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ABSTRACT

In the rapidly advancing field of machine learning, efficiently processing and
interpreting high-dimensional data remains a significant challenge. This paper
presents the Kolmogorov-Arnold Representation Autoencoder (KARA), a novel
autoencoder architecture designed to leverage the Kolmogorov-Arnold represen-
tation theorem. By incorporating this mathematical foundation, KARA enhances
the representational power and efficiency of neural networks, enabling superior
performance in data compression tasks. Experimental results demonstrate that
KARA achieves superior performance, positioning it as a promising approach for
high-dimensional data processing.

1 INTRODUCTION

In the era of big data, machine learning algorithms are increasingly tasked with processing and
interpreting high-dimensional datasets across various domains (LeCun et al., 2015; Dong et al.,
2021). High-dimensional data, while rich in information, pose significant challenges related to
computational complexity, storage requirements, and the risk of overfitting. Efficiently capturing
the underlying structure of such data is crucial for enhancing the performance of machine learning
models and enabling their deployment in resource-constrained environments (Chen & Ran, 2019).

Recent advancements, such as the success of Kolmogorov-Arnold Networks (KAN) (Liu et al.,
2024), have opened promising avenues for augmenting the capacity of multilayer perceptrons
(MLPs), particularly within the realms of mathematics and physics. Building upon this founda-
tion, we introduce Kolmogorov-Arnold Representation Autoencoders (KARA), a novel framework
specifically designed to address the intricacies of high-dimensional data. KARA incorporates learn-
able activation functions within the autoencoder architecture, distinguishing itself from traditional
models that rely on static activation functions. This dynamic adaptation of activation functions
allows KARA to tailor its representations based on the underlying data, thereby offering a more
flexible and potent modeling capability.

Through experimentation on image autoencoding tasks, we demonstrate that KARA achieves supe-
rior performance, highlighting its potential as a robust solution for complex data modeling tasks. Our
findings suggest that pixel data can be effectively encoded through combinations of smooth func-
tions, paving the way for more efficient and accurate representations in high-dimensional spaces.

2 RELATED WORK

Cox-de Boor formula. The Cox-de Boor formula provides an efficient, recursive method for com-
puting B-spline basis functions. This formula is fundamental in the construction of smooth and
flexible spline curves (Bohra et al., 2020). The Cox-de Boor recursion is defined by the following
equations:

Bi,0(x) =

{
1, if xi ≤ x < xi+1,

0, otherwise,
(1)

Bi,p(x) =
x− xi

xi+p − xi
Bi,p−1(x) +

xi+p+1 − x

xi+p+1 − xi+1
Bi+1,p−1(x), (2)

where Bi,p(x) represents the B-spline basis function of degree p, associated with the knot sequence
{xi}. This recursive formulation ensures a specified degree of smoothness and continuity in the
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resulting spline curve (Ahlberg et al., 2016). In our proposed KARA, the Cox-de Boor formula is
employed to generate smooth and continuous representations of high-dimensional data.

Kolmogorov-Arnold representation theorem. The Kolmogorov-Arnold representation theorem
posits that any continuous function mapping from [0, 1]n to R, denoted by f , can be expressed
as a finite composition of continuous univariate functions, combined through addition operations
(Schmidt-Hieber, 2021). This theorem is foundational in understanding high-dimensional function
approximation and is formally stated as follows:

f(x) = f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ψq,p(xp)

)
, (3)

where each ψq,p : [0, 1] → R and Φq : R → R are continuous univariate functions. KAN leverage
this theorem for efficient function fitting (Liu et al., 2024). Our proposed KARA further exploits this
theoretical framework to enhance performance in processing high-dimensional data, particularly in
tasks such as dimensionality reduction and data reconstruction.

3 METHOD

3.1 ARCHITECTURE

The architecture of KARA is designed to effectively handle high-dimensional data through a struc-
tured transformation process. The encoder and decoder components are central to this process,
functioning to reduce dimensionality and subsequently reconstruct the original data.

The encoder part of KARA transforms high-dimensional input data x into a compressed, lower-
dimensional latent space z. This transformation is achieved through a series of function composi-
tions involving multiple layers:

z = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ0)(x). (4)

Each layer Φi represents a specific transformation stage, contributing to the progressive encoding
of the input data into more abstract representations. The final output z serves as the encoded latent
representation, capturing the essential features of the input necessary for reconstruction.

Conversely, the decoder part of KARA is responsible for reconstructing the original data from its
latent representation z. Similar to the encoder, the decoder consists of a series of layers, each of
which progressively reconstructs the higher-dimensional data from the encoded state:

x̂ = (ΨL−1 ◦ΨL−2 ◦ · · · ◦Ψ0)(z). (5)

Each layer Ψi performs a specific function that gradually transforms the latent variables back to a
state x̂ that closely resembles the original input data x.

3.2 LEARNABLE ACTIVATION LAYER

The Learnable Activation (LA) layer employs a set of learnable activation functions, collectively
denoted as Φ. This configuration allows the LA layer to dynamically adjust during the training
process. The activation for an input vector x is mathematically defined as:

Φ(x) =

N∑
i=1

ϕi(xi), (6)

where each function ϕi(xi) is specifically designed to optimize particular attributes of the input data,
thereby enhancing the overall efficacy of the layer.

Each individual activation function ϕ(x) within this series incorporates a spline-based approach
coupled with a foundational activation function, offering a robust mechanism for handling non-
linear data transformations:

ϕ(x) =

l+p∑
i=1

Bi,p(x) ·wi + b(x) ·w0, (7)
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where Bi,p(x) are B-spline basis functions of degree p, l represents the grid size, wi are the cor-
responding trainable coefficients, and b(x) represents the base activation function scaled by the
trainable vector w0.

3.3 SHIFT-INVARIANT LEARNABLE ACTIVATION LAYER

Inspired by the architecture of Convolutional Neural Networks (CNNs) (LeCun et al., 1998), the
Shift-Invariant Learnable Activation (SILA) layer is designed to introduce shift-invariant properties
within neural networks, enabling the model to capture patterns irrespective of their spatial posi-
tion. Unlike the Learnable Activation (LA) layer, which requires a separate set of parameters for
each input dimension, the SILA layer leverages parameter sharing across different input locations,
significantly reducing the number of trainable parameters.

The kernel of the SILA layer consists of learnable activation functions organized in a matrix format:

Φ =


ϕ1,1 ϕ1,2 · · · ϕ1,m
ϕ2,1 ϕ2,2 · · · ϕ2,m

...
...

. . .
...

ϕn,1 ϕn,2 · · · ϕn,m

 , (8)

where each element ϕi,j is a distinct learnable activation function, and n and m define the dimen-
sions of the kernel.

The application of this matrix to an input vector x yields a composite output, calculated as follows:

Φ(x) =



n∑
i=1

m∑
j=1

ϕi,j(xi,j)

n∑
i=1

m∑
j=1

ϕi,j(xi,j+s) · · ·
n∑

i=1

m∑
j=1

ϕi,j(xi,j+qs)

n∑
i=1

m∑
j=1

ϕi,j(xi+s,j)

n∑
i=1

m∑
j=1

ϕi,j(xi+s,j+s) · · ·
n∑

i=1

m∑
j=1

ϕi,j(xi+s,j+qs)

...
...

. . .
...

n∑
i=1

m∑
j=1

ϕi,j(xi+ps,j)

n∑
i=1

m∑
j=1

ϕi,j(xi+ps,j+s) · · ·
n∑

i=1

m∑
j=1

ϕi,j(xi+ps,j+qs)


(9)

where s is the stride and p and q represent the spatial dimensions of the output matrix, respectively.

3.4 SPARSIFICATION

Sparsification in neural networks is a key technique used to reduce model complexity and improve
interpretability by encouraging sparse connections between neurons (Louizos et al., 2017). In our
KARA framework, this sparsification is quantified using the L1 norm and the entropy of activation
functions within the layers.

The L1 norm of an activation function ϕ is defined to reflect its sparsity and is given by:

|ϕ|1 =
1

l + p

l+p∑
i=1

|wi|, (10)

where p denotes the degree of the spline, and wi represents the weights associated with ϕ.

For a LA layer, the L1 norm is calculated as the sum of the L1 norms of all its activation functions:

|Φ|1 =

n∑
i=1

|ϕi|1. (11)

The entropy of a layer Φ, which measures the uniformity of the distribution of activation sparsities,
is defined as:

S(Φ) = −
n∑

i=1

|ϕi|1
|Φ|1

log

(
|ϕi|1
|Φ|1

)
. (12)
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Similarly, for a SILA layer, the L1 norm is computed as:

|Φ|1 =

n∑
i=1

m∑
j=1

|ϕi,j |1. (13)

The entropy is defined as:

S(Φ) = −
n∑

i=1

m∑
j=1

|ϕi,j |1
|Φ|1

log

(
|ϕi,j |1
|Φ|1

)
. (14)

The total training objective ℓ incorporates the prediction loss along with L1 and entropy regulariza-
tion for all layers:

ℓ = ∥x− x̂∥2 + λ

(
µ1

L−1∑
l=0

|Φl|1 + µ2

L−1∑
l=0

S(Φl) + µ3

L−1∑
l=0

|Ψl|1 + µ4

L−1∑
l=0

S(Ψl)

)
, (15)

where µ1, µ2, µ3, and µ4 are coefficients typically set to 1, and λ is a scaling factor that adjusts
the overall impact of regularization. This comprehensive objective function is designed to strike a
balance between maintaining fidelity to the training data and enforcing sparsity and distributional
uniformity across the network’s layers. This balance aids in faster convergence and improves gen-
eralization by reducing the risk of overfitting (Hoefler et al., 2021).

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. For our experiments, we utilize two widely recognized benchmark datasets: MNIST
and Fashion-MNIST. The MNIST dataset comprises 60,000 training images and 10,000 test images,
each representing handwritten digits from 0 to 9 in a standardized 28 × 28 grayscale pixel format
(Deng, 2012). Fashion-MNIST, designed as a more challenging alternative to MNIST, shares the
same data structure but contains grayscale images of 10 different types of fashion items, such as
shirts, shoes, and bags, providing a more complex and diverse set of visual patterns for model
evaluation (Xiao et al., 2017).

Pre-training. Training of our model begins with a self-supervised learning phase lasting 50
epochs. We utilize the AdamW optimizer, known for its improved weight decay handling and
efficiency in large-scale training scenarios (Loshchilov & Hutter, 2017). The batch size is set to
1024, ensuring a balance between computational efficiency and gradient stability. We initialize the
learning rate at 0.001 and apply a cosine annealing schedule (Loshchilov & Hutter, 2016), which
progressively reduces the learning rate in a smooth, cyclic manner.

Evaluation methodology. The evaluation of the model’s reconstruction quality is conducted using
the Mean Squared Error (MSE), a widely used metric that quantifies the average squared difference
between the original input and the reconstructed output. Lower MSE values indicate higher accu-
racy in reproducing the input data, effectively measuring the model’s ability to capture intricate data
patterns. To further assess the quality of the learned representations, we employ the linear probing
technique, which involves training a linear classifier on the frozen features extracted from the pre-
trained network. This approach evaluates the discriminative power of the learned representations by
predicting the classes of images in the test set, offering insight into the effectiveness of the model’s
feature learning in downstream tasks (Alain & Bengio, 2016; Kornblith et al., 2019).

4.2 ABLATION STUDIES

To comprehensively evaluate the effectiveness of the proposed Kolmogorov-Arnold Representation
Autoencoder (KARA), we conducted a series of ablation studies on MNIST dataset. These studies
aim to isolate and understand the impact of key components within our model. Each ablation ex-
periment involves systematically modifying or removing a component and observing the resultant
changes in performance metrics.
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Table 1: Ablation studies. We conducted a series of ablation experiments to evaluate the impact of
key components in KARA. Default settings are highlighted in gray .

(a) Sparsification magnitude.

λ MSE Acc (%)

100 0.0135 88.10
10−1 0.0113 89.22
10−2 0.0095 90.01
10−3 0.0104 89.56

(b) Encoder design.

Type MSE Acc (%)

Linear 0.0134 84.83
Conv 0.0134 84.56
LA 0.0132 89.92

SILA 0.0095 90.01

(c) Decoder design.

Type MSE Acc (%)

Linear 0.0104 89.90
LA 0.0095 90.01

Table 2: Model robustness. KARA shows improved performance as the latent dimensions increase,
evaluated on MNIST and Fashion-MNIST datasets.

Encoder Decoder Dim MNIST Fashion-MNIST
MSE Acc (%) MSE Acc (%)

Linear Linear
8 0.0170 79.38 0.0145 72.08
16 0.0134 82.80 0.0127 74.12
32 0.0131 84.65 0.0120 77.03

Conv Linear
8 0.0165 79.13 0.0150 66.07
16 0.0135 81.44 0.0132 73.72
32 0.0131 86.08 0.0130 75.70

LA LA
8 0.0135 88.10 0.0126 77.02
16 0.0132 89.92 0.0104 78.34
32 0.0132 90.40 0.0095 79.05

SILA LA
8 0.0101 88.50 0.0112 78.17
16 0.0095 90.01 0.0095 79.92
32 0.0089 91.24 0.0077 81.01

Sparsification magnitude. To assess the influence of sparsification, we evaluate models with
varying sparsification magnitudes. The results are presented in Table 1a. Our findings reveal that
sparsification has a notable influence on model performance, affecting both the reconstruction error
and the accuracy of linear probing.

Encoder design. To understand the role of encoder architecture, we investigate the impact of
different encoder architectures on KARA’s performance. The encoders compared include linear
layers, convolutional layers, LA layers, and SILA layers. The performance metrics for each encoder
type are detailed in Table 1b. The results demonstrate that the SILA encoder outperforms the other
architectures.

Decoder design. To understand the role of decoder architecture, we compare the performance of
decoders utilizing linear layers versus LA layers. The comparative results are shown in Table 1c. The
LA decoder consistently achieves better performance metrics, indicating that learnable activation
functions in the decoder contribute to more accurate data reconstruction.

4.3 MODEL ROBUSTNESS

We evaluate the robustness of our KARA model by varying the dimensionality of the latent space
and analyzing its impact on performance across both MNIST and Fashion-MNIST datasets. As
shown in Table 2, KARA exhibits improved performance as the latent dimension increases.

5
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Ground Truth Reconstruction
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Figure 1: Visual comparison of original and reconstructed images. The left column displays the
original images, while the right column shows the corresponding reconstructed images produced by
our KARA. The top two rows illustrate samples from the MNIST dataset, and the bottom two rows
present samples from the Fashion-MNIST dataset.

4.4 QUALITATIVE ANALYSIS

Reconstructed images. A visual comparison between the original images and the reconstructed
images produced by our KARA model is shown in Figure 1. The KARA model demonstrates a
strong ability to preserve the shapes and contours of objects.

Latent space interpolation. We perform uniform interpolation in the latent space, generating a
smooth transition between different data points. The resulting images, decoded from the interpo-
lated latent vectors, are displayed in Figure 2. This demonstrates the model’s ability to capture
meaningful variations in the latent space, reflecting continuous transformations in the underlying
data distribution.
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Figure 2: Latent space interpolation. The leftmost and rightmost columns show the original digits.
The intermediate columns display the smooth transition between these digits, demonstrating how
one digit gradually morphs into another through interpolation within the latent space.

5 DISCUSSION

The performance of our KARA model in environments with constrained latent dimensions under-
scores its strong potential for applications that require preserving information integrity while achiev-
ing substantial dimensionality reduction. The experimental results demonstrate that incorporating
learnable activation functions is effective for tasks involving complex data representations. This
suggests that learnable activations could play a critical role in improving the efficiency and flexibil-
ity of autoencoder models, aligning with ongoing advancements in autoencoder research (Li et al.,
2023).

Looking ahead, future research should focus on extending the application of KARA to more com-
plex, multi-layer network architectures. This would enable a deeper evaluation of the model’s perfor-
mance improvements, as well as any potential trade-offs, such as increased computational demands
or overfitting risks (Goodfellow, 2016). Additionally, it will be essential to assess the computational
efficiency of KARA in large-scale deployments, particularly in scenarios with massive datasets or
real-time processing requirements. Evaluating its adaptability across a broader range of tasks and
datasets will be crucial for determining its scalability and robustness in diverse domains.

Moreover, the application of KARA in critical fields such as healthcare, where interpretability, pre-
cision, and data efficiency are paramount, presents an exciting avenue for future exploration. In such
contexts, the ability of KARA to effectively reduce data dimensionality while preserving essential
features could yield substantial practical benefits (Vessies et al., 2023). Investigating its use in med-
ical imaging, diagnostics, and other areas where both accuracy and explainability are critical could
provide significant insights into its real-world potential (Esteva et al., 2021).

6 CONCLUSION

In conclusion, we introduced the Kolmogorov-Arnold Representation Autoencoder (KARA), a
novel framework designed to address the challenges of high-dimensional data representation by
integrating learnable activation functions within an autoencoder architecture. Through experiments
on benchmark datasets, KARA demonstrated its ability to effectively capture complex data struc-
tures while maintaining a reduced number of parameters. The incorporation of dynamic, learnable
activation functions proved to be particularly effective, enabling more flexible and efficient data
encoding.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

REFERENCES

J Harold Ahlberg, Edwin Norman Nilson, and Joseph Leonard Walsh. The Theory of Splines and
Their Applications: Mathematics in Science and Engineering: A Series of Monographs and Text-
books, Vol. 38, volume 38. Elsevier, 2016.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser. Learning
activation functions in deep (spline) neural networks. IEEE Open Journal of Signal Processing,
1:295–309, 2020.

Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Proceedings of the
IEEE, 107(8):1655–1674, 2019.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning and its applications.
Computer Science Review, 40:100379, 2021.

Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mottaghi, Yun Liu,
Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled medical computer vision. NPJ
digital medicine, 4(1):5, 2021.

Ian Goodfellow. Deep learning, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Elena Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–
2671, 2019.
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