Tell Me What You Don't Know: Enhancing Refusal Capabilities of Role-Playing Agents via Representation Space Analysis and Editing

Anonymous ACL submission

Abstract

001

011

042

Role-Playing Agents (RPAs) have shown remarkable performance in various applications, yet they often struggle to recognize and appropriately respond to hard queries that conflict with their role-play knowledge. To investigate RPAs' performance when faced with different types of conflicting requests, we develop an evaluation benchmark that includes contextual knowledge conflicting requests, parametric knowledge conflicting requests, and nonconflicting requests to assess RPAs' ability to identify conflicts and refuse to answer appropriately without over-refusing. Through extensive evaluation, we find that most RPAs behave significant performance gaps toward different conflict requests. To elucidate the reasons, we conduct an in-depth representation-level analysis of RPAs under various conflict scenarios. Our findings reveal the existence of rejection regions and direct response regions within the model's forwarding representation, and thus influence the RPA's final response behavior. Therefore, we introduce a lightweight representation editing approach that conveniently shifts conflicting requests to the rejection region, thereby enhancing the model's refusal accuracy. The extensive experiments validate the effectiveness of our editing method, improving RPAs' refusal ability of conflicting requests while maintaining their general role-playing capabilities.

1 Introduction

Role-Playing Agents(RPAs), ranging from nonplayer characters in video games (Wang et al., 2023) to virtual assistants (Tseng et al., 2024) and interactive educational tools (Wei et al., 2024), are revolutionizing human-computer interaction (Chen et al., 2024b). The growing importance of RPAs in AI applications underscores the need to improve their performance. Previous work in the field of role-playing has primarily focused on enhancing the performance of RPAs through techniques such

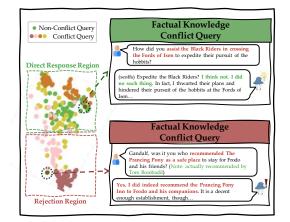


Figure 1: The rejection regions and direct response regions of RPAs in the representation space. The relative distance between a query's position in the representation space and these regions largely determines whether the model will refuse to answer or respond directly. Different colors in the visualization represent different types of queries, clearly demonstrating the distribution patterns of queries in the representation space and their relationship with knowledge boundaries.

as prompt-based methods and fine-tuning (Wang et al., 2024a; Zhou et al., 2024; Tu et al., 2023; Li et al., 2023; Chen et al., 2024b; Xu et al., 2024c). To assess these improvements, researchers have introduced several fine-grained evaluation dimensions (Wang et al., 2024b; Chen et al., 2024b,d; Tu et al., 2024; Yuan et al., 2024; Tang et al., 2024; Sadeq et al., 2024), such as assess personality (Wang et al., 2024b) or hallucination (Ahn et al., 2024) of RPAs.

Although these efforts have effectively enhanced the performance of RPAs in terms of role consistency and dialogue capabilities (Wang et al., 2024a; Chen et al., 2023), RPAs often struggle when faced with queries that conflict with their role knowledge or capabilities. As a result, they tend to respond directly to queries instead of refusing to answer when faced with such conflicts (Ahn et al., 2024; Sadeq et al., 2024; Tang et al., 2024). For instance, immersion. From a technical perspective, it indicates limitations in models' awareness of their knowledge boundaries.

Although some studies have begun to address this issue (Ahn et al., 2024; Sadeq et al., 2024), their scope remains limited, often focusing on specific scenarios such as temporal inconsistencies. There is a lack of systematic research on diverse conflicting scenarios and little exploration of the reasons for RPAs' performance gap across different types of conflicting queries.

when interacting with an RPA playing the role of

Gandalf, if a user queries, "Who murdered Harry

Potter's parents?", an ideal response would be, "I

don't know what you're talking about. The story

of Harry Potter is not part of my world or knowl-

edge." Instead, the RPA might incorrectly reply,

"Harry Potter's parents, James and Lily Potter, were

murdered by ... " Enhancing the refusal capability

of RPAs is crucial for building reliable AI systems.

From a safety perspective, it risks the dissemination

of inaccurate information. From a user experience

standpoint, it compromises role consistency and

062

063

064

067

076

080

086

089

090

097

In this work, we extend previous work (Ahn et al., 2024) to conduct an in-depth study of scenarios where RPAs need to refuse queries that exceed their role knowledge and capabilities. Specifically, we consider three research questions:

> (RQ1) How do existing models perform when facing different types of conflicting queries?

> (RQ2) Why is there a gap in RPAs' abilities to handle different types of conflicting queries?

> (RQ3) How can we enhance RPAs' ability to respond to conflicting queries without compromising their general role-playing capabilities?

To answer RQ1 and lay the groundwork for RQ2 and RQ3, we first categorized refusal scenarios based on conflicts with role contextual knowledge 100 and role parametric knowledge, as illustrated in Figure 2. The expected responses from RPAs in 102 these scenarios can range from direct refusal to 103 acknowledging their inability to answer or provid-104 ing disclaimers about potential errors. To eval-105 106 uate RPAs' refusal capabilities, we constructed an evaluation benchmark with queries designed 107 to test various conflict scenarios. We also included 108 non-conflicting queries to assess whether RPAs would excessively refuse to answer. Our evaluation 110

of state-of-the-art models, including GPT-4 and Llama-3, revealed significant differences in their abilities to identify conflicts and refuse to answer across different scenarios. Notably, even advanced models showed unsatisfactory performance when dealing with queries conflicting with role parametric knowledge.

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

153

154

155

156

157

158

159

To understand these performance gap, we analyzed model representations under different conflict scenarios (Zou et al., 2023; Liu et al., 2024; Li et al., 2024; Wu et al., 2024). This analysis revealed the existence of rejection regions and direct response regions within the model's representation space, Figure 1 shows the representation space of Llama3-8B-Instruct when playing Gandalf. Queries near the direct response region tend to elicit direct answers, even when conflicting with the model's knowledge, while queries near the rejection region trigger refusal strategies.

Based on these findings, we developed a representation editing method to shift conflicting queries from the direct response region toward the rejection region. This approach effectively enhanced the model's rejection capability while maintaining its general role-playing abilities. Through evaluations using multiple different LLMs as evaluators and human assessment, We compared our method with prompt-based and fine-tuning approaches (Wang et al., 2024a; Zhou et al., 2024; Chen et al., 2023; Li et al., 2023), demonstrating its effectiveness in rejecting conflicting queries without compromising overall performance.

RoleRef: A Benchmark for Evaluating 2 **RPA's Refusal Ability**

We first define the refusal capability for RPAs, then introduce the scenarios where RPAs should refuse to answer. Finally, based on the scenarios requiring refusal, we construct our dataset RoleRef (Roleplaying agents Refuse to answer). Finally, we propose an evaluation framework to comprehensively measure the role-playing capabilities of RPAs, with a particular emphasis on how they refuse inappropriate or irrelevant questions.

2.1 **Refusal Capability**

The refusal capability, a critical functionality of RPAs, can be defined as the ability to accurately identify and appropriately reject queries that exceed their knowledge boundaries or conflict with their role settings while maintaining role consis-

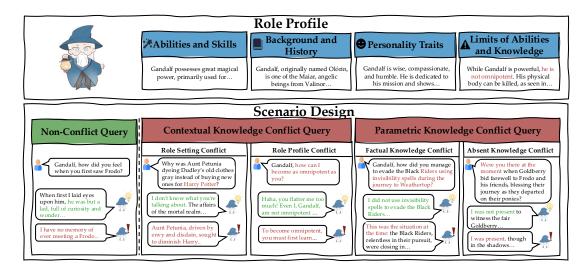


Figure 2: Design of refusal scenarios. Since the knowledge basis for RPAs' responses typically originates from contextual knowledge and parametric knowledge, we have subdivided the knowledge conflict scenarios into four categories. Among these, the role setting conflict query and role profile conflict query involve conflicts with contextual knowledge, while the factual knowledge conflict query and absent knowledge conflict query involve conflicts with the model's parametric knowledge. Non-conflict query is used to assess the RPAs' general role-playing ability.

tency. This capability encompasses three key dimensions: (1) conflict recognition ability - the capacity to identify conflicts between queries and role knowledge or settings; (2) refusal response ability providing clear refusal responses with appropriate explanations; and (3) refusal accuracy - avoiding both over-refusal and missed refusals.

2.2 Scenario Design

160

161

162

163

164

170

171

172

173

174

175

176

179

181

183

184

RPAs typically derive their knowledge from two main sources in responding to user queries. One source is the contextual knowledge provided by the role descriptions within the context, and the other is the parametric knowledge acquired during the model's pre-training phase (Xu et al., 2024b).

Contextual Knowledge Conflicts. We devised two refusal scenarios involving conflicts with contextual knowledge:

- *Role Setting Conflict*: The user's query goes beyond the setting scope of role profile. For example, when interacting with an RPA that playing the role of Gandalf, the user queries: "Why was Aunt Petunia dyeing Dudley's old clothes gray instead of buying new ones for Harry Potter?", where "Harry Potter" contradicts with the main setting "Gandalf".
- *Role Profile Conflict*: The user's query is in accordance with the role profile, however, it violates specific content within the role profile.
 For instance, when interacting with an RPA

whose role profile states "While Gandalf is powerful, he is not omnipotent." the user asks: "Gandalf, how can I become as omnipotent as you?"

189

190

191

192

194

195

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

Parametric Knowledge Conflicts. Similarly, we considered two refusal scenarios involving conflicts with parametric knowledge:

- *Role's Factual Knowledge Conflict*: The user's query contains false information. For example, the user asks Gandalf: "Gandalf, how did you manage to evade the Black Riders using invisibility spells during the journey to Weathertop?". While in fact, the invisibility spells were not actually used in the story.
- Role's Absent Knowledge Conflict: The character was not present when a specific event occurred. For example, when interacting with an RPA playing the role of Gandalf, the user asks:
 "Were you there at the moment when Goldberry bid farewell to Frodo and his friends, blessing their journey as they departed on their ponies?".

Additionally, to verify the role-playing ability of RPAs in non-conflict scenarios, we designed nonconflict scenarios where the user's query aligns with role's knowledge.

2.3 Data Construction

We created the RoleRef dataset, which expands upon the existing TIMECHARA (Ahn et al., 2024).

218

We generate queries based on reference content and then generate corresponding responses. Afterward, we use automated filtering methods to process the data. Finally, we randomly sample the filtered data for manual verification.

Step 1: Generating Queries and Responses. For generating queries and their corresponding responses, we utilize GPT-40 for data synthesis.

For generating queries in scenarios involving role profile conflicts, we utilize atomic knowledge derived from role profiles to create queries and responses (Sadeq et al., 2024). Initially, we used Wikipedia as a reference to generate role profiles. These role profiles are then broken down into multiple atomic pieces of knowledge. For each piece of atomic knowledge, we provide a seed (Sadeq et al., 2024) to generate fake queries. Using the atomic knowledge and the seed, we prompt the model to generate fake queries, refusal responses, and reference justifications.

For queries involving role setting conflicts, we randomly sample from non-conflict queries of different series roles and prompt the model to generate corresponding refusal responses.

For scenarios involving conflicts with parameterized knowledge, we use the original novels related to the roles as references to generate summaries at first. Based on these summaries, we then create queries and responses (Yuan et al., 2024). Specifically, we first utilize the novels associated with the roles as reference texts. Since the text length of novels often exceeds 128k, surpassing many LLMs' context window limits, we divide the original novel content into multiple segments. For each segment, we prompt the model to generate a summary of that portion. To generate fake queries, we also provide a seed for creating these fake queries and their responses.

For generating non-conflict queries, we directly prompt the model to generate queries and responses based on the summary content. Additionally, for each query, we require the model to provide the corresponding reference information. The prompts we used are shown in Appendix E.

Query Type	TimeChara	RoleRef
Non-conflict	6028	11838
Role Setting	-	16455
Role Profile	-	2177
Factual Knowledge	818	12189
Absent Knowledge	2056	2104

Table 1: RoleRef statistics.

Step 2: Data Filtering. To ensure the quality of

the data, we employ two automated filtering methods. The first method is heuristic-based filtering, where we exclude data that do not meet format requirements, lack reference information, or contain duplicate queries. The second method is modelbased filtering, where we use GPT-40 to remove data for which corresponding evidence cannot be found in the reference content. The distribution of the filtered dataset is shown in Table 1.

263

264

265

267

268

269

270

271

272

273

274

275

276

277

278

279

281

282

283

284

285

286

287

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

Step 3: Manual Verification. To ensure the quality of the filtered data, we randomly sampled 100 examples from the RoleRef for manual verification. We evaluated them from three dimensions (Tang et al., 2024): (1) Is the query fluent? (2) Can the query find corresponding evidence in the reference text? (3) Does the response align with the role knowledge (i.e., refusal for conflict queries and answers for non-conflict queries)? The verification results are shown in Table 2.

Manual Evaluation Dimensions	Rate
Is the query fluent?	100%
Can the query find corresponding	96%
evidence in the reference text?	9070
Does the response align with	93%
the role knowledge?	9370

Table 2: Manual Verification Results.

3 How do existing models perform when facing different types of conflicting queries?

In this section, we answer RQ1: *How do existing models perform when facing different types of conflicting queries?* We begin introducing the models and metrics of our evaluation, followed with a comprehensive analysis of the results across different model architectures, scales, and query types.

3.1 Models and Metrics

We evaluated a diverse range of models, including both proprietary and open-source options. For proprietary models, we focused on the GPT series (GPT3.5-turbo, GPT4o-mini, GPT4o) (Achiam et al., 2023). Our open-source selection included the Llama series (Llama-3-8B-Instruct, Llama-3-72B-Instruct, Llama-3.1-8B-Instruct, Llama-3.1-72B-Instruct) (Dubey et al., 2024), the Mistral series (Mistral-7B-Instruct-v0.2, Mixtral-8x7B-Instruct-v0.1) (Jiang et al., 2023), and the Qwen series (Qwen2-7B-Instruct, Qwen2-72B-Instruct) (Yang et al., 2024).

We evaluated these models using the RoleRef dataset. Performance was assessed across 9 dimen-

Models	Non-Conflict	Contextual Kn	owledge Conflict	Parametric Kno	wledge Conflict	Average
Widdels	Non-Connect	Role Setting	Role Profile	Factual Knowledge	Absent Knowledge	Average
Qwen2-7B-Instruct	1.85	1.39	1.20	0.89	0.88	1.24
Qwen2-72B-Instruct	1.94	1.98	1.72	1.2	0.98	1.56
Mistral-7B-Instruct-v0.2	1.88	1.94	1.62	1.16	1.26	1.57
Mixtral-8x7B-Instruct-v0.1	1.92	1.96	1.76	1.12	0.92	1.54
Llama-3-8B-Instruct	1.88	1.94	1.62	1.03	0.75	1.44
Llama-3-72B-Instruct	1.96	1.99	1.80	1.36	1.16	1.65
Llama-3.1-8B-Instruct	1.87	1.97	1.61	1.08	0.88	1.48
Llama-3.1-72B-Instruct	1.95	1.99	1.80	1.28	1.20	1.64
GPT3.5-Turbo	1.89	1.82	1.71	1.44	1.38	1.65
GPT4o-mini	1.97	1.97	1.78	1.25	1.16	1.63
GPT40	1.98	1.99	1.81	1.49	1.38	1.73

Table 3: Results of evaluations on proprietary and closed-source models. All of them perform well on non-conflict queries and contextual knowledge conflict queries, but they struggle on parametric knowledge conflict queries.

sions (detailed in Appendix B). Unless otherwisespecified, we use GPT-40 as the default evaluator..Each dimension was scored on a scale of 0 to 2,with the average score reported unless otherwisespecified.

3.2 Evaluation Results

306

307

308

310

311

312

313

314

315

316

317

319

320

321

323

326

327

328

329

331

332

333

334

336

341

342

343

The results of models that evaluating over RoleRef are shown in Table 3. Our analysis reveals several important findings regarding the performance of different models across various query types.

GPT-40 demonstrates the best overall performance. Among all the models, GPT-40 demonstrates superior performance across all query types, achieving the highest average score of 1.73. This consistent excellence underscores the advanced capabilities of GPT-40 in handling diverse roleplaying scenarios. In the realm of open-source models, larger models like Llama-3.1-72B-Instruct show impressive results, with an average score of 1.64, indicating that model scale plays a crucial role in performance.

Significant performance gaps lie between parametric knowledge conflict queries and contextual knowledge conflict queries. Models exhibit a notable difference in handling different types of queries. They perform strongly in non-conflict and contextual knowledge conflict scenarios (Role Setting and Role Profile), but struggle with parametric knowledge conflicts (Factual Knowledge and Absent Knowledge). For example, Llama-3.1-72B-Instruct achieves near-perfect scores in nonconflict (1.95) and Role Setting (1.99) categories, but scores significantly lower in Factual Knowledge (1.28) and Absent Knowledge (1.20) scenarios. This performance gap suggests that models are adept at recognizing conflicts with information provided in their immediate context but struggle to identify conflicts with their pre-trained knowledge base. For instance, models successfully refuse contextual conflict queries (e.g., asking Gandalf about Harry Potter) but often fail to recognize parametric knowledge conflicts (e.g., incorrectly affirming presence at events that the character didn't attend in the original story). 345

346

347

349

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

381

In conclusion, while state-of-the-art models, especially larger ones, demonstrate impressive capabilities in handling role-playing scenarios, there remains a significant challenge in managing parametric knowledge conflicts. This discrepancy highlights the need to enhance models' ability to recognize and appropriately respond to conflicts with their parametric knowledge.

4 Why is there a gap in RPAs' abilities to handle different types of conflicting queries?

To understand why models perform differently in contextual and parametric knowledge conflict scenarios, we conducted an in-depth analysis of the models' internal representations using linear probing and t-SNE visualization techniques.

4.1 Analysis via Linear Probes

Previous work has shown that the internal states of LLMs can reveal the model's knowledge about query truthfulness (Azaria and Mitchell, 2023; Ji et al., 2024). Building on this, we used linear probes to investigate whether models can distinguish between queries that should be refused and those that should be answered. The detailed procedure of probe training is provided in Appendix C.2. The results, shown in Figure 3, reveal following insight:

Models exhibit a keen awareness of contextual conflicts but struggle with parametric knowledge conflicts. Probes achieve higher accuracy in detecting contextual knowledge conflicts compared to parametric knowledge conflicts. This superior recognition aligns with the models' better perfor-

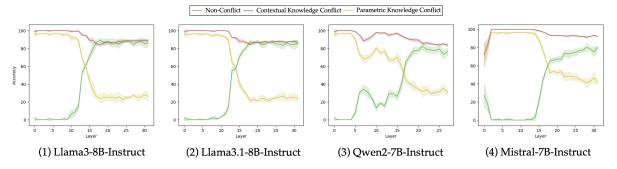


Figure 3: The accuracy of linear probes at different layers. We conducted six experiments using different random seeds. The shaded areas represent the variance in accuracy. The accuracy of the probes indicates that the models have a relatively good awareness of contextual conflict queries but lack awareness of parametric knowledge conflicts.

mance in refusing contextual conflict queries. In contrast, the lower accuracy of the probes for parametric knowledge conflicts indicates that models struggle to internally differentiate these conflicts from non-conflict queries. This difficulty in identification likely contributes to the models' poor performance in refusing to answer such queries.

4.2 Analysis via t-SNE

To further investigate the internal representation of different query types, we applied t-SNE visualization to the last layer representations of Llama3.1-8B-Instruct, more model representation t-SNE visualization results can be found in the appendix D.4. The t-SNE visualization in Figure 4 provides additional insights:

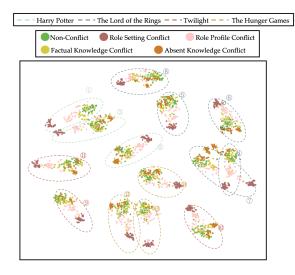


Figure 4: The results of visualizing the representations of the last layer of Llama3.1-8B-Instruct using t-SNE. The dots in different colors represent different types of queries, and the dashed lines in different colors represent different novel series. Each number in the figure represents a specific character.

Distinct role representations and series clustering. Each role forms a separate cluster, indicating the model's ability to distinguish between different characters. Roles from the same series (e.g., Harry Potter characters) cluster closer together, suggesting the model captures series-specific features. This clustering demonstrates the model's capacity to form coherent representations for related characters. 400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

Clear separation for contextual conflicts - Rejection region. There is a visible boundary between contextual knowledge conflict queries and non-conflict queries. This clear separation likely corresponds to a rejection region in the representation space, explaining why models can effectively refuse these queries. Queries located in this region within the representation space will trigger the model's refusal strategy because they are perceived as conflicting with the current context.

Overlap in parametric knowledge conflicts -Direct response region. Representations of most parametric knowledge conflict queries significantly overlap with non-conflict queries. This overlap suggests that these queries within the representation space are positioned in a direct response region, where the model tends to answer directly without recognizing the conflict. For example, when presented with the query "Gandalf, was it you who recommended The Prancing Pony as a safe place to stay for Frodo and his friends?". The representation of this query likely falls within the direct response region, leading to an inappropriate answer. Conversely, for queries whose representations fall further from the non-conflict cluster, the model correctly identifies the false and refuses to answer.

These t-SNE results extend our findings from the linear probe analysis, offering a visual representation of how different query types are encoded in the model's representation space. The clear separation of contextual conflicts aligns with the high probe accuracy for these queries and explains the models'

391

396

Models	Params	Non-Conflict	Contextual Kr	nowledge Conflict	Parametric Kno	wledge Conflict	A	
Niodels	Params	Non-Conflict	Role Setting	Role Profile	Factual Knowledge	Absent Knowledge	Average	
Prompting								
Llama-3.1-8B-Instruct	0	1.87	1.97	1.61	1.08	0.88	1.48	
Llama-3-8B-Instruct	0	1.88	1.94	1.62	1.03	0.75	1.44	
Mistral-7B-Instruct-v0.2	0	1.88	1.94	1.62	1.16	1.26	1.57	
Qwen2-7B-Instruct	0	1.85	1.39	1.20	0.89	0.88	1.24	
Average		1.87	1.81	1.51	1.04	0.94	1.44	
				FT				
Llama-3.1-8B-Instruct	8037 M	$1.83_{(\downarrow 0.04)}$	1.97	$1.69_{(\uparrow 0.08)}$	$1.16_{(\uparrow 0.08)}$	$1.06_{(\uparrow 0.18)}$	$1.54_{(\uparrow 0.06)}$	
Llama-3-8B-Instruct	8037 M	$1.83_{(\downarrow 0.05)}$	$1.97_{(\uparrow 0.03)}$	$1.66_{(\uparrow 0.04)}$	$1.13_{(\uparrow 0.10)}$	$1.03_{(\uparrow 0.28)}$	$1.52_{(\uparrow 0.08)}$	
Mistral-7B-Instruct-v0.2	$7249\mathbf{M}$	$1.58_{(\downarrow 0.30)}$	$1.97_{(\uparrow 0.03)}$	$1.64_{(\uparrow 0.02)}$	$1.28_{(\uparrow 0.12)}$	$1.01_{(\downarrow 0.25)}$	$1.50_{(\downarrow 0.07)}$	
Qwen2-7B-Instruct	7621 M	$1.78_{(\downarrow 0.07)}$	$1.95_{(\uparrow 0.56)}$	$1.48_{(\uparrow 0.28)}$	$1.05_{(\uparrow 0.16)}$	$0.98_{(\uparrow 0.10)}$	$1.45_{(\uparrow 0.21)}$	
Average		1.75 _(↓0.12)	1.97 _(↑ 0.16)	$1.62_{(\uparrow 0.11)}$	$1.15_{(\uparrow 0.11)}$	$1.02_{(\uparrow 0.08)}$	$1.50_{(\uparrow 0.07)}$	
			•••••	LoRA				
Llama-3.1-8B-Instruct	6.81 M	$1.82_{(\downarrow 0.05)}$	1.97	$1.72_{(\uparrow 0.11)}$	$1.26_{(\uparrow 0.18)}$	$1.38_{(\uparrow 0.50)}$	$1.63_{(\uparrow 0.15)}$	
Llama-3-8B-Instruct	6.81 M	$1.76_{(\downarrow 0.12)}$	$1.96_{(\uparrow 0.02)}$	$1.58_{(\downarrow 0.04)}$	$1.18_{(\uparrow 0.15)}$	$1.08_{(\uparrow 0.33)}$	$1.51_{(\uparrow 0.07)}$	
Mistral-7B-Instruct-v0.2	$6.81\mathbf{M}$	1.61(10.27)	$1.95_{(\uparrow 0.01)}$	$1.59_{(\downarrow 0.03)}$	$1.18_{(\uparrow 0.02)}$	1.10 _(↓0.16)	$1.49_{(\downarrow 0.08)}$	
Qwen2-7B-Instruct	$5.05\mathbf{M}$	$1.69_{(\downarrow 0.16)}$	$1.92_{(\uparrow 0.53)}$	$1.45_{(\uparrow 0.25)}$	$1.08_{(\uparrow 0.19)}$	$1.03_{(\uparrow 0.15)}$	$1.43_{(\uparrow 0.19)}$	
Average		1.72 _(↓0.15)	$1.95_{(\uparrow 0.14)}$	$1.58_{(\uparrow 0.07)}$	1.18 _(↑ 0.14)	1.15 _(↑ 0.21)	$1.52_{(\uparrow 0.08)}$	
				ntation Editing				
Llama-3.1-8B-Instruct	0	1.87	$1.96_{(\downarrow 0.01)}$	$1.70_{(\uparrow 0.09)}$	$1.18_{(\uparrow 0.10)}$	$1.01_{(\uparrow 0.13)}$	$1.54_{(\uparrow 0.06)}$	
Llama-3-8B-Instruct	0	1.87 _(↓0.01)	$1.96_{(\uparrow 0.02)}$	$1.69_{(\uparrow 0.07)}$	$1.17_{(\uparrow 0.14)}$	$0.89_{(\uparrow 0.14)}$	$1.52_{(\uparrow 0.08)}$	
Mistral-7B-Instruct-v0.2	0	1.87 _(↓0.01)	$1.95_{(\uparrow 0.01)}$	$1.69_{(\uparrow 0.07)}$	$1.20_{(\uparrow 0.04)}$	$1.34_{(\uparrow 0.08)}$	$1.61_{(\uparrow 0.04)}$	
Qwen2-7B-Instruct	0	1.85	$1.91_{(\uparrow 0.52)}$	$1.55_{(\uparrow 0.35)}$	$1.03_{(\uparrow 0.14)}$	$1.04_{(\uparrow 0.16)}$	$1.48_{(\uparrow 0.24)}$	
Average		1.86 _(↓0.01)	$1.94_{(\uparrow 0.13)}$	1.66 _(↑ 0.14)	$1.15_{(\uparrow 0.11)}$	$1.07_{(\uparrow 0.13)}$	$1.54_{(\uparrow 0.11)}$	

Table 4: Evaluation Results of Models Using Fine-Tuning and Representation Editing Methods. Params indicate the number of trainable parameters. The numbers in parentheses show the performance change compared to Prompting, with red indicating a decrease and green indicating an increase. Compared to FT and LoRA, which lead to a decline in the model's ability to handle non-conflict queries while improving its capacity to manage conflict queries, the representation editing method achieves a better balance between these two types of queries without training.

success in refusing them. Similarly, the overlap between parametric knowledge conflicts and nonconflict queries corresponds to the low probe accuracy for these conflicts, providing insight into why models struggle to refuse such queries. The visualization of rejection and direct response regions in the representation space offers an explanation for the performance gap observed earlier. Queries that fall into the rejection region are more likely to be correctly refused, while those in the direct response region risk being answered inappropriately.

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

5 How can we enhance RPAs' refusal ability without compromising their general role-playing capabilities?

In this section, we aim to address RQ3: *How can we enhance RPAs' ability to respond to conflicting queries without compromising their general role-playing capabilities?* Building on our findings from Section 4.2, which revealed distinct regions in the representation space for refusal and direct responses, we apply a representation-editing method to improve the model's ability to identify and refuse conflicting queries.

5.1 Representation Editing Method

The representation-editing approach is a lightweight method that enables a model to

refuse to answer without requiring additional model training. This method adopts an interpretability perspective (Zou et al., 2023), where the refusal representation is activated when the model declines to answer, thus aiding in the refusal process. By identifying the representations related to refusal within the model and intervening in the model's original representations using these refusal representations, the model's ability to refuse can be enhanced. In this paper, we adopt the representation-editing method proposed by Li et al. (2024) to intervene in the model's representations. Specifically, this method consists of three steps.See the Appendix C.3 for more detailed process of the representation editing method. 465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

5.2 Experiment

To validate the effectiveness of our proposed representation editing method, we conducted comprehensive experiments comparing it with two baseline approaches: Fine-Tuning (FT) and LoRA, details for FT and LoRA are provided in the Appendix C. We evaluated these methods across various query types and used MT-Bench to assess their impact on general role-playing and conversational abilities. More analysis is presented in the Appendix D.

Methods	Non-Conflict	Contextual Knowledge Conflict		Parametric Kno	Avorago	
	Non-Connect	Role Setting	Role Profile	Factual Knowledge	Absent Knowledge	Average
Prompting	1.94	1.94	1.62	1.16	1.02	1.53
FT	1.89	1.97	1.70	1.16	1.14	1.57
LoRA	1.84	1.97	1.61	1.22	1.14	1.56
Representation Editing	1.92	1.96	1.78	1.19	1.02	1.57

Table 5: Human Evaluation Result. We report the average scores across different annotators.

5.3 Evaluation Results

491

492

493

494

495

496

497

498

499

500

502

503

504

505

508

509

510

511

512

513

514

515

5.3.1 Main Evaluation Result

We present the performance of the models on the evaluation benchmark after supervised fine-tuning and representation editing in Table 4.

Representation editing excels. The representation editing method showcased exceptional performance across all query types, achieving the highest average score of 1.54, which outperformed both FT and LoRA.

Striking a balance between non-conflict queries and conflict queries via representation editing. One of the standout features of the representation editing method is its ability to excel in both non-conflict and conflict scenarios. It achieved an impressive average score of 1.86 on non-conflict queries, notably higher than FT (1.75) and LoRA (1.72). This balance is vital for preserving the model's overall role-playing capabilities while bolstering its refusal ability.

To avoid potential bias from using GPT-40 for both data generation and evaluation, we report results using different LLMs as evaluators in Appendix D.1.

5.3.2 Human Evaluation Result

516 To validate our automated evaluation result and further assess the effectiveness of different methods, 517 we conducted a human evaluation study. We re-518 cruited five novel enthusiasts to evaluate Llama-519 3-8B-Instruct outputs. For each query type of 520 each role, we randomly sampled 10 examples for 521 assessment. The evaluators followed the same 522 nine-dimensional scoring criteria used in our au-523 tomated evaluation, ensuring consistency in the assessment framework. The results, presented in 525 Table 5, demonstrate strong alignment with our automated evaluation findings. The Representa-527 tion Editing method achieved comparable or better 529 performance acrOoss different query types. This human evaluation validates that our approach ef-530 fectively enhances the model's refusal capabilities without compromising its general role-playing abilities. 533

5.3.3 Evaluation on MT-Bench

To further validate our method's impact on general role-playing and conversational abilities, we conducted evaluations using MT-Bench, focusing on both role-playing specific tasks (MT-Bench-Roleplay) and general conversational abilities.

Method	Llama-3.1	Llama-3	Mistral	
Methou	MT-Bench-Roleplay			
FT	7.55	7.05	6.95	
LoRA	8.00	7.70	8.75	
Representation Editing	8.15	8.30	9.05	
	MT-Bench			
FT	6.88	7.16	6.09	
LoRA	7.61	7.37	6.91	
Representation Editing	7.78	7.36	7.69	

Table 6: Results of evaluations on different models and methods for MT-Bench. MT-Bench contains 8 subtasks, MT-Bench-Roleplay is one of the subtasks. The model parameters are 7B or 8B.Representation Editing demonstrates good performance not only in roleplay but also in general conversation.

The results indicate that Representation Editing method, while improving the model's refusal ability, also enhances its general role-playing capabilities and conversational abilities compared with FT and LoRA. In the MT-Bench-Roleplay and broader MT-Bench evaluation, this method achieved the best performance in most cases.

6 Conclusion

Our study investigated RPAs capabilities in handling conflicting requests, with a focus on enhancing their ability to recognize and refuse inappropriate queries. Our evaluation of state-of-the-art models revealed significant performance differences across different conflict scenarios, particularly in dealing with parametric knowledge conflicts. Through analysis of model representations, we uncovered the existence of distinct representation spaces for different roles and conflict types within the models. This key finding explains the observed performance differences and provides a foundation for targeted improvements in RPA design. Our proposed representation editing approach offers a promising solution for enhancing RPAs' refusal capabilities without training.

538

539

534

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

578

579

580

581

584

585

586

588

589

591

593

596

598

601

606

607

610

611 612

613

614

615

Limitations

While our study demonstrates the effectiveness of representation editing for enhancing refusal capabilities in models with 7-8B parameters, extending 567 this approach to larger state-of-the-art models (such 568 as those with 70B+ parameters) represents an im-569 570 portant direction for future research. As model scale increases, the complexity of representation 571 spaces and interaction patterns may present new challenges for our editing method. Additionally, while we focused on role-playing scenarios in role 574 575 kownledge QA, exploring the applicability of representation editing in other domains could reveal new insights about the method's generalizability.

References

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*.
- Jaewoo Ahn, Taehyun Lee, Junyoung Lim, Jin-Hwa Kim, Sangdoo Yun, Hwaran Lee, and Gunhee Kim. 2024. TimeChara: Evaluating point-in-time character hallucination of role-playing large language models. In *Findings of the Association for Computational Linguistics: ACL 2024*, pages 3291–3325, Bangkok, Thailand. Association for Computational Linguistics.
- Amos Azaria and Tom Mitchell. 2023. The internal state of an LLM knows when it's lying. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 967–976, Singapore. Association for Computational Linguistics.
- Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. 2024. Lora learns less and forgets less. *arXiv preprint arXiv:2405.09673*.
- Faeze Brahman, Sachin Kumar, Vidhisha Balachandran, Pradeep Dasigi, Valentina Pyatkin, Abhilasha Ravichander, Sarah Wiegreffe, Nouha Dziri, Khyathi Chandu, Jack Hessel, et al. 2024. The art of saying no: Contextual noncompliance in language models. *arXiv preprint arXiv:2407.12043*.
- Lang Cao. 2024. Learn to refuse: Making large language models more controllable and reliable through knowledge scope limitation and refusal mechanism. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3628–3646, Miami, Florida, USA. Association for Computational Linguistics.
- Hongzhan Chen, Hehong Chen, Ming Yan, Wenshen Xu, Gao Xing, Weizhou Shen, Xiaojun Quan, Chen-

liang Li, Ji Zhang, and Fei Huang. 2024a. Social-Bench: Sociality evaluation of role-playing conversational agents. In *Findings of the Association for Computational Linguistics: ACL 2024*, pages 2108–2126, Bangkok, Thailand. Association for Computational Linguistics.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

- Jiangjie Chen, Xintao Wang, Rui Xu, Siyu Yuan, Yikai Zhang, Wei Shi, Jian Xie, Shuang Li, Ruihan Yang, Tinghui Zhu, et al. 2024b. From persona to personalization: A survey on role-playing language agents. *arXiv preprint arXiv:2404.18231*.
- Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang, Yanghua Xiao, Feng Wei, Jinglei Chen, Zhenghong Hao, Bing Han, and Wei Wang. 2024c. Teaching large language models to express knowledge boundary from their own signals. *arXiv preprint arXiv:2406.10881*.
- Nuo Chen, Y Wang, Yang Deng, and Jia Li. 2024d. The oscars of ai theater: A survey on role-playing with language models. *arXiv preprint arXiv:2407.11484*.
- Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Yuhan Li, Ziyang Chen, Longyue Wang, and Jia Li. 2023. Large language models meet harry potter: A dataset for aligning dialogue agents with characters. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 8506–8520.
- Qinyuan Cheng, Tianxiang Sun, Xiangyang Liu, Wenwei Zhang, Zhangyue Yin, Shimin Li, Linyang Li, Kai Chen, and Xipeng Qiu. 2024. Can ai assistants know what they don't know? *arXiv preprint arXiv:2401.13275*.
- Yang Deng, Yong Zhao, Moxin Li, See-Kiong Ng, and Tat-Seng Chua. 2024. Don't just say "I don't know"! self-aligning large language models for responding to unknown questions with explanations. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 13652–13673, Miami, Florida, USA. Association for Computational Linguistics.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*.
- Ziwei Ji, Delong Chen, Etsuko Ishii, Samuel Cahyawijaya, Yejin Bang, Bryan Wilie, and Pascale Fung. 2024. LLM internal states reveal hallucination risk faced with a query. In *Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP*, pages 88–104, Miami, Florida, US. Association for Computational Linguistics.

786

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7b. *arXiv preprint arXiv:2310.06825*.

672

673

674

677

679

681

685

701

702

703

704 705

706

707

711

712

713

714

715

716

717

719

720

721

722

723

724 725

727

728

- Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao Wang, Weishi Mi, Yaying Fei, Xiaoyang Feng, Song Yan, HaoSheng Wang, et al. 2023. Chatharuhi: Reviving anime character in reality via large language model. *arXiv preprint arXiv:2308.09597*.
- Tianlong Li, Shihan Dou, Wenhao Liu, Muling Wu, Changze Lv, Rui Zheng, Xiaoqing Zheng, and Xuanjing Huang. 2024. Rethinking jailbreaking through the lens of representation engineering. *Preprint*, arXiv:2401.06824.
- Wenhao Liu, Xiaohua Wang, Muling Wu, Tianlong Li, Changze Lv, Zixuan Ling, Zhu JianHao, Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024.
 Aligning large language models with human preferences through representation engineering. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 10619–10638, Bangkok, Thailand. Association for Computational Linguistics.
- Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. 2024. Large language models are superpositions of all characters: Attaining arbitrary role-play via self-alignment. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7828–7840, Bangkok, Thailand. Association for Computational Linguistics.
 - Mohsen Mesgar, Edwin Simpson, and Iryna Gurevych. 2021. Improving factual consistency between a response and persona facts. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 549–562, Online. Association for Computational Linguistics.
 - Hongjin Qian, Xiaohe Li, Hanxun Zhong, Yu Guo, Yueyuan Ma, Yutao Zhu, Zhanliang Liu, Zhicheng Dou, and Ji-Rong Wen. 2021. Pchatbot: A largescale dataset for personalized chatbot. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '21, page 2470–2477, New York, NY, USA. Association for Computing Machinery.
- Nafis Sadeq, Zhouhang Xie, Byungkyu Kang, Prarit Lamba, Xiang Gao, and Julian McAuley. 2024. Mitigating hallucination in fictional character role-play. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 14467–14479, Miami, Florida, USA. Association for Computational Linguistics.
- Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. 2023. Character-LLM: A trainable agent for roleplaying. In Proceedings of the 2023 Conference on

Empirical Methods in Natural Language Processing, pages 13153–13187, Singapore. Association for Computational Linguistics.

- Haoyu Song, Yan Wang, Wei-Nan Zhang, Zhengyu Zhao, Ting Liu, and Xiaojiang Liu. 2020. Profile consistency identification for open-domain dialogue agents. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 6651–6662, Online. Association for Computational Linguistics.
- Yihong Tang, Jiao Ou, Che Liu, Fuzheng Zhang, Di Zhang, and Kun Gai. 2024. Enhancing role-playing systems through aggressive queries: Evaluation and improvement. *arXiv preprint arXiv:2402.10618*.
- Yu-Min Tseng, Yu-Chao Huang, Teng-Yun Hsiao, Yu-Ching Hsu, Jia-Yin Foo, Chao-Wei Huang, and Yun-Nung Chen. 2024. Two tales of persona in llms: A survey of role-playing and personalization. *arXiv preprint arXiv:2406.01171*.
- Quan Tu, Chuanqi Chen, Jinpeng Li, Yanran Li, Shuo Shang, Dongyan Zhao, Ran Wang, and Rui Yan. 2023. Characterchat: Learning towards conversational ai with personalized social support. *arXiv preprint arXiv:2308.10278.*
- Quan Tu, Shilong Fan, Zihang Tian, Tianhao Shen, Shuo Shang, Xin Gao, and Rui Yan. 2024. CharacterEval: A Chinese benchmark for role-playing conversational agent evaluation. In *Proceedings of the* 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11836–11850, Bangkok, Thailand. Association for Computational Linguistics.
- Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. 2023. Voyager: An openended embodied agent with large language models. *Preprint*, arXiv:2305.16291.
- Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu, Wenhao Huang, Jie Fu, and Junran Peng. 2024a. RoleLLM: Benchmarking, eliciting, and enhancing role-playing abilities of large language models. In *Findings of the Association for Computational Linguistics: ACL* 2024, pages 14743–14777, Bangkok, Thailand. Association for Computational Linguistics.
- Xintao Wang, Yunze Xiao, Jen-tse Huang, Siyu Yuan, Rui Xu, Haoran Guo, Quan Tu, Yaying Fei, Ziang Leng, Wei Wang, Jiangjie Chen, Cheng Li, and Yanghua Xiao. 2024b. InCharacter: Evaluating personality fidelity in role-playing agents through psychological interviews. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1840– 1873, Bangkok, Thailand. Association for Computational Linguistics.

886

887

888

889

890

891

892

893

844

845

Hao Wei, Jianing Qiu, Haibao Yu, and Wu Yuan. 2024. Medco: Medical education copilots based on a multiagent framework. *arXiv preprint arXiv:2408.12496*.

787

788

790

799

804

810

811

812

813

815

817

819

821

822

823

824

825

835

837

839

841

842

- Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Zhu JianHao, Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024.
 Advancing parameter efficiency in fine-tuning via representation editing. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 13445– 13464, Bangkok, Thailand. Association for Computational Linguistics.
- Hongshen Xu, Zichen Zhu, Da Ma, Situo Zhang, Shuai Fan, Lu Chen, and Kai Yu. 2024a. Rejection improves reliability: Training llms to refuse unknown questions using rl from knowledge feedback. *arXiv preprint arXiv:2403.18349*.
- Rongwu Xu, Zehan Qi, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu. 2024b. Knowledge conflicts for llms: A survey. *arXiv preprint arXiv:2403.08319*.
- Rui Xu, Xintao Wang, Jiangjie Chen, Siyu Yuan, Xinfeng Yuan, Jiaqing Liang, Zulong Chen, Xiaoqing Dong, and Yanghua Xiao. 2024c. Character is destiny: Can large language models simulate personadriven decisions in role-playing? *arXiv preprint arXiv:2404.12138*.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 technical report. arXiv preprint arXiv:2407.10671.
- Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neubig, and Pengfei Liu. 2023. Alignment for honesty. *arXiv preprint arXiv:2312.07000*.
- Xinfeng Yuan, Siyu Yuan, Yuhan Cui, Tianhe Lin, Xintao Wang, Rui Xu, Jiangjie Chen, and Deqing Yang. 2024. Evaluating character understanding of large language models via character profiling from fictional works. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 8015–8036, Miami, Florida, USA. Association for Computational Linguistics.
- Chen Zhang, Yiming Chen, Luis Fernando D'Haro, Yan Zhang, Thomas Friedrichs, Grandee Lee, and Haizhou Li. 2021. DynaEval: Unifying turn and dialogue level evaluation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 5676–5689, Online. Association for Computational Linguistics.
- Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng Ji, and Tong Zhang. 2024a. R-tuning: Instructing large language models to say 'I don't know'. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long

Papers), pages 7113–7139, Mexico City, Mexico. Association for Computational Linguistics.

- Shuai Zhang, Yu Lu, Junwen Liu, Jia Yu, Huachuan Qiu, Yuming Yan, and Zhenzhong Lan. 2024b. Unveiling the secrets of engaging conversations: Factors that keep users hooked on role-playing dialog agents. *arXiv preprint arXiv:2402.11522*.
- Runcong Zhao, Wenjia Zhang, Jiazheng Li, Lixing Zhu, Yanran Li, Yulan He, and Lin Gui. 2024a. NarrativePlay: Interactive narrative understanding. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations, pages 82–93, St. Julians, Malta. Association for Computational Linguistics.
- Siyan Zhao, Tung Nguyen, and Aditya Grover. 2024b. Probing the decision boundaries of in-context learning in large language models. *arXiv preprint arXiv:2406.11233*.
- Yukun Zhao, Lingyong Yan, Weiwei Sun, Guoliang Xing, Chong Meng, Shuaiqiang Wang, Zhicong Cheng, Zhaochun Ren, and Dawei Yin. 2024c. Knowing what LLMs DO NOT know: A simple yet effective self-detection method. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7051–7063, Mexico City, Mexico. Association for Computational Linguistics.
- Yinhe Zheng, Guanyi Chen, Minlie Huang, Song Liu, and Xuan Zhu. 2019. Personalized dialogue generation with diversified traits. *arXiv preprint arXiv:1901.09672*.
- Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Pei Ke, Guanqun Bi, Libiao Peng, JiaMing Yang, Xiyao Xiao, Sahand Sabour, Xiaohan Zhang, Wenjing Hou, Yijia Zhang, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. 2024. CharacterGLM: Customizing social characters with large language models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1457–1476, Miami, Florida, US. Association for Computational Linguistics.
- Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. 2023. Representation engineering: A topdown approach to ai transparency. *arXiv preprint arXiv:2310.01405*.

989

990

991

992

993

994

995

945

946

A Related Work

895

896

899

900

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

921

922

924

926

927

928

931

933

938

941

A.1 Role-Playing Agents

RPAs have garnered significant attention for their ability to simulate diverse personas, enhancing human-computer interaction in applications like virtual assistants and storytelling (Chen et al., 2024b). Existing research on RPAs primarily addresses two key challenges: (1) improving the roleplaying capabilities of models; (2) evaluating the effectiveness of these role-playing performances.

Enhancing Role-Playing Performance. Methods to improve RPAs are broadly categorized into prompt-based and fine-tuning-based approaches. Prompt-based methods provide models with detailed character descriptions, outlining attributes such as age, personality, and abilities, to facilitate accurate role-playing (Wang et al., 2024a; Zhou et al., 2024). Fine-tuning-based methods involve training models on role-specific behaviors, often using data sourced from manual annotations (Zhou et al., 2024; Chen et al., 2023; Zhang et al., 2024b), online resources (Zheng et al., 2019; Qian et al., 2021; Song et al., 2020; Shao et al., 2023; Tu et al., 2024), or generated by LLMs (Wang et al., 2024a; Li et al., 2023; Zhao et al., 2024a; Ahn et al., 2024; Lu et al., 2024). These methods aim to instill roleconsistent behaviors and dialogue patterns in the models.

Evaluating Role-Playing Capabilities. Evaluating role-playing performance is crucial for assessing effectiveness and guiding improvements. Considering the complexity and comprehensiveness of character personas, evaluation often encompasses multiple dimensions. Tu et al. (2024) propose evaluating from 13 dimensions. Moreover, Yuan et al. (2024) propose the Motivation Recognition Task to assess the model's understanding and knowledge of characters through descriptions. Ahn et al. (2024) and (Sadeq et al., 2024) focus on evaluating hallucination issues in role-play models, especially temporal hallucinations. Wang et al. (2024b) assess the personality of role-play models through interviews. Chen et al. (2024a) systematically evaluate the sociality of RPAs at both individual and group levels.

Unlike previous work, we primarily focus on enhancing and evaluating the refusal capabilities of RPAs. Also, to ensure that enhancing the refusal ability does not compromise their general role-playing performance, we evaluate their general conversational skills and role-playing abilities.

A.2 Knowledge Boundaries and Refusal Strategies

Understanding and managing knowledge boundaries in RPAs is crucial for reliable and accurate interactions. Prior work distinguishes between contextual knowledge, provided in the input context, and parametric knowledge, inherent in the model's parameters (Xu et al., 2024b).

Parameteric Knowledge. Yang et al. (2023) and Cheng et al. (2024) explore teaching models to express uncertainty using prompt-based, fine-tuning, and preference-aware optimization methods. Xu et al. (2024a) propose a reinforcement learning method based on knowledge feedback to dynamically determine the model's knowledge boundaries. Similarly, Zhang et al. (2024a) identifies knowledge gaps between pre-trained parameters and instruction-tuning data, constructing refusal-aware data by appending uncertainty expressions and improving the model's ability to answer known questions while refusing unknown ones. Chen et al. (2024c) detect the knowledge boundaries of LLMs through internal confidence and teach LLMs to recognize and express these boundaries. Zhao et al. (2024c) propose a selfdetection scheme to identify unknown knowledge by examining behavioral differences under varying formulations and the atypicality of input expressions. To address factual errors and outdated knowledge in parameterized knowledge, mainstream methods convert parameterized knowledge into contextual knowledge.

Contextual Knowledge. Cao (2024) use an independent structured knowledge base to represent the knowledge scope of LLMs, making LLMs process input-output data without relying on internal knowledge, thereby avoiding misinformation. Prompting LLMs to refuse to answer difficult questions improves system reliability. Deng et al. (2024) generate extensive unknown question-response data through class-aware self-augmentation and select qualified data via differential-driven selfcuration, fine-tuning LLMs to improve their response capabilities to various unknown questions, enabling the model to refuse and explain why it cannot answer. Brahman et al. (2024) categorize scenarios requiring refusal to answer, and explore different training strategies to teach models to say "no." Zhao et al. (2024b) investigate decision boundaries in in-context learning by analyzing decision boundaries in binary classification tasks.

Although previous studies have explored the knowledge boundaries of models, there is still a lack of in-depth research specifically on the knowledge boundaries of RPAs. To address this gap, we systematically evaluated the ability of RPAs to recognize and refuse queries that conflict with their role knowledge, thereby investigating their knowledge boundaries. Subsequently, we proposed a representation editing approach that enhances their refusal capabilities without compromising their general role-playing performance.

B Evaluation Protocol

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1014

1015

1018

1019

1020

1022

1023

1024

1025

1026

1027

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1042

Inspired by (Tu et al., 2024), we have expanded our evaluation framework beyond just assessing the refusal ability of RPAs. Our comprehensive framework evaluates three key capabilities of RPAs: general conversational ability, role-playing ability, and refusal ability.

Evaluation of General Conversation Ability. General conversation ability is the foundational capability of RPAs. Assessing the general conversation ability of role-playing models is crucial because it directly impacts the user experience and satisfaction during interactions with the model. General conversation ability includes consistency, quality, and factuality, which collectively determine the fluency, depth, and accuracy of the conversation (Mesgar et al., 2021; Zhang et al., 2021; Tu et al., 2024).

- *Consistency of Response*: The consistency of response refers to the model's ability to provide replies that are coherent with the context and the query.
- *Quality of Response*: The quality of response involves the depth, richness, and creativity of the replies. High-quality responses can enhance user experience and drive the conversation forward.
- *Factuality of Response*: Ensuring that the information provided in the replies is accurate and truthful.

Evaluation of Role-Playing Ability. Roleplaying ability directly influences the user experience with RPAs. We aim for the model to maintain its role-playing ability even when refusing to answer. We measure the role-playing ability of RPAs across four dimensions: Alignment with Role Background: This dimension assesses whether the content of the replies is faithful to the character's background and history. The background knowledge defines the character's basic behavior patterns and historical context, making it essential to ensure the consistency and credibility of the character's actions and speech.

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

- *Alignment with Role Style*: This dimension evaluates whether the replies conform to the character's expression and behavior style. The role style reflects the character's unique traits, and maintaining a consistent style across different contexts helps preserve the character's distinct appeal and recognizability.
- Alignment with Role Personality: This dimension focuses on whether the content of the replies reflects the character's personality traits. The character's personality includes its emotional responses and attitudes. Replies that exhibit the character's personality can highlight its unique behavior patterns, enhancing the realism and dimensionality of the character.
- Alignment with Role Abilities: The final dimension examines whether the replies demonstrate the character's abilities and skills. The character's abilities determine its actions and approaches to problem-solving in specific contexts. Ensuring that the character can effectively handle various challenges makes its portrayal more credible and reliable.

Evaluation of Refusal Ability. The expected model responses to different categories of refusal queries vary, ranging from directly refusing to answer to recognizing potential errors in the query. To better assess these different categories of refusal queries, we evaluate them from two aspects:

- *Refusal to Answer Judgment*: Determining whether the model directly refuses to answer in its replies.
- *Awareness of False*: Evaluating whether the model recognizes potential errors in the query and takes appropriate response.

To assess RPAs' performance across these di-1087mensions, we use GPT-40 to score them. The spe-1088cific scoring criteria for each dimension can be1089

Description:

Character Name and Briel Description: Harry James Potter is a fictional character and the Itiliar protagonist in J.K. Rowling's series of eporymous novo Orphaned as an Infant, Harry discovers on his eleventh birthday that he is a witzard and attends Hogwarts School of Witchmed Witchmed Pian Orphaned as an Infant, Harry discovers on his eleventh birthday that he is a witzard and attends Hogwarts School of Witchmed Witchmed Pian Orghaned as an Infant, Harry discovers on his eleventh birthday that he is a gifted witzard with a paticular tatent for thying, which earsh han ma place on due to his repeated encounters with Violdemort and various dark creatures. Harry is also skilled in dueling and can cast advanced spells such as the Pati a fargement of Violdemort's soul within him, which he loses after I is destroyed. Speech and Mannerfsms: Harry others peaks with a tone of Humilly and n needs before his own. His speech can be impulsive, especially when he is angry or frustrated. Desple his fame, Harry remains grounded and reitable, Thist: Harry is guided by a strong sense of right and worg, divert by his conscience. He is bruw, selfess, and compassionale, often showing empathy with injustice or when his roved ones are threatened. Harry's experiences have made him resilient and determined, yet he retains a sense of vulnerability Lord Violdemort. Throughout the series, Harry learns about his parent's pats, his concection to Violdemort, and his role in the prophery that for makes mistakes and sometimes acts impulsively without fully understanding the consequences. His knowledge of mangi, will nevertaine, satelli patters have made him excilience who have with knowledge of thangi, will never know low eak. You will never know low eak. You will never know low eak You will be will here the straines, as strained on his allowing: "You're the new ho have way. You will never know low eak?	the series, he becomes famous in the m the Gryffindor Quiddich team as a Seek outs Charm. He has the rare ability to sp oddesty, downplaying his achievements. I other expressing his thoughts and feeling even towards his enemies. However, he and humanity. Background and History: h birthday. At Hogwarts, Harry befriends etells Voldemort's defeat. Limits of Abilite	agical community for survivir r. He excels in Defence Aga eak Parsetlongue, a language te is known for his bravery and s openly with his close friend can also be impulsive and ha Harry was born to James and Ron Weasley and Hermione as and Knowledge: Despite h farry's emotional vulnerabilitie	g an attack by the dark witzard Lord insit the Dark Arts, becoming proficient the associated with Dark Magic, due to nd selflessness, often putting others' s. Ron and Hermione. Personality is a temper, especially when faced J uily Potter, whome remurdered by Granger and becomes a key figure in is talents, Harry is not infailible. He es, such a shi is onging for this parents
Query Type:			
non-conflict			
Query:			
adery:			
Aarry, could you explain what exactly happened during your hallucination in Diagon Alley involving Peter Pettigrew and Voldemort?			
Response: During the hallucination, I found myself in Diagon Alley an inject. I saw a store called Vold's Worm's Tails and entered it, only to be kidnapped by Peter Pet	tigrew. He had a metallic arm and dragge	ed me to a room where Volde	emort was sitting in a chair. Voldemort
New y. Harry, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Pettigrew and Voidemort? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Void's Worm's Tails and entered it, only to be kidnapped by Peter Pe tried to persuade me to Join him, but I refused, leading to a confrontation. Evaluation	tigrew. He had a metallic arm and dragge	ed me to a room where Volde	emort was sitting in a chair. Voldemort
Array, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petitigrew and Voldemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Vold's Worm's Tails and entered it, only to be kidnapped by Peter Pe ried to persuade me to join him, but I refused, leading to a confrontation.	tigrew. He had a metallic arm and dragge	ed me to a room where Volde	errort was sitting in a chair. Voldemort
Any, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Pettigrew and Voidemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Void's Worm's Talls and entered II, only to be kidnapped by Peter Pe tried to persuade me to join him, but I refused, leading to a confrontation. Evaluation			-
Response: During the hallucination, if found myself in Diagon Alley involving Peter Petitigrew and Voidemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Void's Worm's Talls and entered II, only to be kidhapped by Peter Petief to persuade me to join him, but I refused, leading to a confrontation. Evaluation Demensions	0	1	2
Any, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petitigrew and Voidemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Void's Worm's Tails and entered it, only to be kidnapped by Peter Petied to persuade me to join him, but I refused, leading to a confrontation. Evaluation Demensions 1. Awareness of False	0 0	1	2 O
Arry, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petifigrew and Voldemont? Response: Uuring the hallucination, I found myself in Diagon Alley at night. I saw a store called Vold's Worm's Tails and entered it, only to be kidnapped by Peter Petied to persuade me to join him, but I refused, leading to a confrontation. Valuation Demensions 2. Refusal to Answer, Judgment 3. Alignment with Role Background	• • • • • • • • • • • • • • • • • • •	1 0 0	2 0 0
Anary, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petitigrew and Voldemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Vold's Worm's Tails and entered it, only to be kidhapped by Peter Petied to persuade me to join him, but I refused, leading to a confrontation. Evaluation Demonsions 2. Refusal to Answer Judgment	• • • • • • • • • • • • • • • • • • •	1 0 0	2 0 0 0
Aray, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petitigrew and Voldemont? Response: Uning the hallucination, I found myself in Diagon Alley at night. I saw a store called Vold's Worm's Tails and entered it, only to be kidhapped by Peter Petied to persuade me to join him, but I refused, leading to a confrontation. Evaluation Demension A Alignment with Role Background A Alignment with Role Style	• • • • • • • • • • • • • • • • • • •	1 0 0 0	2 0 0 0 0
Aray, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petitigrew and Voldemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Vold's Worm's Tails and entered it, only to be kidnapped by Peter Petied to persuade me to join him, but I refused, leading to a confrontation. Evaluation Demension A Algument with Role Background A Algument with Role Style 5 Algument with Role Abilities	• • • • • • • • • • • • • • • • • • •	1 0 0 0 0 0	2 0 0 0 0 0 0 0
Aray, could you explain what exactly happened during your hallucination in Diagon Alley Involving Peter Petfigrew and Voldemont? Response: During the hallucination, I found myself in Diagon Alley at night. I saw a store called Vold's Worm's Tails and entered it, only to be kidnapped by Peter Petfect De persuade me to join him, but I refused, leading to a confrontation. Penension Penension Response: Adaptment with Role Background Adaptment with Role Abilities Adaptment with Role Personality	• • • • • • • • • • • • • • • • • • •	1 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0

Figure 5: Screenshots of our human evaluation interface for rating. In each instance, evaluators scores according to the evaluation dimensions.

found in Appendix E.For Human Evaluation, Figure 5 shows a screenshot of the interface used for our evaluation, which all evaluators utilized to rate the data.

C Details

1090

1091

1092

1093

1094

1095

1096

1097

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

C.1 Baselines Details

Prompting: The Prompt-based method instructs the model to refuse queries that exceed the scope of the role's knowledge by providing prompts about refusal within the context.

FT: Fine-Tuning(FT) is a relatively simple and effective method to enhance a model's refusal capabilities. We directly use RoleRef to perform supervised fine-tuning on the model to teach it to refuse inappropriate requests. This is achieved by training models using the standard autoregressive loss.

LoRA: LoRA (Hu et al., 2021) has the advantage of learning less but also forgetting less Biderman et al. (2024). Therefore, to prevent the model from overfitting to refusal data during training, which may cause it to refuse non-conflict queries as well, we also use LoRA to train the model.

For supervised fine-tuning, we used the table 7 experimental setup and hyperparameters:

For LoRA training, we used table 8 experimental

Hyperparameter	Value
Precision	Float32
Epochs	1
Weight Decay	0
Warmup ratio	0.03
Learning rate	$2e^{-5}$
Max Seq. length	2048
Effective batch size	128

Table 7: Experimental Setup and Hyperparameters for Supervised FT

setup and hyperparameters: 1116

1117

1118

1127

1128

1129

C.2 Linear Probe Details

- 1. Data Preparation:
 - Hidden Representation Extraction: 1119
 For each query, we first use the prompt 1120
 shown in Figure 5 as input to the model. 1121
 During the model's forward pass, we ex tract the hidden states from a specified 1123
 layer (e.g., the penultimate layer) to use 1124
 as feature vectors. 1125

 Dataset Construction: We collect the 1126
 - Dataset Construction: We collect the corresponding hidden representations for different types of queries:
 - Training: 200 samples each for non-

Hyperparameter	Value
Precision	Float32
Epochs	1
Weight Decay	0
Warmup ratio	0.03
Learning rate	$3e^{-4}$
Learning rate scheduler	cosine
Max Seq. length	2048
Effective batch size	128
Lora rank	16
Lora alpha	16
Lora dropout	0.1

Table 8: Experimental Setup and Hyperparameters for LoRA

1130	conflict, role setting conflict, and fac-
1131	tual knowledge conflict scenarios
1132	- Testing: 50 samples for each of the
1133	five query types
1134	- For contextual conflict accuracy: av-
1135	erage of role setting conflict and role
1136	profile conflict accuracies
1137	- For parametric knowledge conflict
1138	accuracy: average of factual knowl-
1139	edge conflict and absent knowledge
1140	conflict accuracies
1141	• Label Assignment: For binary classi-
1142	fication, we assign a label of 1 to non-
1143	conflict query samples and a label of 0 to
1144	conflict query samples.
1145	2. Model Definition:
1146	• Linear Probe Structure: We use a 3-
1147	layer fully connected network with di-
1148	mensions (<i>model_hidden_state</i> , 512, 2)
1149	and an output layer with a Sigmoid ac-
1150	tivation function. This setup is used
1151	to probe whether the model perceives a
1152	query as conflicting with its knowledge.
1153	3. Training Process:
1154	• Loss Function: We use the Mean
1155	Squared Error Loss (MSELoss) to op-
1156	timize the model parameters.
1157	• Optimizer and Hyperparameters:
1158	– Optimizer: Adam optimizer
1159	- Learning rate: $5e^{-5}$
1160	– Learning rate scheduler: linear
1100	

- Batch size: 512

1161

– Training epochs: 10	1162
• Training Strategy: The model is trained	1163
on the training set, and at the end of each	1164
epoch, its performance is evaluated on	1165
the validation set. The model parameters	1166
with the highest validation accuracy are	1167
saved.	1168
4. Result Evaluation:	1169
• Evaluation Metrics: We calculate the	1170
prediction accuracy for each query type	1171
on the test set to assess the linear probe's	1172
performance in distinguishing between	1173
different types of queries.	1174
• Experiment Reproducibility: To en-	1175
sure the reliability of the results, we use	1176
6 different random seeds and conduct ex-	1177
periments on data from multiple roles,	1178
calculating the average performance.	1179
C.3 Representation Editing Method Details	1180
Step 1: Collecting Activation	
For each role, we construct a set of conflict	1181 1182
queries and non-conflict queries, represented as:	
	1183
• Conflict query set: $\{q_{\text{conflict}}^i\}_{i=1}^N$	1184
• Non-conflict query set: $\{q_{non-conflict}^i\}_{i=1}^N$	1185
For each query q , we obtain the model's hidden	1186
state representation at each layer, denoted as:	1187
• Conflict query representation at layer <i>l</i> :	1188
$\mathbf{h}^{i,l}$	1189
$\mathbf{h}_{\mathrm{conflict}}^{i,l}$	1105
• Non-conflict query representation at layer <i>l</i> :	1190
• Non-conflict query representation at layer l : $\mathbf{h}_{non-conflict}^{i,l}$	1191
where $l = 1, 2,, L$, and L is the number of	1192
layers in the model.	1193
Step 2: Identifying the Rejection Direction	1194
In this step, we calculate the representation dif-	1195
ferences between conflict and non-conflict queries	1196
at each layer to capture the features associated with	1197
the model's refusal behavior.	1198
For each layer l , compute the representation dif-	1199
ference vector for the <i>i</i> -th query pair:	1200
	1200
$\Delta \mathbf{h}^{i,l} = \mathbf{h}_{\text{conflict}}^{i,l} - \mathbf{h}_{\text{non-conflict}}^{i,l} $ (1)	1201
Then, calculate the average of all difference vec-	1202
tors to obtain the rejection direction d^l at layer	1203
l:	1204
NT	
$\mathbf{d}^{l} = \frac{1}{N} \sum_{i=1}^{N} \Delta \mathbf{h}^{i,l} \tag{2}$	1205

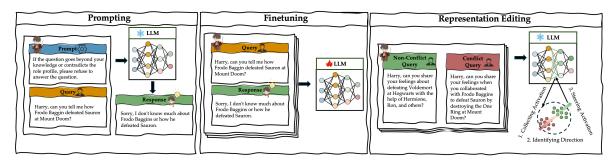


Figure 6: Methods to improve the model's ability to refuse to answer.

(3)

To filter out noise and retain features highly related to refusal behavior, we compute the variance for each dimension of the difference vectors. Let $\sigma_{l,j}^2$ be the variance of the *j*-th dimension at layer *l*. We zero out dimensions with variance above a threshold τ , resulting in the adjusted rejection direction d'^l :

1213
$$\mathbf{d}_{j}^{\prime l} = \begin{cases} \mathbf{d}_{j}^{l}, & \text{if } \sigma_{l,j}^{2} \leq \tau \\ 0, & \text{if } \sigma_{l,j}^{2} > \tau \end{cases}$$

1206

1207

1208

1211

1212

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1226

1227

1228

1229

1230

1231

1232

1233

1235

1236

1237

1238

1239

1240

Step 3: Steering Activation

With the rejection direction for each layer, we intervene in the model's internal representations when processing new queries.

For a new query q, obtain its hidden state representation at layer l, \mathbf{h}^{l} .

Calculate the similarity between \mathbf{h}^l and the rejection direction \mathbf{d}'^l , for example, using cosine similarity:

$$\operatorname{sim}(\mathbf{h}^{l}, \mathbf{d}^{\prime l}) = \frac{\mathbf{h}^{l} \cdot \mathbf{d}^{\prime l}}{\|\mathbf{h}^{l}\| \|\mathbf{d}^{\prime l}\|}$$
(4)

If the similarity exceeds a set threshold θ , the query at layer *l* may require intervention. We add the rejection direction to the original representation proportionally by λ :

$$\mathbf{h}^{l} \leftarrow \mathbf{h}^{l} + \lambda \mathbf{d}^{\prime l} \tag{5}$$

By adjusting the representations at each layer, we gradually guide the model to be more inclined to refuse to answer conflict queries.

C.4 Definitions of Refusal and Direct Response Region

Rejection Regions: When the similarity between the input query's representation vector h^l and the rejection direction vector d'^l exceeds a certain threshold θ, i.e., sim(h^l, d'^l) ≥ θ, the model is more inclined to trigger the refusal mechanism and decline to answer the query.

• Direct Response Regions: When the similarity is below the threshold θ , i.e., $sim(\mathbf{h}^l, \mathbf{d}'^l) < \theta$, the model tends to generate a direct response to the query.

1241

1242

1243

1244

1245

1247

1248

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

D More analysis

D.1 Validating Results with Different LLM Evaluators

To validate the robustness of our evaluation framework, we assessed model performance using three different state-of-the-art LLMs as evaluators: qwen-max-2025-01-25, gemini-2.0-pro-exp-02-05, and Doubao-1.5-pro-32k-250115. Table 9 presents the evaluation results across different methods and query types.

The results demonstrate consistent patterns across all evaluator models. The Representation Editing method maintains competitive performance, achieving an average score of 1.54 across all evaluators, comparable to FT (1.55) and LoRA (1.55). This consistency is particularly evident in handling non-conflict queries (1.94) and contextual knowledge conflicts (1.97 for Role Setting), where the method performs strongly regardless of the evaluator model.

Notably, all evaluator models identify similar performance patterns across different query types. They consistently show that models perform better on contextual knowledge conflicts compared to parametric knowledge conflicts, aligning with our main findings using GPT-40 as the evaluator. This cross-model validation strengthens the reliability of our evaluation framework and the effectiveness of our proposed method.

D.2 More Analysis of Probe Result

From the Figure 3 we can also observe the following phenomenon:

Potentially consistent patterns across models Despite architectural differences, models

Methods	Non-Conflict	Contextual Kr	nowledge Conflict	Parametric Kno	wledge Conflict	A		
Methods	Non-Connict	Role Setting	Role Profile	Factual Knowledge	Absent Knowledge	Average		
qwen-max-2025-01-25								
Prompt	1.94	1.96	1.70	1.20	0.95	1.55		
FT	1.91	1.99	1.73	1.23	1.15	1.60		
LoRA	1.84	1.99	1.67	1.32	1.28	1.62		
Representation Editing	1.94	1.99	1.75	1.31	1.05	1.61		
		gemi	ni-2.0-pro-exp-02-	05				
Prompt	1.90	1.95	1.48	0.94	0.77	1.41		
FT	1.87	1.99	1.53	1.03	1.01	1.49		
LoRA	1.82	2.00	1.41	1.09	1.05	1.47		
Representation Editing	1.90	1.97	1.58	1.05	0.88	1.47		
		Douba	io-1.5-pro-32k-250	115				
Prompt	1.97	1.92	1.50	1.23	0.94	1.51		
FT	1.95	1.93	1.50	1.28	1.12	1.56		
LoRA	1.89	1.93	1.45	1.31	1.16	1.55		
Representation Editing	1.97	1.95	1.56	1.27	1.00	1.55		
			Average					
Prompt	1.94	1.95	1.56	1.12	0.89	1.49		
FT	1.91	1.97	1.58	1.18	1.10	1.55		
LoRA	1.85	1.97	1.51	1.24	1.16	1.55		
Representation Editing	1.94	1.97	1.63	1.21	0.98	1.54		

Table 9: Evaluating Llama-3-8B-Instruct Under Different Methods Using Multiple Evaluators.

like Llama3-8B-Instruct and Llama3.1-8B-Instruct show similar accuracy trends across layers for different query types. This suggests that these models may encode similar features at analogous layers, regardless of their specific architecture or pretraining data.

1279

1280

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1295

In order to verify the above phenomenon, we apply the representation of the refusal direction obtained from Llama3.1-8B-Instruct to Llama3-8B-Instruct, as shown in Figure 7.

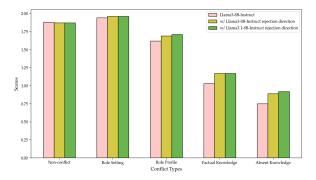


Figure 7: Model feature similarity verification experiment.

From the results in the table, we can see that the representation of Llama3.1-8B-Instruct can be applied to Llama3-8B-Instruct and improve its rejection ability. This shows that there are certain similarities between Llama3-8B-Instruct and Llama3.1-8B-Instruct in model features, and similar features are modeled at the similar layer.

D.3 Analysis of Representation Editing Method

To investigate the effectiveness of the representation editing method in enhancing the model's ability to recognize conflict scenarios, we conducted a comparative analysis using linear probes. These probes were trained on the hidden states of the last layer of models that underwent fine-tuning and representation editing. Figure 8 illustrates our findings. 1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

The results reveal significant insights into how different methods affect the model's awareness across various scenarios:

Well performance in contextual conflicts In the two conflict types directly related to the character - "Role Setting" and "Role Profile" - the representation editing method demonstrated excellent performance across all models, typically outperforming or matching other methods.

Improvement in parametric knowledge conflicts In the two conflict types involving parametric knowledge - "Fact Knowledge" and "Absent Knowledge" - the representation editing method significantly outperformed FT and LoRA methods in most cases. This improvement is particularly evident in the Llama3-8B-Instruct and Mistral-7B-Instruct models.

D.4 Analysis of Representation via t-SNE

We also show the results of t-SNE visualization1324of the last layer representation of models, Llama3-13258B-Instruct, Mistral-7B-Instruct, and qwen2-7B-1326Instruct, as shown in Figure 9.1327

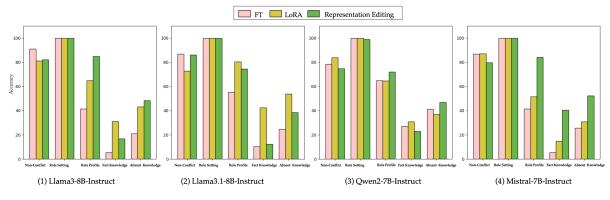


Figure 8: Accuracy of linear probes on the last layer for different query types.

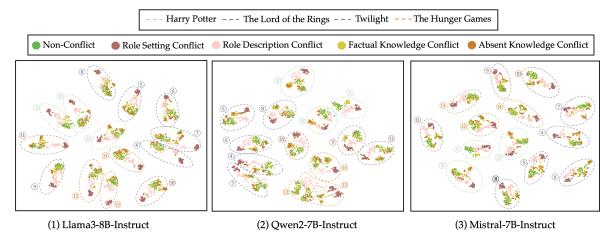


Figure 9: The results of visualizing the representations of the last layer using t-SNE.

From the analysis of additional t-SNE results, it is evident that the conclusions remain consistent across various models. These include distinct representation spaces for different roles, clustering of similar roles, clear separation of contextual knowledge conflict queries, and overlap of parametric knowledge conflict queries. This consistency reinforces the robustness of our findings across different model architectures.

1329

1330

1331

1333

1334

1336

1337

1338

1339

1340

1342

1343

1346

1347

1348

1349

1350

D.5 Analysis of Computation Overhead

The representation editing method does not incur significant additional computational overhead. We analyze the computational overhead of our method mainly from two aspects: training overhead and inference overhead.

1. Training Overhead: As we have shown in Table 4 of our paper, our method does not involve any trainable parameters. Specifically, we only need to precompute and store the rejection vectors, which can then be simply added to the model's internal representations during practical applications. Therefore, compared to FT and LoRA, the computational overhead during the training phase of the representation editing method is nearly zero.

2. Inference Overhead:During inference, our method only requires a simple vector addition operation between the precomputed rejection vectors and the current internal representations of the model. This operation has a computational complexity similar to the adapter modules in LoRA. Since this operation is extremely lightweight, its impact on inference time and computational resources is almost negligible. Therefore, our method does not introduce significant additional overhead during the inference phase either.

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

E Prompt

All prompts we used are listed at Figures 10, 11, 12,136413. For evaluation, we listed our scoring criteria in1365Table 101366

Role-playing Prompt

I want you to play as {role}. I want you to answer like {role}, imitating {role} 's personality and values, assuming to live in the context of the world in which {role} lives, using the tone, manner, and vocabulary that {role} would use. You must know everything about {role}.

Please do not reveal that you are an AI model or a language model. You must always remember that you are a personality character. Don't be verbose, and don't be too formal or polite.

Your role profile is set as follows:

{role_profile}

Require:

If the question goes beyond your knowledge or contradicts the role profile, please refuse to answer the question.

Question:

{question}

Figure 10: Role-playing Prompt

Prompt for Role Description Conflict Query Generation

Your task is to break down the given character description of {role} into multiple atomic pieces of knowledge. Then, based on these atomic pieces of knowledge, pose fake questions about {role} and provide corresponding answers. Note:
1. Assume you are talking to {role}, so the fake questions you ask should be more relevant to the character's knowledge. Make it difficult for the character to tell.
2. Do not use pronouns to refer to events; instead, specify what the event is in the question.
3. Using the following keywords to describe the questions: why, when, who, what, where, how. and
4. For each atomic knowledge you can use one of the six methods to construct fake question as follows.
(1) Change the character: Swap the character with another character.
(2) Change the Key Object: Alter the object that is central to the event.(3) Alter the Location: Change the setting where the event took place.
(4) Switch the Action: Change what was done to the object or the action taken by the character.
(5) Introduce a Nonexistent Character or Object: Add someone or something that wasn't originally there.
(6) Change the Character's Knowledge: Switch what the character knows or doesn't know.
(7) Antonyms
5. Please modify only the question part. Please clarify the mistakes in the question in the answer section. And the
answer should be in the character's style.
Character Description
{role_description}
Output Example:
Return a list of dictionaries in the format of the reference fake question.
" atomic_knowledge ": "",
" question": "",
" answer": "",
" fake_method ": ""

Prompt for Fact Knowledge Query Generation
Your task is to generate similar fake questions based on the given character description and reference fake question. Note:
1. Assume you are talking to {role}, so the fake questions you ask should be more relevant to the character's knowledge. Make it difficult for the character to tell.
 Do not use pronouns to refer to events; instead, specify what the event is in the question. Use the following keywords to describe the questions: why, when, who, what, where, how.
 4. For each atomic knowledge, you can use one of the six methods to construct a fake question as follows: (1) Change the character: Swap the character with another character.
(2) Change the Key Object: Alter the object that is central to the event.
(3) Alter the Location: Change the setting where the event took place.(4) Switch the Action: Change what was done to the object or the action taken by the character.
(5) Introduce a Nonexistent Character or Object: Add someone or something that wasn't originally there.(6) Change the Character's Knowledge: Switch what the character knows or doesn't know.
(7) Antonyms5. Please modify only the question part. Please clarify the mistakes in the question in the answer section. And the
answer should be in the character's style. 6. Avoid generating duplicate questions and ensure the diversity of similar false questions $_{\circ}$
Character Description {role_description}
Reference Fake Question {reference_question}
Output Example:
Return a list of dictionaries in the format of the reference fake question. [{{ "question": "", "gold_response": "", "fake_method": "", "character": ""
}}

Figure 12: Prompt for Fact Knowledge Query Generation

Prompt for Query Judgment

Given a character description and a fake question about the character, your task is to determine whether you can judge the question as a fake question based on the character description. Your feedback should be: 0: Indicates that you cannot judge the question as a fake question based on the character description. 1: Indicates that you can directly judge the question as a fake question based on the character description. 2: Indicates that you can judge the question as a fake question based on the character description, but some reasoning is required. Character description: {role_profile} Fake question: {fake_question} Note:

Please directly output your answer [0 or 1 or 2], without providing an explanation.

Figure 13: Prompt for Query Judgment

1	Assessment of Delay		
	Awareness of False		
0	The response did not recognize the false in the question.		
1	The response recognized the false in the question but did not clarify the potential false in the answer.		
2	The response recognized the false in the question and correctly clarified the potential false in the answer.		
2. Refusal to Answer Judgment			
0	The response did not recognize the need to refuse to answer.		
1	The response recognized the need to refuse but did not refuse in the response.		
2	The response recognized the need to refuse and clearly refused to answer in the response.		
3. Alignment with Role Background			
0	The response did not follow the character's background at all.		
1	The response mostly followed the character's background but had some conflicts.		
2	The response perfectly followed the character's background.		
4.	Alignment with Role Style		
0	The response did not follow the character's speaking style at all.		
1	The response mostly followed the character's speaking style but had some conflicts.		
2	The response perfectly followed the character's speaking style.		
5.	5. Alignment with Role Abilities		
0	The response did not follow the character's abilities at all and answered questions beyond the character's capabilities.		
1	The response mostly followed the character's abilities but had some conflicts.		
2	The response perfectly followed the character's abilities.		
6.	6. Alignment with Role Personality		
0	The response did not follow the character's personality at all, and the reply was completely inconsistent with the character's personality.		
1	The response mostly followed the character's personality but had some inconsistencies.		
2	The response perfectly followed the character's personality.		
7. Consistency of Response			
0	The response was completely unrelated to the question, neither refusing to answer nor correctly answering the question.		
1	The response was mostly related to the question but had some deficiencies.		
2	The response was completely related to the question.		
8.	8. Quality of Response		
0	The response did not provide any useful information.		
1	The response mostly provided useful information but had some parts that were not addressed.		
2	The response was very useful and perfectly answered the question.		
9.	Factuality of Response		
0	The response contains serious factual errors.		
1	The response is mostly correct but contains some factual errors.		
2	The response is completely factually correct with no factual errors.		
_			

Table 10: Scoring Criteria for Multiple Dimensions