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Abstract

Software monitoring is the most critical part in
any software management life cycle. One of
the ways to detect the health of the program
and the software is to monitor the logs effi-
ciently. In this paper, we describe a method
to process a stream of logs for identifying any
fault being mentioned in the log at runtime. At
first, we extract meaningful features for detect-
ing the erroneous ones from the stream of logs.
Next, we categorize the erroneous logs into the
pre-defined categories of commonly occurring
faults, using the proposed two-step framework.
We propose efficient, fast and intelligent rule-
based systems with the domain knowledge be-
ing incorporated using the word embedding
model. We have built a domain specific cor-
pus and trained a word embedding model for
this purpose. The methods described here have
shown improved results in the existing product
pipeline. Experiments on logs obtained from
various applications also show the efficacy of
our proposed method.

1 Introduction

Organizations are now in the path of rapid digi-
tization, with thousands of applications, services,
hardware systems and microservices running in a
hybrid cloud environment. In today’s world of hy-
brid cloud, understanding why a service fails and
what incident remediation steps to perform that
would result in minimal downtime are extremely
challenging tasks. One of the key roles of an IT
operations engineer is to support these applications
and keep the services running. At present, an en-
gineer manually analyses the IT operational data
and uses a large number of tools to diagnose the
root cause(s) of a failure in order to decide the most
effective remediation action. Usually, these oper-
ations result in longer mean times to detect and
longer problem resolution times.

An important IT operational data - logs gener-
ated from multiple data sources, can provide key

insights to help detect the status or the problem(s)
of various components. However, due to the ever-
rising volume and variety of log data, the main
challenge before an operations team is how to ef-
fectively use and analyze it. To meet this challenge,
one needs to mine the data, discover knowledge,
and use the insights so gained in failure manage-
ment tasks while significantly reducing manual ef-
fort and visual overload on IT operators.

One of the needs for log processing is to have
time-efficient modules at the beginning of the
AIOPS pipeline. As the rate at which log streams
come is very fast (around 10k per sec), it is essen-
tial that the processing time needs to be very fast,
to avoid any time-lapse. Also, the module needs to
be generalized enough to be efficient of various log
formats from different sources. We go beyond the
traditional rule-based methods, where error clues
are either extracted using regex pattern matching
or are dictionary-based built manually (Zou et al.,
2014). We aim to approximate a sophisticated prob-
abilistic model by intelligent unsupervised methods
using:

(1) automatic domain-specific dictionary building,
(i1) focusing on important sub-text/features from
log message

(iii) using a two-step fault categorization module
for meeting the need to "time to value’.

The domain knowledge is being incorporated in
the unsupervised approach using the word embed-
ding model trained on IT corpus. Most of the time-
efficient methods of log category detection in event
logs rely on simple dictionary-based matching or
rules-based systems. Our proposed method ap-
proximates a probabilistic model in a time-efficient
manner using a domain-specific word embedding
model in a two-step process.

This paper describes a method of identifying
the type of faults in an erroneous log. As the log
stream comes in, first an error detection module
identifies the erroneous logs from the input stream,



for which we identify the fault. This two-step pro-
cess helps us to design a time-efficient yet effec-
tive method for fault categorization. The proposed
method has been built on top of an existing system
of log analysis. We have successfully improved
the error detection module and proposed a new
domain-specific, fast and efficient fault categoriza-
tion module, which is being discussed in the rest of
the paper.

2 Prior Work

On log curation, there has been work (He et al.,
2020a) on curating log datasets from real-world
systems including Hadoop, HDFS, Openstack, etc.
The primary goal was to train and evaluate log pars-
ing schemes. In contrast, our approach required a
corpora that enables learning of higher level seman-
tics in the technical vernacular, that log datasets
simply do not have.

On the topic of log parsing and template learning
for there has been a garden variety of approaches
both rule-based (Hansen and Atkins, 1993; Prewett,
2003; Rouillard, 2004), and pattern mining algo-
rithms such as LogCluster (Vaarandi and Pihelgas,
2015), SLCT (Vaarandi, 2003), LKE (Fu et al.,
2009), DRAIN (He et al., 2017a), SPELL (Du
and Li, 2019), IPLoM (Makanju et al., 2009),
LenMA (Shima, 2016), and others (Nagappan et al.,
2009). We propose here to avoid learning tem-
plates, and simply use off-the-shell dependency
parsing and tagging (see Honnibal et al., 2020) ap-
plied only on a small set of identified loglines.

There are few works on identifying fault cate-
gories of event logs. (Zou et al., 2014) proposes to
consider only the invariant tokens in the log lines
which are identified using templatization. The fault
categories are detected by using a Fault-Keyword
matrix which denotes affinity of a token/keyword
with a particular fault category. This is done by
clustering the loglines together and then calculating
the affinity using tf-idf. This method is definitely
limited to the vocabulary of the log dataset and is
not very easily extendable. Also, methods like clus-
tering and tf-idf based weight calculation may not
really capture the semantics of the loglines, which
is one of the main focus in our work.

On anomaly detection there are various ap-
proaches such as the following, spanning unsuper-
vised (Ramaswamy et al., 2000; Dickinson et al.,
2001; Lou et al., 2010), one-class supervised (Mir-
gorodskiy et al., 2006), and supervised (Yuan et al.,

2006; Xu et al., 2008). In particular more recent
techniques improve by relying on sophisticated
NLP techniques that use embeddings and prob-
abilities models such as neural nets (Wang et al.,
2020; Du et al., 2017). We propose here to simplify
for production settings, by employing unsupervised
(domain-specific) embeddings, in ways that approx-
imate probabilistic models, however here involving
limited supervision in updating the models. This
allows us to go a step beyond anomaly detection
to fault categorization, where we employ a combi-
nation of dictionary specific and embedding tech-
niques that meet production latency and throughput
demands.

3 Proposed Method

Probabilistic models based on sophisticated NLP
techniques (see Wang et al., 2020; Du et al., 2017)
are state-of-the-art, but face issues in the produc-
tion demands of a high-throughput, low-latency
application of log analysis. Given a training set of
log data {x;}}_;, where n is the number of train-
ing examples, erroneous log detection and fault
categorization, involve learning a function f(-, ),
that optimizes parameters 6 such that predictions
Ye,ys = f(-,0) corresponding to erroneous log
Ye» and fault category prediction y, perform well
against some loss measure; here ¥, is binary, and
whenever y. = 1 then yy lies in some set of pre-
defined fault categories C', whenever y. = 0 then
yy is irrelevant and left undefined. Probabilistic
models typically employ a nonlinear f(-,6) that is
trained in a supervised manner. Here, we propose
to approximate such an f that can be constructed
in ways more amenable to production settings,
where the parameters 0 = (D,,, Ds, {D; }icc, @)
involve 1) dictionaries Dg (existing symptom dic-
tionary), D s (negative sentiment dictionary) and
{D;}icc (one for each fault category) that are pre-
constructed with minimal human intervention and
ii) a set of word embeddings ®. We propose a
two-step approach to construct y. and y:

e use an existing symptom dictionary Dgs and
proposed sentiment dictionary D s obtained
in an unsupervised manner to predict ye.

e if y. = 1, approximate the manner in which
probabilistic models predict the fault category
Y, by a novel combination of dependency
tags features, dictionaries {D;};cc, and the
embeddings ®. In particular, each dictionary



D; will be constructed in an unsupervised
manner. If y. = 0, there is no need for identi-
fying fault.

We use domain-specific pre-trained embeddings
® extensively trained in an unsupervised manner,
for (i) domain-specific dictionary building (offline
process) and (ii) unsupervised multi-label fault cat-
egorization, that allows better performance over
technical vernacular; this gets rid of the need to
retrain for individual log datasets.

The flowchart in Figure 1 shows the proposed
method. The rest of the modules are explained in
detail in the following sub-sections. The frame-
work is currently being absorbed in the existing
product pipeline for improving the log-anomaly
detection pipeline in a phased manner.
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Figure 1: Proposed framework for fault categorization
in logs.

3.1 Domain Specific Word Embedding Model

We use domain specific word embedding to build
domain-specific dictionaries with minimum human
intervention and to calculate similarity-based multi-
label fault classifiers. We require embeddings that
are adapted for our domain of technical vernacular
that appears in log data. This is because, there is
a need to deal with words that appear in the regu-
lar language that have different technical meanings
such as block, application, server, web, etc. There
are technical jargons that are not common in the
general English corpus. Also, words like “bug"
can have a different meaning in a technical domain
(faulty in the technical domain, insect in general
English). In order to understand the semantic mean-

ing of the given sentence/part of a sentence, we rely
on a domain-specific word embedding model.

Our approach is to go beyond log data to ob-
tain a technical corpus that captures semantic re-
lationships between technical terms. Log data is
inherently generated from templates, and thus may
lack the semantic diversity required for corpora
when training embeddings. We use three types
of word embedding model in our framework: (i)
Glove model trained on IT-related corpus, (ii) Fast-
text model trained on log messages and (iii) pre-
trained Fasttext model trained on common-crawl
and Wikipedia.

3.1.1 Glove Word Embeddings

Assembling the Corpora - Table 1 summarizes
the billion-word corpora used for model training,
focusing only on the English language in a mono-
lingual setting. To capture the required diversity,
we sourced two technical corpora - technical sup-
port articles, technical manuals, and used current
events news articles for incorporating general En-
glish knowledge. The support articles were ob-
tained from the TechQA dataset (Castelli et al.,
2019) that contained 830K support pages. These
support pages, or technotes, typically consists of
a concise description of some problematic symp-
toms observed when using a particular product,
along with an explanation of the fix. The techni-
cal manuals, on the other hand, incorporate text
in prose form organized in topical themes (e.g.,
administration of a Linux server) and sub-themes
(e.g., creating user accounts). These manuals were
scraped from the four internet sources shown in
Table 1 and account for half of the word count. The
inclusion of the manuals added an additional level
of diversity on top of the support pages. Finally, we
used the news-wire data obtained from the Giga-
word5 (gig) dataset to incorporate natural language
data to ensure that the model is able to learn such
semantics apart from the technical vernacular. Note
that the news data is roughly about the same size
as that of the support pages; this is to ensure that
the technical content is dominant in our corpora.
Training - We follow popular approaches in lan-
guage models learning to perform unsupervised
learning. Such methods that aim to learn models
that generalize well, do so without labels since
labels are difficult to obtain in large quantities.
Hence, we leverage models such as glove (Pen-
nington et al., 2014) that can be trained over a
billion words (see Table 1) without supervision.



Type Words (mil.) | Details
Support 226.6 TechQA dataset (Castelli et al., 2019) of 826998 support pages
800+ manuals from https://access.redhat.com/documentation/en-us
Manuals 4585 200+ docs from https://www.ibm.com/ support./knowledgecenter/ !
2000+ pdf books from http://www.redbooks.ibm.com/Redbooks.nsf
200+ docs from https://cloud.ibm.com/docs
News 278.9 GigaWord Version 5 (gig) curated news-wire data

Table 1: Corpora for Model Training

The glove hyper-parameters xmax and o are set
to default values as in (Pennington et al., 2014)
along with a window size of 15, and we tune two
parameters i) vocabulary size, ii) the number of
train iterations.

An evaluation task inspired by Cloze (see (De-
vlin et al., 2019)) is used to tune the two hyper-
parameters. A test/validation split of examples
from support pages corpus (around 76856 and
77134 respectively) is constructed, each example
containing a few co-located sentences. For each
example, a context widow of 20 words (10 on each
side) surrounding one that has been masked, along
with a set of four word choices, is given to the
model. The glove/BPE model determines for each
of the 20 words, which of the four word choices are
closer, and takes a majority vote. The task is taken
to be successful if the correct word choice has the
majority, and wrong otherwise. We determined a
vocabulary size of 50000, and 50 and 20 iterations
for embedding dimensions 50, 100, and 200, 300,
respectively.

3.1.2 Fasttext Model

Another popular model for training word embed-
dings from scratch is Fasttext (Bojanowski et al.,
2016). For our work, we have used a Fasttext model
trained on log messages for having a better under-
standing of the semantics of the log messages. For
this task, the model is being trained on logs from an
IT company’s Conversation Services and LogHub
dataset (He et al., 2020a), using the default Fast-
text parameters as mentioned in (Bojanowski et al.,
2016). We used the log-anomaly detection pipeline
as the evaluation task for parameter-tuning. More
details of this model can be found in (Liu et al.,
2020).

3.2 Feature Extraction

In this section, we describe the NLP methods that
have been used for extracting meaningful features
from logs as and when necessary. We consider the

outputs of various log-arrgegators as input, where
the logs are represented as key-value pairs, instead
of considering the raw logs. The values can be of
categorical, numerical or sentence-like structure,
which can be processed accordingly for feature ex-
traction. For the features proposed in this paper, we
consider the values which are sentences or parts of
sentences, having underlying grammar. Such val-
ues are detected, if they contain atleast two or more
tokens and one verb. The features to be extracted,
using NLP, are described as follows.

3.2.1 Sentiment Analysis

Log messages contain messages of missing or
faulty attributes while encountering any error. For
example, the log message “Unable to restart due to
unknown I/O error"” clearly specifies that an action
has not taken place due to a certain cause. The ab-
sence of certain action/entity brings out a sense of
negative sentiment in this case. We have observed
that most of the erroneous log messages contain
words that have a high correlation to negative sen-
timents. This motivates us to extract sentiment
out of the log messages as a strong feature for the
predictive tasks.

For purposes of analyzing negative sentiment,
we propose to adopt a dictionary-based approach
as opposed to full-blown ML approach; this de-
sign choice was made with the aim of processing
thousands of logs per second. We build a nega-
tive sentiment dictionary for our technical domain
leveraging on open-source sentiment dictionaries
such as Vader (Hutto and Gilbert, 2014) and Sen-
tiWordNet (Baccianella et al., 2010). We discard
words that are nouns as a candidate for sentiment
dictionary; this is because in log data, negative
sentiments are mostly associated with actions that
most comprise of verbs, adverbs or adjectives. This
is apparent in the example “block”, which as a verb
may be associated with negative sentiment (‘“block-
ing the gateway") whereas as a noun it is of neutral



sentiment (“memory block™). We also discard any
word that is out-of-vocabulary from the pre-trained
embedding model; but this is not often as part of
its training corpus is built from a standard English
corpus. We consider any word in the vocabulary,
as an entry to our negative sentiment dictionary, if
any one of dictionaries (Vader and SentiWordNet)
labels it as a negative sentiment word. We also add
some of the words denoting negation such as “no",
“n’t", “not", “shouldn’t" etc for its completeness.
The final dictionary contains 551 words and the
presence of any one of these words is considered
to be of negative sentiment for the input text.

3.2.2 Relation Extraction

We extract meaningful relations between the non-
copular verb present in the sentence-like structure
with the corresponding subject and/or object if
present. The clause must contain a verb and a
subject with or without the presence of an object.
On the other hand, a predicate consists of a verb
along with the object associated with it. We use
both clause and predicate for extraction of relevant
relations as log-messages are not proper sentences.
The steps used for relation extraction are as fol-
lows:

(i) Dependency parsing - This is required to identify
the parts of speech and the grammatical dependen-
cies between the words present in the input.

(ii) Verb filtration and Clause/Predicate selection
- We consider only the non-copular verbs and dis-
card any input which only contains a copular verb.
We consider Subject-Verb-Object (SVO) as present
in the input. In case no SVO is present, we con-
sider a Subject-Verb (SV) which is a clause, or a
Verb-Object (VO) which is a predicate.

(iii) Extension of Noun phrase - A subject or an
object is a noun, which needs to be extended if re-
quired. Any adjective present just before the noun,
is considered to be part of the noun phrase. Sim-
ilarly, if the noun phrase has the corresponding
conjunction, then the conjunction, along with its
other end is also considered to be the part of the
noun phrase.

(iv) Negative sentiment - We consider words depict-
ing negative sentiment that are associated with the
predicate or clause.

(v) Relation clause/phrase generation - A simple
clause or phrase is generated which is in any one
of the forms as (no )SVO, (no )VO, (no )SO, where
“no" is optional as per the presence of negative sen-
timent in the input text.

3.2.3 Cause Extraction

We build on the method of cause extraction from
text as described in (Sorgente et al., 2013) for log
data. We consider four rules for possible cause
extraction, which are as follows:

(i) Presence of Causative Verbs (Sorgente et al.,
2013) - These are simple verbs denoting causal ac-
tions for logs, such as “cause", “create”, “make",
“generate", “trigger”, “produce” and “emit".

(ii) Presence of Phrasal Verbs (Sorgente et al.,
2013) - Phrases consisting of a Verb followed by a
Particle or Preposition, such as: “caused by".

(iii) Presence of prepositional Adjective or Adver-
bial Phrases - Phrases consisting of a Adverb fol-
lowed by a Preposition, such as “because of" and/or
phrases consisting of a Adjective followed by a
Preposition, such as “due to".

(iv) Absence of a Noun Phrase - Explicit mention
of absence of a noun phrase, such as: “No file
present”. We look for presence of words like “no",
“none" associated with a noun phrase for possible
cause extraction.

3.3 Class Predictions

In this section, we briefly describe the prediction
modules designed using the extracted features as
described earlier. We perform two stages of predic-
tion for fault categorization - (i) detect if a log is
erroneous or not and (ii) detect the fault type in the
erroneous logs only. It is possible to implement and
use various sophisticated classifiers for these tasks.
However, one of the most important requirements
of these models is to be extremely fast, which can
process thousands of streaming logs in seconds.
The proposed classifiers aim to approximate time-
expensive probabilistic models in an efficient way,
which are described below.

3.3.1 Erroneous Log Detection

The existing erroneous log detection module uses
a pre-built symptom dictionary for detecting erro-
neous logs. The symptom dictionary has been built
using operation engineers knowledge of faulty logs,
as described in (Ray et al., 2020). If any word from
the symptom dictionary is present in the input log
message, it is classified as an erroneous log. How-
ever, it was observed that this produced a lot of
false-positive alarms. We propose a more stringent
rule, using both the existing symptom dictionary
and the negative sentiment dictionary and modify
the error classifier as:



1, if (w(t) Nw(S) #0)

Aw(t) Nw(N) # 0).
0, otherwise.
where, y. is the class label of error classifier, w(.)
denotes all the words/tokens of the input as a set
and t, S, N represent the input text, the symptom
dictionary and the proposed negative sentiment dic-
tionary respectively. It is to be noted that some
tokens, such as “exception”, are common to both
the symptom and negative sentiment dictionaries.

Ye(t) =

3.3.2 Fault Categorization

In the next step, we detect the fault category of
the erroneous logs. We consider 8 fault categories
(database, disk, file, memory, network, protocol,
storage, others), as proposed in (Zou et al., 2014).
We propose an adaptive rule-based classification ap-
proach in order to make the process time-efficient.
We automatically build dictionaries corresponding
to each of the categories (except for the category
“others") using the word embedding model. For
a particular category name, we consider the near-
est nouns which are within a particular distance
threshold from the category name. For example,
for the category “database”, some of the tokens in
the dictionary are “jdbc", “sql", “knowledgebase",
“query" etc. This is a fast approximation of the
Parzen window classifier (window size determined
by k-fold cross-validation) in the embedded space.
At run-time, for a log message, we first extract the
relations and causal phrases as described in sub-
sections 3.2.2 and 3.2.3, as we want to concentrate
only on the meaningful parts of the log messages.
Next, we check if any words from the extracted
relation and/or causal phrases exist in any one of
the category dictionaries.

For a logline input x, the predicted fault cate-
gories yy = yy(x) is a subset of labels in C' ob-
tained as:

min
a€Dc bew(z)NDy
ys(x) ={ieC:sigm(m(x))>T}

m(r) = [W(a) — W (b)|xA1)

where if the minimum (1) is well-defined then
m(z) = m(z; Dco, ¥) denotes the minimum dis-
tance between word pairs a, b, where a is a word
from input x with a valid entry in dictionary Dy,
and b is an entry from the dictionary D., and
sigm(u) = (1 —exp(—u))~! is the sigmoid func-
tion for unrestricted u, and 7T is a threshold that
is chosen using the test set. In the case where for
x we have € w(x) N Dy to be empty and (1) is

not well-defined (when none of the words in the in-
put is from the word embedding vocabulary), then
we set y¢(x) = {others} to contain only a sin-
gle others label (distinguished from any label in
(). Recall that fault categories are only predicted
when erroneous logs are predicted (i.e., only when
ye(x) = 1). We expect that under usual operating
conditions y.(z) = 1 is only for a reasonably small
set of log-lines, hence the operation (1) though ex-
pensive, only needs to be done for a sparse amount
of time.

Figure 2 shows the intermediate steps of fault
categorization for an example. It shows, how after
pre-processing, the input is being detected as erro-
neous log using symptom and negative sentiment
dictionary. For fault categorization, the extracted
symptom and cause phrase are being showed along
with the final fault category.

4 Results

We evaluate the proposed framework on four dif-
ferent log dataset: (1) Private log data from an IT
company’s Conversation services (CS) (~ 900K
instances), (2) Socshop (8648 instances), (3) HDFS
(~ 610K instances) and (4) QOTD (~ 180K in-
stances), where QOTD and Socshop are simulated
datasets and HDFS is an open-source dataset (He
et al., 2020b).

To build a labeled test set for experimentation,
we used the Drain template miner (He et al., 2017b)
on the log messages. We mined 41 logline tem-
plates for HDFS, 64 templates for QOTD, 74 tem-
plates for Socshop and 51 templates for the CS
dataset. The reduced test set contained only the
log templates, allowing us to hand annotate the
samples for the tasks of error detection and fault
categorization using the suggestions from opera-
tion engineers. For efficient feature extraction, we
first performed efficient pre-processing using an in-
house parser. Oftentimes, a nested JSON or XML
is present as a part of the string as a value in the key-
value pairs. We parsed these nested structures and
created a list of key-value pairs, considering only
the values which are strings having an underlying
grammar.

4.1 Erroneous Log Detection

We compare the erroneous log detection module
for three different variations: (i) Method 1 - using
only the symptom dictionary as implemented in the
baseline; (ii) Method 2 - using the proposed method



"_line":"Order response:
{\"timestamp\":1599236098757,\"status\":500,\"err
or\":\"Internal Server
Error\",\"exception\":\"java.lang.|llegalStateExceptio
n\",\"message\":\"Unable to create order due to
unspecified 10 error.\",\"path\":\"/orders\"}"

preprocessing
>

Raw log

"_line->timestamp": "1599236098757",
"_line->status": "500",
"_line->error": "Internal Server Error",

"_line->exception": "java.lang.lllegalStateException",
"_line->message": "Unable to create order due to unspecified 10 error.",
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l 4 :
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I
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Figure 2: Example showing the different steps of fault categorization.

where both symptom dictionary and negative senti-
ment dictionary are being used; and (iii) Method 3
- using probabilistic sentiment detector along with
the symptom dictionary. Table 2 shows the perfor-
mance comparison of the different variations on
the four log datasets for the task of errorneous log
detection (ED). The first three rows show the F1
score, while the next three rows show the average
time taken, in micro-seconds, for each log, using
the three methods. The last two rows show how
the performance of the existing Log Anomaly De-
tection (LAD) module (Liu et al., 2021) improves
as it considers the output of the improved error
detection module.

CS SocShop | HDFS | QOTD

~ | MI[ 0847 067 [ 045 1.00
5[ M2 089 077 | 0.78 | 0.88
M3 | 093 | 089 | 0.88 | 0.88

g |MI| 356 | 127 | 49 | 47
S| M2 1935 | 220 | 254 | 216
2 | M3 | 9145 | 1903 | 613 | 595
= Ml | 045 | 040 | 032 | 093
2 m2| 048 | 080 | 033 | 099

Table 2: Performance of error detection and Log
anomaly detection using various methods.

It is evident from the results that the performance
of the log error detector improved by a significant
margin as we included the sentiment as a feature.
The improvements in the F1 score are mainly due
to the reduction in the false-positive numbers for all
the four datasets. As shown, using a sophisticated
sentiment analyser from the Textblob toolkit (tex)
outperforms the other methods, but the processing
time also increases. As a result, a probabilistic

sentiment analyzer could not be implemented in
the existing pipeline for the downstream task of
log anomaly detection. The comparison of the pro-
posed method with the baseline (method 1) shows
the effectiveness of sentiment analyzer, as a feature,
for erroneous log detector.

As we prefer a dictionary-based sentiment an-
alyzer, we see some limitations due to which the
error detection is incorrect. For example, in the log
message “Receiving empty packet for block blk",
the sentiment is non-negative as there is no word
“empty" in the dictionary. Currently, we are not
manually adding any tokens in the negative senti-
ment dictionary to keep it generic enough. Also,
adding specific tokens in the dictionary does not al-
ways guarantee a better F1 score and may increase
the number of false positives. In another scenario,
there are arbitrary log messages, which lead to false
positives, such as “We were not paid to sell this
sock. It’s just a bit geeky". These ablations can
be further reduced by adopting a better tokenizer
during the pre-processing time and updating the
dictionary automatically as more log data are being
encountered.

4.2 Fault Categorization

We categorize the erroneous logs into one of the
eight fault classes as described earlier. We show the
effectiveness of the fault categorization in Table 3.
As shown in the table, using Domain-Specific (DS)
embeddings trained on technical and log corpus
achieve better F1 scores. Further, we show that the
F1 scores improve when we consider important seg-
ments (relations and causes) of the log messages.
This is due to the reduction of false-positive sam-
ples, by weeding out segments of the log message
which are neither a part of a relation nor cause. For



log messages that do not contain relations and/or
causes, we consider the original log message for
the task of fault categorization.

False Negative

Word absent in Negative Dictionary | Execution of Rabbit message listener failed.

Entity not being extracted addStoredBlock request received for blk_-123 on 0.0.0.0:0 size 123
But it does not belong to any file

timed out block blk_-123

Word absent in Symptom Dictionary

False Positive

CS SocShop | HDFS | QOTD
Pretrained 0.81 0.82 0.73 0.65
Embd.
DS Embd. 0.84 0.85 0.76 | 0.66
DS Embd. (rel. | 0.89 0.87 0.88 0.9
& cause)

Table 3: Performance of fault classification using pre-
trained and domain specific embeddings (with & w/o
feature extraction)

The predicated categories on a few log messages
are shown in Figure 3. We highlight the words
in each of the log messages which was responsi-
ble for the categorization task in red color. We
also show a few examples where the fault cate-
gory prediction was wrong (Figure 4). On further
analysis, we find that the error mainly happens
because the fault from the previous modules prop-
agates into the fault classification module. Figure
4 shows examples of limitations of the dictionary
approach for both fault categorization and error de-
tection and improper feature extraction. Another
reason for misclassification happens when two dif-
ferent fault categories are highly correlated with
each other. For example, often “authentication” is
needed for accessing “databases" and related terms
of these two categories occur in close proximity.
Thus words related to these two categories will be
close to each other in the embedded space, which
causes the increase of misclassification rate in fault
categorization.

[orders,,,] 7 — [xx] 0.a.c.c.C.L.LI/L.[dispatcherServlet] : Servlet.service() for serviet [dispatcherServlet] in context with path
] threw exception [Request processing failed; nested exception is java.lang.lllegalStateException: Unable to create order due
to unspecified |0 error.] with root cause - [fijfef]

{"t":{"$date":"2020-09-04T16:55:48.746+00:00"}, "c":"NETWORK", "id"1xxx, "ctx":"connxxx","msg":"Error receiving request
from client. Ending connection from remote” " {"codeName":"ProtocolError","errmsg":"Client sent an HTTP
request over a native MongoDB connection"},"remote":"x.x.x.x:x","connectionid":xxx}} H['database’, ‘Retwork’, ‘protocol’]
{"timeMillis":1578755700979,"thread":"Threadx","level": " H
ityRequestWorker","message":"Thread timed out waiting for Redis queue, getting new Redis client: throttlePrefix: xyz,

1 _priority, ti ", "endOfBatch"false, "loggerFacn":"org.apache.xxx. AbstractLogger", o),
"threadld":25, "threadPriority":5} - [‘MEMOR]

{'message': 'receiving empty packet for block blk_-12345', 'timestamp': 1577838860000, 'instance_id": 'hdfs', 'entities':
{'block_id": 'blk_-12345'), 'features": [], 'meta_features’: [{'type": ‘'windowmeta', 'obj_value': {'start": 1577838860000, 'end":
157 , 'application_group_id": 1, ion_id': 1) - [‘network; disk; protocol’]

{'message': 'exception in receiveblock for block blk_-12345 java.io.ioexception: connection reset by peer’, 'timestamp':
1577836840000, "instance_id': 'hdfs', ‘entities': {'block_id": 'blk_-12345'}, 'features": [], 'meta_features': [{'type': 'windowmeta',
‘obj_value'; {'start': 157 , 'end’: 15 ion_group_id": 1, 'application_id": 1} HFife]

ibm.watson. Prior

Figure 3: Logline examples with predicted Fault Cate-
gories.

5 Conclusion

In this paper, we propose a novel method of fault
categorization in event logs in a time-efficient way.
We first detect the erroneous ones from the stream

[ Attempting to delete cart foruser: 123 - [ERERNEANORNATAAR]

Nearest neighbors via embeddings |

Dictionary related error

Figure 4: Ablation study: Fault Categories from Log
Lines

of logs by analyzing the sentiment of the log mes-
sage. In the next step, we detect the fault category
of the erroneous logs by extracting important seg-
ments of the log message and using the pre-built
fault category dictionaries. The domain knowledge
has been incorporated on all the modules with the
efficient use of the word embedding model, trained
on technical support documents. We also show that
the proposed method significantly improves the ex-
isting Log-Anomaly detection pipeline. In future
work, we plan to explore and improve the perfor-
mance by taking into account the probability of a
token belonging to a particular category dictionary.
This may lead to improvement as a particular token
can exist in multiple dictionaries. Use of improved
tokenizer or embedding model will also enable us
to handle words which are out of the vocabulary.
We also plan to investigate approaches and ways to
extend the framework to new fault categories based
on client needs or new log types being encountered.
This proposed framework is the base that can be
upgraded to a more generalizable yet robust fault
categorization framework.
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