
defined data-independent prior distributions satisfying the PAC generalization bound, [Foret et al.| (2020))
show that the bound in theorem [If can be written in the following form:

w 2
Ecn,02n[Lp(w +€)] < Eeunoozn[Ls(w+e€)] +yg (l p!2)> (15)
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(for a monotone function g). Then, crucially, one may apply a well-known tail-bound for a chi-square random
variable to bound | €||2, thus bounding the expectation over ¢ (with probability 1 —1/4/n) by the maximum
value over a Euclidian norm-ball ball. This provides the following generalization bound:

Theorem 2. For any p > 0 and any distribution D, with probability 1 — § over the choice of the training
set S ~ D,

[|wl[3)
Lp(u) < max Ls(w+o)+9 (152)) 1e)

where p = ok (1 + ln(kn)> , n=|S|, and k is the number of parameters.

This bound justifies and motivates the SAM objective:

max  L(w 4+ Aw) + Mw|3 (17)
lAw|l<p

and resulting algorithm. Whilst the bound in Theorem [2] suggests that the ridge-penalty should vary with
the radius of the perturbation, in practice (Foret et al., 2020) the penalty term is fixed (or simply set to
zero) even when different perturbation radii are searched over. Subsequent refinements of SAM (Kim et al.
2022) ignore the ridge penalty term altogether, and the choice of an optimal perturbation radius is what
drives the success of the method. It is not clear, however, why this adversarial parameter-space perturbation
should help generalization more than evaluating (and approximating) the expectation in the very bound
which motivates the SAM procedure in the first place, which would lead instead to an objective (ignoring,
for now, the ridge penalty term) of the following form:

EENN(O,UZI) [LS(w + 6)] (18)
Moreover, the worst-case adversarial perturbation used by SAM is likely to be noisier and is also naturally

a significantly looser bound than the expectation-based bound.

2 Generalized variational posterior

Our starting point is a similar, but more general, optimization objective, which arises in the variational
optimization of a generalized posterior distribution, g, over the space of probability measures P(©) on the
parameter space © given by (Bissiri et al.l 2016]):

q*(w) = arg qemg(r(la) {Eq(u) [L(w)] + Dx1g.p]} (19)

for which, when Z = [ exp{— 7", I(w, z;)} m(0)d# < oo, the solution is given by the generalized posterior:

q¢"(w) x p(w) H exp{—Il(w,x;)} (20)

The terms exp{—I(w, z;)} are to be interpreted as quasi-likelihoods, and for the particular choice I(w,z;) =
—log p(x;|w), we recover the standard Bayesian posterior. As this infinite dimensional optimization is in
general intractable, it is usual to assume that the posterior belongs to a parametric family @ C P:

*(w) =arg min {E, ) [L(w)] + D , 21
¢'(w) =arg min {Ey)[L(w)] + Dl pl} (21)
which, for the choice I(w, z;) = —log p(x;|w), is the same objective (up to a constant factor) as the evidence

lower bound (ELBO) used in variational Bayes.

In practice, it is often found that tempering the KL divergence term by a positive factor p < 1 produces
optimal performance, giving rise to:

q*(w) = arg L {Eq(uw)[L(w)] + pDxL[g, p] } (22)
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2.1 TRACER: flatness-inducing regularization

Ignoring for simplicity the contribution from the prior term (which would correspond to a ridge-regularization
term under the assumption p(w) ~ N(0,0,1)), leads to following objective, which we seek to minimize over
w:

Eqw)[L(w)] — pH(q) (23)

where H(q) = —Eq(uw)[q(w)] is the entropy of ¢. For the choice q(w) ~ N(w,0?I), the optimization problem
associated with the variational objective becomes (absorbing some constants into p):

1
arg mizn Eq[L(w)] — pH(q) = arg min E[L(w)] + plog o (24)
q, w,o

so that we can see that p determines the variance of Gaussian perturbation over which the loss is averaged.
More generally, choosing g ~ N(w,X) leads to the following variational objective:

arg mizn Eq[L(w)] — pH(q) = arg miél Eq[L(w)] + plog (25)
q, w,

1
det(X)
so that large values of p will correspond to distributions with larger volume, since for z ~ N(0,X), = lies
within the ellipsoid 27X "1 = x?(«) with probability 1 — «, with the volume of the ellipsoid proportional to

1
det(X)z (Anderson, 2003). We show in Section by expanding the expectation under ¢ to second order,
i.e.

Eywy [L(w)] ~ L(w) + S Tr(SV3L(w)) (26)

that in the neighborhood of a local minimum (where the Hessian is positive-definite) the curvature of the
loss-surface is penalized over a region whose volume is determined by p. While intuitively appealing, this
flatness inducing penalty is not invariant to coordinate transformations, so that scale changes (such as
occur, for example, when applying batch-normalization or weight-normalization) which have no effect on the
output of the learned probability distribution, can nevertheless still result in arbitrary changes to the penalty.
More generally any geometric notion of loss surface flatness must be independent of arbitrary rescaling of
the network parameters. Motivated by these considerations, we apply steepest descent in the KL-metric
(also known as natural gradient descent (Amari, [1998)) to our variational objective, under the assumption
g(w) ~ N(w,X), in order to find solutions to:

arg r;uzn Eq[L(w)] + pDx1lg, p] (27)

where p is a positive real-valued regularization parameter.

We show in the sequel that, assuming an isotropic Gaussian prior, p(w) ~ N(0,nI), performing gradient
descent w.r.t. the natural gradient then leads to the following iterative update equations:

e p—ah! (Eq[VwL(w)] + 5w> (28)
E,[V2 L
A<—(1—6)A+6<"[’;(w>]+n‘11> (29)
where « and 3 are the learning rates for the mean and precision updates, respectively, and A := ¥~ ! is

the precision matrix. Approximating the expectations to second order and further simplifying leads to the
following update equations (see below for a detailed derivation):
— 1 ——1
et ol (Vw[L(w) + pTe(HH )]) (30)

H<+ (1-pB)H + pH (31)

where H = V2 L(w) is the Hessian, H is an exponential smoothing of the Hessian, and the update for the
mean consists of a preconditioned (by the inverse smoothed Hessian) gradient, together with, crucially, a
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Algorithm 1 SGD-TRACER
Require: «a;: Stepsize
Require: 3: Exponential smoothing constant for the online Fisher estimate
Require: p : flatness inducing penalty term
Require: §: small positive constant

Initialize wq, fo, t =0

while not converged do do

Sample batch B = {(x1,y1),...(zv, yp)}

Wit = Wi — gV [Lis(we) + p ( (VwLs(we)?, (e +8)7")]

Frpr = (1—B)F + B (VwLs(wi))?
end while

penalty term proportional to the (affine-invariant) ratio of the Hessian and the smoothed Hessian. Finally,
via the diagonal Empirical Fisher approximation of the Hessian (see below for details, and a discussion
of alternatives), allowing for a dynamic learning rate a4, and dropping the preconditioner, we arrive at a
modified SGD-type update which we call SGD-TRACER.

2.2 SGD-TRACER

SGD-TRACER is given by Algorithm (1)), in which the usual stochastic gradient update is modified with a
term which penalizes the trace of the ratio between the diagonal of the Empirical Fisher Information Matrix
(FIM) and an exponentially weighted average the of the Empirical FIM diagonal. By augmenting the loss
with a TRACER term and maintaining a smoothed squared-gradient estimate, in principle, any optimization
scheme can be modified in the same way. In our experiments we use SGD with momentum for vision tasks
and Adam-TRACER for NLP tasks, based on standard practice in each problem domain.

2.3 Derivation of the TRACER flatness-inducing regularizer

Following (Khan & Rue, [2021) and (Zhang et al.||2017)), we make the assumption g(w) ~ N(u, ) and seek to
optimize the variational objective in Equation w.r.t. the variational parameters ¢ = (u, ¥) using natural
gradient descent. This allows us to derive an algorithm that respects the intrinsic geometry of the parameter
space, and thus derive an algorithm that seeks sharp minima in an approximately coordinate-independent
way.

Thus we aim to minimize:

L(¢) := Eq[L(w)] + pDx L]g, p] (32)
where p is a positive real-valued regularization parameter. The negative gradient corresponds to the steepest
descent direction in the Euclidian metric:

—VyL .
—*— = lim -~ argmin L(¢+ AQ) (33)
VLIl =0 € agijAgla<e

and thus depends on the chosen coordinates ¢. In contrast, the so-called natural gradient update corresponds
to steepest descent in the KL-divergence metric:
—F1v,L
“FVoL - argmin L(¢p+ Ag) (34)
V4Ll €7 0 € ApDKL[g4,as+a0]<e
where F' is the FIM:
F = Eg, () [V log g4(w)" Vs log gp(w)] = Eg, () [~V5 10g g4 (w)] (35)

which defines a Riemannian metric on the parameter manifold ® where Q(0©) = {g4(w) : ¢ € ®}. Expanding
to second order in a small neighborhood of ¢ we have:

1
Dicrdo: 4o+ 80] = Egyw) | ~A0" Vloggs(w) — 5 A6 Vi log ag(w)Ad | + O(||Ag|*) (36)
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and since:

Vege(w)] _
) } = VyEq,(w[l] =0 (37)

the FIM (under certain regularity conditions) can be seen to be the Hessian (or curvature) of the K-L
divergence:

Eq,(w) Ve log gp(w) = Eq, (w) {

1 1
Dk rlag, qp+a0] = _§A¢TEq¢(w) [V3 logap(w)] Ag + O(||A¢| ) = §A¢TFA¢> +0(]|Ad]) (38)

The following proposition gives an expression for the natural gradient vector (for proof see Appendix |A.5)):
Proposition 1. For a probability distribution with pdf qs(w) ~ N(p, A™') with the parameterization ¢ =

[ K }, the natural gradient V4 of L(¢) is given by:

vec(A)
- V,.L
oL = | o] (39)
where
VL = SB[V L(w) + pVup(w)] (40)
VL = —Ey[Vi, L(w) — pVi,p(w)] + p=~! (41)

Assuming an isotropic Gaussian prior, p(w) ~ N(0,nI), performing gradient descent w.r.t. this natural
gradient then leads to the following iterative update equations:

p—p—al™t (Eq[VwL(w)] + 211)) (42)

A<—(1—6)A+B<W+nll> (43)

where o and (3 are the learning rates for the mean and precision updates, respectively. We work with each
of these update equations in turn. Starting with the update equation for the mean u, the key observation
is that the expectation E,[V,,L(w)] is taken with respect to the distribution g(w), which is an exponential
moving average of the expected Hessian E,[VZ2 L(w)]. This updating happens naturally as a consequence
of taking natural gradient steps, and leads to an approximately coordinate-free algorithm in the sequel.
Applying Bonnet’s theorem (Khan & Rue, |2021)) and forming the second-order approximation to the loss we
obtain:

Ey[ViL(w)] = V,Eg[L(w)] & V,E [L(p) + (w — 0) "V, L(w) o=y (w — p)] (44)
Writing w — 1 = $2, v where v ~ N(0, I) we have:

T T
Eql(w—p)" Vo L(0)lwmp (0= 11)] = Bvrnro.n V8% Vi L(w) ey B20] = Te(S5 Vi L(w)wey?) = Tr(HE)

(45)
where we used the fact that E, o[’ ] = > Qi jEviv;] = Tr(Q), and where H is the Hessian
V2 L(w). We therefore have that:

E, [V L(w)] ~ V,[L(k) + Te(HS) (46)

Choosing the prior variance n to be infinite and thus ignoring terms involving 7 in both update equations
(corresponding to an improper prior, and so consistent with the discussion above), leads to the following
update for the mean:

i+ ol (VLG + Tr(HE))) (47)

Thus, in order to blur the loss with multivariate Gaussian noise in a way that aligns with the intrinsic
geometry of the parameter space, we can (to second order) augment the loss with a term involving the Trace
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of the Hessian. Considering now the update equation for the precision, we can use Price’s theorem (Khan
& Rue, [2021)) together with a Taylor expansion to get, to second order E,[VZ2 L(w)] ~ V2 L(w)|y=, (see
Appendix for details), which leads to

A (1—5)A+B<V%“L(’%L> (48)

We next substitute, as is common in the literature using approximate second order approximation (Martens,
2020)), the Generalized Gauss-Newton matrix (GGN) for the Hessian, given by:

Glw)= o 3 IFHLIY] (49)
| |(a:,y)€S

where Jy is the Jacobian of the output function f and Hp is the Hessian of the loss w.r.t. the output
distribution. The GGN is a positive definite approximation to the Hessian which converges to the Hessian
as the fitted residuals go to zero, (Kunstner et al., 2019)). The most practically relevant losses, cross-entropy
(classification), and squared error (regression) correspond to exponential family output distributions with
natural parameters given by the output function f(x,w), together with for the log-loss I(y, f(z,w)) =
—log p(y|z,w). For these choices, the GGN is equivalent to the Fisher Information Matrix. While the
evaluation of the GGN matrix, in particular the matrix multiplications involving the Jacobians J¢, can be
relatively costly, the FIM can be expressed as an expectation of outer products of gradients w.r.t. the output
distribution p(y|z,w):

n n
% Z Eop(ylzs,w) [V log p(yla:, w) "'V, log p(y|zi, w)] ~ % Z Vo log p(@i|zs, w) T Vo log p(gi| i, w) == F
i=1 i=1
(50)
which, following |[Martens| (2020), can be estimated using a single Monte Carlo sample from the output
distribution: § ~ p(y|z;, w). Using this (biased) Fisher approximation in our setting thus requires gradients
to be calculated through an expectation V,Ep 2 w)[L(w;y)], approximated using a Monte Carlo sample
from the model’s output distribution. Since the expectation is taken w.r.t. a distribution which depends on
w, it is necessary to reparameterize so that the discrete Monte Carlo sample is expressed as the deterministic
transformation of a g,,(z) (depending on w) of a sample z ~ hg(z) from a distribution not depending on w,
so that Ep(yjz,u) [L(w;y)] = Ezong(2) [L(w; guw(2)]. In the discrete case (corresponding to classification), since
the argmax function is non-differentiable, the standard approach is the Gumbel-Softmax reparameterization
(Jang et al. [2016), which uses the softmax function as a continuous relaxation of the argmax function
together with i.i.d. samples distributed as Gumbel(0,1).

It’s important to note that this approach is different from simply evaluating log p(y|z,w) on the training
labels, a widely-used approximation known as the empirical Fisher Fopnp:

n
Femp = Z vw 1ng(yi|xi7 ’I,U)va logp(yl|‘r1a Y,U) (51)

=1

This, despite lacking the same convergence guarantees, performs competitively in many settings (Kunstner,
et al) 2019). We find in our experiments that the empirical Fisher performs competitively with the MC
approximation to the GGN (Khan et al., [2018; |[Kingma & Bal 2014) and has the advantage of being straight-
forward and cheap to compute from already computed gradients (in the case of Adam-TRACER, the smooth
squared gradients are already computed and maintained for use as a preconditioner). Given the conceptual
and computational simplicity of this approach we substitute the empirical Fisher for the Hessian. Recent
advances in approximate second-order methods in optimization, notably Yao et al|(2020), suggest avenues
for improvement, and we leave investigations of alternatives, such as the smoothed (Hessian-free) Hessian
diagonal sketch used in AdaHessian, for future work.

Substituting the empirical Fisher approximation for the Hessian in the update equation for the precision [48]
and rewriting the update in terms of F' := pA, absorbing a factor p in to a, and writing the iteration in
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terms of the parameter w, we obtain:
wew+aF (vw [L(w) + pTr(FF_l)D (52)

F« (1-BF +BF (53)

—=—1
Crucially, the penalty term pTr(FF ) can be seen to be invariant to affine coordinate transformations,
since it is the trace of the ratio of two (0,2) tensors which transform in the same way. Indeed, under an

affine coordinate transformation with Jacobian .J, we have F — JTF "Jand F — JTF J so that:
Tr (Ff’l) " (JTF’JJ*F/’IJT”)) (JT LITEE 1)) Tr (F F 1) (54)

By using the ratio of the (squared) gradients and the exponentially smoothed gradients, the trace ratio in
effect penalizes the change in (squared) gradient, in a coordinate-free way. More generally, given a smooth
coordinate change defined by a diffemorphism ® : R? — R? and Jacobian J(w), then given sufficiently rapid
exponential decay in the update equation for the Fisher, subject to ® having sufficient regularity, the penalty
term is readily seen to be approximately coordinate free.

We now make two simplifications. First, we use a mean-field approximation, representing the FIM by its
diagonal, as is done in Adam (Kingma & Bal 2014)) and Adagrad (Duchi et all 2011)), thus:

n

1
Fx~ =% V,logp(ylzi,w)®
— 2V logp(yilzi, w) (55)

=1

Secondly, it is standard practice to (Martens, [2020) to add Tikhonov regularization or damping via a small
positive real constant § when using 2nd-order optimization methods, giving in this case the preconditioner:
(F 4 6I)~!. In fact this would arise naturally in our setup by choosing 7 to be non-zero, in which case we
would simply have § := %. From an optimization perspective, it is justified by recognizing that the local
quadratic model from which the second-order update is ultimately derived is a second-order approximation
to the KL divergence and is thus only valid locally. For directions corresponding to small eigenvalues,
parameter updates can lie outside the region where the approximation is reasonable (Martens, 2020)). This
is true, a fortiori, when diagonal approximations are used, as is the case here. As our emphasis here is on
geometric regularization, we drop the preconditioner entirely by choosing § to be sufficiently large that the
preconditioner is equal to the identity (up to a constant, which is absorbed into the learning rate).

Finally, as most current deep learning frameworks don’t straightforwardly support access to per-example
gradients, which can in principle be achieved with negilible additional cost (see, for example, BackPACK
Dangel et al| (2020)) second-order Pytorch extensions), for simplicity and efficiency, we use the gradient
magnitude (GM) approximation (Bottou et al.| [2016), as used in standard optimizers Adam and RMSprop,
replacing the sum of squared gradients with the square of summed gradients:

fZV log p(yilas, w)]? l ZV log p(yi i, w )] (56)

i=1

Writing the resulting FIM diagonal as (V. L(w))?, we finally end up with the following simple update
equations:

Wil = Wy — 0V [L(wt) tp <(va(wt)) ft +9) 1>] (57)

?t—kl:(l_ﬂ)ft_"ﬂ( ( ))

which are summarized in Algorithm[I] We show in appendix [A-3]that the algorithm converges to a neighbor-
hood of a local minimum of L(w) of size O(p?). We note in passing that, in this simplest form (after applying
the gradient magnitude approximation), the update equations amount to regularizing with a (scale-adjusted)
gradient norm. In principle (particularly for the large batch case) we would expect to see significant im-
provements by moving to per-gradient calculations (which are theoretically no more expensive to compute,
but require additional work under most current ML frameworks).
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2.4 Results

We first examine a challenging variant on a standard benchmark in computer vision, CIFAR-100. We
compare SGD, SAM and SGD-Tracer using none of the standard regularizations (no data augmentation, no
weight-decay) and a standard training protocol (200 epochs, initial learning rate set to 0.1, cosine learning-
rate decay). Further, we randomly flip 50% of the labels so that 50% of examples are incorrectly labeled.
The results in Table [3] show that GTRACER significantly improves on SAM in this challenging setting. In
Figure [If we highlight results for the same problem over different values of the regularization parameter p.
In Figure [2] we compare the training curves on this problem.

SAM SGD-Tracer

0.45 4 a

0.40 4 i

0.35 A i

0.30 A 1

accuracy

© ©

N N

o w
! !
)

0.15 1 1

0.10 4 a

0.0 0.5 1.0 1.5 0 1 2 3
SAM rho GTRACER rho

Figure 1: CIFAR 100: ResNet20, no weight-decay, 50% noise, accuracy vs regularization strength.
GTRACER dominates the baseline and SAM across a wide range of regularization strengths.

Table 1: CIFAR 100: ResNet20, no weight-decay, 50% noise, accuracy (standard error)

‘ no aug
SGD 17.5% (2.41)
SAM 34.63% (1.85)

SGD-TRACER | 47.55% (1.51)

We next run SGD-Tracer on CIFAR-100 with and without label noise, with and without augmentation,
with random label flipping and with a standard ridge penalty of 5 x 10™%. The results in Table [2| show
that SGD-TRACER performs consistently well, with a particularly strong advantage in the the presence of
noise and/or without additional regularization in the form of data augmentation. For NLP tasks we use

Table 2: CIFAR-100: ResNet20, accuracy (standard error)

| no aug | with aug | 50% noise & no aug
SGD 51.43 % (0.41) | 70.02% (0.36) | 21.96% (0.36)
SAM 58.98 % (0.52) | 70.33% (0.22) | 49.89% (0.32)

SGD-TRACER | 63.47% (0.32) | 70.71% (0.36) | 51.62% (0.18)

10
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Figure 2: CIFAR 100: ResNet20, 50% noise, test-accuracy training curves. On a standard 200 epoch training
protocol with cosine learning-rate decay, SGD-Tracer converges to a solution that generalizes better than
SGD and SAM

the Huggingface Bert-base-uncased checkpoint together with Adam-TRACER. We fine-tune using Adam-
Tracer, using a standard protocol of 5 epochs with initial learning rate 2 x 107°. Each run is repeated 20
times. Performance is uniformly strong across the 3 benchmark tasks (taken from the challenging SuperGlue
benchmark), and Adam-TRACER has the additional property of producing more stable results across runs
(as reflected in the standard errors). See the Appendix for details of (standard) experiment hyperparameters.

Table 3: SupeGlue tasks BERT base-uncased results, accuracy (standard error)

| BOOLQ | WIC | RTE
Adam 73.84% (0.14) | 69.36% (0.08) | 69.18% (0.33)
SAM 73.95% (0.13) | 69.06% (0.07) | 69.54% (0.28)

Adam-TRACER | 75.09% (0.04) | 70.01% (0.06) | 70.13% (0.18)

3 Conclusion

Motivated by the notable empirical success of SAM, a prior that flat (in expectation, and in an intrinsic,
geometric sense) minima should generalize better than sharp minima, and noting the connections between
the generalized Bayes objective and SAM, we have derived a new algorithm that is simple to implement
and understand, cheap to evaluate, provably convergent, naturally scale-independent (and approximately
coordinate-free) and which is competitive with SAM on key benchmark problems. Performance is particu-
larly strong for challenging low signal-to-noise ratio and large batch problems. Crucially the algorithm is
straightforwardly derived from an approximate natural gradient optimization of an ELBO-type objective and
doesn’t rely on "m-sharpness' (Foret et all [2020) or other poorly understood (and expensive to compute)
heuristics.

11
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A Appendix

A.1 Multivariate Gaussian Fisher Information Matrix, i, vec(A)]T parameterization

For a probability distribution with density ¢ with parameters ¢, the Fisher Information Matrix (FIM) can
be written as the expected negative log-likelihood Hessian:

F =E, [~V logq] (58)

In particular, for a multivariate Gaussian with pdf: q(x) ~ N(u, A=1), parameterized by ¢ = [ve éz A)} the

negative log-likelihood is, up to constant terms:
1 - 1 .
~logg(2) = 5(z — )" Al — ) + 5 log | A7 (59)

Taking gradients w.r.t. u, we have: —V, log¢(z) = A(x—p) and therefore E [Viq(y)] = A. Taking gradients
w.r.t. the covariance, and since V(z — p)TA(x — p) = (z — p)(x — p)T and Vplog|A~Y = Valog|A|7L =
—Valog|A| = —(AT)™t = —(A)~! we have:
1 P
Vaq(z) = 5(17 —p)(@—p) — 51\ (60)
Finally, writing VAA™! as —A ® A and A~! := ¥ we have:

1
Vaq(z) = FTOT (61)

so that the FIM is given by:

! 0
F=E,[-V3logq] = [ 0 z®z] (62)

N [—=

A.2 Approximate expected Hessian

Lemma 1. To second order, we can approximate the expected Hessian w.r.t. a multivariate Gaussian with
pdf: q(x) ~ N(u, A=) by its value at the mean:

Ey[V3, L(w)] = Vi, L(w) = (63)

Proof. Following Khan & Rue| (2021)), by Price’s theorem, we have:
E[V3L(w)] = 2V3 1 Eg[L(w)] (64)
expanding the r.h.s. to second order using a Taylor series, this is equivalent to:
2V Eq[(w — 1) V3, L(w)|w—p(w — p)] (65)

Finally, noting that Eq[(w — p)7 V2 L(w)|w=p(w — )] = Tr [JA7'VZ L(w)|w=y], we have, to second order:
1

By (V3 L(w)] % 2V3 1 Tr | SAT IV L(w) =y | = Vi L(w)|w=p (66)

O

12
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A.3 Convergence analysis

With T'(wy) == <(VwL(U)t))2 (f+ 5);1>, as p — 0, the iterates w1 = wy — Vo, [L(wy) + pVu, T (wy)]
will converge to those of SGD. For p > 0, the algorithm is biased away from a pure descent direction, and
convergence then depends on the magnitude of p. The key assumption in the following convergence proof is
that ||[pV T (ws)]|3 < ||V L(w;)||3+¢ , which controls the bias. This follows from the standard assumption
of twice-differentiability of L(w) and the Lipschitz continuity of V,,L(w;), which imply that the Hessian has
a bounded spectral norm:

— -1
10V T (we)ll3 < 40?1V L(wd) 311 (f +6), 13

<a(5) e "

so that ¢ depends on the Lipshitz constant C' and the ratio £
Theorem 3. Let T(w;) = <(VwL(wt))2 ,?t_l>, and assume the objective (loss) L : RP — R is Lipschitz

continuous, twice differentiable, and has Lipshitz-continuous gradient. Let us assume, following|Bottou et al.
(2010) and |Ajalloeian & Stich| (2021) that we have a stochastic direction g(wy,&;) which has the following
properties, Vt:

Efg(ws, &)] = VL + pVo T (wy) (68)
and further assuming that there exist M, Mg such that, Vt,
E [llg(we, &)II°] < M + M| VL + pVu T (we)]? (69)
and the following bound on the bias:
PV T (we)l* < KIIVwL(we)ll3 + ¢ (70)

then the iteration:

W1 = wy — Vo [L(wy) + pV T (wy)]

- - ) (71)
Jeq1 = (1=8)f+ B (VwL(w))
converges to a neighborhood of a stationary point with ||V L(w)||3 = O(C).
Proof. By the Lipschitz continuity of the objective function we have the quadratic bound:
c
L(y) < L(z) + (VwL(z),y — o) + 5y — 2l (72)
By the quadratic upper bound, the iterates generated by the algorithm satisfy:
L(wit1) — L(we) < =y (Vi L(wy), g(wi, §k)) + atC”g(wk:fk)”Z (73)

Taking expectations and applying the variance bound we have:
1
EL(wis1) = L(we) < = ||V L(wy)|[* = aepVa L(w:) "V T (wy) + 50%26@ [llg(w, )13
1
= —oy|| Vo L(w)||* — oztprL(wt)TVwT(wt) + fosz [M + Mg||VwL(z) + prT(wt)Hg]

=~V L(w)|* = at(1 = aCMg)pVuw L(we)" Vo T (we) + atCM+ 50 CMe ([Vu L(@)[13 + ol VW T(w)|3)
(74)

So that, choosing oy < C%Wc and applying the bound on HVwT(wt)H we have:
1
EL(wt41) — L(wy) < —§04t||VwL(wt)||2 + Oét [CM + at||pVU,T(wt)||2

1
< _iat(l — 8|V L(wy)||* + atCM + —C

13
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Taking the total expectation, for a fixed «, we then have:

K
1 1 Ka
Ling = L(w) < E[L(wk+1)] = L(w1) < =5 a(l = k) > |V L(wy)|* + §K0420M +5C
t=1

Finally, we have that:

K
1 aCM F(uw1) — Finf K—oco aCM ¢
= wl 2 = 2
KX:Hv (we)] 1—/<;+ Ka(l - k) 1—/<;+1—/<;

t=1

A.4  Objective function gradient

Lemma 2. The gradient of the objective towards ¢' = {vec/zZ)] is given by:

VL = Eg[Vu L(w) — pV,, log p(w)]

1
Vsl = iEq[V?UL(w) — pV?Z log p(w)] — gE_l

(78)

(79)

Proof. Taking the negative gradient of the objective wrt to u, and applying Bonnet’s theorem (Khan & Ruel

2021)), and the fact that the expectation of the score is 0, we have:
Vi (Bq[L(w)] 4 pDk L[g(w), p(w)]) = Eq[Vw L(w)] — pEq [V log p(w)]

Taking the gradient w.r.t. X, and applying Price’s theorem, we have:
1
Vs (Bg[L(w)] + pDicp [g(w), p(w)]) = SEq [V L(w) + pVi, log g(w) — pV7, log p(w)]
and since:
1 _ _
E, [V2 logg(w)] = _iEq (V2 (log |2+ (w—p)"S H(w—p))] = %71

We obtain
VL = Eg[Vu L(w) — pV,, log p(w)]

1
Vsl = §EQ[V12UL(U}) — pV?Z log p(w)] — gE_l

A.5 Objective function natural gradient

Proposition 2. .
VL = SEg [V L(w) + pVyp(w)]

VL = —Ey[Vi L(w) = pVi,p(w)] + p= !
Proof. By Lemma the gradients V4 of the objective L(¢) w.r.t. ¢' = {vecM(Z)] are given by:
VL =Eq[VyL(w) — pVy log p(w)]

and .
Vsl = §EQ[V?UL(w) — pV?Z log p(w)] — gZ_l
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The gradient @HC then follows immediately from the definition of the natural gradient operator. Using the
chain rule for matrix derivatives we can also show that:

VAL =—-A"'VsA? (89)
So that
1
VAL = —SAT'E, [V L(w) - pV3 log p(w)] A" + gA’l (90)
Thus, the gradients V,L(¢) = [VQCV(%A L)} are given by:
—3ATE[VE, L(w) — pV, log p(w)] A~ + §ATT

The Fisher Information Matrix is given by equation : :

F=E, [-Vlogas] = |0 1.0 92
=Eq, [~ ¢0gq¢]— 0 ixex (92)
and therefore ) .
1 AT 0 V.. | | AT'V.L
F7VoL(9) = { 0 2AQA| [vec(VaL)|  |vec(2AVALA) (93)
where we used the identities (BT ® A)vec(X) = vec(AXB) and (A ® B)™' = A~! ® B~!. Since
vec(2AVALA) = vee(—E,[VZ L(w) — pVZp(w)] + pA), we have the required updates. O
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