

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARM-FM: AUTOMATED REWARD MACHINES VIA FOUNDATION MODELS FOR COMPOSITIONAL REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) algorithms are highly sensitive to reward function specification, which remains a central challenge limiting their broad applicability. We present ARM-FM: Automated Reward Machines via Foundation Models, a framework for automated, compositional reward design in RL that leverages the high-level reasoning capabilities of foundation models (FMs). Reward machines (RMs) – an automata-based formalism for reward specification – are used as the mechanism for RL objective specification, and are automatically constructed via the use of FMs. The structured formalism of RMs yields effective task decompositions, while the use of FMs enables objective specifications in natural language. Concretely, we (i) use FMs to automatically generate RMs from natural language specifications; (ii) associate language embeddings with each RM automata-state to enable generalization across tasks; and (iii) provide empirical evidence of ARM-FM’s effectiveness in a diverse suite of challenging environments, including evidence of zero-shot generalization.

1 INTRODUCTION

A central challenge in reinforcement learning (RL) is the design of effective reward functions for complex tasks. The *shape* of the reward influences the complexity of the problem at hand (Gupta et al., 2022); for instance, sparse rewards provide an insufficient learning signal, making it difficult for agents to improve (Devidze et al., 2022). Even hand-crafted dense rewards are susceptible to unintended loopholes or “reward hacking”, where an agent exploits the specification without achieving the true objective (Fu et al., 2025). The unifying challenge is thus how to communicate complex objectives to an agent in a manner that provides structured, actionable guidance (Rani et al., 2025).

While Foundation Models (FMs) excel at interpreting and decomposing tasks from natural language, a critical gap exists in translating this abstract understanding into the concrete structured reward signals necessary for RL. Consequently, high-level plans generated by FMs often fail to ground effectively, leaving the agent without the granular feedback required for learning. To bridge this gap, we turn to Reward Machines (RMs), an automata-based formalism. By decomposing tasks into a finite automaton of sub-goals, RMs provide a compositional structure for both rewards and policies that is inherently more structured and verifiable than monolithic reward functions (Icarte et al., 2022). While theoretically principled, their practical application has been confined to task-specific applications due to the complexity of their manual, expert-driven design. We posit that the reasoning and code-generation capabilities of modern FMs are well-suited to automate the design and construction of RMs, thereby unlocking their potential to solve the broader challenge of communicating complex objectives in RL; the resulting RMs can thus translate abstract human intent into a concrete learning signal for solving complex tasks.

This work makes three primary contributions. First, we develop a novel framework for automatically generating complete task specifications directly from natural language using foundation models, introducing language-aligned reward machines (LARMs) which include the automaton structure, executable labeling functions, and natural language instructions for each subtask. Second, we introduce a method that leverages the language-aligned nature of the resulting automata to create a shared skill space, enabling effective experience reuse and policy transfer across related tasks.

Finally, we provide extensive empirical validation demonstrating that our approach solves complex, long-horizon tasks across multiple domains that are generally intractable for standard RL methods. Specifically, our results show that the framework (i) dramatically improves sample-efficiency by converting sparse rewards into dense, structured learning signals; (ii) scales to a diverse set of environments, including grid worlds, complex 3D environments, and robotics with continuous control; and (iii) enables efficient multi-task training and zero-shot generalization.

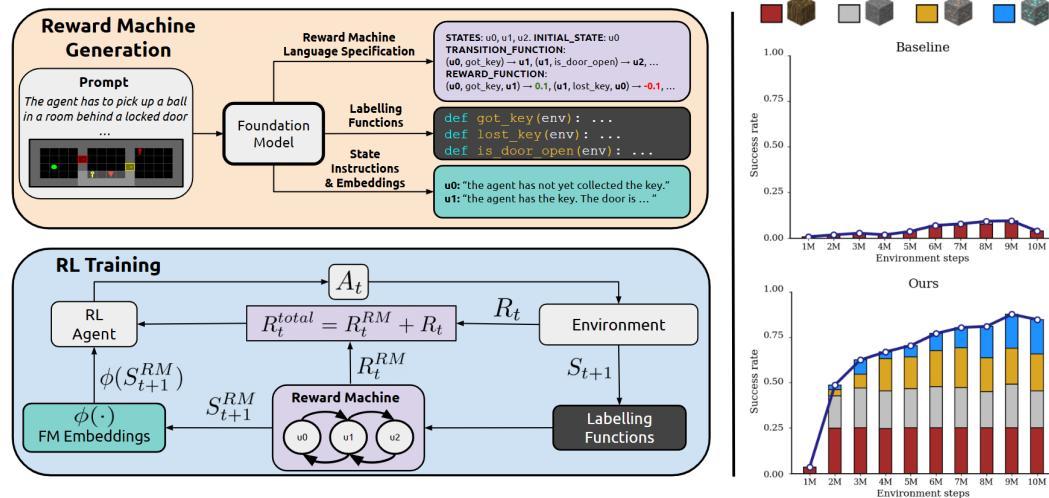


Figure 1: An overview of our framework (left) and results in a complex sparse-reward environment (right). **Reward Machine Generation (top-left):** Given a high-level natural language prompt and a visual observation of the environment, a FM automatically generates the formal specification of the **Reward Machine**, the executable Python code for the **labeling functions**, and the **natural language descriptions** for each RM state. **RL training (bottom-left):** During the RL training loop, the **labeling functions** evaluate environment observations to update the **Reward Machine**'s state, which provides a dense reward signal R_t^{RM} . The RL agent's policy receives the environment observation along with the **embedding** $\phi(\cdot)$ of the current RM state's language description, making it aware of its active sub-goal. **Empirical results (right):** Results in a complex sparse-reward Minecraft-based resource-gathering task from Craftium (Malagón et al., 2024), where an RL agent is unable to make progress (top), while our agent, guided by an FM-generated LARM, learns to solve the task efficiently (bottom).

2 AUTOMATED REWARD MACHINES VIA FOUNDATION MODELS

We now present **Automated Reward Machines via Foundation Models** (ARM-FM), a framework for automated reward design in RL that leverages the reasoning capabilities of foundation models to automatically translate complex, natural-language task descriptions into structured task representations for RL training. Figure 1 illustrates an overview of ARM-FM, which comprises two major components: (i) the introduction of **Language-Aligned RMs** (LARMs), which are automatically constructed using FMs; and (ii) their integration into RL training by conditioning policies on language embeddings of RM states, enabling structured rewards, generalization, and skill reuse. Figure 2 shows a high-level task description, consisting of a natural language prompt and a visual observation (left), along with its

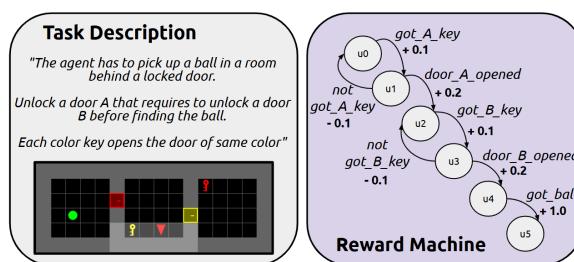


Figure 2: **ARM-FM leverage FMs to automatically construct RMs:** using the *UnlockToUnlock* task description from MiniGrid (left), an RM is automatically constructed to solve the task (right).

108 corresponding RM (right). The RM is a finite-state automaton that guides an agent by providing
 109 incremental rewards for completing sub-goals, such as collecting keys and opening doors, on the way
 110 to the final objective. In the following section, we describe how our ARM-FM framework automates
 111 the creation of these reward machines directly from high-level task descriptions.
 112

113 2.1 LANGUAGE-ALIGNED REWARD MACHINES

114
 115 We assume the standard RL formalism, which defines an environment as a Markov Decision Processes
 116 (Puterman, 1994, ; MDPs) $\langle S, A, \mathcal{R}, \mathcal{P} \rangle$, where S is the set of MDP states, A is the set of possible
 117 actions, $\mathcal{R} : S \times A \rightarrow \mathbb{R}$ is the MDP reward function, and $\mathcal{P} : S \times A \rightarrow \Delta(S)$ is a probabilistic
 118 MDP transition function. A **Reward Machine** (RM) is a finite-state automaton that encodes complex,
 119 temporally extended, and potentially non-Markovian RL tasks (Icarte et al., 2022). We formally
 120 define an RM by the tuple $\langle U, u_I, \Sigma, \delta, R, F, \mathcal{L} \rangle$. Here, U is the finite set of RM states; u_I the initial
 121 state of the RM; Σ is the finite set of symbols representing events that cause transitions in the RM;
 122 $\delta : U \times \Sigma \rightarrow U$ is the deterministic RM transition function; $R : U \times S \times A \times S \rightarrow \mathbb{R}$ is the RM
 123 reward function; $F \subseteq U$ is the set of final RM states; and $\mathcal{L} : S \times A \rightarrow \Sigma$ is the labeling function
 124 that connects MDP states $s \in S$ and actions $a \in A$ to the RM event symbols $\sigma \in \Sigma$. Intuitively, RMs
 125 are useful for describing tasks at an abstract level, especially when said tasks require multiple steps
 126 over long time horizons. Each RM state $u \in U$ can be thought of as representing a subtask, and the
 127 transitions $u' = \delta(u, \sigma)$ denote progress to a new stage of the overall objective after a particular event
 128 $\sigma \in \Sigma$ occurs in the environment. The RM reward function $R(u, s, a, s')$ assigns a reward based on
 129 the current RM state u and the underlying MDP transition (s, a, s') . Meanwhile, the set of final RM
 130 states F defines the conditions under which the task described by the RM is complete. Finally, the
 131 labeling function \mathcal{L} is required to connect the RM’s events, transitions, and rewards to states and
 132 actions from the underlying MDP.
 133

134 We define LARMs as RMs that are
 135 additionally equipped with natural-language in-
 136 structions l_u for each RM state u , and with
 137 an embedding function $\phi(\cdot)$ that maps such
 138 language instructions to an embedding vector
 139 $z_u = \phi(l_u) \in \mathbb{R}^d$. We note that by
 140 equipping RM states with embedding vectors
 141 z_u that encode language-based descrip-
 142 tions of the corresponding subtasks, we pro-
 143 vide the first mechanism for constructing a
 144 *semantically grounded skill space* in RMs:
 145 policies conditioned on these embeddings
 146 can naturally share knowledge across re-
 147 lated subtasks, enabling transfer, compo-
 148 sitionality, and zero-shot generalization.
 149

150 We present a framework to automati-
 151 cally construct LARMs from language-
 152 and-image-based task descriptions by iter-
 153 atively prompting an FM, as is illustrated
 154 in Figure 3. More specifically, to pro-
 155 gressively refine the RM specification, we
 156 employ N rounds of self-improvement us-
 157 ing paired *generator* and *critic* FMs (Tian
 158 et al., 2024). **A human may optionally in-**
 159 **tervene by approving the output or pro-**
 160 **viding corrective feedback (see Appendix A.4**
 161 **for details).** In practice, we find that FM-
 162 generated reward machines are both inter-
 163 pretable and easily modifiable, as they fol-
 164 low a natural language specification. Fig-
 165 ure 4 illustrates an automatically-constructed LARM for the `UnlockToUnlock` task, including a
 166 text-based description of the RM (left), FM-generated labeling functions \mathcal{L} (middle), and natural RM
 167 state instructions and embeddings l_u (right). All RMs and labeling functions used in this work are

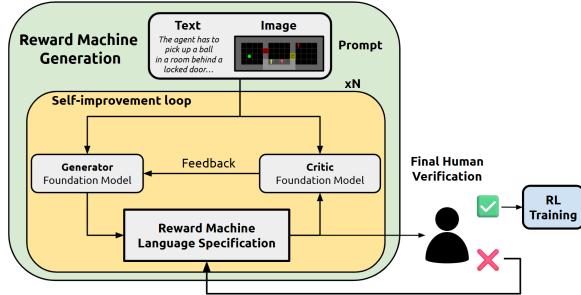


Figure 3: A self-improvement loop where a generator and critic FMs iteratively refine LARMs, with optional human verification.

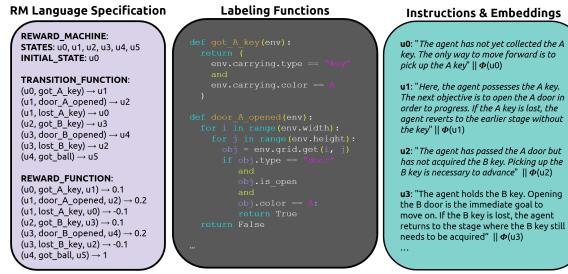


Figure 4: The three core components generated by our method for the `UnlockToUnlock` environment: **(Left)** the RM specification, **(Center)** the labeling functions that drive the state transitions, and **(Right)** the instructions and embeddings for each RM state.

162 shown in Appendix A.9 and A.10. While we use code to define labeling functions in this work, the
 163 **ARM-FM** framework is general, supporting any boolean predicate (e.g. formal logic, or queries to
 164 other FMs).

166 2.2 REINFORCEMENT LEARNING WITH LARMS

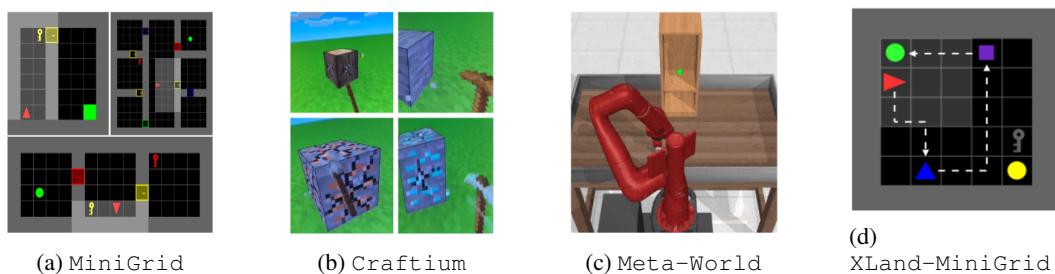
168 The introduction of the LARM uses an augmented state space that is the cross-product of the MDP
 169 and RM states ($\mathcal{S} \times \mathcal{U}$), and a reward function that is the sum of the MDP and RM rewards; we will
 170 refer to this augmented MDP as \mathcal{M}' , and it is illustrated in Figure 1 (Bottom). At timestep t , the
 171 agent selects actions conditioned on the environment state and the language embedding of the current
 172 LARM state: $\pi(s_t, z_{u_t})$. This language-based policy conditioning is the central mechanism enabling
 173 generalization in our framework, creating a semantically grounded skill space where instructions like
 174 "pick up a blue key" and "pick up a red key" are naturally close in the embedding space, unlocking a
 175 pathway for broad experience reuse and efficient policy transfer.

176 During training, after the agent executes an action $a_t \sim \pi(s_t, z_{u_t})$, the underlying MDP transitions to
 177 s_{t+1} and returns a reward R_t . The labeling function $\mathcal{L}(s_{t+1}, a_t)$ determines if a symbolic event has
 178 occurred, which may induce a LARM transition $u_{t+1} = \delta(u_t, \mathcal{L}(s_{t+1}, a_t))$, as well as an additional
 179 reward R_t^{RM} . The sum of the MDP and RM rewards are then used for learning: $R_t^{\text{total}} = R_t + R_t^{\text{RM}}$.
 180 This complete training procedure, adapted for a DQN agent, is formalized in Appendix A.3. **The**
 181 **effectiveness of well-designed LARMs yields theoretical guarantees (see Appendix A.5)**, ensuring
 182 that the generated reward structure preserves the optimal policy of the original sparse task.

184 3 EMPIRICAL RESULTS

187 We present a series of experiments designed to evaluate the effectiveness and scalability of our method:
 188 we test generalization and long-horizon planning in sparse-reward settings with the **MiniGrid** and
 189 **BabyAI** suites (Chevalier-Boisvert et al., 2023) (Section 3.1), we evaluate scalability with a resource-
 190 gathering task in a 3D, procedurally generated Minecraft world from **Craftium** (Malagón et al.,
 191 2024) (Section 3.2), and we demonstrate the applicability of our approach to create RMs that work in
 192 continuous control in challenging robotics tasks from **Meta-World** (McLean et al., 2025) (Section
 193 3.3). Finally, we use **XLand-MiniGrid** (Nikulin et al., 2024) to evaluate the generalization
 194 capabilities of RL agents trained with LARMs (Section 3.4). Screenshots of these environments are
 195 shown in Figure 5 and environment-specific details in Appendix A.2. We used **GPT-4o** (Hurst et al.,
 196 2024) to generate all LARM components for all tasks, with the exception of the 1,000 LARMs for
 197 **XLand-MiniGrid**. These were generated using various open-source FMs of different scales for
 198 our ablation study.

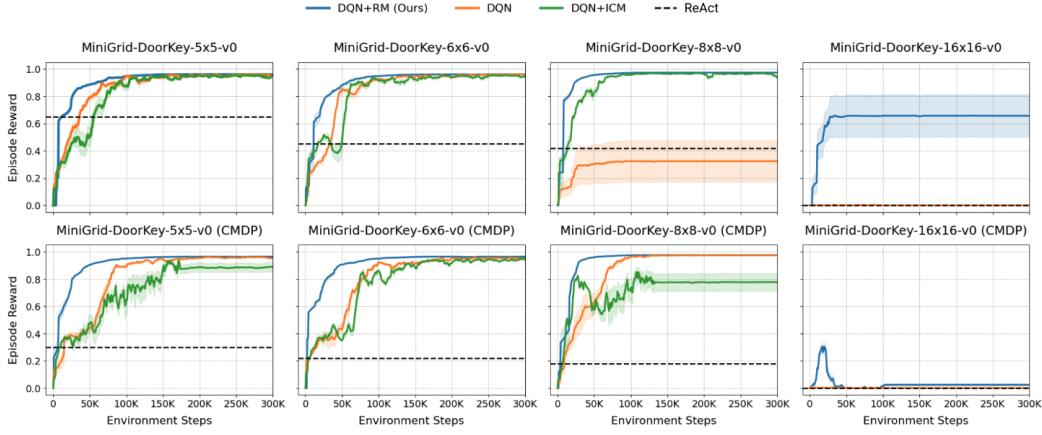
199 We report results averaged over 3 independent random seeds, with shaded regions and error bars
 200 indicating one standard deviation. Comprehensive details for all environments as well as additional
 201 results are presented in Appendix A.2, details on the baselines used and additional ablations in A.7,
 202 and hyperparameters in A.11.



212 **Figure 5: Evaluation environments.** (a) **MiniGrid**: tests long-horizon planning with sparse rewards.
 213 (b) **Craftium**: scaling complexity in a 3D Minecraft-inspired world. (c) **Meta-World**: continuous
 214 robotic manipulation. (d) **XLand-MiniGrid**: tests multi-task generalization.

216 3.1 SPARSE REWARD TASKS
217

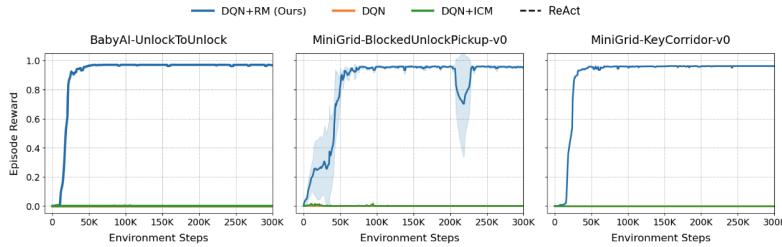
218 We first evaluate our method on the MiniGrid suite of environments, which are challenging due
219 to sparse rewards. For these experiments, we use DQN (Mnih et al., 2013) as the base agent and
220 compare our method (DQN+RM) with a baseline with intrinsic motivation (DQN+ICM) (Pathak
221 et al., 2017), ReAct (Yao et al., 2023) – an LLM-as-agent baseline which generates reasoning traces
222 as it acts in the environment (Paglieri et al., 2024) – as well as an unmodified DQN. In Appendix
223 A.7.4 we include results comparing to a VLM-as-reward-model baseline proposed by Rocamonde
224 et al. (2023). The LARMs used to train our DQN+RM agent are shown in Appendix A.9.



240 Figure 6: Performance on MiniGrid-DoorKey environments of increasing size. The top row
241 shows performance on a fixed map layout, while the bottom row shows performance on procedurally
242 generated layouts. Our method consistently achieves higher rewards across all tasks.

243
244 **Our agent successfully solves a suite of challenging exploration tasks where all baselines fail.**
245 We first present results on the DoorKey task in Figure 6, showing performance across increasing
246 grid sizes. Our method consistently outperforms the baselines in all settings, including fixed maps
247 (top row) and procedurally generated maps where the layout is randomized each episode (bottom
248 row). We provide an additional analysis of our method’s success in Appendix A.7.2.

249 To further test our agent, we select three significantly harder tasks that require longer planning horizons:
250 UnlockToUnlock, BlockedUnlockPickup, and KeyCorridor. As demonstrated in
251 Figure 7, our agent is the only one capable of solving all three tasks and achieving near-perfect
252 reward, while all other baselines fail to make any progress.



262 Figure 7: Performance on complex, long-horizon MiniGrid tasks. **Our method successfully solves
263 all three, while baselines show no learning.**

267 3.2 SCALING TO COMPLEX 3D ENVIRONMENTS
268

269 We assess our method’s performance in a complex, procedurally generated 3D environment using
Craftium (Malagón et al., 2024), which is a Minecraft-based resource-gathering task. Here, the

270 agent's goal is to mine a diamond by first navigating the world to gather the required wood, stone,
 271 and iron. The environment provides a sparse reward only upon collecting the final diamond. For this
 272 set of experiments we use PPO (Schulman et al., 2017) as the base agent.

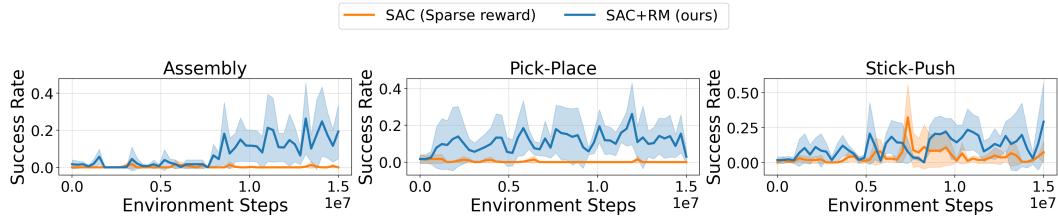
273 As shown in Figure 1 (right), PPO augmented with our generated LARM consistently completes the
 274 entire task sequence, while the baseline PPO agent makes minimal progress. This result is particularly
 275 significant, as RMs often require manual, expert-driven design which can become challenging in
 276 complex, open-ended environments (Icarte et al., 2022). In contrast, we demonstrate the successful
 277 application of a RM that is **not only automatically generated by a FM but is also highly effective**
 278 **in a complex 3D, procedurally generated environment**. The LARM achieves this by effectively
 279 decomposing the high-level goal into progressive subtasks and providing crucial intermediate rewards.
 280 This experiment highlights our framework's ability to handle increased action dimensionality and
 281 visual complexity, and it showcases the capability of FMs to leverage their knowledge to automate
 282 task decomposition.

283

284 3.3 ROBOTIC MANIPULATION

285 **Our framework can automate the complex task of reward engineering for robotic manipulation,**
 286 **providing dense supervision with a FM-generated LARM.** We evaluate this capability
 287 in continuous control domains using the Meta-World benchmark (McLean et al., 2025), where
 288 designing dense reward functions typically requires extensive hand-engineering of low-level signals
 289 (e.g., joint angles). Our approach bypasses this difficulty entirely. The resulting reward machine
 290 offers richer learning signals than sparse rewards, enabling the agent to make more progress. As
 291 demonstrated in Figure 8, our method achieves higher success rates than learning from sparse rewards
 292 alone, using SAC (Haarnoja et al., 2018) as the base agent. Additional experiments on Meta-World
 293 are provided in Appendix A.2.3.

294



302

303 Figure 8: Performance on Meta-World manipulation tasks. In most tasks, our method achieves
 304 high success rates compared to the sparse reward agent.

305

306 3.4 GENERALIZATION THROUGH LANGUAGE EMBEDDINGS

307

308 A key design choice in our framework is to con-
 309 dition the agent's policy on the language em-
 310 beddings of the current RM state, which con-
 311 trasts with prior work that uses separate policies
 312 that do not permit knowledge sharing (Alsadat
 313 et al., 2025). In the following, we (i) ablate the
 314 roles of the LARM rewards and state embed-
 315 dings in enabling an RL agent to learn robust,
 316 multi-task policies; and (ii) demonstrate how
 317 the compositional structure of LARMs leads to
 318 zero-shot generalization on unseen tasks. **For**
 319 **clarity, we refer here to zero-shot generalization**
 320 **across novel task compositions within the same**
 321 **domain, rather than cross-domain transfer.**

322

323 **Both structured rewards and language-based**
state conditioning are essential for learning
a robust, multi-task policy. To disentangle the
 324 benefits of the LARM's reward structure from

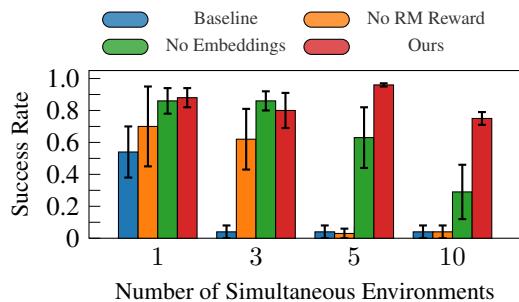


Figure 9: Ablation study of the components of ARM-FM. A Rainbow agent is trained on an in-
 creasing number of tasks. While baselines fail to generalize, **only our full method (combining**
LARM rewards and state embeddings) main-
 tains high success as the number of tasks grows.

324 the state embeddings, we conduct an ablation study in a multi-task setting. We train a single Rainbow
 325 DQN (Hessel et al., 2018) agent on an increasing number of simultaneous XLand-MiniGrid tasks
 326 and measure its average success rate. As shown in Figure 9, the baseline agent fails to generalize
 327 as the number of tasks increases. Providing the policy with only the state embeddings gives it a
 328 weak learning signal that degrades quickly. Conversely, providing only the LARM rewards enables
 329 multi-task learning, but the policy struggles as it is unaware of the active sub-goal. Our full method,
 330 which uses both the dense rewards from the LARM and the state embeddings to condition the policy,
 331 is robust and maintains high performance even when trained on 10 simultaneous tasks.

332 **The compositional structure of LARMs enables zero-shot generalization to novel tasks composed**
 333 **of previously seen sub-goals.** The ultimate test of our compositional approach is whether the trained
 334 policy, $\pi(a_t|s_t, z_{u_t})$, can solve a novel task without any additional training. We design an experiment
 335 where π is trained on a set of tasks, $\{\mathcal{T}_A, \mathcal{T}_B\}$, each with an associated LARM, \mathcal{R}_A and \mathcal{R}_B .
 336 During training, the policy learns skills corresponding to the union of all sub-goal embeddings,
 337 $\{z_u | u \in U_A \cup U_B\}$. At evaluation time, we introduce a new, unseen task, \mathcal{T}_C , with a novel LARM,
 338 \mathcal{R}_C , generated by the FM. Zero-shot success is possible if the set of sub-goals in the new task
 339 is composed of elements semantically familiar from training, i.e., if for any state $u' \in U_C$, its
 340 embedding $z_{u'}$ is close to an embedding seen during training. As illustrated in Figure 10, the agent
 341 successfully solves Task C. When the LARM for Task C transitions to a state u'_t , the policy receives
 342 the input $(s_t, z_{u'_t})$. Because the embedding $z_{u'_t}$ (e.g., for "Pick up a blue key, Position yourself to the
 343 right of the blue pyramid") is already located in a familiar region of the skill space, the policy can
 344 reuse the relevant learned behavior to make progress and solve the unseen composite task.

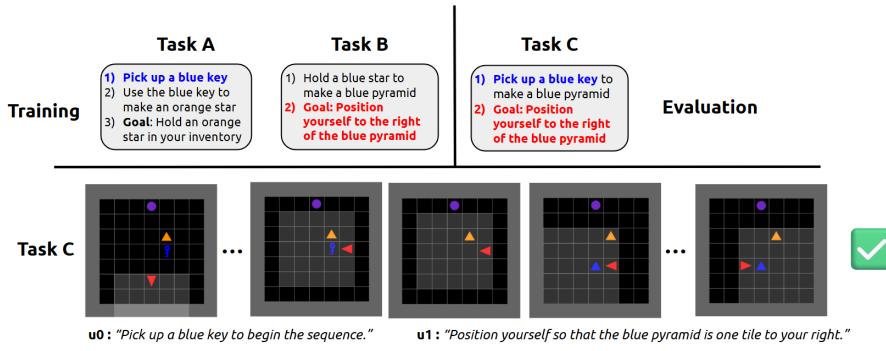
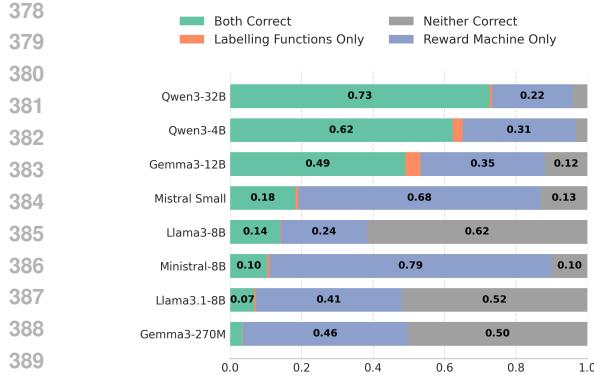


Figure 10: Demonstration of zero-shot generalization. An agent is trained on a set of tasks (A, B). At evaluation, it is given a new LARM for an unseen composite task (C). Because the sub-tasks in C (e.g., "Pick up a blue key") are semantically familiar from training, the agent can reuse learned skills to solve the novel task without any fine-tuning.

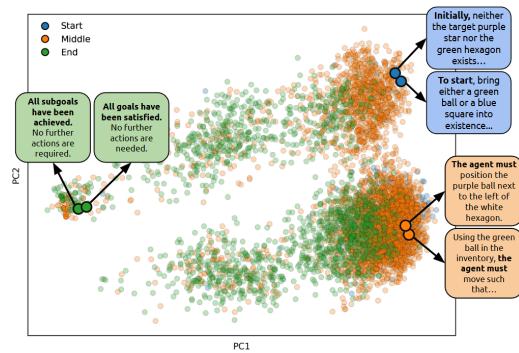
4 ARM-FM: IN-DEPTH ANALYSIS

We now conduct a fine-grained analysis of our method’s key components by evaluating (i) the quality of the LARMs generated by different FMs; and (ii) the semantic structure of the state embeddings.

Larger foundation models generate syntactically correct task structures with significantly higher reliability. To evaluate the FM’s generation capabilities, we sampled 1,000 diverse tasks from the XLand-MiniGrid environment (Nikulin et al., 2024) and prompted various open-source models to generate the corresponding reward machines, Python labeling functions, and natural language instructions. We compare models of different scales from the Qwen (Qwen, 2025), Gemma (Gemma, 2025), Llama (Dubey et al., 2024) and Mistral families. We employed an LLM-as-judge protocol to score the correctness of the generated artifacts (Gu et al., 2024), using *Qwen3-30B-A3B-Instruct-2507* as the judge (a FM not used to generate the LARMs). Figure 11a shows a clear scaling trend: larger models like *Qwen3-32B* are significantly more capable of generating fully correct task specifications. Interestingly, some models exhibit different strengths; for instance, *Mistral-Small* is more adept at generating a valid RM structure than correct labeling code, highlighting the distinct reasoning and coding capabilities required.



(a) FM generation correctness.



(b) Semantic structure of state embeddings.

Figure 11: Analysis of FM-generated task components. **(a)** An LLM-as-judge evaluation across 1,000 tasks reveals a strong scaling trend, where larger foundation models more reliably generate correct RM structures and verifier code. **(b)** PCA visualization of thousands of state instruction embeddings shows a clear semantic structure, with start, middle, and end states forming distinct clusters.

The FM-generated state instructions produce a semantically coherent embedding space that clusters related sub-goals. Beyond syntactic correctness, the agent’s ability to generalize depends on the semantic quality of the state instruction embeddings. A well-structured embedding space should group semantically similar sub-tasks together, regardless of the overarching task. We analyze this by visualizing the embeddings of state instructions from the 1,000 generated `XLand-MiniGrid` tasks using PCA (Abdi & Williams, 2010), as shown in Figure 11b. We used *Qwen3-30B-A3B-Instruct-2507* to obtain the embeddings. The embeddings form distinct and meaningful clusters, with instructions corresponding to the start, middle, and end of a task occupying different regions of the space. Notably, instructions with similar meanings from different tasks cluster together, confirming that the FM produces a coherent representation. This underlying semantic structure is what enables a shared policy to treat related sub-tasks in a similar manner, forming the foundation for skill transfer.

5 RELATED WORK

Reward Machines in Reinforcement Learning. RMs are a formal language representation of reward functions that expose the temporal and logical structure of tasks, thus enabling decomposition, transfer, and improved sample efficiency in learning (Icarte et al., 2018; 2022). For these reasons, RMs and related formal methods for task specification have been applied to address diverse challenges, from multiagent task decomposition (Neary et al., 2021; Smith et al., 2023) to robotic manipulation and task planning (Camacho et al., 2021; He et al., 2015; Cai et al., 2021). Recent work continues to broaden their applicability, by studying extensions that increase their expressivity (Varricchione et al., 2025), and by addressing uncertainty in symbol grounding and labeling functions (Li et al., 2024; 2025). While RMs can be difficult to design for non-experts, Toro Icarte et al. (2019) and Xu et al. (2020) propose methods that simultaneously learn RMs and RL policies, if the RM is unknown *a priori*.

Recent work also explores FM-driven automata. While some approaches treat RM states as isolated symbols Alsadat et al. (2025), requiring careful state mapping for policy re-use, others use FMs with classic algorithms for automaton discovery Vazquez-Chanlatte et al. (2025), which requires expert demonstrations. Our work differs by generating RMs directly from language descriptions, without behavioral examples. Concurrently, methods like RAD embeddings Yalcinkaya et al. (2024) have been proposed to condition the policy on the automaton’s topology. We take a complementary, language-first approach: our FM generates language-aligned embeddings for the meaning of each state, which our results show effectively grounds the policy.

By contrast, ARM-FM not only generates RMs from natural language task descriptions, but also introduces a natural mechanism for connecting RM states by embedding their associated subtask

432 descriptions in a shared latent space. Conditioning the policy on these language embeddings can thus
 433 enable knowledge transfer across similar subtasks, even when they occur in different RMs.
 434

435 **Foundation Models in Decision-Making.** The emergence of FMs has inspired two main lines of
 436 work in sequential decision-making. The first uses FMs directly as autonomous agents (Paglieri
 437 et al., 2024). Approaches such as ReAct, (Yao et al., 2023) Voyager (Wang et al., 2023) and [SayCan](#)
 438 [Ahn et al. \(2022\)](#) employ large language models (LLMs) to perform reasoning, planning, and acting.
 439 While these systems demonstrate strong capabilities in complex domains, they heavily depend on
 440 environment abstractions (e.g., textual interfaces or code as actions) that bypass many of the low-level
 441 perception and control challenges central to RL. [In contrast, we use RMs to structure policies for](#)
 442 [learning agents, solving complex sparse reward tasks beyond the reach of non-learning, in-context](#)
 443 [methods like ReAct which additionally require high-level textual interfaces.](#)

444 A second line of research integrates FMs with RL training by using them to provide auxiliary signals
 445 such as high-level goals or reward feedback. For example, Motif (Klissarov et al., 2023) elicits
 446 trajectory-level preferences from FMs and distills them into a reward model. ONI (Zheng et al., 2024)
 447 aggregates asynchronous LLM feedback into a continuously updated reward function. Eureka (Ma
 448 et al., 2023) leverages evolutionary strategies to generate programmatic reward functions, which are
 449 then used to train downstream policies. ELLM uses pretrained LLMs to suggest plausibly useful
 450 goals and trains RL agents with goal-reaching rewards. These approaches illustrate the potential of
 451 injecting FM knowledge to shape RL objectives. However, the outputs are typically limited to an
 452 opaque reward model, rather than a structured, compositional representation of the task.

453 Our work differs in the structure of the FM–RL interface. We employ FMs to generate language-
 454 aligned RMs: structured, compositional, and interpretable representations of task reward functions.
 455 This formulation combines the expressivity of FMs with the explicit, modular decomposition, and
 456 human-in-the-loop refinement enabled by RMs, offering a principled path toward hierarchical and
 457 interpretable RL. Additionally, our method does not depend on specific environment abstractions
 458 (Wang et al., 2023) or the availability of a natural language interface (Klissarov et al., 2023). [We](#)
 459 [provide a detailed comparison with existing methods in Section A.6 \(see Table 4\).](#)

460 6 CONCLUSION

461 In this work, we introduce Automated Reward Machines via Foundation Models (ARM-FM), a
 462 framework that bridges the critical gap between the semantic reasoning of foundation models and
 463 the low-level control of reinforcement learning agents. Our central contribution is a method for
 464 automatically generating Language-Aligned Reward Machines (LARMs) from natural language. We
 465 demonstrated that by conditioning a single policy on the embeddings of the LARM’s natural language
 466 state descriptions, we transform the reward machine from a static plan into a compositional library
 467 of reusable skills. Our experiments confirmed the effectiveness of this approach. We showed that
 468 ARM-FM solves a suite of long-horizon, sparse-reward tasks across diverse domains – from 2D
 469 grid worlds to a procedurally generated 3D crafting environment – that are intractable for strong
 470 RL baselines. Our analysis revealed that this performance is underpinned by a coherent semantic
 471 structure in the state embedding space and that both the structured rewards and the state embeddings
 472 are critical for robust multi-task learning. The ultimate validation of our compositional approach was
 473 the demonstration of zero-shot generalization to a novel, unseen task without any additional training.

474 Ultimately, this work establishes language-aligned reward machines as a powerful and versatile
 475 framework connecting foundation models, RL agents, and human operators. The modular, language-
 476 based structure allows FMs to generate accurate plans, agents to learn generalizable skills, and
 477 humans to easily inspect and refine the task specifications. While this paradigm is promising, one
 478 tradeoff of our approach is the human verification step during RM generation. On one hand, this
 479 step may be viewed as a feature – the language-based reward structures output by ARM-FM provide
 480 an interface for humans to interpret and refine task specifications. On the other hand, this step
 481 presupposes access to human verifiers. We note, however, that such verifiers are not strictly required,
 482 although they can improve output quality when available. Furthermore, future work may reduce or
 483 eliminate this dependence by exploiting the automaton-based structure of RMs to enable automated
 484 self-correction, for example, through formal verification. More broadly, we believe this work paves
 485 the way for a new class of RL agents that can translate high-level human intent and FM-generated
 486 plans into competent, generalizable, and interpretable behavior.

486 REFERENCES
487

488 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: 489 computational statistics*, 2(4):433–459, 2010.

490 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea 491 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: 492 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

493 Shayan Meshkat Alasadat, Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, and Zhe Xu. Using 494 large language models to automate and expedite reinforcement learning with reward machine. In 495 *2025 American Control Conference (ACC)*, pp. 206–211. IEEE, 2025.

496 Mingyu Cai, Mohammadhossein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan. 497 Modular deep reinforcement learning for continuous motion planning with temporal logic. *IEEE 498 robotics and automation letters*, 6(4):7973–7980, 2021.

499 Alberto Camacho, Jacob Varley, Andy Zeng, Deepali Jain, Atil Iscen, and Dmitry Kalashnikov. 500 Reward machines for vision-based robotic manipulation. In *2021 IEEE International Conference 501 on Robotics and Automation (ICRA)*, pp. 14284–14290. IEEE, 2021.

502 Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo De Lazcano Perez-Vicente, Lucas 503 Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and J K Terry. Minigrid & miniworld: 504 Modular & customizable reinforcement learning environments for goal-oriented tasks. In *Thirty- 505 seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 506 2023. URL <https://openreview.net/forum?id=PFfmfspm28>.

507 Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping for 508 reinforcement learning under sparse rewards. *Advances in Neural Information Processing Systems*, 509 35:5829–5842, 2022.

510 Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek 511 Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language 512 models. In *International Conference on Machine Learning*, pp. 8657–8677. PMLR, 2023.

513 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha 514 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. 515 *arXiv e-prints*, pp. arXiv–2407, 2024.

516 Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, and Yanghua Xiao. Reward shaping 517 to mitigate reward hacking in rlhf. *arXiv preprint arXiv:2502.18770*, 2025.

518 Gemma. Gemma 3 technical report. *arXiv preprint arXiv:2503.19786*, 2025.

519 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, 520 Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint arXiv:2411.15594*, 521 2024.

522 Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, S Kakade, and S Levine. Unpacking reward 523 shaping: Understanding the benefits of reward engineering on sample complexity. *Adv. Neural Inf. 524 Process. Syst.*, abs/2210.09579, October 2022.

525 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy 526 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference 527 on machine learning*, pp. 1861–1870. Pmlr, 2018.

528 Keliang He, Morteza Lahijanian, Lydia E Kavraki, and Moshe Y Vardi. Towards manipulation 529 planning with temporal logic specifications. In *2015 IEEE international conference on robotics 530 and automation (ICRA)*, pp. 346–352. IEEE, 2015.

531 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan 532 Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in 533 deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*, 534 volume 32, 2018.

540 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 541 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 542 *arXiv:2410.21276*, 2024.

543

544 Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward machines
 545 for high-level task specification and decomposition in reinforcement learning. In *International*
 546 *Conference on Machine Learning*, pp. 2107–2116. PMLR, 2018.

547

548 Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward machines:
 549 Exploiting reward function structure in reinforcement learning. *Journal of Artificial Intelligence*
 550 *Research*, 73:173–208, 2022.

551

552 Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
 553 Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
 554 feedback. *arXiv preprint arXiv:2310.00166*, 2023.

555

556 Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
 557 Pierre-Luc Bacon, Doina Precup, Marlos C Machado, and Pierluca D’Oro. Maestromotif: Skill
 558 design from artificial intelligence feedback. *arXiv preprint arXiv:2412.08542*, 2024.

559

560 Andrew Li, Zizhao Chen, Toryn Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, and Sheila
 561 McIlraith. Reward machines for deep rl in noisy and uncertain environments. *Advances in Neural*
 562 *Information Processing Systems*, 37:110341–110368, 2024.

563

564 Andrew C Li, Toryn Q Klassen, Andrew Wang, Parand A Alamdar, and Sheila A McIlraith. Ground-
 565 compose-reinforce: Tasking reinforcement learning agents through formal language. *arXiv preprint*
 566 *arXiv:2507.10741*, 2025.

567

568 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
 569 Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
 570 large language models. *arXiv preprint arXiv:2310.12931*, 2023.

571

572 Mikel Malagón, Josu Ceberio, and Jose A Lozano. Craftium: An extensible framework for creating
 573 reinforcement learning environments. *arXiv preprint arXiv:2407.03969*, 2024.

574

575 Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, Frank Röder, Tianhe Yu, Zhanpeng
 576 He, K.R. Zentner, Ryan Julian, J K Terry, Isaac Woungang, Nariman Farsad, and Pablo Samuel
 577 Castro. Meta-world+: An improved, standardized, RL benchmark. In *The Thirty-ninth Annual*
 578 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2025.
 579 URL <https://openreview.net/forum?id=1de3azE606>.

580

581 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
 582 Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint*
 583 *arXiv:1312.5602*, 2013.

584

585 Cyrus Neary, Zhe Xu, Bo Wu, and Ufuk Topcu. Reward machines for cooperative multi-agent
 586 reinforcement learning. In *Proceedings of the 20th International Conference on Autonomous*
 587 *Agents and MultiAgent Systems*, AAMAS ’21, pp. 934–942, 2021.

588

589 Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sini, and Sergey
 590 Kolesnikov. Xland-minigrid: Scalable meta-reinforcement learning environments in jax. *Advances*
 591 *in Neural Information Processing Systems*, 37:43809–43835, 2024.

592

593 Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
 594 Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Benchmarking
 595 agentic llm and vlm reasoning on games. *arXiv preprint arXiv:2411.13543*, 2024.

596

597 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 598 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 599 PMLR, 2017.

600

601 Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John
 602 Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

594 Qwen. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 595

596 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 597 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 598 models from natural language supervision. In *International conference on machine learning*, pp.
 599 8748–8763. PMLR, 2021.

600 Septia Rani, Serena Booth, and Sarath Sreedharan. Goals vs. rewards: Towards a comparative study
 601 of objective specification mechanisms. In *2025 20th ACM/IEEE International Conference on*
 602 *Human-Robot Interaction (HRI)*, pp. 1558–1562. IEEE, 2025.

603 Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
 604 language models are zero-shot reward models for reinforcement learning. *arXiv preprint*
 605 *arXiv:2310.12921*, 2023.

606 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 607 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

608 Sophia Smith, Cyrus Neary, and Ufuk Topcu. Automatic decomposition of reward machines for
 609 decentralized multiagent reinforcement learning. In *Proceedings of the 62nd IEEE Conference on*
 610 *Decision and Control*, pp. 5423–5430. IEEE, 2023.

611 Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu.
 612 Toward self-improvement of llms via imagination, searching, and criticizing. *Advances in Neural*
 613 *Information Processing Systems*, 37:52723–52748, 2024.

614 Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and Sheila
 615 McIlraith. Learning reward machines for partially observable reinforcement learning. *Advances in*
 616 *neural information processing systems*, 32, 2019.

617 Giovanni Varricchione, Toryn Q Klassen, Natasha Alechina, Mehdi Dastani, Brian Logan, and
 618 Sheila A McIlraith. Pushdown reward machines for reinforcement learning. *arXiv preprint*
 619 *arXiv:2508.06894*, 2025.

620 Marcell Vazquez-Chanlatte, Karim Elmaaroufi, Stefan Witwicki, Matei Zaharia, and Sanjit A Seshia.
 621 L lm: Learning automata from demonstrations, examples, and natural language. 2025.

622 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
 623 Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *arXiv*
 624 *preprint arXiv:2305.16291*, 2023.

625 Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
 626 Joint inference of reward machines and policies for reinforcement learning. In *Proceedings of the*
 627 *International Conference on Automated Planning and Scheduling*, volume 30, pp. 590–598, 2020.

628 Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia. Compositional
 629 automata embeddings for goal-conditioned reinforcement learning. *Advances in Neural Information*
 630 *Processing Systems*, 37:72933–72963, 2024.

631 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 632 React: Synergizing reasoning and acting in language models. In *International Conference on*
 633 *Learning Representations (ICLR)*, 2023.

634 Mingqi Yuan, Roger Creus Castanyer, Bo Li, Xin Jin, Wenjun Zeng, and Glen Berseth. Rlex-
 635 plore: Accelerating research in intrinsically-motivated reinforcement learning. *arXiv preprint*
 636 *arXiv:2405.19548*, 2024.

637 Qingqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, and Brandon Amos. Online intrin-
 638 sic rewards for decision making agents from large language model feedback. *arXiv preprint*
 639 *arXiv:2410.23022*, 2024.

640

641

642

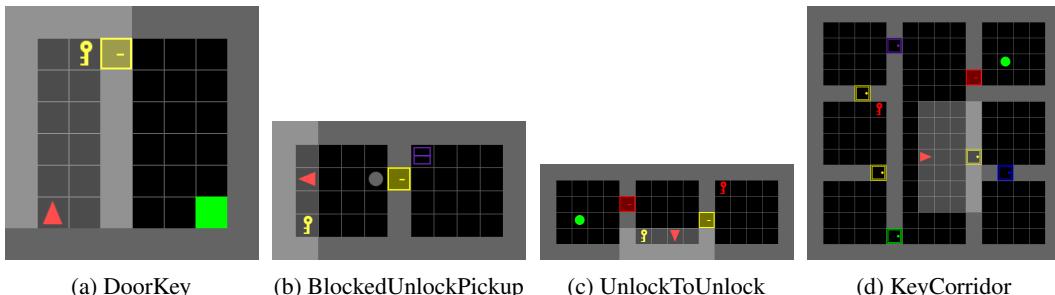
643

644

645

646

647

648 **A APPENDIX**
649650 **A.1 LLM USAGE**
651652 In the preparation of this manuscript, we used large language models (LFMs) as writing assistants.
653 Their role was strictly limited to improving the grammatical correctness of our text.
654655 The LLM was prompted to review author-written drafts and provide feedback on phrasing or flag
656 passages that were potentially unclear. No standalone text was generated by the LLM for inclusion in
657 the paper. All core scientific ideas, experimental results, and analyses are the original work of the
658 human authors, who take full responsibility for the final content.
659660 **A.2 ENVIRONMENT DETAILS**
661662 **A.2.1 MINIGRID AND BABYAI ENVIRONMENTS**
663664 This section provides a detailed description of the MiniGrid and BabyAI environments used in our
665 experiments. These tasks are selected to test distinct agent capabilities, ranging from basic exploration
666 and generalization to complex, long-horizon planning and reasoning.
667668 In the **DoorKey** task, the agent must find a key within the observable room, use it to unlock a door,
669 and navigate to a goal location. The sparse reward, given only upon reaching the goal, makes this
670 a classic exploration challenge. We use procedurally generated versions of this task to evaluate
671 generalization to novel map layouts.
672673 The **BlockedUnlockPickup** task significantly increases the planning complexity. The agent must
674 first move a blocking object (a ball), retrieve a key from the main room, unlock a door, and finally
675 pick up a target box in a separate room. This requires a long and precise sequence of actions to solve.
676677 The **UnlockToUnlock** is a BabyAI task that tests hierarchical reasoning and memory. The agent must find
678 a key for a first door to navigate to a different room, which in turn contains a key for a second, final
679 door to the goal room. This creates a nested dependency structure with extremely sparse rewards,
680 making it exceptionally difficult.
681682 The **KeyCorridor** environment is a difficult exploration task. The agent starts in a corridor with
683 multiple rooms, one of which contains a hidden key. It must explore the side rooms to find the key,
684 return to the corridor to unlock the correct door, and reach the final goal.
685

686 (a) DoorKey

687 (b) BlockedUnlockPickup

688 (c) UnlockToUnlock

689 (d) KeyCorridor
690691 **A.2.2 CRAFTIUM**
692693 Craftium is a high-performance, open-source 3D voxel platform designed for reinforcement learning
694 research. Inspired by Minecraft, Craftium offers rich, procedurally generated open worlds and fully
695 destructible environments. Built on the C++-based Luanti engine, it provides significant performance
696 advantages over Java-based alternatives and integrates natively with modern RL frameworks through
697 the Gymnasium API. This makes it an ideal testbed for assessing agent performance on tasks requiring
698 generalization in visually complex, high-dimensional settings.
699700 Within this platform, we designed a challenging open-world task where the agent's sole objective is
701 to mine a diamond. The environment is procedurally generated for each episode, and a sparse reward
702

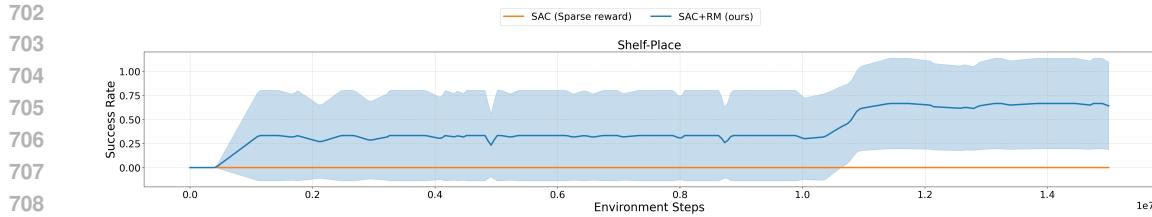


Figure 13: Performance on the Meta-World `Shelf-Place` task: With careful hyperparameter tuning, an agent that maximizes the sum of sparse task and reward machine rewards significantly outperforms the sparse reward agent.

is only awarded upon successful collection of the diamond. This task implicitly requires a long and complex sequence of actions: gathering wood, stone, iron and diamond in this order.

As shown in Figure 1 (Right), a baseline PPO agent fails to learn a meaningful policy and makes negligible progress on the task. In contrast, PPO augmented with our generated reward machine consistently learns the full sequence of behaviors required to solve the task. This result demonstrates that our framework effectively scales to visually complex, procedurally generated 3D environments with extremely sparse rewards.

A.2.3 META-WORLD

We evaluate our method on a subset of Meta-World, a robotic manipulation benchmark originally created for evaluating multi-task and meta-RL algorithms. We adapted this benchmark to our setting by replacing the dense reward with a sparse reward signal, and we compare an agent that maximizes only the sparse reward signal to an agent that maximizes the sum of the sparse reward and the reward from the reward machine (Figure 14). We evaluated our method on the following tasks:

- **Assembly:** The agent task is to pick a nut and place into a peg
- **Bin-Picking:** The agent’s task is to pick a puck from one bin and place it in another bin.
- **Pick-Place:** The task is to pick a puck and place it in a specific goal location.
- **Shelf-Place:** The agent’s task is to pick a puck and place it on a shelf.
- **Stick-Push:** The agent’s task is to grab a stick and push a box using the stick.

The observation and action spaces share the same structure among the tasks. The observation vector consists of the robot’s end-effector 3D coordinates, a scalar value indicating whether the gripper is open or closed, and the position and orientation information of objects in the environment. At each time step, the current observation is concatenated with the observation from the previous time step, along with the goal position, resulting in a 39-dimensional vector. The action vector consists of three displacement values (dx , dy , and dz) of the end effector, with an additional action for opening or closing the gripper.

The result of the main experiment is shown in Figure 8. We also show in Figure 13 that, with more careful hyperparameter tuning, the agent augmented with the reward from the reward machine can solve the task with a high success rate. Moreover, the reward machine can be combined with off-the-shelf intrinsic exploration rewards, such as RND (Figure 15). This results in overall better performance in most environments compared to the results in Figure 8.

A.2.4 XLAND-MINIGRID

To evaluate our agent’s generalization capabilities and its ability to adapt to novel situations, we use the `XLand-MiniGrid` benchmark. This suite of environments is specifically designed for meta-reinforcement learning research, combining the procedural diversity and depth of DeepMind’s `XLand` with the minimalism and fast iteration of `MiniGrid`.

The entire framework is implemented from the ground up in JAX, a design choice that enables massive parallelization and makes large-scale experimentation accessible on limited hardware. Its

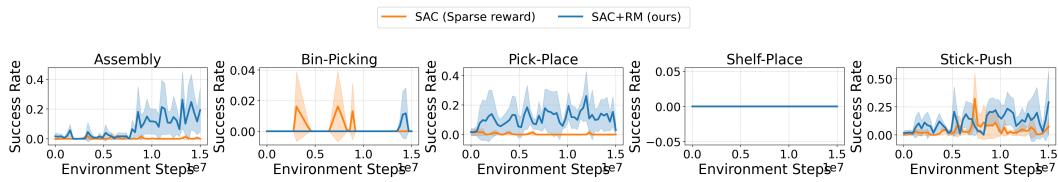


Figure 14: Performance on the Meta-World on five tasks, our method offers richer reward signal than sparse reward.

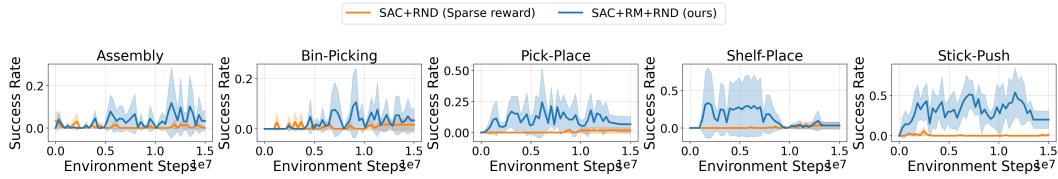


Figure 15: Performance on the Meta-World: When combining the reward machine with the RND exploration term, our method can make use of exploration bonuses, resulting in better overall performance.

core feature is a compositional system of rules (e.g., "keys open doors of the same color") and goals (e.g., "go to the blue box") that can be arbitrarily combined to procedurally generate a vast and diverse distribution of distinct tasks. This allows for the creation of structured curricula and rigorous tests of an agent's ability to infer the underlying rules of a new environment and adapt its strategy accordingly.

In our experiments in Section 4, we leverage XLand-MiniGrid to assess how effectively our framework can adapt across this wide distribution of tasks. The primary challenge in this setting is not to master a single, static task, but to develop a policy that can quickly recognize the objectives and constraints of a newly sampled environment and formulate a successful plan on the fly. This makes it a powerful testbed for evaluating the adaptability and generalization of our approach.

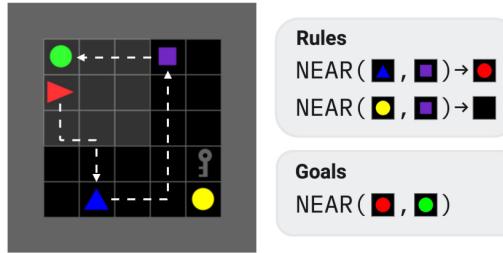


Figure 16: A sample task from our XLand-MiniGrid distribution, with the optimal solution path highlighted. The agent must infer that placing the blue pyramid near the purple square creates a red circle, which must then be moved to the green goal. A distractor object (yellow circle) can render the task unsolvable. The agent is unaware of these rules, and object positions are randomized to test for adaptation.

XLand-MiniGrid provides a formal language for procedurally generating tasks from a combination of goals, rules, and initial object placements. This allows for the creation of a vast and diverse task space. The complete sets of supported goals and rules, adapted from the original XLand-MiniGrid paper, are detailed in Tables 1 and 2. Figure 17 illustrates our framework's zero-shot generalization capabilities within this formal language, mirroring the experiment from Figure 10. An agent trained on tasks A and B can successfully solve the novel composite Task C, demonstrating its ability to understand and execute policies based on the underlying formal structure of the environment.

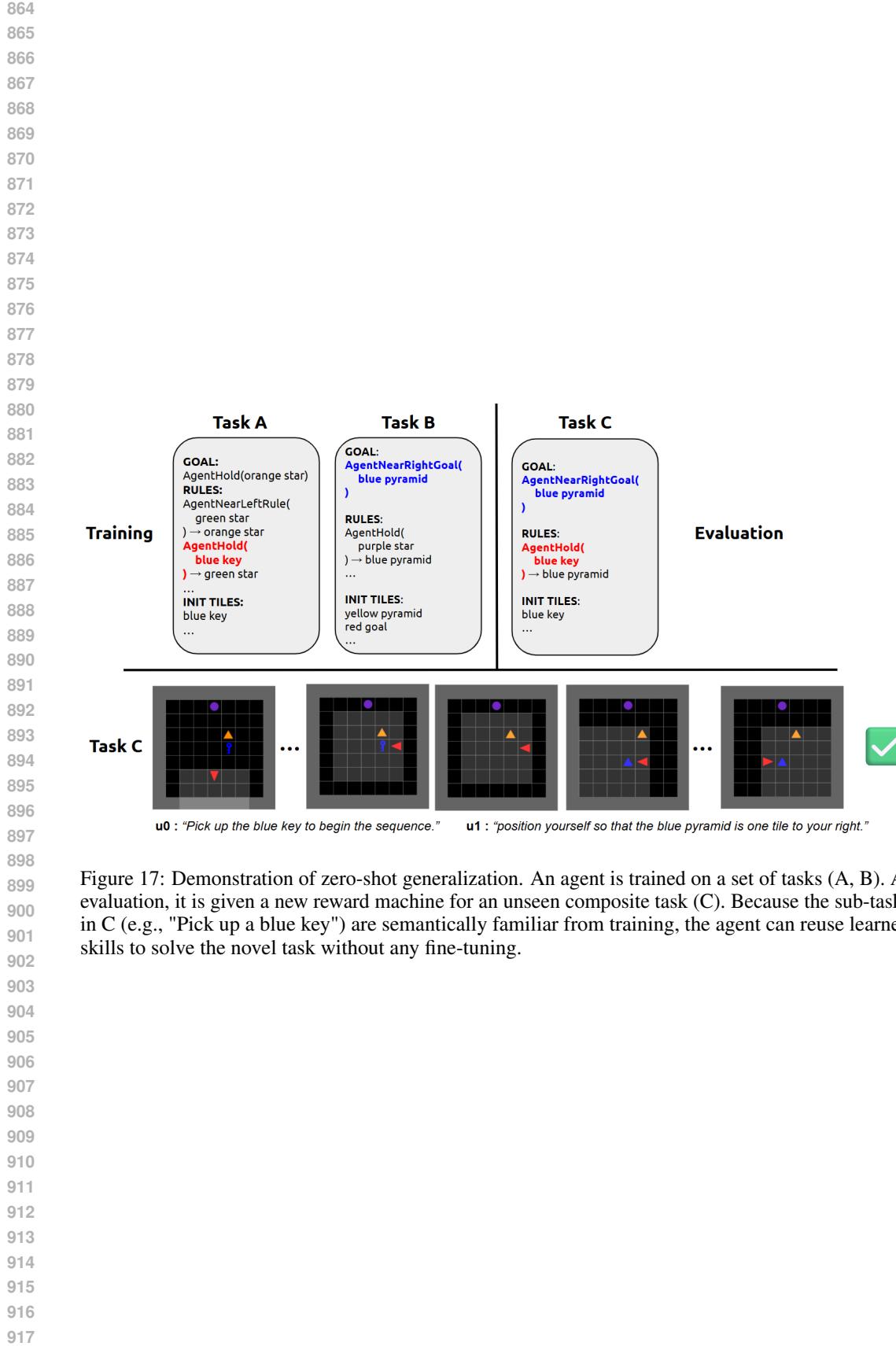
810
811
812 Table 1: Supported goals in the XLand-MiniGrid formal language.
813
814
815
816
817
818
819
820
821
822
823
824
825

Goal	Meaning	ID
EmptyGoal	Placeholder goal, always returns False	0
AgentHoldGoal(a)	Whether agent holds a	1
AgentOnTileGoal(a)	Whether agent is on tile a	2
AgentNearGoal(a)	Whether agent and a are on neighboring tiles	3
TileNearGoal(a, b)	Whether a and b are on neighboring tiles	4
AgentOnPositionGoal(x, y)	Whether agent is on (x, y) position	5
TileOnPositionGoal(a, x, y)	Whether a is on (x, y) position	6
TileNearUpGoal(a, b)	Whether b is one tile above a	7
TileNearRightGoal(a, b)	Whether b is one tile to the right of a	8
TileNearDownGoal(a, b)	Whether b is one tile below a	9
TileNearLeftGoal(a, b)	Whether b is one tile to the left of a	10
AgentNearUpGoal(a)	Whether a is one tile above agent	11
AgentNearRightGoal(a)	Whether a is one tile to the right of agent	12
AgentNearDownGoal(a)	Whether a is one tile below agent	13
AgentNearLeftGoal(a)	Whether a is one tile to the left of agent	14

826
827 Table 2: Supported rules in the XLand-MiniGrid formal language.
828

Rule	Meaning	ID
EmptyRule	Placeholder rule, does not change anything	0
AgentHoldRule(a) \rightarrow c	If agent holds a replaces it with c	1
AgentNearRule(a) \rightarrow c	If agent is on neighboring tile with a replaces it with c	2
TileNearRule(a, b) \rightarrow c	If a and b are on neighboring tiles, replaces one with c and removes the other	3
TileNearUpRule(a, b) \rightarrow c	If b is one tile above a, replaces one with c and removes the other	4
TileNearRightRule(a, b) \rightarrow c	If b is one tile to the right of a, replaces one with c and removes the other	5
TileNearDownRule(a, b) \rightarrow c	If b is one tile below a, replaces one with c and removes the other	6
TileNearLeftRule(a, b) \rightarrow c	If b is one tile to the left of a, replaces one with c and removes the other	7
AgentNearUpRule(a) \rightarrow c	If a is one tile above agent, replaces it with c	8
AgentNearRightRule(a) \rightarrow c	If a is one tile to the right of agent, replaces it with c	9
AgentNearDownRule(a) \rightarrow c	If a is one tile below agent, replaces it with c	10
AgentNearLeftRule(a) \rightarrow c	If a is one tile to the left of agent, replaces it with c	11

841
842 For the experiments in Section 4, we evaluate performance on the first 1,000 tasks from the *medium-
843 Im* benchmark in XLand-MiniGrid. The specific seeds visualized in Figure 9 are: 197 (1-task); 212,
844 197, 260 (3-task); 212, 197, 260, 859, 594 (5-task); and 212, 197, 260, 859, 594, 571, 602, 751, 660,
845 616, for the 10-task setting.
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863



918 A.3 DQN TRAINING WITH LARMS
919

920 This section provides a detailed description of the reinforcement learning training procedure used
921 in our work. We adapt the standard Deep Q-Network (DQN) algorithm (Mnih et al., 2013) to
922 incorporate Language-Aligned Reward Machines (LARMS). The core idea is to augment the agent’s
923 state representation with the current state of the LARM and to use the LARM to provide a dense,
924 structured reward signal.

925 Algorithm 1 formalizes this process. The key modifications to the standard DQN algorithm are
926 highlighted in blue. These changes include:
927

1. **Augmented State Input:** The policy, represented by the Q-network, takes as input not only the environment state s_t but also the language embedding of the current LARM state, $\phi(u_t)$. This allows the agent to learn state- and task-dependent skills.
2. **LARM State Transitions:** After each environment step, the LARM is updated based on the new environment state s_{t+1} and the action a_t taken. The labeling function \mathcal{L} determines if a relevant event occurred, which in turn may cause a transition to a new LARM state u_{t+1} .
3. **Combined Reward Signal:** The agent learns from a composite reward signal that is the sum of the base environment reward R_t and the reward from the LARM, R_t^{RM} . This provides dense, incremental feedback for completing subtasks.
4. **Augmented Experience Replay:** The transitions stored in the replay memory \mathcal{D} are augmented to include the LARM states, i.e., $(s_t, u_t, a_t, R_t^{\text{total}}, s_{t+1}, u_{t+1})$. This ensures the agent learns the Q-values over the joint state space.

940 By conditioning the policy on semantic embeddings of LARM states, the agent can effectively
941 generalize across related subtasks, leading to improved sample efficiency and performance on
942 complex, long-horizon tasks.
943

944 **Algorithm 1** DQN Training with Language-Aligned Reward Machines (LARMS)
945

```

946 1: Initialize: Replay memory  $\mathcal{D}$  to capacity  $N$ .
947 2: Initialize: Q-network  $Q$  with random weights  $\theta$ .
948 3: Initialize: Target Q-network  $\hat{Q}$  with weights  $\theta^- \leftarrow \theta$ .
949 4: Initialize: Update frequency  $C$  for the target network.
950 5: Input: LARM  $(U, u_I, \delta, R, \mathcal{L})$  from Section 2.1.
951 6: Input: State instruction embedding function  $\phi(\cdot)$ .
952 7: for episode = 1 to M do
953 8:   Reset environment to get initial state  $s_0$ .
954 9:   Reset LARM to its initial state,  $u_0 \leftarrow u_I$ .
955 10:  for t = 0 to T-1 do
956 11:    With probability  $\epsilon$ , select a random action  $a_t$ .
957 12:    Otherwise, select  $a_t = \arg \max_a Q(s_t, \phi(u_t), a; \theta)$ .
958 13:    Execute action  $a_t$  in the environment, observe reward  $R_t$  and next state  $s_{t+1}$ .
959 14:    Get LARM event via labeling function:  $e_t = \mathcal{L}(s_{t+1}, a_t)$ .
960 15:    Get next LARM state:  $u_{t+1} = \delta(u_t, e_t)$ .
961 16:    Get LARM reward:  $R_t^{\text{RM}} = R(u_t, e_t)$ .
962 17:    Compute total reward:  $R_t^{\text{total}} = R_t + R_t^{\text{RM}}$ .
963 18:    Store transition  $(s_t, u_t, a_t, R_t^{\text{total}}, s_{t+1}, u_{t+1})$  in  $\mathcal{D}$ .
964 19:    Sample a random minibatch of transitions  $(s_j, u_j, a_j, R_j^{\text{total}}, s_{j+1}, u_{j+1})$  from  $\mathcal{D}$ .
965 20:    Set target  $y_j = \begin{cases} R_j^{\text{total}} & \text{if episode terminates at step } j + 1 \\ R_j^{\text{total}} + \gamma \max_{a'} \hat{Q}(s_{j+1}, \phi(u_{j+1}), a'; \theta^-) & \text{otherwise} \end{cases}$ 
966 21:    Perform a gradient descent step on  $(y_j - Q(s_j, \phi(u_j), a_j; \theta))^2$ .
967 22:    Every  $C$  steps, update the target network:  $\theta^- \leftarrow \theta$ .
968 23:  end for
969 24: end for

```

972 A.4 HUMAN-IN-THE-LOOP LARM GENERATION
973

974 In Figure 3, we show the self-improvement loop used to generate reward machines, where we
 975 instantiate both generator and critic foundation models to iteratively refine the LARMs. A key
 976 advantage of our LARM framework is that the interface to define and refine them is natural language,
 977 which allows human operators to easily interpret and intervene in the generation process. This
 978 section provides a transparent breakdown of the specific human-in-the-loop efforts involved for each
 979 environment presented in this paper, summarized in Table 3. To facilitate this, we implemented
 980 an interactive interface where a human operator could replace the critic foundation model during
 981 any round of self-improvement. In this mode, the generator model would receive the full history of
 982 LARM attempts and critic feedbacks, followed by a new refinement comment provided directly by
 983 the human. This design allowed us to seamlessly integrate both FM-generated and human-provided
 984 feedback within the same improvement loop.

985 Table 3: Summary of Human-in-the-Loop Effort for LARM Generation.
986

987 Environment	988 Human?	989 Description of Intervention
990 MiniGrid-DoorKey (all sizes)	991 \times	992 No intervention. The FM self-improvement loop was sufficient. 993 Human check confirmed correctness after 3 iterations.
994 MiniGrid-UnlockPickup	995 \checkmark	996 Yes. The initial LARM missed an edge case: the agent dropping a 997 key after pickup. A human provided feedback to add this transition 998 (reflecting a loss of progress). The FM incorporated this, and the 999 task was solved.
999 MiniGrid-BlockedUnlockPickup	1000 \times	1001 No intervention. The FM self-improvement loop was sufficient.
1002 MiniGrid-KeyCorridorS3R3	1003 \checkmark	1004 Yes. The originally generated LARM was too sparse. A human 1005 provided high-level advice to "define intermediate rewards" and 1006 suggested "crossing doors" or "entering new rooms" as progress 1007 signals. The FM then generated a denser, effective LARM.
1008 Craftium	1009 \times	1010 No intervention. This was notable, as the FM successfully leveraged 1011 its latent knowledge of Minecraft-like game mechanics without 1012 guidance.
1013 XLand-MiniGrid	1014 \times	1015 No human intervention on any of the 1,000 generated LARMs. 1016 Correctness was validated automatically using the LLM-as-judge 1017 method (as shown in Figure 11, left).
1018 MetaWorld (all tasks)	1019 \checkmark	1020 Yes. The initial reward values in the LARM were leading the agent 1021 to a local minima, for example, grasping the object without moving 1022 it to the specified location. A human scaled the reward values for 1023 specific events in the LARM to avoid the local minima, without 1024 changing the events themselves which we assessed appropriate.

1026
1027

A.5 THEORETICAL PROPERTIES OF LARM-GUIDED RL

1028
1029
1030
1031

In this section, we formalize the relationship between the original sparse-reward environment and the dense-reward objective created by the LARM. We show that under the conditions met by our generated LARMs, optimizing the LARM-augmented reward preserves the optimal policy of the original task.

1032
1033
1034
1035
1036

Preliminaries. As defined in Section 2, let the environment be an MDP $\mathcal{M} = \langle S, A, P, \gamma \rangle$. The original task is defined by a sparse reward function $R_{\text{task}}(s) = R_{\text{goal}}$ if $s \in S_{\text{goal}}$ (a terminal state), and 0 otherwise. The LARM is $\mathcal{A} = \langle U, u_0, F, \delta, R_{\text{LARM}} \rangle$, where $\delta : U \times \mathcal{L} \rightarrow U$ is the transition function and R_{LARM} is the LARM reward function. This induces the cross-product MDP $\mathcal{M}_{\text{LARM}}$, where the agent's reward r_t is determined by R_{LARM} based on transitions in \mathcal{A} .

1037
1038
1039
1040
1041

[Optimality Preservation] *Assume the generated LARM \mathcal{A} contains no positive reward cycles (i.e., for any cycle $u_i \rightarrow \dots \rightarrow u_i$, the sum of rewards R_{LARM} along the cycle is ≤ 0). Assume also that the final reward R_{goal} (obtained on transition to an accepting state $u \in F$) is strictly greater than the cumulative reward of any non-terminal trajectory. Then, a policy π^* that is optimal for the cross-product MDP $\mathcal{M}_{\text{LARM}}$ is also optimal for the original sparse MDP \mathcal{M} .*

1042
1043
1044
1045
1046
1047
1048

Proof Sketch. The condition of no positive reward cycles is key. It ensures that the value of any non-terminal looping trajectory is bounded and not preferable to progressing toward the goal. Any cycles in the LARM (e.g., for losing progress) must have a non-positive cumulative reward, which prevents the agent from creating reward traps. Because the terminal reward R_{goal} is set to be strictly dominant, the optimal policy for $\mathcal{M}_{\text{LARM}}$ will always maximize value by finding a path to an accepting state $u \in F$. The intermediate rewards from R_{LARM} thus act as potential-based shaping to guide exploration, densifying the sparse signal without altering the set of optimal policies.

1049
1050
1051
1052
1053
1054
1055

This proposition holds for the LARMs used in this paper (see Appendix A.9). For instance, the LARM for `UnlockPickup` contains cycles, such as losing a key (`(u1, lost_y_key) -> u0`). However, this transition has a negative reward (`-0.1`) that exactly cancels the positive reward from acquiring the key (`+0.1`). This "potential-based" structure ensures no positive cycles are created, satisfying the proposition's condition. The `DoorKey` LARM contains a similar zero-sum cycle. The `Craftium` LARM is a Directed Acyclic Graph and thus trivially satisfies the condition. All other LARMs used in our experiments adhere to this property.

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081

A.6 COMPARISON WITH RELATED WORK

1082
1083
1084
1085
1086

To further clarify our contributions, we provide a detailed comparison with prior work in Table 4. The table is split into two categories: (1) methods that use FMs to synthesize or interact with automata and (2) general FM-guided RL frameworks. This comparison highlights that ARM-FM is unique in its ability to directly generate a complete, semantically-grounded automaton from language without requiring expert demonstrations, and then use it to train a learning agent.

1087
1088
1089

Table 4: Comparison of ARM-FM with FM-driven automata and FM-guided RL frameworks. Our method’s advantages are highlighted in **bold**.

1090
1091
1092
1093
1094
1095

Method	Generates RM?	Requires Demos?	Agent Type	Key Assumption	Primary FM Output / Role
<i>FMs for Automata Synthesis</i>					
L*LM (Vazquez-Chanlatte et al., 2025)	Yes	Yes	No agents trained	Expert Demonstrations	Answers membership queries for the L* algorithm.
RAD (Yalcinkaya et al., 2024)	No	No	RL (Learned)	RMs are given	-
Alsadat et al. (2025)	Yes	No	RL (Learned)	SAT-based RM learning	FMs generate text as feedback to a SAT-based algorithm to learn RMs
ARM-FM (Ours)	Yes	No	RL (Learned)	Language Specification	FMs generate LARM + semantic embeddings from language end-to-end.
<i>FM-Guided RL Frameworks</i>					
ReAct (Yao et al., 2023)	No	No	In-Context (CoT)	Text Interface	Generates text-based Chain-of-Thought reasoning and actions.
SayCan (Ahn et al., 2022)	No	Yes (Skills)	Pre-trained Skills	Pre-defined Skills	Scores affordances for a set of pre-defined skills.
Voyager (Wang et al., 2023)	No	No	In-Context (Code)	Code Interface	Generates Python code for exploration (Minecraft-specific).
Eureka (Ma et al., 2023)	No	No	RL (Learned)	Reward Src Code	Evolves the codebase of a programmatic reward function.
Motif (Klissarov et al., 2023)	No	No	RL (Learned)	Text Captions	Distills FM-generated trajectory preferences into a reward model.
MaestroMotif (Klissarov et al., 2024)	No	No	RL (Learned)	Manually-defined skills	Uses LLM feedback to design rewards for pre-defined skills
ELLM (Du et al., 2023)	No	No	RL (Learned)	FM query at each state	Suggests plausibly useful goals based on the agent’s current state.

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134

A.7 ADDITIONAL RESULTS

1135

1136 A.7.1 MINIGRID - EXPLORATION BASELINES

1137

1138 For clarity, the main paper presents results against the best-performing exploration baseline from our
 1139 evaluation, the Intrinsic Curiosity Module (ICM). In this section, we provide a detailed comparison
 1140 of the three intrinsic motivation methods we tested: ICM, Random Network Distillation (RND),
 1141 and Disagreement. All baseline implementations are adapted from the well-tested RLeXplore
 1142 library (Yuan et al., 2024).

1143

1144 Figure 18 shows the comparative performance of these methods on the DoorKey tasks. The results
 1145 demonstrate that ICM consistently outperformed the other methods in our tested environments,
 1146 justifying its selection as the primary exploration baseline for our main analysis.

1147



1148

1149 Figure 18: Comparison of exploration baselines (ICM, RND, Disagreement) on the MiniGrid
 1150 DoorKey tasks. ICM demonstrates the strongest and most consistent performance, establishing it as
 1151 the most competitive exploration baseline for our experiments.

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

A.7.2 MINIGRID - ANALYSIS OF LARM REWARDS

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 This section provides a fine-grained analysis of how LARM-generated rewards guide an agent toward
 1189 solving complex, sparse-reward tasks. The LARM effectively decomposes a sparsely rewarded
 1190 problem into a sequence of sub-goals, providing a dense, structured reward signal that serves as a
 1191 learning curriculum.

1192 Figure 19 illustrates this process for the `UnlockToUnlock` task (see Appendix A.9 for the full RM).
 1193 The plot shows that during training, the agent first learns to make incremental progress by maximizing
 1194 the LARM reward (blue curve), which is awarded for completing key sub-goals like collecting
 1195 keys and opening doors. Once the agent has reliably learned to follow this reward curriculum
 1196 to its completion (indicated by the dashed line), the final task success rate (orange curve), which
 1197 corresponds to a single sparse reward for reaching the goal, rises sharply. This demonstrates that the
 1198 LARM successfully bridges the credit assignment gap, enabling the agent to solve a task that would
 1199 otherwise be intractable due to the sparse environment reward.

A.7.3 MINIGRID - LONGER TRAINING

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

Figure 19: Analysis of LARM rewards during training in the `UnlockToUnlock` environment. The agent first learns to maximize the structured reward provided by the LARM for completing sub-goals (blue curve). Once the sub-goal sequence is mastered (dashed line), the agent rapidly achieves a high success rate on the sparsely-rewarded final objective (orange curve).

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

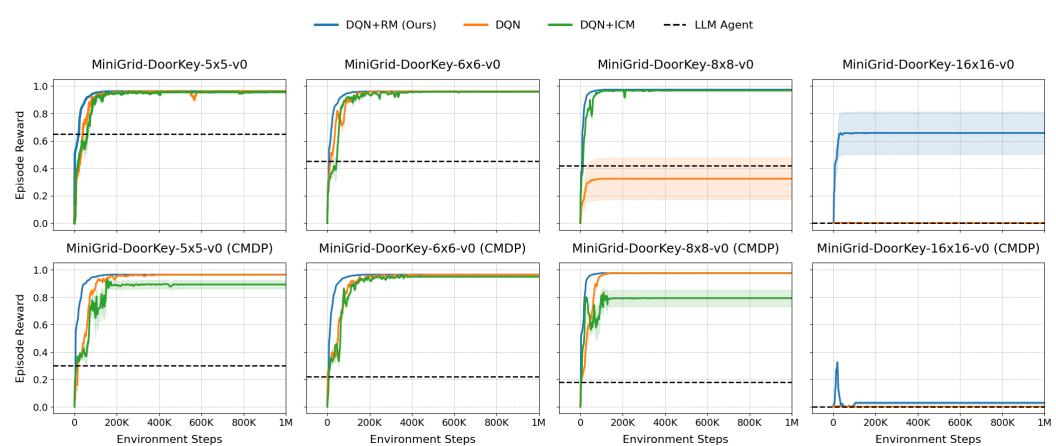
1237

1238

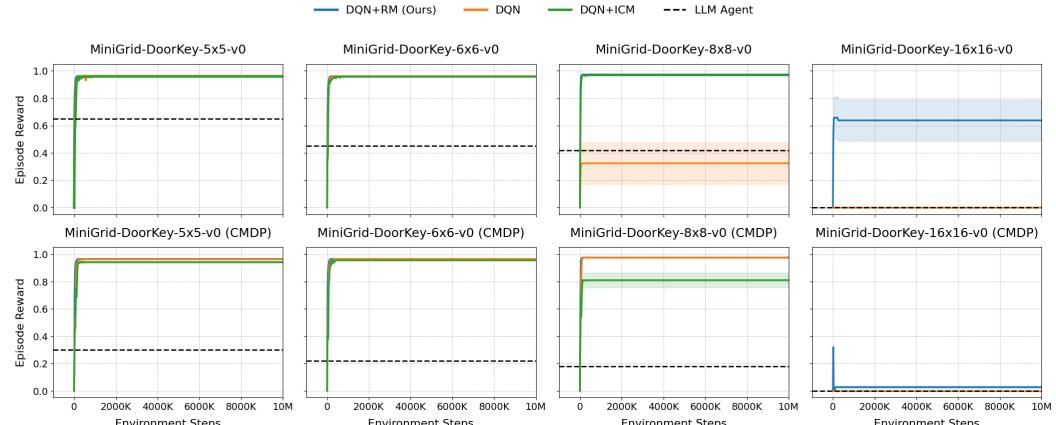
1239

1240

1241



(a) Training for 1M environment steps.



(b) Training for 10M environment steps.

Figure 20: Extended training runs for the DoorKey experiments shown in Figure 6. The plots show performance up to 1M steps (a) and 10M steps (b). As agent performance plateaus early in training (around 300k steps), we present the shorter horizon in the main paper for clarity.

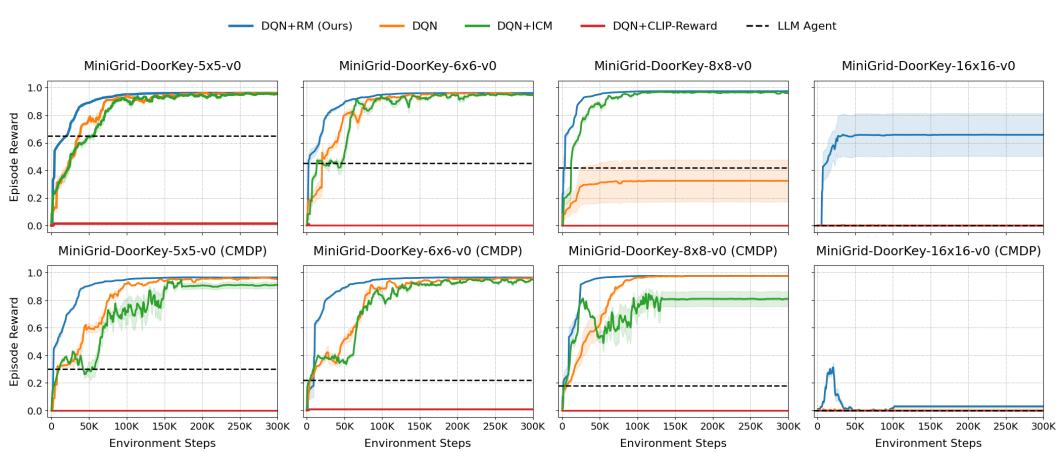
1242 A.7.4 MINIGRID - VFMS AS ZERO-SHOT REWARD MODELS
1243

1244 To provide a more comprehensive comparison, we evaluated the performance of a Vision-Language
1245 Model (VLM) used directly as a zero-shot reward function, following the methodology proposed by
1246 Rocamonde et al. (2023). For this baseline, we employed CLIP (Radford et al., 2021) to generate
1247 a dense reward signal. The reward at each timestep is calculated as the cosine similarity between
1248 the CLIP embedding of the current visual observation (an image of the environment state) and
1249 the embedding of a target language description specifying the task goal. We implemented the
1250 goal-baseline regularization technique from the original work to stabilize training, using a negative
1251 description as the baseline.

1252 The positive goal descriptions and the shared baseline description for each MiniGrid task were
1253 specified as follows:

- 1254 • **MiniGrid-DoorKey:** “The agent (red triangle) has opened the door (color-outlined square)
1255 and reached the goal room (green square).”
- 1256 • **MiniGrid-BlockedUnlockPickUp:** “The agent (red triangle) has moved the ball (circle)
1257 away from the door (color-outlined square), has picked up the key, opened the door, and is
1258 now in the goal room (box square).”
- 1259 • **MiniGrid-UnlockToUnlock:** “The agent (red triangle) has picked up both keys, opened
1260 both doors, and is now in the goal room (box square).”
- 1261 • **Baseline (Negative Description):** “The agent (red triangle) is far from the goal, has not
1262 picked up any key, and has not opened any door.”

1264 The results of this baseline are presented in Figure 21. The CLIP-based reward model failed to
1265 make any progress across all evaluated tasks. Consequently, we omitted these results from the main
1266 paper for clarity. We hypothesize that this failure stems from known limitations of current VFMs,
1267 particularly their challenges with spatial reasoning and their struggle to interpret visually abstract
1268 or out-of-distribution environments like MiniGrid. As noted by Rocamonde et al. (2023), such
1269 failure modes are common when applying general-purpose VFMs to specialized domains that require
1270 nuanced visual understanding.



1286 Figure 21: Performance of an agent trained using CLIP embeddings as a direct reward signal on
1287 MiniGrid. The VLM-based reward fails to provide a sufficient learning signal for the agent to make
1288 progress.

1296 A.8 PROMPTS

1297

1298

1299

1300 Below are the prompts for the generator and critic Foundation Models (FMs) for the DoorKey
1301 environment. This same prompt structure is used for all tasks, varying only the mission description
1302 for each environment and details on the specific environment API to generate the python labeling
1303 functions.

1304

1305

1306

1307

1308

1309

1310

Prompt: Reward Machine Generator**Environment:**

- **Agent:** A colored triangle.
- **Key:** Unlocks a door of the same color.
- **Door:** A color-outlined square within a wall.
- **Goal:** A colored square in a room (e.g., green).
- **Episode ends:** Upon reaching the goal (+1 reward) or reaching the step limit (0 reward).

Mission: *"This environment has a key that the agent must pick up in order to unlock a door and then get to the green goal square."*

Your Role: Reward Machine Generator

Generate a **concise**, **correct**, and **compact** reward machine in plaintext, wrapped in `'''plaintext'''` tags.

Your machine must:

1. **Densify the reward signal** to guide the agent effectively towards the goal.
2. **Use Boolean-predicate events** that are functions of the environment state. Do **not** use raw actions as events.
3. **Maximize compactness** with the fewest states and transitions possible, collapsing irrelevant events into a per-state (`state, else`) \rightarrow state transition.
4. **Adhere to the strict format** provided below. Do not add comments or extra text.
5. **Use clear event names** that are valid Python function names.

Action Set (for reference): `turn_left, turn_right, move_forward, pickup, drop, toggle`

```
REWARD_MACHINE:
STATES: u0, u1, ...
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, <event>) -> u1
(u0, else) -> u0
...
REWARD_FUNCTION:
(u0, <event>, u1) -> X
...
```

Only list non-zero rewards in the REWARD_FUNCTION. All other transitions assume a reward of 0.

Generate the reward machine now.

1350

Instructions: Reward Machine Critic

1351

1352

Your Role: Reward Machine Critic

1353

Evaluate a candidate reward machine for the MiniGrid environment. Focus on correctness, compactness, completeness, and format.

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

0. Compactness

- Ensure the fewest possible states and transitions are used.
- All irrelevant or zero-reward events in a state **must** be collapsed into a single (state, else) -> state transition.

1. Boolean-Predicate Events

- Confirm that each transition's event is a Boolean predicate, **not** a raw action.
- These predicates must reflect meaningful state conditions.

2. Coverage of Events

- Every possible change in key predicates must be either explicitly handled or aggregated under that state's else transition.
- Identify missing edge-case predicates

3. Dense Rewards + Penalties

- Check for positive rewards on transitions that signify progress.
- Verify that penalties or zero-rewards are used for regressions
- Suggest additions for under-penalized failure modes.
- Ensure reward magnitudes do not allow for reward hacking

4. Mission Logic

- Ensure the sequence of states correctly enforces the logic required to solve the task.
- Verify there are no unreachable states or unintentional loops.

5. Format & Clarity

- The submission must strictly follow the specified format:

```
REWARD_MACHINE:
STATES: u0, u1, ...
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, <event>) -> u1
(u0, else) -> u0
...
REWARD_FUNCTION:
(u0, <event>, u1) -> X
...
```

- **Only non-zero** rewards should be listed in the REWARD_FUNCTION.
- There must be **no comments or extra text** within the plaintext block.
- Event names must be descriptive Boolean predicates

Your Response Format:

- Cite specific transitions or sections of the machine in your evaluation.
- List concrete, actionable changes
- Be concise and to the point, while not missing any important details.

End your response with one of the following two verdicts:

- **NO CHANGES NEEDED**

- **CHANGES REQUIRED** followed by a bullet-list of the necessary fixes.

1404
1405**Labeling Function Generator**1406
1407
1408

- **Task:** Implement each event from the reward machine below as a Python boolean function. Each function must return `True` if the event condition holds in the current state (`env`), otherwise `False`.

1409
1410
1411

- **Reward machine:** {REWARD_MACHINE}

1412

- **Guidelines:**

1413

- **Function Naming and Signatures**

1414
1415

- Define one function per event in the RM.
- Each function name must **exactly match** an event name.
- Each function should take only `env` as its argument.

1416
1417

- **Implementation Rules**

1418
1419

- Use only the environment attributes and methods below:
 - `env.grid.get(i, j)` — Access object at (i, j)
 - `env.agent_pos` — Agent's position
 - `env.agent_dir` — Agent's direction (0-3)
 - `env.carrying` — Object agent is holding, e.g., a Key or `None`
 - `env.width, env.height` — Grid dimensions

1420
1421

- **Object Information**

1422
1423

- `WorldObj` is the base class.
 - A `Door` has `.is_open` and `.is_locked` attributes.
 - A `Key` has `.type == "key"`.
 - A `Goal` has `.type == "goal"`.
- You cannot import classes. Instead, check object attributes (e.g., `obj.type == "key"`).

1424
1425

- **Output Rules**

1426
1427

- Only output clean, valid Python code.
- No comments, explanations, or extra output.
- Do not define a function for the `else` event.
- Wrap your final output in triple backticks with a `python` tag for formatting.

1428

1429
14301431
14321433
14341435
14361437
14381439
14401441
14421443
14441445
14461447
14481449
14501451
1452

1453

1454

1455

1456
1457

1458
1459**Labeling Functions Critic**

1460

Your Role: Event-Function Critic

1461

You are evaluating Python functions that implement Boolean event predicates for a given reward machine (RM). Your job is to verify that the logic is correct, complete, and aligned with the RM specification.

1462

Task that the given RM should solve:

1463

"This environment has a key that the agent must pick up in order to unlock a door and then get to the green goal square."

1464

1465

1466

1467

1468

1469

1470

Evaluation Criteria**1. Boolean Predicate Fidelity**

1471

1472

1473

1474

1475

- Each function name must **exactly match** an event name from the RM.
- Each unique event in the RM must have a corresponding function.
- The function must return `True` if and only if the corresponding predicate becomes true in the current environment state.

2. Coverage & Scope

1476

1477

1478

1479

- Every event in the RM must have a corresponding function.
- There should be no extra functions that are not used in the RM.

3. Correct Use of env API The following attributes and methods are available from the `env` object.

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

```
env.grid.get(i, j)      # Access object at (i, j)
env.agent_pos           # (x, y) position of the agent
env.agent_dir           # Integer: direction the agent is facing
env.carrying             # Object being carried (or None)
env.width, env.height   # Dimensions of the grid
```

Object types must be checked by attribute, as classes cannot be imported:

- A Door has `.is_open` and `.is_locked` attributes.
- A Key has `.type == "key"`.
- A Goal has `.type == "goal"`.

Functions must inspect these properties to determine predicate truth.

4. Clarity & Format

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

When You Respond

- Point out any **missing**, **misnamed**, or **extraneous** functions.
- Highlight any logic that is **incomplete**, **incorrect**, or **inefficient**.
- Suggest **precise code fixes** where needed.
- End your review with one of the following two verdicts, exactly as shown:

NO CHANGES NEEDED

or

CHANGES REQUIRED

- [List of bullet-pointed issues and suggested fixes]

1512 A.9 REWARD MACHINES

1513

1514

1515

1516

1517

1518 **DoorKey**

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

```

REWARD_MACHINE:
STATES: u0, u1, u2, u3
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, has_key) -> u1
(u0, else) -> u0
(u1, is_door_in_env_open) -> u2
(u1, not_has_key) -> u0
(u1, else) -> u1
(u2, at_goal) -> u3
(u2, else) -> u2
(u3, else) -> u3
REWARD_FUNCTION:
(u0, has_key, u1) -> 0.2
(u1, is_door_in_env_open, u2) -> 0.3
(u1, not_has_key, u0) -> -0.2
(u2, at_goal, u3) -> 1.0

```

1536

1537

1538

1539

1540

1541

1542

1543

1544

```

REWARD_MACHINE:
STATES: u0, u1, u2, u3, u4
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, has_ball) -> u1
(u0, else) -> u0
(u1, has_key) -> u2
(u1, else) -> u1
(u2, door_unlocked) -> u3
(u2, no_key) -> u1
(u2, else) -> u2
(u3, has_box) -> u4
(u3, else) -> u3
(u4, else) -> u4
REWARD_FUNCTION:
(u0, has_ball, u1) -> 0.2
(u1, has_key, u2) -> 0.2
(u2, door_unlocked, u3) -> 0.2
(u2, no_key, u1) -> -0.3
(u3, has_box, u4) -> 1

```

```

1566
1567 UnlockToUnlock
1568
1569 REWARD_MACHINE:
1570 STATES: u0, u1, u2, u3, u4, u5
1571 INITIAL_STATE: u0
1572
1573 TRANSITION_FUNCTION:
1574 (u0, got_y_key) -> u1
1575 (u0, else) -> u0
1576 (u1, door_y_opened) -> u2
1577 (u1, lost_y_key) -> u0
1578 (u1, else) -> u1
1579 (u2, got_r_key) -> u3
1580 (u2, else) -> u2
1581 (u3, door_r_opened) -> u4
1582 (u3, lost_r_key) -> u2
1583 (u3, else) -> u3
1584 (u4, entered_goal_room) -> u5
1585 (u4, got_ball) -> u5
1586 (u4, else) -> u4
1587 (u5, else) -> u5
1588
1589 REWARD_FUNCTION:
1590 (u0, got_y_key, u1) -> 0.1
1591 (u1, door_y_opened, u2) -> 0.2
1592 (u1, lost_y_key, u0) -> -0.1
1593 (u2, got_r_key, u3) -> 0.1
1594 (u3, door_r_opened, u4) -> 0.2
1595 (u3, lost_r_key, u2) -> -0.1
1596 (u4, entered_goal_room, u5) -> 0.3
1597 (u4, got_ball, u5) -> 1
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```

KeyCorridor

```

1600
1601 REWARD_MACHINE:
1602 STATES: u0, u1, u2, u3, u4
1603 INITIAL_STATE: u0
1604 TRANSITION_FUNCTION:
1605 (u0, on_purple_door_and_not_has_key) -> u1
1606 (u0, else) -> u0
1607 (u1, got_key) -> u2
1608 (u1, else) -> u1
1609 (u2, on_purple_door_and_has_key) -> u3
1610 (u2, opened_red_door) -> u4
1611 (u2, else) -> u2
1612 (u3, opened_red_door) -> u4
1613 (u3, else) -> u3
1614 (u4, else) -> u4
1615 REWARD_FUNCTION:
1616 (u0, on_purple_door_and_not_has_key, u1) -> 0.1
1617 (u1, got_key, u2) -> 0.2
1618 (u2, on_purple_door_and_has_key, u3) -> 0.25
1619 (u2, opened_red_door, u4) -> 0.5
1620 (u3, opened_red_door, u4) -> 0.5

```

```

1620
1621 Craftium
1622 REWARD_MACHINE:
1623 STATES: u0, u1, u2, u3
1624 INITIAL_STATE: u0
1625 TRANSITION_FUNCTION:
1626 (u0, get_wood) -> u1
1627 (u0, else) -> u0
1628 (u1, get_stone) -> u2
1629 (u1, else) -> u1
1630 (u2, get_iron) -> u3
1631 (u2, else) -> u2
1632 (u3, get_diamond) -> u4
1633 (u3, else) -> u3
1634 REWARD_FUNCTION:
1635 (u0, get_wood, u1) -> 0.25
1636 (u0, get_stone, u1) -> 0.5
1637 (u0, get_iron, u1) -> 0.75
1638 (u0, get_diamond, u1) -> 1.25
1639

```

Metaworld

```

1640
1641 REWARD_MACHINE:
1642 STATES: u0, u1, u2, u3, u4
1643 INITIAL_STATE: u0
1644 TRANSITION_FUNCTION:
1645 (u0, near_object) -> u1
1646 (u0, grasp_success) -> u2
1647 (u0, else) -> u0
1648 (u1, grasp_success) -> u2
1649 (u1, not_near_object) -> u0
1650 (u1, else) -> u1
1651 (u2, not_grasp_success) -> u0
1652 (u2, object_near_goal) -> u3
1653 (u2, success) -> u4
1654 (u2, else) -> u2
1655 (u3, not_object_near_goal) -> u2
1656 (u3, success) -> u4
1657 (u3, else) -> u3
1658 (u4, else) -> u4
1659 REWARD_FUNCTION:
1660 (u0, near_object, u1) -> 0.20
1661 (u1, grasp_success, u2) -> 0.40
1662 (u0, grasp_success, u2) -> 0.40
1663 (u1, not_near_object, u0) -> -0.20
1664 (u2, not_grasp_success, u0) -> -0.40
1665 (u2, object_near_goal, u3) -> 0.80
1666 (u3, not_object_near_goal, u2) -> -0.80
1667 (u2, success, u4) -> 1.50
1668 (u3, success, u4) -> 1.50
1669
1670
1671
1672
1673

```

1674 A.10 LABELING FUNCTIONS

1675

1676

1677

1678

1679

1680

1681

```

1 def has_key(env):
2     return env.carrying is not None and env.carrying.type == "key"
3
4 def is_door_in_env_open(env):
5     for i in range(env.height):
6         for j in range(env.width):
7             obj = env.grid.get(j, i)
8             if obj is not None and obj.type == "door" and obj.
9                 is_open:
10                 return True
11
12 return False
13
14 def not_has_key(env):
15     return not (env.carrying is not None and env.carrying.type == "
16         key")
17
18 def at_goal(env):
19     x, y = env.agent_pos
20     obj = env.grid.get(x, y)
21     return obj is not None and obj.type == "goal"
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
917
918
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1138
1139
1140
1141
1142
1143
1144
1145
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1157
1158
1159
1160
1161
1162
1163
1164
1164
1165
1166
1167
1168
1168
1169
1170
1171
1172
1173
1173
1174
1175
1176
1177
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1237
1238
1239
1240
1241
1242
1243
1244
1245
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1257
1258
1259
1260
1261
1262
1263
1264
1265
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1294
1295
1296
1297
1298
1298
1299
1300
1301
1302
1303
1304
1305
1306
1306
1307
1308
1309
1310
1311
1312
1313
1313
1314
1315
1316
1317
1317
1318
1319
1320
1321
1322
1323
1323
1324
1325
1326
1327
1327
1328
1329
1330
1331
1332
1333
1334
1335
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1364
1365
1366
1367
1367
1368
1369
1369
1370
1371
1372
1372
1373
1374
1374
1375
1376
1376
1377
1378
1378
1379
1380
1380
1381
1382
1382
1383
1384
1384
1385
1386
1386
1387
1388
1388
1389
1390
1390
1391
1392
1392
1393
1394
1394
1395
1396
1396
1397
1398
1398
1399
1399
1400
1400
1401
1401
1402
1402
1403
1403
1404
1404
1405
1405
1406
1406
1407
1407
1408
1408
1409
1409
1410
1410
1411
1411
1412
1412
1413
1413
1414
1414
1415
1415
1416
1416
1417
1417
1418
1418
1419
1419
1420
1420
1421
1421
1422
1422
1423
1423
1424
1424
1425
1425
1426
1426
1427
1427
1428
1428
1429
1429
1430
1430
1431
1431
1432
1432
1433
1433
1434
1434
1435
1435
1436
1436
1437
1437
1438
1438
1439
1439
1440
1440
1441
1441
1442
1442
1443
1443
1444
1444
1445
1445
1446
1446
1447
1447
1448
1448
1449
1449
1450
1450
1451
1451
1452
1452
1453
1453
1454
1454
1455
1455
1456
1456
1457
1457
1458
1458
1459
1459
1460
1460
1461
1461
1462
1462
1463
1463
1464
1464
1465
1465
1466
1466
1467
1467
1468
1468
1469
1469
1470
1470
1471
1471
1472
1472
1473
1473
1474
1474
1475
1475
1476
1476
1477
1477
1478
1478
1479
1479
1480
1480
1481
1481
1482
1482
1483
1483
1484
1484
1485
1485
1486
1486
1487
1487
1488
1488
1489
1489
1490
1490
1491
1491
1492
1492
1493
1493
1494
1494
1495
1495
1496
1496
1497
1497
1498
1498
1499
1499
1500
1500
1501
1501
1502
1502
1503
1503
1504
1504
1505
1505
1506
1506
1507
1507
1508
1508
1509
1509
1510
1510
1511
1511
1512
1512
1513
1513
1514
1514
1515
1515
1516
1516
1517
1517
1518
1518
1519
1519
1520
1520
1521
1521
1522
1522
1523
1523
1524
1524
1525
1525
1526
1526
1527
1527
1528
1528
1529
1529
1530
1530
1531
1531
1532
1532
1533
1533
1534
1534
1535
1535
1536
1536
1537
1537
1538
1538
1539
1539
1540
1540
1541
1541
1542
1542
1543
1543
1544
1544
1545
1545
1546
1546
1547
1547
1548
1548
1549
1549
1550
1550
1551
1551
1552
1552
1553
1553
1554
1554
1555
1555
1556
1556
1557
1557
1558
1558
1559
1559
1560
1560
1561
1561
1562
1562
1563
1563
1564
1564
1565
1565
1566
1566
1567
1567
1568
1568
1569
1569
1570
1570
1571
1571
1572
1572
1573
1573
1574
1574
1575
1575
1576
1576
1577
1577
1578
1578
1579
1579
1580
1580
1581
1581
1582
1582
1583
1583
1584
1584
1585
1585
1586
1586
1587
1587
1588
1588
1589
1589
1590
1590
1591
1591
1592
1592
1593
1593
1594
1594
1595
1595
1596
1596
1597
1597
1598
1598
1599
1599
1600
1600
1601
1601
1602
1602
1603
1603
1604
1604
1605
1605
1606
1606
1607
1607
1608
1608
1609
1609
1610
1610
1611
1611
1612
1612
1613
1613
1614
1614
1615
1615
1616
1616
1617
1617
1618
1618
1619
1619
1620
1620
1621
1621
1622
1622
1623
1623
1624
1624
1625
1625
1626
1626
1627
1627
1628
1628
1629
1629
1630
1630
1631
1631
1632
1632
1633
1633
1634
1634
1635
1635
1636
1636
1637
1637
1638
1638
1639
1639
1640
1640
1641
1641
1642
1642
1643
1643
1644
1644
1645
1645
1646
1646
1647
1647
1648
1648
1649
1649
1650
1650
1651
1651
1652
1652
1653
1653
1654
1654
1655
1655
1656
1656
1657
1657
1658
1658
1659
1659
1660
1660
1661
1661
1662
1662
1663
1663
1664
1664
1665
1665
1666
1666
1667
1667
1668
1668
1669
1669
1670
1670
1671
1671
1672
1672
1673
1673
1674
1674
1675
1675
1676
1676
1677
1677
1678
1678
1679
1679
1680
1680
1681
1681
1682
1682
1683
1683
1684
1684
1685
1685
1686
1686
1687
1687
1688
1688
1689
1689
1690
1690
1691
1691
1692
1692
1693
1693
1694
1694
1695
1695
1696
1696
1697
1697
1698
1698
1699
1699
1700
1700
1701
1701
1702
1702
1703
1703
1704
1704
1705
1705
1706
1706
1707
1707
1708
1708
1709
1709
1710
1710
1711
1711
1712
1712
1713
1713
1714
1714
1715
1715
1716
1716
1717
1717
1718
1718
1719
1719
1720
1720
1721
1721
1722
1722
1723
1723
1724
1724
1725
1725
1726
1726
1727
1727
1728
1728
1729
1729
1730
1730
1731
1731
1732
1732
1733
1733
1734
1734
1735
1735
1736
1736
1737
1737
1738
1738
1739
1739
1740
1740
1741
1741
1742
1742
1743
1743
1744
1744
1745
1745
1746
1746
1747
1747
1748
1748
1749
1749
1750
1750
1751
1751
1752
1752
1753
1753
1754
1754
1755
1755
1756
1756
1757
1757
1758
1758
1759
1759
1760
1760
1761
1761
1762
1762
1763
1763
1764
1764
1765
1765
1766
1766
1767
1767
1768
1768
1769
1769
1770
1770
1771
1771
1772
1772
1773
1773
1774
1774
1775
1775
1776
1776
1777
1777
1778
1778
1779
1779
1780
1780
1781
1781
1782
1782
1783
1783
1784
1784
1785
1785
1786
1786
1787
1787
1788
1788
1789
1789
1790
1790
1791
1791
1792
1792
1793
1793
1794
1794
1795
1795
1796
1796
1797
1797
1798
1798
1799
1799
1800
1800
1801
1801
1802
1802
1803
1803
1804
1804
1805
1805
1806
1806
1807
1807
1808
1808
1809
1809
1810
1810
1811
1811
1812
1812
1813
1813
1814
1814
1815
1815
1816
1816
1817
1817
1818
1818
1819
1819
1820
1820
1821
1821
1822
1822
1823
1823
1824
1824
1825
1825
1826
1826
1827
1827
1828
1828
1829
1829
1830
1830
1831
1831
1832
1832
1833
1833
1834
1834
1835
1835
1836
1836
1837
1837
1838
1838
1839
1839
1840
1840
1841
1841
1842
1842
1843
1843
1844
1844
1845
1845
1846
1846
1847
1847
1848
1848
1849

```

```

1728
1729 Labeling Functions for UnlockToUnlock
1730
1731     1 def got_y_key(env):
1732         2     return (
1733             3         env.carrying is not None
1734             4         and getattr(env.carrying, "type", None) == "key"
1735             5         and getattr(env.carrying, "color", None) == "yellow"
1736         6     )
1737
1738     8 def door_y_opened(env):
1739         9     for i in range(env.width):
1740             10        for j in range(env.height):
1741                 11            obj = env.grid.get(i, j)
1742                 12            if (
1743                     13                obj is not None
1744                     14                     and getattr(obj, "type", None) == "door"
1745                     15                     and getattr(obj, "color", None) == "yellow"
1746                     16                     and getattr(obj, "is_open", False)
1747                 17             ):
1748                     18                 return True
1749             19         return False
1750
1751     21 def lost_y_key(env):
1752         22         return not (
1753             23                 env.carrying is not None
1754             24                 and getattr(env.carrying, "type", None) == "key"
1755             25                 and getattr(env.carrying, "color", None) == "yellow"
1756         26     )
1757
1758     28 def got_r_key(env):
1759         29         return (
1760             30                 env.carrying is not None
1761             31                 and getattr(env.carrying, "type", None) == "key"
1762             32                 and getattr(env.carrying, "color", None) == "red"
1763         33     )
1764
1765     35 def door_r_opened(env):
1766         36         for i in range(env.width):
1767             37                 for j in range(env.height):
1768                 38                     obj = env.grid.get(i, j)
1769                 39                     if (
1770                     40                         obj is not None
1771                     41                         and getattr(obj, "type", None) == "door"
1772                     42                         and getattr(obj, "color", None) == "red"
1773                     43                         and getattr(obj, "is_open", False)
1774                 44             ):
1775                     45                         return True
1776             46         return False
1777
1778     48 def lost_r_key(env):
1779         49         return not (
1780             50                 env.carrying is not None
1781             51                 and getattr(env.carrying, "type", None) == "key"
1782             52                 and getattr(env.carrying, "color", None) == "red"
1783         53     )
1784
1785     55 def entered_goal_room(env):
1786         56             # Example check: agent is in the leftmost 5 columns.
1787         57             return env.agent_pos[0] < 5
1788
1789     59 def got_ball(env):
1790         60             return (
1791                 env.carrying is not None
1792                 and getattr(env.carrying, "type", None) == "ball"
1793             )

```

```

1782
1783 Labeling Functions for KeyCorridor
1784
1785 1 def on_purple_door_and_not_has_key(env):
1786 2     i, j = env.agent_pos
1787 3     obj = env.grid.get(i, j)
1788 4     if obj is not None and hasattr(obj, 'type') and obj.type == '
1789 5         door' and getattr(obj, 'color', None) == 'purple':
1790 6             if env.carrying is None or (hasattr(env.carrying, 'type')
1791 7                 and env.carrying.type != 'key'):
1792 8                 return True
1793 9     return False
1794
1795 10 def got_key(env):
1796 11     return (
1797 12         env.carrying is not None
1798 13         and hasattr(env.carrying, 'type')
1799 14         and env.carrying.type == 'key'
1800 15     )
1801
1802 16 def on_purple_door_and_has_key(env):
1803 17     i, j = env.agent_pos
1804 18     obj = env.grid.get(i, j)
1805 19     if obj is not None and hasattr(obj, 'type') and obj.type == '
1806 20         door' and getattr(obj, 'color', None) == 'purple':
1807 21             if env.carrying is not None and hasattr(env.carrying, 'type
1808 22                 ') and env.carrying.type == 'key':
1809 23                 return True
1810 24     return False
1811
1812 25 def opened_red_door(env):
1813 26     i, j = env.agent_pos
1814 27     obj = env.grid.get(i, j)
1815 28     if obj is not None and hasattr(obj, 'type') and obj.type == '
1816 29         door' and getattr(obj, 'color', None) == 'red':
1817 30             if getattr(obj, 'is_open', False) is True:
1818 31                 return True
1819 32     return False
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

```

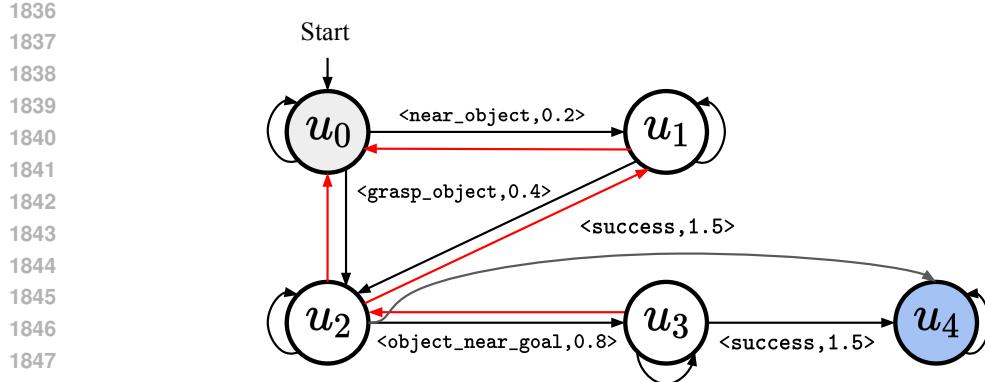


Figure 22: A visualization of the Meta-World reward machine. Red arrows indicate a negative reward when the state transitions in the opposite direction, moving further away from the success state u_4 . For example, if the agent is in state u_1 and transitions back to state u_0 , it will receive a reward of -0.2 . When the agent does not trigger any transition event, the state remains the same, as indicated by the self-loop arrows.

A.10.1 A VISUALIZATION OF META-WORLD REWARD MACHINE

Figure 22 shows a visualization of the Meta-World reward machine generated by the FM. Red arrows indicate a reversed path in which the reward machine’s state transitions further away from the success state.

A.11 HYPERPARAMETERS

A.11.1 DQN (MINIGRID & BABYAI)

The hyperparameters listed in Table 5 were used for all DQN, DQN+RND, and DQN+RM agents in the MiniGrid and BabyAI environments.

Table 5: DQN hyperparameters used for all MiniGrid and BabyAI experiments.

Hyperparameter	Value
Total Timesteps	1×10^7
Learning Rate	1×10^{-4}
Replay Buffer Size	1×10^6
Learning Starts	80,000
Batch Size	32
Discount Factor (γ)	0.99
Target Network Update Frequency	2,500
Target Network Update Rate (τ)	1.0
Train Frequency	4
<i>Epsilon-Greedy Exploration</i>	
Initial Epsilon (ϵ_{start})	1.0
Final Epsilon (ϵ_{end})	0.01
Exploration Fraction	0.35
Double Q-Learning	False

1890 Table 6: PPO hyperparameters used for the Craftium experiments.
1891

1892	Hyperparameter	Value
1893	Total Timesteps	1×10^7
1894	Number of Parallel Environments	4
1895	Steps per Environment (Rollout)	128
1896	Number of Minibatches	4
1897	PPO Update Epochs	4
1898	<i>Optimizer and Learning Rate</i>	
1899	Learning Rate	5×10^{-5}
1900	Learning Rate Annealing	True
1901	Max Gradient Norm	0.5
1902	<i>PPO & GAE Parameters</i>	
1903	Discount Factor (γ)	0.99
1904	GAE Lambda (λ)	0.95
1905	Clipping Coefficient	0.1
1906	Value Function Loss Clipping	True
1907	Advantages Normalization	True
1908	<i>Loss Coefficients</i>	
1909	Entropy Coefficient	0.01
1910	Value Function Coefficient	0.5

1914 A.11.2 PPO (CRAFTIUM)

1916 For the more computationally demanding Craftium environment, we use PPO to leverage vectorized
1917 rollouts for faster training. The hyperparameters for the PPO agent, which were kept consistent for
1918 both the baseline and our method, are detailed in Table 6.

1920 A.11.3 RAINBOW (XLAND-MINIGRID)

1922 For the experiments in XLand-MiniGrid, we use a Rainbow DQN agent. The hyperparameters,
1923 consistent for both the baseline and our method, are detailed in Table 7.

1924 A.11.4 SAC (META-WORLD)

1926 In Meta-World experiments we use SAC (Haarnoja et al., 2018) to train the sparse reward and the
1927 agent augmented with the reward machine. The hyperparameters are detailed in Table 8

1944
1945
1946
1947
1948

Table 7: Rainbow DQN hyperparameters used for the XLand-MiniGrid experiments.

Hyperparameter	Value
<i>Base DQN Parameters</i>	
Total Timesteps	5×10^6
Learning Rate	6.25×10^{-5}
Replay Buffer Size	1×10^6
Learning Starts	80,000
Batch Size	32
Discount Factor (γ)	0.99
Target Network Update Frequency	5,000
Train Frequency	4
<i>Epsilon-Greedy Exploration</i>	
Initial Epsilon (ϵ_{start})	1.0
Final Epsilon (ϵ_{end})	0.05
Exploration Fraction	0.1
<i>Rainbow Components</i>	
N-step Learning	3
PER Alpha (α)	0.5
PER Initial Beta (β_0)	0.4
Distributional Atoms	51
Distributional Value Range (V_{min}, V_{max})	$[-10, 10]$

1971
1972
1973
1974
1975
1976
1977

Table 8: SAC hyperparameters used for the Meta-World experiments.

Hyperparameter	Value
<i>Base SAC Parameters</i>	
Total Timesteps	1.5×10^7
Learning Rate	3×10^{-4}
Replay Buffer Size	1×10^6
Learning Starts	5,000
Batch Size	512
Discount Factor (γ)	0.99
Target Network Update coefficient	0.005
Policy Train Frequency	2
Critic Train Frequency	1
<i>Exploration</i>	
Intrinsic Reward model	RND
Intrinsic Reward Coefficient	0.01

1995
1996
1997