
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARM-FM: AUTOMATED REWARD MACHINES VIA
FOUNDATION MODELS FOR
COMPOSITIONAL REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) algorithms are highly sensitive to reward function
specification, which remains a central challenge limiting their broad applicability.
We present ARM-FM: Automated Reward Machines via Foundation Models, a
framework for automated, compositional reward design in RL that leverages the
high-level reasoning capabilities of foundation models (FMs). Reward machines
(RMs) – an automata-based formalism for reward specification – are used as the
mechanism for RL objective specification, and are automatically constructed via
the use of FMs. The structured formalism of RMs yields effective task decomposi-
tions, while the use of FMs enables objective specifications in natural language.
Concretely, we (i) use FMs to automatically generate RMs from natural language
specifications; (ii) associate language embeddings with each RM automata-state
to enable generalization across tasks; and (iii) provide empirical evidence of
ARM-FM’s effectiveness in a diverse suite of challenging environments, including
evidence of zero-shot generalization.

1 INTRODUCTION

A central challenge in reinforcement learning (RL) is the design of effective reward functions for
complex tasks. The shape of the reward influences the complexity of the problem at hand (Gupta
et al., 2022); for instance, sparse rewards provide an insufficient learning signal, making it difficult
for agents to improve (Devidze et al., 2022). Even hand-crafted dense rewards are susceptible to
unintended loopholes or "reward hacking", where an agent exploits the specification without achieving
the true objective (Fu et al., 2025). The unifying challenge is thus how to communicate complex
objectives to an agent in a manner that provides structured, actionable guidance (Rani et al., 2025).

While Foundation Models (FMs) excel at interpreting and decomposing tasks from natural language, a
critical gap exists in translating this abstract understanding into the concrete structured reward signals
necessary for RL. Consequently, high-level plans generated by FMs often fail to ground effectively,
leaving the agent without the granular feedback required for learning. To bridge this gap, we turn
to Reward Machines (RMs), an automata-based formalism. By decomposing tasks into a finite
automaton of sub-goals, RMs provide a compositional structure for both rewards and policies that is
inherently more structured and verifiable than monolithic reward functions (Icarte et al., 2022). While
theoretically principled, their practical application has been confined to task-specific applications
due to the complexity of their manual, expert-driven design. We posit that the reasoning and code-
generation capabilities of modern FMs are well-suited to automate the design and construction of
RMs, thereby unlocking their potential to solve the broader challenge of communicating complex
objectives in RL; the resulting RMs can thus translate abstract human intent into a concrete learning
signal for solving complex tasks.

This work makes three primary contributions. First, we develop a novel framework for automatically
generating complete task specifications directly from natural language using foundation models,
introducing language-aligned reward machines (LARMs) which include the automaton structure,
executable labeling functions, and natural language instructions for each subtask. Second, we
introduce a method that leverages the language-aligned nature of the resulting automata to create
a shared skill space, enabling effective experience reuse and policy transfer across related tasks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Finally, we provide extensive empirical validation demonstrating that our approach solves complex,
long-horizon tasks across multiple domains that are generally intractable for standard RL methods.
Specifically, our results show that the framework (i) dramatically improves sample-efficiency by
converting sparse rewards into dense, structured learning signals; (ii) scales to a diverse set of
environments, including grid worlds, complex 3D environments, and robotics with continuous
control; and (iii) enables efficient multi-task training and zero-shot generalization.

Figure 1: An overview of our framework (left) and results in a complex sparse-reward environment
(right). Reward Machine Generation (top-left): Given a high-level natural language prompt and a
visual observation of the environment, a FM automatically generates the formal specification of the
Reward Machine, the executable Python code for the labeling functions, and the natural
language descriptions for each RM state. RL training (bottom-left): During the RL training loop,
the labeling functions evaluate environment observations to update the Reward Machine’s
state, which provides a dense reward signal RRM

t . The RL agent’s policy receives the environment
observation along with the embedding ϕ(·) of the current RM state’s language description, making
it aware of its active sub-goal. Empirical results (right): Results in a complex sparse-reward
Minecraft-based resource-gathering task from Craftium (Malagón et al., 2024), where an RL agent
is unable to make progress (top), while our agent, guided by an FM-generated LARM, learns to solve
the task efficiently (bottom).

2 AUTOMATED REWARD MACHINES VIA FOUNDATION MODELS

Figure 2: ARM-FM leverage FMs to automatically
construct RMs: using the UnlockToUnlock task
description from MiniGrid (left), an RM is automati-
cally constructed to solve the task (right).

We now present Automated Reward Ma-
chines via Foundation Models (ARM-
FM), a framework for automated reward
design in RL that leverages the reason-
ing capabilities of foundation models to
automatically translate complex, natural-
language task descriptions into structured
task representations for RL training. Fig-
ure 1 illustrates an overview of ARM-FM,
which comprises two major components:
(i) the introduction of Language-Aligned
RMs (LARMs), which are automatically
constructed using FMs; and (ii) their inte-
gration into RL training by conditioning
policies on language embeddings of RM
states, enabling structured rewards, generalization, and skill reuse. Figure 2 shows a high-level task
description, consisting of a natural language prompt and a visual observation (left), along with its

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

corresponding RM (right). The RM is a finite-state automaton that guides an agent by providing
incremental rewards for completing sub-goals, such as collecting keys and opening doors, on the way
to the final objective. In the following section, we describe how our ARM-FM framework automates
the creation of these reward machines directly from high-level task descriptions.

2.1 LANGUAGE-ALIGNED REWARD MACHINES

We assume the standard RL formalism, which defines an environment as a Markov Decision Processes
(Puterman, 1994, ; MDPs) ⟨S,A,R,P⟩, where S is the set of MDP states, A is the set of possible
actions, R : S × A → R is the MDP reward function, and P : S × A → ∆(S) is a probabilistic
MDP transition function. A Reward Machine (RM) is a finite-state automaton that encodes complex,
temporally extended, and potentially non-Markovian RL tasks (Icarte et al., 2022). We formally
define an RM by the tuple ⟨U, uI ,Σ, δ, R, F,L⟩. Here, U is the finite set of RM states; uI the initial
state of the RM; Σ is the finite set of symbols representing events that cause transitions in the RM;
δ : U × Σ → U is the deterministic RM transition function; R : U × S × A × S → R is the RM
reward function; F ⊆ U is the set of final RM states; and L : S × A→ Σ is the labeling function
that connects MDP states s ∈ S and actions a ∈ A to the RM event symbols σ ∈ Σ. Intuitively, RMs
are useful for describing tasks at an abstract level, especially when said tasks require multiple steps
over long time horizons. Each RM state u ∈ U can be thought of as representing a subtask, and the
transitions u′ = δ(u, σ) denote progress to a new stage of the overall objective after a particular event
σ ∈ Σ occurs in the environment. The RM reward function R(u, s, a, s′) assigns a reward based on
the current RM state u and the underlying MDP transition (s, a, s′). Meanwhile, the set of final RM
states F defines the conditions under which the task described by the RM is complete. Finally, the
labeling function L is required to connect the RM’s events, transitions, and rewards to states and
actions from the underlying MDP.

Figure 3: A self-improvement loop where a generator
and critic FMs iteratively refine LARMs, with optional
human verification.

We define LARMs as RMs that are addi-
tionally equipped with natural-language in-
structions lu for each RM state u, and with
an embedding function ϕ(·) that maps such
language instructions to an embedding vec-
tor zu = ϕ(lu) ∈ Rd. We note that by
equipping RM states with embedding vec-
tors zu that encode language-based descrip-
tions of the corresponding subtasks, we pro-
vide the first mechanism for constructing a
semantically grounded skill space in RMs:
policies conditioned on these embeddings
can naturally share knowledge across re-
lated subtasks, enabling transfer, composi-
tionality, and zero-shot generalization.

Figure 4: The three core components generated by
our method for the UnlockToUnlock environment:
(Left) the RM specification, (Center) the labeling func-
tions that drive the state transitions, and (Right) the
instructions and embeddings for each RM state.

We present a framework to automati-
cally construct LARMs from language-
and-image-based task descriptions by itera-
tively prompting an FM, as is illustrated
in Figure 3. More specifically, to pro-
gressively refine the RM specification, we
employ N rounds of self-improvement us-
ing paired generator and critic FMs (Tian
et al., 2024). A human may optionally in-
tervene by approving the output or provid-
ing corrective feedback (see Appendix A.4
for details). In practice, we find that FM-
generated reward machines are both inter-
pretable and easily modifiable, as they fol-
low a natural language specification. Fig-
ure 4 illustrates an automatically-constructed LARM for the UnlockToUnlock task, including a
text-based description of the RM (left), FM-generated labeling functions L (middle), and natural RM
state instructions and embeddings lu (right). All RMs and labeling functions used in this work are

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

shown in Appendix A.9 and A.10. While we use code to define labeling functions in this work, the
ARM-FM framework is general, supporting any boolean predicate (e.g. formal logic, or queries to
other FMs).

2.2 REINFORCEMENT LEARNING WITH LARMS

The introduction of the LARM uses an augmented state space that is the cross-product of the MDP
and RM states (S × U), and a reward function that is the sum of the MDP and RM rewards; we will
refer to this augmented MDP asM′, and it is illustrated in Figure 1 (Bottom). At timestep t, the
agent selects actions conditioned on the environment state and the language embedding of the current
LARM state: π(st, zut

). This language-based policy conditioning is the central mechanism enabling
generalization in our framework, creating a semantically grounded skill space where instructions like
“pick up a blue key" and "pick up a red key" are naturally close in the embedding space, unlocking a
pathway for broad experience reuse and efficient policy transfer.

During training, after the agent executes an action at ∼ π(st, zut
), the underlying MDP transitions to

st+1 and returns a reward Rt. The labeling function L(st+1, at) determines if a symbolic event has
occurred, which may induce a LARM transition ut+1 = δ(ut,L(st+1, at)), as well as an additional
reward RRM

t . The sum of the MDP and RM rewards are then used for learning: Rtotal
t = Rt +RRM

t .
This complete training procedure, adapted for a DQN agent, is formalized in Appendix A.3. The
effectiveness of well-designed LARMs yields theoretical guarantees (see Appendix A.5), ensuring
that the generated reward structure preserves the optimal policy of the original sparse task.

3 EMPIRICAL RESULTS

We present a series of experiments designed to evaluate the effectiveness and scalability of our method:
we test generalization and long-horizon planning in sparse-reward settings with the MiniGrid and
BabyAI suites (Chevalier-Boisvert et al., 2023) (Section 3.1), we evaluate scalability with a resource-
gathering task in a 3D, procedurally generated Minecraft world from Craftium (Malagón et al.,
2024) (Section 3.2), and we demonstrate the applicability of our approach to create RMs that work in
continuous control in challenging robotics tasks from Meta-World (McLean et al., 2025) (Section
3.3). Finally, we use XLand-MiniGrid (Nikulin et al., 2024) to evaluate the generalization
capabilities of RL agents trained with LARMs (Section 3.4). Screenshots of these environments are
shown in Figure 5 and environment-specific details in Appendix A.2. We used GPT-4o (Hurst et al.,
2024) to generate all LARM components for all tasks, with the exception of the 1,000 LARMs for
XLand-MiniGrid. These were generated using various open-source FMs of different scales for
our ablation study.

We report results averaged over 3 independent random seeds, with shaded regions and error bars
indicating one standard deviation. Comprehensive details for all environments as well as additional
results are presented in Appendix A.2, details on the baselines used and additional ablations in A.7,
and hyperparameters in A.11.

(a) MiniGrid (b) Craftium (c) Meta-World
(d)
XLand-MiniGrid

Figure 5: Evaluation environments. (a) MiniGrid: tests long-horizon planning with sparse rewards.
(b) Craftium: scaling complexity in a 3D Minecraft-inspired world. (c) Meta-World: continuous
robotic manipulation. (d) XLand-MiniGrid: tests multi-task generalization.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 SPARSE REWARD TASKS

We first evaluate our method on the MiniGrid suite of environments, which are challenging due
to sparse rewards. For these experiments, we use DQN (Mnih et al., 2013) as the base agent and
compare our method (DQN+RM) with a baseline with intrinsic motivation (DQN+ICM) (Pathak
et al., 2017), ReAct (Yao et al., 2023) – an LLM-as-agent baseline which generates reasoning traces
as it acts in the environment (Paglieri et al., 2024) – as well as an unmodified DQN. In Appendix
A.7.4 we include results comparing to a VLM-as-reward-model baseline proposed by Rocamonde
et al. (2023). The LARMs used to train our DQN+RM agent are shown in Appendix A.9.

Figure 6: Performance on MiniGrid-DoorKey environments of increasing size. The top row
shows performance on a fixed map layout, while the bottom row shows performance on procedurally
generated layouts. Our method consistently achieves higher rewards across all tasks.

Our agent successfully solves a suite of challenging exploration tasks where all baselines fail.
We first present results on the DoorKey task in Figure 6, showing performance across increasing
grid sizes. Our method consistently outperforms the baselines in all settings, including fixed maps
(top row) and procedurally generated maps where the layout is randomized each episode (bottom
row). We provide an additional analysis of our method’s success in Appendix A.7.2.

To further test our agent, we select three significantly harder tasks that require longer planning hori-
zons: UnlockToUnlock, BlockedUnlockPickup, and KeyCorridor. As demonstrated in
Figure 7, our agent is the only one capable of solving all three tasks and achieving near-perfect
reward, while all other baselines fail to make any progress.

Figure 7: Performance on complex, long-horizon MiniGrid tasks. Our method successfully solves
all three, while baselines show no learning.

3.2 SCALING TO COMPLEX 3D ENVIRONMENTS

We assess our method’s performance in a complex, procedurally generated 3D environment using
Craftium (Malagón et al., 2024), which is a Minecraft-based resource-gathering task. Here, the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

agent’s goal is to mine a diamond by first navigating the world to gather the required wood, stone,
and iron. The environment provides a sparse reward only upon collecting the final diamond. For this
set of experiments we use PPO (Schulman et al., 2017) as the base agent.

As shown in Figure 1 (right), PPO augmented with our generated LARM consistently completes the
entire task sequence, while the baseline PPO agent makes minimal progress. This result is particularly
significant, as RMs often require manual, expert-driven design which can become challenging in
complex, open-ended environments (Icarte et al., 2022). In contrast, we demonstrate the successful
application of a RM that is not only automatically generated by a FM but is also highly effective
in a complex 3D, procedurally generated environment. The LARM achieves this by effectively
decomposing the high-level goal into progressive subtasks and providing crucial intermediate rewards.
This experiment highlights our framework’s ability to handle increased action dimensionality and
visual complexity, and it showcases the capability of FMs to leverage their knowledge to automate
task decomposition.

3.3 ROBOTIC MANIPULATION

Our framework can automate the complex task of reward engineering for robotic manipu-
lation, providing dense supervision with a FM-generated LARM. We evaluate this capability
in continuous control domains using the Meta-World benchmark (McLean et al., 2025), where
designing dense reward functions typically requires extensive hand-engineering of low-level signals
(e.g., joint angles). Our approach bypasses this difficulty entirely. The resulting reward machine
offers richer learning signals than sparse rewards, enabling the agent to make more progress. As
demonstrated in Figure 8, our method achieves higher success rates than learning from sparse rewards
alone, using SAC (Haarnoja et al., 2018) as the base agent. Additional experiments on Meta-World
are provided in Appendix A.2.3.

Figure 8: Performance on Meta-World manipulation tasks. In most tasks, our method achieves
high success rates compared to the sparse reward agent.

3.4 GENERALIZATION THROUGH LANGUAGE EMBEDDINGS

1 3 5 10
0

0.2
0.4
0.6
0.8
1.0

Number of Simultaneous Environments

Su
cc

es
s

R
at

e

Baseline No RM Reward
No Embeddings Ours

Figure 9: Ablation study of the components of
ARM-FM. A Rainbow agent is trained on an in-
creasing number of tasks. While baselines fail
to generalize, only our full method (combining
LARM rewards and state embeddings) main-
tains high success as the number of tasks grows.

A key design choice in our framework is to con-
dition the agent’s policy on the language em-
beddings of the current RM state, which con-
trasts with prior work that uses separate policies
that do not permit knowledge sharing (Alsadat
et al., 2025). In the following, we (i) ablate the
roles of the LARM rewards and state embed-
dings in enabling an RL agent to learn robust,
multi-task policies; and (ii) demonstrate how
the compositional structure of LARMs leads to
zero-shot generalization on unseen tasks. For
clarity, we refer here to zero-shot generalization
across novel task compositions within the same
domain, rather than cross-domain transfer.

Both structured rewards and language-based
state conditioning are essential for learning
a robust, multi-task policy. To disentangle the
benefits of the LARM’s reward structure from

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the state embeddings, we conduct an ablation study in a multi-task setting. We train a single Rainbow
DQN (Hessel et al., 2018) agent on an increasing number of simultaneous XLand-MiniGrid tasks
and measure its average success rate. As shown in Figure 9, the baseline agent fails to generalize
as the number of tasks increases. Providing the policy with only the state embeddings gives it a
weak learning signal that degrades quickly. Conversely, providing only the LARM rewards enables
multi-task learning, but the policy struggles as it is unaware of the active sub-goal. Our full method,
which uses both the dense rewards from the LARM and the state embeddings to condition the policy,
is robust and maintains high performance even when trained on 10 simultaneous tasks.

The compositional structure of LARMs enables zero-shot generalization to novel tasks composed
of previously seen sub-goals. The ultimate test of our compositional approach is whether the trained
policy, π(at|st, zut

), can solve a novel task without any additional training. We design an experiment
where π is trained on a set of tasks, {TA, TB}, each with an associated LARM, RA and RB .
During training, the policy learns skills corresponding to the union of all sub-goal embeddings,
{zu|u ∈ UA ∪ UB}. At evaluation time, we introduce a new, unseen task, TC , with a novel LARM,
RC , generated by the FM. Zero-shot success is possible if the set of sub-goals in the new task
is composed of elements semantically familiar from training, i.e., if for any state u′ ∈ UC , its
embedding zu′ is close to an embedding seen during training. As illustrated in Figure 10, the agent
successfully solves Task C. When the LARM for Task C transitions to a state u′

t, the policy receives
the input (st, zu′

t
). Because the embedding zu′

t
(e.g., for "Pick up a blue key, Position yourself to the

right of the blue pyramid") is already located in a familiar region of the skill space, the policy can
reuse the relevant learned behavior to make progress and solve the unseen composite task.

Figure 10: Demonstration of zero-shot generalization. An agent is trained on a set of tasks (A, B). At
evaluation, it is given a new LARM for an unseen composite task (C). Because the sub-tasks in C
(e.g., "Pick up a blue key") are semantically familiar from training, the agent can reuse learned skills
to solve the novel task without any fine-tuning.

4 ARM-FM: IN-DEPTH ANALYSIS

We now conduct a fine-grained analysis of our method’s key components by evaluating (i) the quality
of the LARMs generated by different FMs; and (ii) the semantic structure of the state embeddings.

Larger foundation models generate syntactically correct task structures with significantly higher
reliability. To evaluate the FM’s generation capabilities, we sampled 1,000 diverse tasks from the
XLand-MiniGrid environment (Nikulin et al., 2024) and prompted various open-source models
to generate the corresponding reward machines, Python labeling functions, and natural language
instructions. We compare models of different scales from the Qwen (Qwen, 2025), Gemma (Gemma,
2025), Llama (Dubey et al., 2024) and Mistral families. We employed an LLM-as-judge protocol
to score the correctness of the generated artifacts (Gu et al., 2024), using Qwen3-30B-A3B-Instruct-
2507 as the judge (a FM not used to generate the LARMs). Figure 11a shows a clear scaling
trend: larger models like Qwen3-32B are significantly more capable of generating fully correct task
specifications. Interestingly, some models exhibit different strengths; for instance, Mistral-Small is
more adept at generating a valid RM structure than correct labeling code, highlighting the distinct
reasoning and coding capabilities required.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) FM generation correctness. (b) Semantic structure of state embeddings.

Figure 11: Analysis of FM-generated task components. (a) An LLM-as-judge evaluation across 1,000
tasks reveals a strong scaling trend, where larger foundation models more reliably generate correct
RM structures and verifier code. (b) PCA visualization of thousands of state instruction embeddings
shows a clear semantic structure, with start, middle, and end states forming distinct clusters.

The FM-generated state instructions produce a semantically coherent embedding space that
clusters related sub-goals. Beyond syntactic correctness, the agent’s ability to generalize depends on
the semantic quality of the state instruction embeddings. A well-structured embedding space should
group semantically similar sub-tasks together, regardless of the overarching task. We analyze this
by visualizing the embeddings of state instructions from the 1,000 generated XLand-MiniGrid
tasks using PCA (Abdi & Williams, 2010), as shown in Figure 11b. We used Qwen3-30B-A3B-
Instruct-2507 to obtain the embeddings. The embeddings form distinct and meaningful clusters, with
instructions corresponding to the start, middle, and end of a task occupying different regions of the
space. Notably, instructions with similar meanings from different tasks cluster together, confirming
that the FM produces a coherent representation. This underlying semantic structure is what enables a
shared policy to treat related sub-tasks in a similar manner, forming the foundation for skill transfer.

5 RELATED WORK

Reward Machines in Reinforcement Learning. RMs are a formal language representation of
reward functions that expose the temporal and logical structure of tasks, thus enabling decomposition,
transfer, and improved sample efficiency in learning (Icarte et al., 2018; 2022). For these reasons,
RMs and related formal methods for task specification have been applied to address diverse challenges,
from multiagent task decomposition (Neary et al., 2021; Smith et al., 2023) to robotic manipulation
and task planning (Camacho et al., 2021; He et al., 2015; Cai et al., 2021). Recent work continues to
broaden their applicability, by studying extensions that increase their expressivity (Varricchione et al.,
2025), and by addressing uncertainty in symbol grounding and labeling functions (Li et al., 2024;
2025). While RMs can be difficult to design for non-experts, Toro Icarte et al. (2019) and Xu et al.
(2020) propose methods that simultaneously learn RMs and RL policies, if the RM is unknown a
priori.

Recent work also explores FM-driven automata. While some approaches treat RM states as isolated
symbols Alsadat et al. (2025), requiring careful state mapping for policy re-use, others use FMs
with classic algorithms for automaton discovery Vazquez-Chanlatte et al. (2025), which requires
expert demonstrations. Our work differs by generating RMs directly from language descriptions,
without behavioral examples. Concurrently, methods like RAD embeddings Yalcinkaya et al. (2024)
have been proposed to condition the policy on the automaton’s topology. We take a complementary,
language-first approach: our FM generates language-aligned embeddings for the meaning of each
state, which our results show effectively grounds the policy.

By contrast, ARM-FM not only generates RMs from natural language task descriptions, but also
introduces a natural mechanism for connecting RM states by embedding their associated subtask

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

descriptions in a shared latent space. Conditioning the policy on these language embeddings can thus
enable knowledge transfer across similar subtasks, even when they occur in different RMs.

Foundation Models in Decision-Making. The emergence of FMs has inspired two main lines of
work in sequential decision-making. The first uses FMs directly as autonomous agents (Paglieri
et al., 2024). Approaches such as ReAct, (Yao et al., 2023) Voyager (Wang et al., 2023) and SayCan
Ahn et al. (2022) employ large language models (LLMs) to perform reasoning, planning, and acting.
While these systems demonstrate strong capabilities in complex domains, they heavily depend on
environment abstractions (e.g., textual interfaces or code as actions) that bypass many of the low-level
perception and control challenges central to RL. In contrast, we use RMs to structure policies for
learning agents, solving complex sparse reward tasks beyond the reach of non-learning, in-context
methods like ReAct which additionally require high-level textual interfaces.

A second line of research integrates FMs with RL training by using them to provide auxiliary signals
such as high-level goals or reward feedback. For example, Motif (Klissarov et al., 2023) elicits
trajectory-level preferences from FMs and distills them into a reward model. ONI (Zheng et al., 2024)
aggregates asynchronous LLM feedback into a continuously updated reward function. Eureka (Ma
et al., 2023) leverages evolutionary strategies to generate programmatic reward functions, which are
then used to train downstream policies. ELLM uses pretrained LLMs to suggest plausibly useful
goals and trains RL agents with goal-reaching rewards. These approaches illustrate the potential of
injecting FM knowledge to shape RL objectives. However, the outputs are typically limited to an
opaque reward model, rather than a structured, compositional representation of the task.

Our work differs in the structure of the FM–RL interface. We employ FMs to generate language-
aligned RMs: structured, compositional, and interpretable representations of task reward functions.
This formulation combines the expressivity of FMs with the explicit, modular decomposition, and
human-in-the-loop refinement enabled by RMs, offering a principled path toward hierarchical and
interpretable RL. Additionally, our method does not depend on specific environment abstractions
(Wang et al., 2023) or the availability of a natural language interface (Klissarov et al., 2023). We
provide a detailed comparison with existing methods in Section A.6 (see Table 4).

6 CONCLUSION

In this work, we introduce Automated Reward Machines via Foundation Models (ARM-FM), a
framework that bridges the critical gap between the semantic reasoning of foundation models and
the low-level control of reinforcement learning agents. Our central contribution is a method for
automatically generating Language-Aligned Reward Machines (LARMs) from natural language. We
demonstrated that by conditioning a single policy on the embeddings of the LARM’s natural language
state descriptions, we transform the reward machine from a static plan into a compositional library
of reusable skills. Our experiments confirmed the effectiveness of this approach. We showed that
ARM-FM solves a suite of long-horizon, sparse-reward tasks across diverse domains – from 2D
grid worlds to a procedurally generated 3D crafting environment – that are intractable for strong
RL baselines. Our analysis revealed that this performance is underpinned by a coherent semantic
structure in the state embedding space and that both the structured rewards and the state embeddings
are critical for robust multi-task learning. The ultimate validation of our compositional approach was
the demonstration of zero-shot generalization to a novel, unseen task without any additional training.

Ultimately, this work establishes language-aligned reward machines as a powerful and versatile
framework connecting foundation models, RL agents, and human operators. The modular, language-
based structure allows FMs to generate accurate plans, agents to learn generalizable skills, and
humans to easily inspect and refine the task specifications. While this paradigm is promising, one
tradeoff of our approach is the human verification step during RM generation. On one hand, this
step may be viewed as a feature – the language-based reward structures output by ARM-FM provide
an interface for humans to interpret and refine task specifications. On the other hand, this step
presupposes access to human verifiers. We note, however, that such verifiers are not strictly required,
although they can improve output quality when available. Furthermore, future work may reduce or
eliminate this dependence by exploiting the automaton-based structure of RMs to enable automated
self-correction, for example, through formal verification. More broadly, we believe this work paves
the way for a new class of RL agents that can translate high-level human intent and FM-generated
plans into competent, generalizable, and interpretable behavior.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Shayan Meshkat Alsadat, Jean-Raphaël Gaglione, Daniel Neider, Ufuk Topcu, and Zhe Xu. Using
large language models to automate and expedite reinforcement learning with reward machine. In
2025 American Control Conference (ACC), pp. 206–211. IEEE, 2025.

Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan.
Modular deep reinforcement learning for continuous motion planning with temporal logic. IEEE
robotics and automation letters, 6(4):7973–7980, 2021.

Alberto Camacho, Jacob Varley, Andy Zeng, Deepali Jain, Atil Iscen, and Dmitry Kalashnikov.
Reward machines for vision-based robotic manipulation. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 14284–14290. IEEE, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo De Lazcano Perez-Vicente, Lucas
Willems, Salem Lahlou, Suman Pal, Pablo Samuel Castro, and J K Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. In Thirty-
seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2023. URL https://openreview.net/forum?id=PFfmfspm28.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping for
reinforcement learning under sparse rewards. Advances in Neural Information Processing Systems,
35:5829–5842, 2022.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, and Yanghua Xiao. Reward shaping
to mitigate reward hacking in rlhf. arXiv preprint arXiv:2502.18770, 2025.

Gemma. Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint arXiv:2411.15594,
2024.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, S Kakade, and S Levine. Unpacking reward
shaping: Understanding the benefits of reward engineering on sample complexity. Adv. Neural Inf.
Process. Syst., abs/2210.09579, October 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Keliang He, Morteza Lahijanian, Lydia E Kavraki, and Moshe Y Vardi. Towards manipulation
planning with temporal logic specifications. In 2015 IEEE international conference on robotics
and automation (ICRA), pp. 346–352. IEEE, 2015.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

10

https://openreview.net/forum?id=PFfmfspm28


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward machines
for high-level task specification and decomposition in reinforcement learning. In International
Conference on Machine Learning, pp. 2107–2116. PMLR, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence
Research, 73:173–208, 2022.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Martin Klissarov, Mikael Henaff, Roberta Raileanu, Shagun Sodhani, Pascal Vincent, Amy Zhang,
Pierre-Luc Bacon, Doina Precup, Marlos C Machado, and Pierluca D’Oro. Maestromotif: Skill
design from artificial intelligence feedback. arXiv preprint arXiv:2412.08542, 2024.

Andrew Li, Zizhao Chen, Toryn Klassen, Pashootan Vaezipoor, Rodrigo Toro Icarte, and Sheila
McIlraith. Reward machines for deep rl in noisy and uncertain environments. Advances in Neural
Information Processing Systems, 37:110341–110368, 2024.

Andrew C Li, Toryn Q Klassen, Andrew Wang, Parand A Alamdari, and Sheila A McIlraith. Ground-
compose-reinforce: Tasking reinforcement learning agents through formal language. arXiv preprint
arXiv:2507.10741, 2025.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. arXiv preprint arXiv:2310.12931, 2023.

Mikel Malagón, Josu Ceberio, and Jose A Lozano. Craftium: An extensible framework for creating
reinforcement learning environments. arXiv preprint arXiv:2407.03969, 2024.

Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, Frank Röder, Tianhe Yu, Zhanpeng
He, K.R. Zentner, Ryan Julian, J K Terry, Isaac Woungang, Nariman Farsad, and Pablo Samuel
Castro. Meta-world+: An improved, standardized, RL benchmark. In The Thirty-ninth Annual
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2025.
URL https://openreview.net/forum?id=1de3azE606.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Cyrus Neary, Zhe Xu, Bo Wu, and Ufuk Topcu. Reward machines for cooperative multi-agent
reinforcement learning. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’21, pp. 934–942, 2021.

Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Artem Agarkov, Viacheslav Sinii, and Sergey
Kolesnikov. Xland-minigrid: Scalable meta-reinforcement learning environments in jax. Advances
in Neural Information Processing Systems, 37:43809–43835, 2024.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Benchmarking
agentic llm and vlm reasoning on games. arXiv preprint arXiv:2411.13543, 2024.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

11

https://openreview.net/forum?id=1de3azE606


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Septia Rani, Serena Booth, and Sarath Sreedharan. Goals vs. rewards: Towards a comparative study
of objective specification mechanisms. In 2025 20th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pp. 1558–1562. IEEE, 2025.

Juan Rocamonde, Victoriano Montesinos, Elvis Nava, Ethan Perez, and David Lindner. Vision-
language models are zero-shot reward models for reinforcement learning. arXiv preprint
arXiv:2310.12921, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sophia Smith, Cyrus Neary, and Ufuk Topcu. Automatic decomposition of reward machines for
decentralized multiagent reinforcement learning. In Proceedings of the 62nd IEEE Conference on
Decision and Control, pp. 5423–5430. IEEE, 2023.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu.
Toward self-improvement of llms via imagination, searching, and criticizing. Advances in Neural
Information Processing Systems, 37:52723–52748, 2024.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and Sheila
McIlraith. Learning reward machines for partially observable reinforcement learning. Advances in
neural information processing systems, 32, 2019.

Giovanni Varricchione, Toryn Q Klassen, Natasha Alechina, Mehdi Dastani, Brian Logan, and
Sheila A McIlraith. Pushdown reward machines for reinforcement learning. arXiv preprint
arXiv:2508.06894, 2025.

Marcell Vazquez-Chanlatte, Karim Elmaaroufi, Stefan Witwicki, Matei Zaharia, and Sanjit A Seshia.
L lm: Learning automata from demonstrations, examples, and natural language. 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu, and Bo Wu.
Joint inference of reward machines and policies for reinforcement learning. In Proceedings of the
International Conference on Automated Planning and Scheduling, volume 30, pp. 590–598, 2020.

Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia. Compositional
automata embeddings for goal-conditioned reinforcement learning. Advances in Neural Information
Processing Systems, 37:72933–72963, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Mingqi Yuan, Roger Creus Castanyer, Bo Li, Xin Jin, Wenjun Zeng, and Glen Berseth. Rlex-
plore: Accelerating research in intrinsically-motivated reinforcement learning. arXiv preprint
arXiv:2405.19548, 2024.

Qinqing Zheng, Mikael Henaff, Amy Zhang, Aditya Grover, and Brandon Amos. Online intrin-
sic rewards for decision making agents from large language model feedback. arXiv preprint
arXiv:2410.23022, 2024.

12

https://arxiv.org/abs/2505.09388


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE

In the preparation of this manuscript, we used large language models (LFMs) as writing assistants.
Their role was strictly limited to improving the grammatical correctness of our text.

The LLM was prompted to review author-written drafts and provide feedback on phrasing or flag
passages that were potentially unclear. No standalone text was generated by the LLM for inclusion in
the paper. All core scientific ideas, experimental results, and analyses are the original work of the
human authors, who take full responsibility for the final content.

A.2 ENVIRONMENT DETAILS

A.2.1 MINIGRID AND BABYAI ENVIRONMENTS

This section provides a detailed description of the MiniGrid and BabyAI environments used in our
experiments. These tasks are selected to test distinct agent capabilities, ranging from basic exploration
and generalization to complex, long-horizon planning and reasoning.

In the DoorKey task, the agent must find a key within the observable room, use it to unlock a door,
and navigate to a goal location. The sparse reward, given only upon reaching the goal, makes this
a classic exploration challenge. We use procedurally generated versions of this task to evaluate
generalization to novel map layouts.

The BlockedUnlockPickup task significantly increases the planning complexity. The agent must
first move a blocking object (a ball), retrieve a key from the main room, unlock a door, and finally
pick up a target box in a separate room. This requires a long and precise sequence of actions to solve.

UnlockToUnlock is a BabyAI task that tests hierarchical reasoning and memory. The agent must find
a key for a first door to navigate to a different room, which in turn contains a key for a second, final
door to the goal room. This creates a nested dependency structure with extremely sparse rewards,
making it exceptionally difficult.

The KeyCorridor environment is a difficult exploration task. The agent starts in a corridor with
multiple rooms, one of which contains a hidden key. It must explore the side rooms to find the key,
return to the corridor to unlock the correct door, and reach the final goal.

(a) DoorKey (b) BlockedUnlockPickup (c) UnlockToUnlock (d) KeyCorridor

A.2.2 CRAFTIUM

Craftium is a high-performance, open-source 3D voxel platform designed for reinforcement learning
research. Inspired by Minecraft, Craftium offers rich, procedurally generated open worlds and fully
destructible environments. Built on the C++-based Luanti engine, it provides significant performance
advantages over Java-based alternatives and integrates natively with modern RL frameworks through
the Gymnasium API. This makes it an ideal testbed for assessing agent performance on tasks requiring
generalization in visually complex, high-dimensional settings.

Within this platform, we designed a challenging open-world task where the agent’s sole objective is
to mine a diamond. The environment is procedurally generated for each episode, and a sparse reward

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 13: Performance on the Meta-World Shelf-Place task: With careful hyperparameter
tuning, an agent that maximizes the sum of sparse task and reward machine rewards significantly
outperforms the sparse reward agent.

is only awarded upon successful collection of the diamond. This task implicitly requires a long and
complex sequence of actions: gathering wood, stone, iron and diamond in this order.

As shown in Figure 1 (Right), a baseline PPO agent fails to learn a meaningful policy and makes
negligible progress on the task. In contrast, PPO augmented with our generated reward machine
consistently learns the full sequence of behaviors required to solve the task. This result demonstrates
that our framework effectively scales to visually complex, procedurally generated 3D environments
with extremely sparse rewards.

A.2.3 META-WORLD

We evaluate our method on a subset of Meta-World, a robotic manipulation benchmark originally
created for evaluating multi-task and meta-RL algorithms. We adapted this benchmark to our setting
by replacing the dense reward with a sparse reward signal, and we compare an agent that maximizes
only the sparse reward signal to an agent that maximizes the sum of the sparse reward and the reward
from the reward machine (Figure 14). We evaluated our method on the following tasks:

• Assembly: The agent task is to pick a nut and place into a peg

• Bin-Picking: The agent’s task is to pick a puck from one bin and place it in another bin.

• Pick-Place: The task is to pick a puck and place it in a specific goal location.

• Shelf-Place: The agent’s task is to pick a puck and place it on a shelf.

• Stick-Push: The agent’s task is to grab a stick and push a box using the stick.

The observation and action spaces share the same structure among the tasks. The observation vector
consists of the robot’s end-effector 3D coordinates, a scalar value indicating whether the gripper is
open or closed, and the position and orientation information of objects in the environment. At each
time step, the current observation is concatenated with the observation from the previous time step,
along with the goal position, resulting in a 39-dimensional vector. The action vector consists of three
displacement values (dx, dy, and dz) of the end effector, with an additional action for opening or
closing the gripper.

The result of the main experiment is shown in Figure 8. We also show in Figure 13 that, with
more careful hyperparameter tuning, the agent augmented with the reward from the reward machine
can solve the task with a high success rate. Moreover, the reward machine can be combined with
off-the-shelf intrinsic exploration rewards, such as RND (Figure 15). This results in overall better
performance in most environments compared to the results in Figure 8.

A.2.4 XLAND-MINIGRID

To evaluate our agent’s generalization capabilities and its ability to adapt to novel situations, we
use the XLand-MiniGrid benchmark. This suite of environments is specifically designed for
meta-reinforcement learning research, combining the procedural diversity and depth of DeepMind’s
XLand with the minimalism and fast iteration of MiniGrid.

The entire framework is implemented from the ground up in JAX, a design choice that enables
massive parallelization and makes large-scale experimentation accessible on limited hardware. Its

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 14: Performance on the Meta-World on five tasks, our method offers richer reward signal than
sparse reward.

Figure 15: Performance on the Meta-World: When combining the reward machine with the RND
exploration term, our method can make use of exploration bonuses, resulting in better overall
performance.

core feature is a compositional system of rules (e.g., "keys open doors of the same color") and goals
(e.g., "go to the blue box") that can be arbitrarily combined to procedurally generate a vast and
diverse distribution of distinct tasks. This allows for the creation of structured curricula and rigorous
tests of an agent’s ability to infer the underlying rules of a new environment and adapt its strategy
accordingly.

In our experiments in Section 4, we leverage XLand-MiniGrid to assess how effectively our
framework can adapt across this wide distribution of tasks. The primary challenge in this setting is
not to master a single, static task, but to develop a policy that can quickly recognize the objectives
and constraints of a newly sampled environment and formulate a successful plan on the fly. This
makes it a powerful testbed for evaluating the adaptability and generalization of our approach.

Figure 16: A sample task from our XLand-MiniGrid distribution, with the optimal solution path
highlighted. The agent must infer that placing the blue pyramid near the purple square creates a red
circle, which must then be moved to the green goal. A distractor object (yellow circle) can render the
task unsolvable. The agent is unaware of these rules, and object positions are randomized to test for
adaptation.

XLand-MiniGrid provides a formal language for procedurally generating tasks from a combination
of goals, rules, and initial object placements. This allows for the creation of a vast and diverse task
space. The complete sets of supported goals and rules, adapted from the original XLand-MiniGrid
paper, are detailed in Tables 1 and 2. Figure 17 illustrates our framework’s zero-shot generalization
capabilities within this formal language, mirroring the experiment from Figure 10. An agent trained
on tasks A and B can successfully solve the novel composite Task C, demonstrating its ability to
understand and execute policies based on the underlying formal structure of the environment.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 1: Supported goals in the XLand-MiniGrid formal language.

Goal Meaning ID

EmptyGoal Placeholder goal, always returns False 0
AgentHoldGoal(a) Whether agent holds a 1
AgentOnTileGoal(a) Whether agent is on tile a 2
AgentNearGoal(a) Whether agent and a are on neighboring tiles 3
TileNearGoal(a, b) Whether a and b are on neighboring tiles 4
AgentOnPositionGoal(x, y) Whether agent is on (x, y) position 5
TileOnPositionGoal(a, x, y) Whether a is on (x, y) position 6
TileNearUpGoal(a, b) Whether b is one tile above a 7
TileNearRightGoal(a, b) Whether b is one tile to the right of a 8
TileNearDownGoal(a, b) Whether b is one tile below a 9
TileNearLeftGoal(a, b) Whether b is one tile to the left of a 10
AgentNearUpGoal(a) Whether a is one tile above agent 11
AgentNearRightGoal(a) Whether a is one tile to the right of agent 12
AgentNearDownGoal(a) Whether a is one tile below agent 13
AgentNearLeftGoal(a) Whether a is one tile to the left of agent 14

Table 2: Supported rules in the XLand-MiniGrid formal language.

Rule Meaning ID

EmptyRule Placeholder rule, does not change anything 0
AgentHoldRule(a) → c If agent holds a replaces it with c 1
AgentNearRule(a) → c If agent is on neighboring tile with a replaces it with c 2
TileNearRule(a, b) → c If a and b are on neighboring tiles, replaces one with c and removes the other 3
TileNearUpRule(a, b) → c If b is one tile above a, replaces one with c and removes the other 4
TileNearRightRule(a, b) → c If b is one tile to the right of a, replaces one with c and removes the other 5
TileNearDownRule(a, b) → c If b is one tile below a, replaces one with c and removes the other 6
TileNearLeftRule(a, b) → c If b is one tile to the left of a, replaces one with c and removes the other 7
AgentNearUpRule(a) → c If a is one tile above agent, replaces it with c 8
AgentNearRightRule(a) → c If a is one tile to the right of agent, replaces it with c 9
AgentNearDownRule(a) → c If a is one tile below agent, replaces it with c 10
AgentNearLeftRule(a) → c If a is one tile to the left of agent, replaces it with c 11

For the experiments in Section 4, we evaluate performance on the first 1,000 tasks from the medium-
1m benchmark in XLand-MiniGrid. The specific seeds visualized in Figure 9 are: 197 (1-task); 212,
197, 260 (3-task); 212, 197, 260, 859, 594 (5-task); and 212, 197, 260, 859, 594, 571, 602, 751, 660,
616, for the 10-task setting.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 17: Demonstration of zero-shot generalization. An agent is trained on a set of tasks (A, B). At
evaluation, it is given a new reward machine for an unseen composite task (C). Because the sub-tasks
in C (e.g., "Pick up a blue key") are semantically familiar from training, the agent can reuse learned
skills to solve the novel task without any fine-tuning.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 DQN TRAINING WITH LARMS

This section provides a detailed description of the reinforcement learning training procedure used
in our work. We adapt the standard Deep Q-Network (DQN) algorithm (Mnih et al., 2013) to
incorporate Language-Aligned Reward Machines (LARMs). The core idea is to augment the agent’s
state representation with the current state of the LARM and to use the LARM to provide a dense,
structured reward signal.

Algorithm 1 formalizes this process. The key modifications to the standard DQN algorithm are
highlighted in blue. These changes include:

1. Augmented State Input: The policy, represented by the Q-network, takes as input not only
the environment state st but also the language embedding of the current LARM state, ϕ(ut).
This allows the agent to learn state- and task-dependent skills.

2. LARM State Transitions: After each environment step, the LARM is updated based on the
new environment state st+1 and the action at taken. The labeling function L determines if a
relevant event occurred, which in turn may cause a transition to a new LARM state ut+1.

3. Combined Reward Signal: The agent learns from a composite reward signal that is the sum
of the base environment reward Rt and the reward from the LARM, RRM

t . This provides
dense, incremental feedback for completing subtasks.

4. Augmented Experience Replay: The transitions stored in the replay memory D are
augmented to include the LARM states, i.e., (st, ut, at, R

total
t , st+1, ut+1). This ensures the

agent learns the Q-values over the joint state space.

By conditioning the policy on semantic embeddings of LARM states, the agent can effectively
generalize across related subtasks, leading to improved sample efficiency and performance on
complex, long-horizon tasks.

Algorithm 1 DQN Training with Language-Aligned Reward Machines (LARMs)

1: Initialize: Replay memory D to capacity N .
2: Initialize: Q-network Q with random weights θ.
3: Initialize: Target Q-network Q̂ with weights θ− ← θ.
4: Initialize: Update frequency C for the target network.
5: Input: LARM (U, uI , δ, R,L) from Section 2.1.
6: Input: State instruction embedding function ϕ(·).
7: for episode = 1 to M do
8: Reset environment to get initial state s0.
9: Reset LARM to its initial state, u0 ← uI .

10: for t = 0 to T-1 do
11: With probability ϵ, select a random action at.
12: Otherwise, select at = argmaxa Q(st, ϕ(ut), a; θ).
13: Execute action at in the environment, observe reward Rt and next state st+1.
14: Get LARM event via labeling function: et = L(st+1, at).
15: Get next LARM state: ut+1 = δ(ut, et).
16: Get LARM reward: RRM

t = R(ut, et).
17: Compute total reward: Rtotal

t = Rt +RRM
t .

18: Store transition (st, ut, at, R
total
t , st+1, ut+1) in D.

19: Sample a random minibatch of transitions (sj , uj , aj , R
total
j , sj+1, uj+1) from D.

20: Set target yj =

{
Rtotal

j if episode terminates at step j + 1

Rtotal
j + γmaxa′ Q̂(sj+1, ϕ(uj+1), a

′; θ−) otherwise

21: Perform a gradient descent step on (yj −Q(sj , ϕ(uj), aj ; θ))
2.

22: Every C steps, update the target network: θ− ← θ.
23: end for
24: end for

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.4 HUMAN-IN-THE-LOOP LARM GENERATION

In Figure 3, we show the self-improvement loop used to generate reward machines, where we
instantiate both generator and critic foundation models to iteratively refine the LARMs. A key
advantage of our LARM framework is that the interface to define and refine them is natural language,
which allows human operators to easily interpret and intervene in the generation process. This
section provides a transparent breakdown of the specific human-in-the-loop efforts involved for each
environment presented in this paper, summarized in Table 3. To facilitate this, we implemented
an interactive interface where a human operator could replace the critic foundation model during
any round of self-improvement. In this mode, the generator model would receive the full history of
LARM attempts and critic feedbacks, followed by a new refinement comment provided directly by
the human. This design allowed us to seamlessly integrate both FM-generated and human-provided
feedback within the same improvement loop.

Table 3: Summary of Human-in-the-Loop Effort for LARM Generation.

Environment Human? Description of Intervention

MiniGrid-DoorKey (all sizes) × No intervention. The FM self-improvement loop was sufficient.
Human check confirmed correctness after 3 iterations.

MiniGrid-UnlockPickup ✓ Yes. The initial LARM missed an edge case: the agent dropping a
key after pickup. A human provided feedback to add this transition
(reflecting a loss of progress). The FM incorporated this, and the
task was solved.

MiniGrid-BlockedUnlockPickup × No intervention. The FM self-improvement loop was sufficient.

MiniGrid-KeyCorridorS3R3 ✓ Yes. The originally generated LARM was too sparse. A human
provided high-level advice to "define intermediate rewards" and
suggested "crossing doors" or "entering new rooms" as progress
signals. The FM then generated a denser, effective LARM.

Craftium × No intervention. This was notable, as the FM successfully leveraged
its latent knowledge of Minecraft-like game mechanics without
guidance.

XLand-MiniGrid × No human intervention on any of the 1,000 generated LARMs.
Correctness was validated automatically using the LLM-as-judge
method (as shown in Figure 11, left).

MetaWorld (all tasks) ✓ Yes. The initial reward values in the LARM were leading the agent
to a local minima, for example, grasping the object without moving
it to the specified location. A human scaled the reward values for
specific events in the LARM to avoid the local minima, without
changing the events themselves which we assessed appropriate.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 THEORETICAL PROPERTIES OF LARM-GUIDED RL

In this section, we formalize the relationship between the original sparse-reward environment and
the dense-reward objective created by the LARM. We show that under the conditions met by our
generated LARMs, optimizing the LARM-augmented reward preserves the optimal policy of the
original task.

Preliminaries. As defined in Section 2, let the environment be an MDPM = ⟨S,A, P, γ⟩. The
original task is defined by a sparse reward function Rtask(s) = Rgoal if s ∈ Sgoal (a terminal state),
and 0 otherwise. The LARM is A = ⟨U, u0, F, δ, RLARM⟩, where δ : U × L → U is the transition
function and RLARM is the LARM reward function. This induces the cross-product MDPMLARM,
where the agent’s reward rt is determined by RLARM based on transitions in A.

[Optimality Preservation] Assume the generated LARM A contains no positive reward cycles (i.e.,
for any cycle ui → ... → ui, the sum of rewards RLARM along the cycle is ≤ 0). Assume also that
the final reward Rgoal (obtained on transition to an accepting state u ∈ F ) is strictly greater than
the cumulative reward of any non-terminal trajectory. Then, a policy π∗ that is optimal for the
cross-product MDPMLARM is also optimal for the original sparse MDPM.

Proof Sketch. The condition of no positive reward cycles is key. It ensures that the value of any
non-terminal looping trajectory is bounded and not preferable to progressing toward the goal. Any
cycles in the LARM (e.g., for losing progress) must have a non-positive cumulative reward, which
prevents the agent from creating reward traps. Because the terminal reward Rgoal is set to be strictly
dominant, the optimal policy forMLARM will always maximize value by finding a path to an accepting
state u ∈ F . The intermediate rewards from RLARM thus act as potential-based shaping to guide
exploration, densifying the sparse signal without altering the set of optimal policies.

This proposition holds for the LARMs used in this paper (see Appendix A.9). For instance, the
LARM for UnlockPickup contains cycles, such as losing a key ((u1, lost_y_key) ->
u0). However, this transition has a negative reward (-0.1) that exactly cancels the positive reward
from acquiring the key (+0.1). This "potential-based" structure ensures no positive cycles are
created, satisfying the proposition’s condition. The DoorKey LARM contains a similar zero-sum
cycle. The Craftium LARM is a Directed Acyclic Graph and thus trivially satisfies the condition.
All other LARMs used in our experiments adhere to this property.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.6 COMPARISON WITH RELATED WORK

To further clarify our contributions, we provide a detailed comparison with prior work in Table 4. The
table is split into two categories: (1) methods that use FMs to synthesize or interact with automata
and (2) general FM-guided RL frameworks. This comparison highlights that ARM-FM is unique in
its ability to directly generate a complete, semantically-grounded automaton from language without
requiring expert demonstrations, and then use it to train a learning agent.

Table 4: Comparison of ARM-FM with FM-driven automata and FM-guided RL frameworks. Our
method’s advantages are highlighted in bold.

Method Generates RM? Requires Demos? Agent Type Key Assumption Primary FM Output / Role
FMs for Automata Synthesis

L*LM (Vazquez-Chanlatte et al., 2025) Yes Yes No agents trained Expert Demonstrations Answers membership queries for the L* algo-
rithm.

RAD (Yalcinkaya et al., 2024) No No RL (Learned) RMs are given -
Alsadat et al. (2025) Yes No RL (Learned) SAT-based RM learning FMs generate text as feedback to a SAT-based

algorithm to learn RMs
ARM-FM (Ours) Yes No RL (Learned) Language Specification FMs generate LARM + semantic embed-

dings from language end-to-end.
FM-Guided RL Frameworks

ReAct (Yao et al., 2023) No No In-Context (CoT) Text Interface Generates text-based Chain-of-Thought reason-
ing and actions.

SayCan (Ahn et al., 2022) No Yes (Skills) Pre-trained Skills Pre-defined Skills Scores affordances for a set of pre-defined
skills.

Voyager (Wang et al., 2023) No No In-Context (Code) Code Interface Generates Python code for exploration
(Minecraft-specific).

Eureka (Ma et al., 2023) No No RL (Learned) Reward Src Code Evolves the codebase of a programmatic reward
function.

Motif (Klissarov et al., 2023) No No RL (Learned) Text Captions Distills FM-generated trajectory preferences
into a reward model.

MaestroMotif (Klissarov et al., 2024) No No RL (Learned) Manually-defined skills Uses LLM feedback to design rewards for pre-
defined skills

ELLM (Du et al., 2023) No No RL (Learned) FM query at each state Suggests plausibly useful goals based on the
agent’s current state.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.7 ADDITIONAL RESULTS

A.7.1 MINIGRID - EXPLORATION BASELINES

For clarity, the main paper presents results against the best-performing exploration baseline from our
evaluation, the Intrinsic Curiosity Module (ICM). In this section, we provide a detailed comparison
of the three intrinsic motivation methods we tested: ICM, Random Network Distillation (RND),
and Disagreement. All baseline implementations are adapted from the well-tested RLeXplore
library (Yuan et al., 2024).

Figure 18 shows the comparative performance of these methods on the DoorKey tasks. The results
demonstrate that ICM consistently outperformed the other methods in our tested environments,
justifying its selection as the primary exploration baseline for our main analysis.

Figure 18: Comparison of exploration baselines (ICM, RND, Disagreement) on the MiniGrid
DoorKey tasks. ICM demonstrates the strongest and most consistent performance, establishing it as
the most competitive exploration baseline for our experiments.

A.7.2 MINIGRID - ANALYSIS OF LARM REWARDS

This section provides a fine-grained analysis of how LARM-generated rewards guide an agent toward
solving complex, sparse-reward tasks. The LARM effectively decomposes a sparsely rewarded
problem into a sequence of sub-goals, providing a dense, structured reward signal that serves as a
learning curriculum.

Figure 19 illustrates this process for the UnlockToUnlock task (see Appendix A.9 for the full RM).
The plot shows that during training, the agent first learns to make incremental progress by maximizing
the LARM reward (blue curve), which is awarded for completing key sub-goals like collecting
keys and opening doors. Once the agent has reliably learned to follow this reward curriculum
to its completion (indicated by the dashed line), the final task success rate (orange curve), which
corresponds to a single sparse reward for reaching the goal, rises sharply. This demonstrates that the
LARM successfully bridges the credit assignment gap, enabling the agent to solve a task that would
otherwise be intractable due to the sparse environment reward.

A.7.3 MINIGRID - LONGER TRAINING

For completeness, we provide extended training results for the DoorKey experiments. Figure 20
shows the learning curves for the same agents when trained for 1M and 10M steps. These results
confirm that performance saturates relatively early, validating our decision to focus on the initial
phase of learning in the main paper’s analysis.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 19: Analysis of LARM rewards during training in the UnlockToUnlock environment. The
agent first learns to maximize the structured reward provided by the LARM for completing sub-goals
(blue curve). Once the sub-goal sequence is mastered (dashed line), the agent rapidly achieves a high
success rate on the sparsely-rewarded final objective (orange curve).

(a) Training for 1M environment steps.

(b) Training for 10M environment steps.

Figure 20: Extended training runs for the DoorKey experiments shown in Figure 6. The plots show
performance up to 1M steps (a) and 10M steps (b). As agent performance plateaus early in training
(around 300k steps), we present the shorter horizon in the main paper for clarity.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.7.4 MINIGRID - VFMS AS ZERO-SHOT REWARD MODELS

To provide a more comprehensive comparison, we evaluated the performance of a Vision-Language
Model (VLM) used directly as a zero-shot reward function, following the methodology proposed by
Rocamonde et al. (2023). For this baseline, we employed CLIP (Radford et al., 2021) to generate
a dense reward signal. The reward at each timestep is calculated as the cosine similarity between
the CLIP embedding of the current visual observation (an image of the environment state) and
the embedding of a target language description specifying the task goal. We implemented the
goal-baseline regularization technique from the original work to stabilize training, using a negative
description as the baseline.

The positive goal descriptions and the shared baseline description for each MiniGrid task were
specified as follows:

• MiniGrid-DoorKey: “The agent (red triangle) has opened the door (color-outlined square)
and reached the goal room (green square).”

• MiniGrid-BlockedUnlockPickUp: “The agent (red triangle) has moved the ball (circle)
away from the door (color-outlined square), has picked up the key, opened the door, and is
now in the goal room (box square).”

• MiniGrid-UnlockToUnlock: “The agent (red triangle) has picked up both keys, opened
both doors, and is now in the goal room (box square).”

• Baseline (Negative Description): “The agent (red triangle) is far from the goal, has not
picked up any key, and has not opened any door.”

The results of this baseline are presented in Figure 21. The CLIP-based reward model failed to
make any progress across all evaluated tasks. Consequently, we omitted these results from the main
paper for clarity. We hypothesize that this failure stems from known limitations of current VFMs,
particularly their challenges with spatial reasoning and their struggle to interpret visually abstract
or out-of-distribution environments like MiniGrid. As noted by Rocamonde et al. (2023), such
failure modes are common when applying general-purpose VFMs to specialized domains that require
nuanced visual understanding.

Figure 21: Performance of an agent trained using CLIP embeddings as a direct reward signal on
MiniGrid. The VLM-based reward fails to provide a sufficient learning signal for the agent to make
progress.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

A.8 PROMPTS

Below are the prompts for the generator and critic Foundation Models (FMs) for the DoorKey
environment. This same prompt structure is used for all tasks, varying only the mission description
for each environment and details on the specific environment API to generate the python labeling
functions.

Prompt: Reward Machine Generator

Environment:
• Agent: A colored triangle.
• Key: Unlocks a door of the same color.
• Door: A color-outlined square within a wall.
• Goal: A colored square in a room (e.g., green).
• Episode ends: Upon reaching the goal (+1 reward) or reaching the step limit (0

reward).
Mission: "This environment has a key that the agent must pick up in order to unlock a door
and then get to the green goal square."

Your Role: Reward Machine Generator
Generate a concise, correct, and compact reward machine in plaintext, wrapped in
‘‘‘plaintext‘‘‘ tags.
Your machine must:

1. Densify the reward signal to guide the agent effectively towards the goal.
2. Use Boolean-predicate events that are functions of the environment state. Do not

use raw actions as events.
3. Maximize compactness with the fewest states and transitions possible, collapsing

irrelevant events into a per-state (state, else) -> state transition.
4. Adhere to the strict format provided below. Do not add comments or extra text.
5. Use clear event names that are valid Python function names.

Action Set (for reference): turn_left, turn_right, move_forward,
pickup, drop, toggle

REWARD_MACHINE:
STATES: u0, u1, ...
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, <event>) -> u1
(u0, else) -> u0
...
REWARD_FUNCTION:
(u0, <event>, u1) -> X
...

Only list non-zero rewards in the REWARD_FUNCTION. All other transitions assume a
reward of 0.

Generate the reward machine now.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Instructions: Reward Machine Critic

Your Role: Reward Machine Critic
Evaluate a candidate reward machine for the MiniGrid environment. Focus on correctness,
compactness, completeness, and format.

0. Compactness
• Ensure the fewest possible states and transitions are used.
• All irrelevant or zero-reward events in a state must be collapsed into a single
(state, else) -> state transition.

1. Boolean-Predicate Events
• Confirm that each transition’s event is a Boolean predicate, not a raw action.
• These predicates must reflect meaningful state conditions.

2. Coverage of Events
• Every possible change in key predicates must be either explicitly handled or

aggregated under that state’s else transition.
• Identify missing edge-case predicates

3. Dense Rewards + Penalties
• Check for positive rewards on transitions that signify progress.
• Verify that penalties or zero-rewards are used for regressions
• Suggest additions for under-penalized failure modes.
• Ensure reward magnitudes do not allow for reward hacking

4. Mission Logic
• Ensure the sequence of states correctly enforces the logic required to solve the

task.
• Verify there are no unreachable states or unintentional loops.

5. Format & Clarity
• The submission must strictly follow the specified format:
REWARD_MACHINE:
STATES: u0, u1, ...
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, <event>) -> u1
(u0, else) -> u0
...
REWARD_FUNCTION:
(u0, <event>, u1) -> X
...

• Only non-zero rewards should be listed in the REWARD_FUNCTION.
• There must be no comments or extra text within the plaintext block.
• Event names must be descriptive Boolean predicates

Your Response Format:
• Cite specific transitions or sections of the machine in your evaluation.
• List concrete, actionable changes
• Be concise and to the point, while not missing any important details.

End your response with one of the following two verdicts:
• NO CHANGES NEEDED
• CHANGES REQUIRED followed by a bullet-list of the necessary fixes.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Labeling Function Generator

• Task: Implement each event from the reward machine below as a Python boolean
function. Each function must return True if the event condition holds in the current
state (env), otherwise False.

• Reward machine: {REWARD_MACHINE}
• Guidelines:

– Function Naming and Signatures
* Define one function per event in the RM.
* Each function name must exactly match an event name.
* Each function should take only env as its argument.

– Implementation Rules
* Use only the environment attributes and methods below:

· env.grid.get(i, j) — Access object at (i, j)
· env.agent_pos — Agent’s position
· env.agent_dir — Agent’s direction (0-3)
· env.carrying — Object agent is holding, e.g., a Key or None
· env.width, env.height — Grid dimensions

– Object Information
* WorldObj is the base class.

· A Door has .is_open and .is_locked attributes.
· A Key has .type == "key".
· A Goal has .type == "goal".

* You cannot import classes. Instead, check object attributes (e.g.,
obj.type == "key").

– Output Rules
* Only output clean, valid Python code.
* No comments, explanations, or extra output.
* Do not define a function for the else event.
* Wrap your final output in triple backticks with a python tag for formatting.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Labeling Functions Critic

Your Role: Event-Function Critic
You are evaluating Python functions that implement Boolean event predicates for a given
reward machine (RM). Your job is to verify that the logic is correct, complete, and aligned
with the RM specification.

Task that the given RM should solve:
"This environment has a key that the agent must pick up in order to unlock a door and then
get to the green goal square."

Evaluation Criteria
1. Boolean Predicate Fidelity

• Each function name must exactly match an event name from the RM.
• Each unique event in the RM must have a corresponding function.
• The function must return True if and only if the corresponding predicate becomes

true in the current environment state.

2. Coverage & Scope
• Every event in the RM must have a corresponding function.
• There should be no extra functions that are not used in the RM.

3. Correct Use of env API The following attributes and methods are available from the
env object.
env.grid.get(i, j) # Access object at (i, j)
env.agent_pos # (x, y) position of the agent
env.agent_dir # Integer: direction the agent is facing
env.carrying # Object being carried (or None)
env.width, env.height # Dimensions of the grid

Object types must be checked by attribute, as classes cannot be imported:
• A Door has .is_open and .is_locked attributes.
• A Key has .type == "key".
• A Goal has .type == "goal".

Functions must inspect these properties to determine predicate truth.

4. Clarity & Format
• Each function must be standalone, containing only executable code.
• Do not include comments, extra print statements, or surrounding explanations.
• The code should be clean, idiomatic Python.

When You Respond
• Point out any missing, misnamed, or extraneous functions.
• Highlight any logic that is incomplete, incorrect, or inefficient.
• Suggest precise code fixes where needed.
• End your review with one of the following two verdicts, exactly as shown:

NO CHANGES NEEDED

or
CHANGES REQUIRED
- [List of bullet-pointed issues and suggested fixes]

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A.9 REWARD MACHINES

DoorKey

REWARD_MACHINE:
STATES: u0, u1, u2, u3
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, has_key) -> u1
(u0, else) -> u0
(u1, is_door_in_env_open) -> u2
(u1, not_has_key) -> u0
(u1, else) -> u1
(u2, at_goal) -> u3
(u2, else) -> u2
(u3, else) -> u3
REWARD_FUNCTION:
(u0, has_key, u1) -> 0.2
(u1, is_door_in_env_open, u2) -> 0.3
(u1, not_has_key, u0) -> -0.2
(u2, at_goal, u3) -> 1.0

BlockedUnlockPickup

REWARD_MACHINE:
STATES: u0, u1, u2, u3, u4
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, has_ball) -> u1
(u0, else) -> u0
(u1, has_key) -> u2
(u1, else) -> u1
(u2, door_unlocked) -> u3
(u2, no_key) -> u1
(u2, else) -> u2
(u3, has_box) -> u4
(u3, else) -> u3
(u4, else) -> u4
REWARD_FUNCTION:
(u0, has_ball, u1) -> 0.2
(u1, has_key, u2) -> 0.2
(u2, door_unlocked, u3) -> 0.2
(u2, no_key, u1) -> -0.3
(u3, has_box, u4) -> 1

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

UnlockToUnlock

REWARD_MACHINE:
STATES: u0, u1, u2, u3, u4, u5
INITIAL_STATE: u0

TRANSITION_FUNCTION:
(u0, got_y_key) -> u1
(u0, else) -> u0
(u1, door_y_opened) -> u2
(u1, lost_y_key) -> u0
(u1, else) -> u1
(u2, got_r_key) -> u3
(u2, else) -> u2
(u3, door_r_opened) -> u4
(u3, lost_r_key) -> u2
(u3, else) -> u3
(u4, entered_goal_room) -> u5
(u4, got_ball) -> u5
(u4, else) -> u4
(u5, else) -> u5

REWARD_FUNCTION:
(u0, got_y_key, u1) -> 0.1
(u1, door_y_opened, u2) -> 0.2
(u1, lost_y_key, u0) -> -0.1
(u2, got_r_key, u3) -> 0.1
(u3, door_r_opened, u4) -> 0.2
(u3, lost_r_key, u2) -> -0.1
(u4, entered_goal_room, u5) -> 0.3
(u4, got_ball, u5) -> 1

KeyCorridor

REWARD_MACHINE:
STATES: u0, u1, u2, u3, u4
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, on_purple_door_and_not_has_key) -> u1
(u0, else) -> u0
(u1, got_key) -> u2
(u1, else) -> u1
(u2, on_purple_door_and_has_key) -> u3
(u2, opened_red_door) -> u4
(u2, else) -> u2
(u3, opened_red_door) -> u4
(u3, else) -> u3
(u4, else) -> u4
REWARD_FUNCTION:
(u0, on_purple_door_and_not_has_key, u1) -> 0.1
(u1, got_key, u2) -> 0.2
(u2, on_purple_door_and_has_key, u3) -> 0.25
(u2, opened_red_door, u4) -> 0.5
(u3, opened_red_door, u4) -> 0.5

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Craftium

REWARD_MACHINE:
STATES: u0, u1, u2, u3
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, get_wood) -> u1
(u0, else) -> u0
(u1, get_stone) -> u2
(u1, else) -> u1
(u2, get_iron) -> u3
(u2, else) -> u2
(u3, get_diamond) -> u4
(u3, else) -> u3
REWARD_FUNCTION:
(u0, get_wood, u1) -> 0.25
(u0, get_stone, u1) -> 0.5
(u0, get_iron, u1) -> 0.75
(u0, get_diamond, u1) -> 1.25

Metaworld

REWARD_MACHINE:
STATES: u0, u1, u2, u3, u4
INITIAL_STATE: u0
TRANSITION_FUNCTION:
(u0, near_object) -> u1
(u0, grasp_success) -> u2
(u0, else) -> u0
(u1, grasp_success) -> u2
(u1, not_near_object) -> u0
(u1, else) -> u1
(u2, not_grasp_success) -> u0
(u2, object_near_goal) -> u3
(u2, success) -> u4
(u2, else) -> u2
(u3, not_object_near_goal) -> u2
(u3, success) -> u4
(u3, else) -> u3
(u4, else) -> u4
REWARD_FUNCTION:
(u0, near_object, u1) -> 0.20
(u1, grasp_success, u2) -> 0.40
(u0, grasp_success, u2) -> 0.40
(u1, not_near_object, u0) -> -0.20
(u2, not_grasp_success, u0) -> -0.40
(u2, object_near_goal, u3) -> 0.80
(u3, not_object_near_goal, u2) -> -0.80
(u2, success, u4) -> 1.50
(u3, success, u4) -> 1.50

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

A.10 LABELING FUNCTIONS

Labeling Functions for DoorKey

1 def has_key(env):
2 return env.carrying is not None and env.carrying.type == "key"
3

4 def is_door_in_env_open(env):
5 for i in range(env.height):
6 for j in range(env.width):
7 obj = env.grid.get(j, i)
8 if obj is not None and obj.type == "door" and obj.

is_open:
9 return True

10 return False
11

12 def not_has_key(env):
13 return not (env.carrying is not None and env.carrying.type == "

key")
14

15 def at_goal(env):
16 x, y = env.agent_pos
17 obj = env.grid.get(x, y)
18 return obj is not None and obj.type == "goal"

Labeling Functions for BlockedUnlockPickup

1 def has_ball(env):
2 return env.carrying is not None and env.carrying.type == "ball"
3

4 def has_key(env):
5 return env.carrying is not None and env.carrying.type == "key"
6

7 def door_unlocked(env):
8 for i in range(env.width):
9 for j in range(env.height):

10 obj = env.grid.get(i, j)
11 if obj is not None and hasattr(obj, "is_locked") and

obj.is_locked == False:
12 return True
13 return False
14

15 def no_key(env):
16 return not has_key(env)
17

18 def has_box(env):
19 return env.carrying is not None and env.carrying.type == "box"

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Labeling Functions for UnlockToUnlock

1 def got_y_key(env):
2 return (
3 env.carrying is not None
4 and getattr(env.carrying, "type", None) == "key"
5 and getattr(env.carrying, "color", None) == "yellow"
6 )
7

8 def door_y_opened(env):
9 for i in range(env.width):

10 for j in range(env.height):
11 obj = env.grid.get(i, j)
12 if (
13 obj is not None
14 and getattr(obj, "type", None) == "door"
15 and getattr(obj, "color", None) == "yellow"
16 and getattr(obj, "is_open", False)
17 ):
18 return True
19 return False
20

21 def lost_y_key(env):
22 return not (
23 env.carrying is not None
24 and getattr(env.carrying, "type", None) == "key"
25 and getattr(env.carrying, "color", None) == "yellow"
26 )
27

28 def got_r_key(env):
29 return (
30 env.carrying is not None
31 and getattr(env.carrying, "type", None) == "key"
32 and getattr(env.carrying, "color", None) == "red"
33 )
34

35 def door_r_opened(env):
36 for i in range(env.width):
37 for j in range(env.height):
38 obj = env.grid.get(i, j)
39 if (
40 obj is not None
41 and getattr(obj, "type", None) == "door"
42 and getattr(obj, "color", None) == "red"
43 and getattr(obj, "is_open", False)
44 ):
45 return True
46 return False
47

48 def lost_r_key(env):
49 return not (
50 env.carrying is not None
51 and getattr(env.carrying, "type", None) == "key"
52 and getattr(env.carrying, "color", None) == "red"
53 )
54

55 def entered_goal_room(env):
56 # Example check: agent is in the leftmost 5 columns.
57 return env.agent_pos[0] < 5
58

59 def got_ball(env):
60 return (
61 env.carrying is not None
62 and getattr(env.carrying, "type", None) == "ball"
63 )

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Labeling Functions for KeyCorridor

1 def on_purple_door_and_not_has_key(env):
2 i, j = env.agent_pos
3 obj = env.grid.get(i, j)
4 if obj is not None and hasattr(obj, ’type’) and obj.type == ’

door’ and getattr(obj, ’color’, None) == ’purple’:
5 if env.carrying is None or (hasattr(env.carrying, ’type’)

and env.carrying.type != ’key’):
6 return True
7 return False
8

9 def got_key(env):
10 return (
11 env.carrying is not None
12 and hasattr(env.carrying, ’type’)
13 and env.carrying.type == ’key’
14 )
15

16 def on_purple_door_and_has_key(env):
17 i, j = env.agent_pos
18 obj = env.grid.get(i, j)
19 if obj is not None and hasattr(obj, ’type’) and obj.type == ’

door’ and getattr(obj, ’color’, None) == ’purple’:
20 if env.carrying is not None and hasattr(env.carrying, ’type

’) and env.carrying.type == ’key’:
21 return True
22 return False
23

24 def opened_red_door(env):
25 i, j = env.agent_pos
26 obj = env.grid.get(i, j)
27 if obj is not None and hasattr(obj, ’type’) and obj.type == ’

door’ and getattr(obj, ’color’, None) == ’red’:
28 if getattr(obj, ’is_open’, False) is True:
29 return True
30 return False
31

32 def reached_goal(env):
33 i, j = env.agent_pos
34 obj = env.grid.get(i, j)
35 if obj is not None and hasattr(obj, ’type’) and obj.type == ’

goal’:
36 return True
37 return False

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Start

Figure 22: A visualization of the Meta-World reward machine. Red arrows indicate a negative reward
when the state transitions in the opposite direction, moving further away from the success state u4.
For example, if the agent is in state u1 and transitions back to state u0, it will receive a reward of
−0.2. When the agent does not trigger any transition event, the state remains the same, as indicated
by the self-loop arrows.

A.10.1 A VISUALIZATION OF META-WORLD REWARD MACHINE

Figure 22 shows a visualization of the Meta-World reward machine generated by the FM. Red arrows
indicate a reversed path in which the reward machine’s state transitions further away from the success
state.

A.11 HYPERPARAMETERS

A.11.1 DQN (MINIGRID & BABYAI)

The hyperparameters listed in Table 5 were used for all DQN, DQN+RND, and DQN+RM agents in
the MiniGrid and BabyAI environments.

Table 5: DQN hyperparameters used for all MiniGrid and BabyAI experiments.

Hyperparameter Value

Total Timesteps 1× 107

Learning Rate 1× 10−4

Replay Buffer Size 1× 106

Learning Starts 80, 000
Batch Size 32
Discount Factor (γ) 0.99
Target Network Update Frequency 2, 500
Target Network Update Rate (τ ) 1.0
Train Frequency 4

Epsilon-Greedy Exploration

Initial Epsilon (ϵstart) 1.0
Final Epsilon (ϵend) 0.01
Exploration Fraction 0.35

Double Q-Learning False

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 6: PPO hyperparameters used for the Craftium experiments.

Hyperparameter Value

Total Timesteps 1× 107

Number of Parallel Environments 4
Steps per Environment (Rollout) 128
Number of Minibatches 4
PPO Update Epochs 4

Optimizer and Learning Rate

Learning Rate 5× 10−5

Learning Rate Annealing True
Max Gradient Norm 0.5

PPO & GAE Parameters

Discount Factor (γ) 0.99
GAE Lambda (λ) 0.95
Clipping Coefficient 0.1
Value Function Loss Clipping True
Advantages Normalization True

Loss Coefficients

Entropy Coefficient 0.01
Value Function Coefficient 0.5

A.11.2 PPO (CRAFTIUM)

For the more computationally demanding Craftium environment, we use PPO to leverage vectorized
rollouts for faster training. The hyperparameters for the PPO agent, which were kept consistent for
both the baseline and our method, are detailed in Table 6.

A.11.3 RAINBOW (XLAND-MINIGRID)

For the experiments in XLand-MiniGrid, we use a Rainbow DQN agent. The hyperparameters,
consistent for both the baseline and our method, are detailed in Table 7.

A.11.4 SAC (META-WORLD)

In Meta-World experiments we use SAC (Haarnoja et al., 2018) to train the sparse reward and the
agent augmented with the reward machine. The hyperparameters are detalied in Table 8

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 7: Rainbow DQN hyperparameters used for the XLand-MiniGrid experiments.

Hyperparameter Value
Base DQN Parameters

Total Timesteps 5× 106

Learning Rate 6.25× 10−5

Replay Buffer Size 1× 106

Learning Starts 80, 000
Batch Size 32
Discount Factor (γ) 0.99
Target Network Update Frequency 5, 000
Train Frequency 4

Epsilon-Greedy Exploration

Initial Epsilon (ϵstart) 1.0
Final Epsilon (ϵend) 0.05
Exploration Fraction 0.1

Rainbow Components

N-step Learning 3
PER Alpha (α) 0.5
PER Initial Beta (β0) 0.4
Distributional Atoms 51
Distributional Value Range (Vmin, Vmax) [−10, 10]

Table 8: SAC hyperparameters used for the Meta-World experiments.

Hyperparameter Value
Base SAC Parameters

Total Timesteps 1.5× 107

Learning Rate 3× 10−4

Replay Buffer Size 1× 106

Learning Starts 5, 000
Batch Size 512
Discount Factor (γ) 0.99
Target Network Update coefficient 0.005
Policy Train Frequency 2
Critic Train Frequency 1

Exploration

Intrinsic Reward model RND
Intrinsic Reward Coefficient 0.01

37


	Introduction
	Automated Reward Machines via Foundation Models
	Language-Aligned Reward Machines
	Reinforcement Learning with LARMs

	Empirical Results
	Sparse Reward Tasks
	Scaling to Complex 3D Environments
	Robotic Manipulation
	Generalization through language embeddings

	ARM-FM: In-depth analysis
	Related Work
	Conclusion
	Appendix
	LLM Usage
	Environment details
	MiniGrid and BabyAI Environments
	Craftium
	Meta-World
	XLand-MiniGrid

	DQN Training with LARMs
	Human-in-the-loop LARM Generation
	Theoretical Properties of LARM-Guided RL
	Comparison with Related Work
	Additional Results
	MiniGrid - Exploration Baselines
	MiniGrid - Analysis of LARM Rewards
	MiniGrid - Longer Training
	MiniGrid - VFMs as zero-shot reward models

	Prompts
	Reward Machines
	Labeling Functions
	A visualization of Meta-World reward machine

	Hyperparameters
	DQN (MiniGrid & BabyAI)
	PPO (Craftium)
	Rainbow (XLand-MiniGrid)
	SAC (Meta-World)



