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Abstract

Software monitoring is the most critical part in001
any software management life cycle. One of002
the ways to detect the health of the program003
and the software is to monitor the logs effi-004
ciently. In this paper, we describe a method005
to process a stream of logs for identifying any006
fault being mentioned in the log at runtime. At007
first, we extract meaningful features for detect-008
ing the erroneous ones from the stream of logs.009
Next, we categorize the erroneous logs into the010
pre-defined categories of commonly occurring011
faults, using the proposed two-step framework.012
We propose efficient, fast and intelligent rule-013
based systems with the domain knowledge be-014
ing incorporated using the word embedding015
model. We have built a domain specific cor-016
pus and trained a word embedding model for017
this purpose. The methods described here have018
shown improved results in the existing product019
pipeline. Experiments on logs obtained from020
various applications also show the efficacy of021
our proposed method.022

1 Introduction023

Organizations are now in the path of rapid digi-024

tization, with thousands of applications, services,025

hardware systems and microservices running in a026

hybrid cloud environment. In today’s world of hy-027

brid cloud, understanding why a service fails and028

what incident remediation steps to perform that029

would result in minimal downtime are extremely030

challenging tasks. One of the key roles of an IT031

operations engineer is to support these applications032

and keep the services running. At present, an en-033

gineer manually analyses the IT operational data034

and uses a large number of tools to diagnose the035

root cause(s) of a failure in order to decide the most036

effective remediation action. Usually, these oper-037

ations result in longer mean times to detect and038

longer problem resolution times.039

An important IT operational data - logs gener-040

ated from multiple data sources, can provide key041

insights to help detect the status or the problem(s) 042

of various components. However, due to the ever- 043

rising volume and variety of log data, the main 044

challenge before an operations team is how to ef- 045

fectively use and analyze it. To meet this challenge, 046

one needs to mine the data, discover knowledge, 047

and use the insights so gained in failure manage- 048

ment tasks while significantly reducing manual ef- 049

fort and visual overload on IT operators. 050

One of the needs for log processing is to have 051

time-efficient modules at the beginning of the 052

AIOPS pipeline. As the rate at which log streams 053

come is very fast (around 10k per sec), it is essen- 054

tial that the processing time needs to be very fast, 055

to avoid any time-lapse. Also, the module needs to 056

be generalized enough to be efficient of various log 057

formats from different sources. We go beyond the 058

traditional rule-based methods, where error clues 059

are either extracted using regex pattern matching 060

or are dictionary-based built manually (Zou et al., 061

2014). We aim to approximate a sophisticated prob- 062

abilistic model by intelligent unsupervised methods 063

using: 064

(i) automatic domain-specific dictionary building, 065

(ii) focusing on important sub-text/features from 066

log message 067

(iii) using a two-step fault categorization module 068

for meeting the need to ’time to value’. 069

The domain knowledge is being incorporated in 070

the unsupervised approach using the word embed- 071

ding model trained on IT corpus. Most of the time- 072

efficient methods of log category detection in event 073

logs rely on simple dictionary-based matching or 074

rules-based systems. Our proposed method ap- 075

proximates a probabilistic model in a time-efficient 076

manner using a domain-specific word embedding 077

model in a two-step process. 078

This paper describes a method of identifying 079

the type of faults in an erroneous log. As the log 080

stream comes in, first an error detection module 081

identifies the erroneous logs from the input stream, 082
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for which we identify the fault. This two-step pro-083

cess helps us to design a time-efficient yet effec-084

tive method for fault categorization. The proposed085

method has been built on top of an existing system086

of log analysis. We have successfully improved087

the error detection module and proposed a new088

domain-specific, fast and efficient fault categoriza-089

tion module, which is being discussed in the rest of090

the paper.091

2 Prior Work092

On log curation, there has been work (He et al.,093

2020a) on curating log datasets from real-world094

systems including Hadoop, HDFS, Openstack, etc.095

The primary goal was to train and evaluate log pars-096

ing schemes. In contrast, our approach required a097

corpora that enables learning of higher level seman-098

tics in the technical vernacular, that log datasets099

simply do not have.100

On the topic of log parsing and template learning101

for there has been a garden variety of approaches102

both rule-based (Hansen and Atkins, 1993; Prewett,103

2003; Rouillard, 2004), and pattern mining algo-104

rithms such as LogCluster (Vaarandi and Pihelgas,105

2015), SLCT (Vaarandi, 2003), LKE (Fu et al.,106

2009), DRAIN (He et al., 2017a), SPELL (Du107

and Li, 2019), IPLoM (Makanju et al., 2009),108

LenMA (Shima, 2016), and others (Nagappan et al.,109

2009). We propose here to avoid learning tem-110

plates, and simply use off-the-shell dependency111

parsing and tagging (see Honnibal et al., 2020) ap-112

plied only on a small set of identified loglines.113

There are few works on identifying fault cate-114

gories of event logs. (Zou et al., 2014) proposes to115

consider only the invariant tokens in the log lines116

which are identified using templatization. The fault117

categories are detected by using a Fault-Keyword118

matrix which denotes affinity of a token/keyword119

with a particular fault category. This is done by120

clustering the loglines together and then calculating121

the affinity using tf-idf. This method is definitely122

limited to the vocabulary of the log dataset and is123

not very easily extendable. Also, methods like clus-124

tering and tf-idf based weight calculation may not125

really capture the semantics of the loglines, which126

is one of the main focus in our work.127

On anomaly detection there are various ap-128

proaches such as the following, spanning unsuper-129

vised (Ramaswamy et al., 2000; Dickinson et al.,130

2001; Lou et al., 2010), one-class supervised (Mir-131

gorodskiy et al., 2006), and supervised (Yuan et al.,132

2006; Xu et al., 2008). In particular more recent 133

techniques improve by relying on sophisticated 134

NLP techniques that use embeddings and prob- 135

abilities models such as neural nets (Wang et al., 136

2020; Du et al., 2017). We propose here to simplify 137

for production settings, by employing unsupervised 138

(domain-specific) embeddings, in ways that approx- 139

imate probabilistic models, however here involving 140

limited supervision in updating the models. This 141

allows us to go a step beyond anomaly detection 142

to fault categorization, where we employ a combi- 143

nation of dictionary specific and embedding tech- 144

niques that meet production latency and throughput 145

demands. 146

3 Proposed Method 147

Probabilistic models based on sophisticated NLP 148

techniques (see Wang et al., 2020; Du et al., 2017) 149

are state-of-the-art, but face issues in the produc- 150

tion demands of a high-throughput, low-latency 151

application of log analysis. Given a training set of 152

log data {xi}ni=1, where n is the number of train- 153

ing examples, erroneous log detection and fault 154

categorization, involve learning a function f(·, θ), 155

that optimizes parameters θ such that predictions 156

ye, yf = f(·, θ) corresponding to erroneous log 157

ye, and fault category prediction yf , perform well 158

against some loss measure; here ye is binary, and 159

whenever ye = 1 then yf lies in some set of pre- 160

defined fault categories C, whenever ye = 0 then 161

yf is irrelevant and left undefined. Probabilistic 162

models typically employ a nonlinear f(·, θ) that is 163

trained in a supervised manner. Here, we propose 164

to approximate such an f that can be constructed 165

in ways more amenable to production settings, 166

where the parameters θ = (Dn, Ds, {Di}i∈C ,Φ) 167

involve i) dictionaries DS (existing symptom dic- 168

tionary), DN (negative sentiment dictionary) and 169

{Di}i∈C (one for each fault category) that are pre- 170

constructed with minimal human intervention and 171

ii) a set of word embeddings Φ. We propose a 172

two-step approach to construct ye and yf : 173

• use an existing symptom dictionary DS and 174

proposed sentiment dictionary DN obtained 175

in an unsupervised manner to predict ye. 176

• if ye = 1, approximate the manner in which 177

probabilistic models predict the fault category 178

yf , by a novel combination of dependency 179

tags features, dictionaries {Di}i∈C , and the 180

embeddings Φ. In particular, each dictionary 181
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Di will be constructed in an unsupervised182

manner. If ye = 0, there is no need for identi-183

fying fault.184

We use domain-specific pre-trained embeddings185

Φ extensively trained in an unsupervised manner,186

for (i) domain-specific dictionary building (offline187

process) and (ii) unsupervised multi-label fault cat-188

egorization, that allows better performance over189

technical vernacular; this gets rid of the need to190

retrain for individual log datasets.191

The flowchart in Figure 1 shows the proposed192

method. The rest of the modules are explained in193

detail in the following sub-sections. The frame-194

work is currently being absorbed in the existing195

product pipeline for improving the log-anomaly196

detection pipeline in a phased manner.197

Figure 1: Proposed framework for fault categorization
in logs.

3.1 Domain Specific Word Embedding Model198

We use domain specific word embedding to build199

domain-specific dictionaries with minimum human200

intervention and to calculate similarity-based multi-201

label fault classifiers. We require embeddings that202

are adapted for our domain of technical vernacular203

that appears in log data. This is because, there is204

a need to deal with words that appear in the regu-205

lar language that have different technical meanings206

such as block, application, server, web, etc. There207

are technical jargons that are not common in the208

general English corpus. Also, words like “bug"209

can have a different meaning in a technical domain210

(faulty in the technical domain, insect in general211

English). In order to understand the semantic mean-212

ing of the given sentence/part of a sentence, we rely 213

on a domain-specific word embedding model. 214

Our approach is to go beyond log data to ob- 215

tain a technical corpus that captures semantic re- 216

lationships between technical terms. Log data is 217

inherently generated from templates, and thus may 218

lack the semantic diversity required for corpora 219

when training embeddings. We use three types 220

of word embedding model in our framework: (i) 221

Glove model trained on IT-related corpus, (ii) Fast- 222

text model trained on log messages and (iii) pre- 223

trained Fasttext model trained on common-crawl 224

and Wikipedia. 225

3.1.1 Glove Word Embeddings 226

Assembling the Corpora - Table 1 summarizes 227

the billion-word corpora used for model training, 228

focusing only on the English language in a mono- 229

lingual setting. To capture the required diversity, 230

we sourced two technical corpora - technical sup- 231

port articles, technical manuals, and used current 232

events news articles for incorporating general En- 233

glish knowledge. The support articles were ob- 234

tained from the TechQA dataset (Castelli et al., 235

2019) that contained 830K support pages. These 236

support pages, or technotes, typically consists of 237

a concise description of some problematic symp- 238

toms observed when using a particular product, 239

along with an explanation of the fix. The techni- 240

cal manuals, on the other hand, incorporate text 241

in prose form organized in topical themes (e.g., 242

administration of a Linux server) and sub-themes 243

(e.g., creating user accounts). These manuals were 244

scraped from the four internet sources shown in 245

Table 1 and account for half of the word count. The 246

inclusion of the manuals added an additional level 247

of diversity on top of the support pages. Finally, we 248

used the news-wire data obtained from the Giga- 249

word5 (gig) dataset to incorporate natural language 250

data to ensure that the model is able to learn such 251

semantics apart from the technical vernacular. Note 252

that the news data is roughly about the same size 253

as that of the support pages; this is to ensure that 254

the technical content is dominant in our corpora. 255

Training - We follow popular approaches in lan- 256

guage models learning to perform unsupervised 257

learning. Such methods that aim to learn models 258

that generalize well, do so without labels since 259

labels are difficult to obtain in large quantities. 260

Hence, we leverage models such as glove (Pen- 261

nington et al., 2014) that can be trained over a 262

billion words (see Table 1) without supervision. 263
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Type Words (mil.) Details
Support 226.6 TechQA dataset (Castelli et al., 2019) of 826998 support pages

Manuals 458.5

800+ manuals from https://access.redhat.com/documentation/en-us/

200+ docs from https://www.ibm.com/support/knowledgecenter/ 1

2000+ pdf books from http://www.redbooks.ibm.com/Redbooks.nsf

200+ docs from https://cloud.ibm.com/docs

News 278.9 GigaWord Version 5 (gig) curated news-wire data

Table 1: Corpora for Model Training

The glove hyper-parameters xmax and α are set264

to default values as in (Pennington et al., 2014)265

along with a window size of 15, and we tune two266

parameters i) vocabulary size, ii) the number of267

train iterations.268

An evaluation task inspired by Cloze (see (De-269

vlin et al., 2019)) is used to tune the two hyper-270

parameters. A test/validation split of examples271

from support pages corpus (around 76856 and272

77134 respectively) is constructed, each example273

containing a few co-located sentences. For each274

example, a context widow of 20 words (10 on each275

side) surrounding one that has been masked, along276

with a set of four word choices, is given to the277

model. The glove/BPE model determines for each278

of the 20 words, which of the four word choices are279

closer, and takes a majority vote. The task is taken280

to be successful if the correct word choice has the281

majority, and wrong otherwise. We determined a282

vocabulary size of 50000, and 50 and 20 iterations283

for embedding dimensions 50, 100, and 200, 300,284

respectively.285

3.1.2 Fasttext Model286

Another popular model for training word embed-287

dings from scratch is Fasttext (Bojanowski et al.,288

2016). For our work, we have used a Fasttext model289

trained on log messages for having a better under-290

standing of the semantics of the log messages. For291

this task, the model is being trained on logs from an292

IT company’s Conversation Services and LogHub293

dataset (He et al., 2020a), using the default Fast-294

text parameters as mentioned in (Bojanowski et al.,295

2016). We used the log-anomaly detection pipeline296

as the evaluation task for parameter-tuning. More297

details of this model can be found in (Liu et al.,298

2020).299

3.2 Feature Extraction300

In this section, we describe the NLP methods that301

have been used for extracting meaningful features302

from logs as and when necessary. We consider the303

outputs of various log-arrgegators as input, where 304

the logs are represented as key-value pairs, instead 305

of considering the raw logs. The values can be of 306

categorical, numerical or sentence-like structure, 307

which can be processed accordingly for feature ex- 308

traction. For the features proposed in this paper, we 309

consider the values which are sentences or parts of 310

sentences, having underlying grammar. Such val- 311

ues are detected, if they contain atleast two or more 312

tokens and one verb. The features to be extracted, 313

using NLP, are described as follows. 314

3.2.1 Sentiment Analysis 315

Log messages contain messages of missing or 316

faulty attributes while encountering any error. For 317

example, the log message “Unable to restart due to 318

unknown I/O error" clearly specifies that an action 319

has not taken place due to a certain cause. The ab- 320

sence of certain action/entity brings out a sense of 321

negative sentiment in this case. We have observed 322

that most of the erroneous log messages contain 323

words that have a high correlation to negative sen- 324

timents. This motivates us to extract sentiment 325

out of the log messages as a strong feature for the 326

predictive tasks. 327

For purposes of analyzing negative sentiment, 328

we propose to adopt a dictionary-based approach 329

as opposed to full-blown ML approach; this de- 330

sign choice was made with the aim of processing 331

thousands of logs per second. We build a nega- 332

tive sentiment dictionary for our technical domain 333

leveraging on open-source sentiment dictionaries 334

such as Vader (Hutto and Gilbert, 2014) and Sen- 335

tiWordNet (Baccianella et al., 2010). We discard 336

words that are nouns as a candidate for sentiment 337

dictionary; this is because in log data, negative 338

sentiments are mostly associated with actions that 339

most comprise of verbs, adverbs or adjectives. This 340

is apparent in the example “block", which as a verb 341

may be associated with negative sentiment (“block- 342

ing the gateway") whereas as a noun it is of neutral 343
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sentiment (“memory block”). We also discard any344

word that is out-of-vocabulary from the pre-trained345

embedding model; but this is not often as part of346

its training corpus is built from a standard English347

corpus. We consider any word in the vocabulary,348

as an entry to our negative sentiment dictionary, if349

any one of dictionaries (Vader and SentiWordNet)350

labels it as a negative sentiment word. We also add351

some of the words denoting negation such as “no",352

“n’t", “not", “shouldn’t" etc for its completeness.353

The final dictionary contains 551 words and the354

presence of any one of these words is considered355

to be of negative sentiment for the input text.356

3.2.2 Relation Extraction357

We extract meaningful relations between the non-358

copular verb present in the sentence-like structure359

with the corresponding subject and/or object if360

present. The clause must contain a verb and a361

subject with or without the presence of an object.362

On the other hand, a predicate consists of a verb363

along with the object associated with it. We use364

both clause and predicate for extraction of relevant365

relations as log-messages are not proper sentences.366

The steps used for relation extraction are as fol-367

lows:368

(i) Dependency parsing - This is required to identify369

the parts of speech and the grammatical dependen-370

cies between the words present in the input.371

(ii) Verb filtration and Clause/Predicate selection372

- We consider only the non-copular verbs and dis-373

card any input which only contains a copular verb.374

We consider Subject-Verb-Object (SVO) as present375

in the input. In case no SVO is present, we con-376

sider a Subject-Verb (SV) which is a clause, or a377

Verb-Object (VO) which is a predicate.378

(iii) Extension of Noun phrase - A subject or an379

object is a noun, which needs to be extended if re-380

quired. Any adjective present just before the noun,381

is considered to be part of the noun phrase. Sim-382

ilarly, if the noun phrase has the corresponding383

conjunction, then the conjunction, along with its384

other end is also considered to be the part of the385

noun phrase.386

(iv) Negative sentiment - We consider words depict-387

ing negative sentiment that are associated with the388

predicate or clause.389

(v) Relation clause/phrase generation - A simple390

clause or phrase is generated which is in any one391

of the forms as (no )SVO, (no )VO, (no )SO, where392

“no" is optional as per the presence of negative sen-393

timent in the input text.394

3.2.3 Cause Extraction 395

We build on the method of cause extraction from 396

text as described in (Sorgente et al., 2013) for log 397

data. We consider four rules for possible cause 398

extraction, which are as follows: 399

(i) Presence of Causative Verbs (Sorgente et al., 400

2013) - These are simple verbs denoting causal ac- 401

tions for logs, such as “cause", “create", “make", 402

“generate", “trigger", “produce" and “emit". 403

(ii) Presence of Phrasal Verbs (Sorgente et al., 404

2013) - Phrases consisting of a Verb followed by a 405

Particle or Preposition, such as: “caused by". 406

(iii) Presence of prepositional Adjective or Adver- 407

bial Phrases - Phrases consisting of a Adverb fol- 408

lowed by a Preposition, such as “because of" and/or 409

phrases consisting of a Adjective followed by a 410

Preposition, such as “due to". 411

(iv) Absence of a Noun Phrase - Explicit mention 412

of absence of a noun phrase, such as: “No file 413

present". We look for presence of words like “no", 414

“none" associated with a noun phrase for possible 415

cause extraction. 416

3.3 Class Predictions 417

In this section, we briefly describe the prediction 418

modules designed using the extracted features as 419

described earlier. We perform two stages of predic- 420

tion for fault categorization - (i) detect if a log is 421

erroneous or not and (ii) detect the fault type in the 422

erroneous logs only. It is possible to implement and 423

use various sophisticated classifiers for these tasks. 424

However, one of the most important requirements 425

of these models is to be extremely fast, which can 426

process thousands of streaming logs in seconds. 427

The proposed classifiers aim to approximate time- 428

expensive probabilistic models in an efficient way, 429

which are described below. 430

3.3.1 Erroneous Log Detection 431

The existing erroneous log detection module uses 432

a pre-built symptom dictionary for detecting erro- 433

neous logs. The symptom dictionary has been built 434

using operation engineers knowledge of faulty logs, 435

as described in (Ray et al., 2020). If any word from 436

the symptom dictionary is present in the input log 437

message, it is classified as an erroneous log. How- 438

ever, it was observed that this produced a lot of 439

false-positive alarms. We propose a more stringent 440

rule, using both the existing symptom dictionary 441

and the negative sentiment dictionary and modify 442

the error classifier as: 443
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ye(t) =


1, if (w(t) ∩ w(S) 6= ∅)
∧(w(t) ∩ w(N ) 6= ∅).

0, otherwise.
444

where, ye is the class label of error classifier, w(.)445

denotes all the words/tokens of the input as a set446

and t, S, N represent the input text, the symptom447

dictionary and the proposed negative sentiment dic-448

tionary respectively. It is to be noted that some449

tokens, such as “exception", are common to both450

the symptom and negative sentiment dictionaries.451

3.3.2 Fault Categorization452

In the next step, we detect the fault category of453

the erroneous logs. We consider 8 fault categories454

(database, disk, file, memory, network, protocol,455

storage, others), as proposed in (Zou et al., 2014).456

We propose an adaptive rule-based classification ap-457

proach in order to make the process time-efficient.458

We automatically build dictionaries corresponding459

to each of the categories (except for the category460

“others") using the word embedding model. For461

a particular category name, we consider the near-462

est nouns which are within a particular distance463

threshold from the category name. For example,464

for the category “database", some of the tokens in465

the dictionary are “jdbc", “sql", “knowledgebase",466

“query" etc. This is a fast approximation of the467

Parzen window classifier (window size determined468

by k-fold cross-validation) in the embedded space.469

At run-time, for a log message, we first extract the470

relations and causal phrases as described in sub-471

sections 3.2.2 and 3.2.3, as we want to concentrate472

only on the meaningful parts of the log messages.473

Next, we check if any words from the extracted474

relation and/or causal phrases exist in any one of475

the category dictionaries.476

For a logline input x, the predicted fault cate-477

gories yf = yf (x) is a subset of labels in C ob-478

tained as:479

m(x) = min
a∈DC ,b∈w(x)∩DΨ

|Ψ(a)−Ψ(b)|2(1)480

yf (x) = {i ∈ C : sigm (m(x)) ≥ T}481

where if the minimum (1) is well-defined then482

m(x) = m(x;DC ,Ψ) denotes the minimum dis-483

tance between word pairs a, b, where a is a word484

from input x with a valid entry in dictionary DΨ,485

and b is an entry from the dictionary Dc, and486

sigm(u) = (1− exp(−u))−1 is the sigmoid func-487

tion for unrestricted u, and T is a threshold that488

is chosen using the test set. In the case where for489

x we have ∈ w(x) ∩ DΨ to be empty and (1) is490

not well-defined (when none of the words in the in- 491

put is from the word embedding vocabulary), then 492

we set yf (x) = {others} to contain only a sin- 493

gle others label (distinguished from any label in 494

C). Recall that fault categories are only predicted 495

when erroneous logs are predicted (i.e., only when 496

ye(x) = 1). We expect that under usual operating 497

conditions ye(x) = 1 is only for a reasonably small 498

set of log-lines, hence the operation (1) though ex- 499

pensive, only needs to be done for a sparse amount 500

of time. 501

Figure 2 shows the intermediate steps of fault 502

categorization for an example. It shows, how after 503

pre-processing, the input is being detected as erro- 504

neous log using symptom and negative sentiment 505

dictionary. For fault categorization, the extracted 506

symptom and cause phrase are being showed along 507

with the final fault category. 508

4 Results 509

We evaluate the proposed framework on four dif- 510

ferent log dataset: (1) Private log data from an IT 511

company’s Conversation services (CS) (∼ 900K 512

instances), (2) Socshop (8648 instances), (3) HDFS 513

(∼ 610K instances) and (4) QOTD (∼ 180K in- 514

stances), where QOTD and Socshop are simulated 515

datasets and HDFS is an open-source dataset (He 516

et al., 2020b). 517

To build a labeled test set for experimentation, 518

we used the Drain template miner (He et al., 2017b) 519

on the log messages. We mined 41 logline tem- 520

plates for HDFS, 64 templates for QOTD, 74 tem- 521

plates for Socshop and 51 templates for the CS 522

dataset. The reduced test set contained only the 523

log templates, allowing us to hand annotate the 524

samples for the tasks of error detection and fault 525

categorization using the suggestions from opera- 526

tion engineers. For efficient feature extraction, we 527

first performed efficient pre-processing using an in- 528

house parser. Oftentimes, a nested JSON or XML 529

is present as a part of the string as a value in the key- 530

value pairs. We parsed these nested structures and 531

created a list of key-value pairs, considering only 532

the values which are strings having an underlying 533

grammar. 534

4.1 Erroneous Log Detection 535

We compare the erroneous log detection module 536

for three different variations: (i) Method 1 - using 537

only the symptom dictionary as implemented in the 538

baseline; (ii) Method 2 - using the proposed method 539
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Figure 2: Example showing the different steps of fault categorization.

where both symptom dictionary and negative senti-540

ment dictionary are being used; and (iii) Method 3541

- using probabilistic sentiment detector along with542

the symptom dictionary. Table 2 shows the perfor-543

mance comparison of the different variations on544

the four log datasets for the task of errorneous log545

detection (ED). The first three rows show the F1546

score, while the next three rows show the average547

time taken, in micro-seconds, for each log, using548

the three methods. The last two rows show how549

the performance of the existing Log Anomaly De-550

tection (LAD) module (Liu et al., 2021) improves551

as it considers the output of the improved error552

detection module.553

CS SocShop HDFS QOTD

E
D

F1

M1 0.84 0.67 0.45 1.00
M2 0.89 0.77 0.78 0.88
M3 0.93 0.89 0.88 0.88

E
D
µ

se
c M1 356 127 49 47

M2 1935 220 254 216
M3 9145 1903 613 595

L
A

D
F1 M1 0.45 0.40 0.32 0.93

M2 0.48 0.80 0.33 0.99

Table 2: Performance of error detection and Log
anomaly detection using various methods.

It is evident from the results that the performance554

of the log error detector improved by a significant555

margin as we included the sentiment as a feature.556

The improvements in the F1 score are mainly due557

to the reduction in the false-positive numbers for all558

the four datasets. As shown, using a sophisticated559

sentiment analyser from the Textblob toolkit (tex)560

outperforms the other methods, but the processing561

time also increases. As a result, a probabilistic562

sentiment analyzer could not be implemented in 563

the existing pipeline for the downstream task of 564

log anomaly detection. The comparison of the pro- 565

posed method with the baseline (method 1) shows 566

the effectiveness of sentiment analyzer, as a feature, 567

for erroneous log detector. 568

As we prefer a dictionary-based sentiment an- 569

alyzer, we see some limitations due to which the 570

error detection is incorrect. For example, in the log 571

message “Receiving empty packet for block blk", 572

the sentiment is non-negative as there is no word 573

“empty" in the dictionary. Currently, we are not 574

manually adding any tokens in the negative senti- 575

ment dictionary to keep it generic enough. Also, 576

adding specific tokens in the dictionary does not al- 577

ways guarantee a better F1 score and may increase 578

the number of false positives. In another scenario, 579

there are arbitrary log messages, which lead to false 580

positives, such as “We were not paid to sell this 581

sock. It’s just a bit geeky". These ablations can 582

be further reduced by adopting a better tokenizer 583

during the pre-processing time and updating the 584

dictionary automatically as more log data are being 585

encountered. 586

4.2 Fault Categorization 587

We categorize the erroneous logs into one of the 588

eight fault classes as described earlier. We show the 589

effectiveness of the fault categorization in Table 3. 590

As shown in the table, using Domain-Specific (DS) 591

embeddings trained on technical and log corpus 592

achieve better F1 scores. Further, we show that the 593

F1 scores improve when we consider important seg- 594

ments (relations and causes) of the log messages. 595

This is due to the reduction of false-positive sam- 596

ples, by weeding out segments of the log message 597

which are neither a part of a relation nor cause. For 598

7



log messages that do not contain relations and/or599

causes, we consider the original log message for600

the task of fault categorization.601

CS SocShop HDFS QOTD

Pretrained
Embd.

0.81 0.82 0.73 0.65

DS Embd. 0.84 0.85 0.76 0.66
DS Embd. (rel.
& cause)

0.89 0.87 0.88 0.9

Table 3: Performance of fault classification using pre-
trained and domain specific embeddings (with & w/o
feature extraction)

The predicated categories on a few log messages602

are shown in Figure 3. We highlight the words603

in each of the log messages which was responsi-604

ble for the categorization task in red color. We605

also show a few examples where the fault cate-606

gory prediction was wrong (Figure 4). On further607

analysis, we find that the error mainly happens608

because the fault from the previous modules prop-609

agates into the fault classification module. Figure610

4 shows examples of limitations of the dictionary611

approach for both fault categorization and error de-612

tection and improper feature extraction. Another613

reason for misclassification happens when two dif-614

ferent fault categories are highly correlated with615

each other. For example, often “authentication" is616

needed for accessing “databases" and related terms617

of these two categories occur in close proximity.618

Thus words related to these two categories will be619

close to each other in the embedded space, which620

causes the increase of misclassification rate in fault621

categorization.

Figure 3: Logline examples with predicted Fault Cate-
gories.

622

5 Conclusion623

In this paper, we propose a novel method of fault624

categorization in event logs in a time-efficient way.625

We first detect the erroneous ones from the stream626

Figure 4: Ablation study: Fault Categories from Log
Lines

of logs by analyzing the sentiment of the log mes- 627

sage. In the next step, we detect the fault category 628

of the erroneous logs by extracting important seg- 629

ments of the log message and using the pre-built 630

fault category dictionaries. The domain knowledge 631

has been incorporated on all the modules with the 632

efficient use of the word embedding model, trained 633

on technical support documents. We also show that 634

the proposed method significantly improves the ex- 635

isting Log-Anomaly detection pipeline. In future 636

work, we plan to explore and improve the perfor- 637

mance by taking into account the probability of a 638

token belonging to a particular category dictionary. 639

This may lead to improvement as a particular token 640

can exist in multiple dictionaries. Use of improved 641

tokenizer or embedding model will also enable us 642

to handle words which are out of the vocabulary. 643

We also plan to investigate approaches and ways to 644

extend the framework to new fault categories based 645

on client needs or new log types being encountered. 646

This proposed framework is the base that can be 647

upgraded to a more generalizable yet robust fault 648

categorization framework. 649
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