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Abstract

Medical image segmentation is challenging due to limited data and annotations.1

Denoising diffusion probabilistic models (DDPM) show promise in modelling2

natural image distributions and are successfully applied in medical imaging. Our3

research focuses on semi-supervised image segmentation using diffusion models’4

latent representations and addressing domain generalisation. We found that optimal5

performance depends on choice of diffusion steps and ensembling. Our model out-6

performed in domain-shifted settings while remaining competitive within domain,7

highlighting DDPMs’ potential for medical image segmentation.18

1 Introduction9

Denoising diffusion probabilistic models (DDPM) [Sohl-Dickstein et al., 2015, Ho et al., 2020] have10

recently emerged as a promising approach for modelling the distribution of natural images, outper-11

forming alternative methods in terms of sample realism and diversity. More recently, DDPM have12

also been successfully applied to various medical imaging tasks, such as image reconstruction [Xie13

and Li, 2022], diagnostics [Aviles-Rivero et al., 2022] and segmentation [Wolleb et al., 2022].14

Image segmentation is crucial in medical settings, where accurate and efficient methods are required15

to support diagnosis, treatment planning, and disease monitoring. However, limited dataset size16

and insufficient annotations make it challenging to train accurate models. High variability due to17

differences in acquisition parameters, scanner types, and patient demographics, known as domain18

shift, also presents difficulties in generalising segmentation models to new datasets, leading to19

potential underperformance in clinical settings.20

Recent research in diffusion models has shown promising results [Baranchuk et al., 2021, Deja et al.,21

2023] for semi-supervised learning: the bottleneck network tasked to learn the backward process of22

removing noise from an image also learns an expressive feature representation that can benefit other23

downstream analysis tasks. However, more research is needed to understand the implications of these24

models’ design choices for generalisation.25

Our work focuses on optimally leveraging diffusion steps for improving generalisation in semi-26

supervised image segmentation under domain shift. Based on the analysis of datasets with diverse27

imaging modalities and domain shifts, our findings demonstrate significant improvements over28

existing baselines using five different datasets. Our key findings can be summarised as follows:29

• Small diffusion steps are crucial for model generalisation;30

• Concatenating latent representations over steps to predict segmentation maps can hurt31

generalisation;32

1Demo: https://huggingface.co/spaces/anonymous2023-21/TEDM-demo
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Figure 1: Models diagram. LEDM, the SOTA in semi-supervised segmentation with diffusion models,
selects a subset of timesteps and concatenates latent representations extracted from a pretrained
diffusion model as features fed to an MLP. Our method (i) selects smaller and more informative
timesteps, (ii) predicts through a voting mechanism over our steps selection and (ii) shares the MLP
weights across timesteps, resulting in improved segmentation performance.

• Instead, generalisation can be significantly improved by (i) optimising which timesteps33

to use at test time, (ii) ensembling predictions from individual timesteps using a shared34

predictor and (iii) using these individual predictions for regularisation during training.35

2 Background and related work36

DDPM are generative models that use a UNet to iteratively denoise a noise signal over T timesteps37

and generate samples from a distribution. See Appendix A for more information.38

Baranchuk et al. [2021] apply diffusion models to semi-supervised segmentation by using a DDPM39

pretrained on unlabelled images and extracting latent representation from its UNet’s intermediate40

layers. Their Label Efficient Diffusion Model (LEDM) selects a set of steps t ∈ S ⊂ {0, . . . , T}41

and generates latent representations zt ∈ Rc×h×w. These are upsampled to the input size and42

concatenated into a feature map Z ∈ R(|S|×c)×H×W . Finally, an ensemble of lightweight multilayer43

perceptions (MLPs) Cn
ϕ : Zi,j → yi,j ; n ∈ {1, .., 10} performs pointwise prediction, trained with a44

cross-entropy loss. The authors choose diffusion steps S = {50, 150, 250} to form the input.45

Similarly, Deja et al. [2023] use the latent representations of a pretrained diffusion model for46

classification. Their proposed method uses all intermediate timesteps to regularise the training47

process, and only uses the last diffusion step t = 1 at test time.48

3 Timestep ensembling diffusion models49

Preliminary results discussed in Appendix B illustrate that LEDM does not perform well to out-of-50

distribution (OOD) settings. We hypothesise that using more model regularization and reducing the51

number of parameters can improve its generalization. Currently, LEDM’s approach of concatenating52

features from numerous timesteps to feed into the pixel-wise MLP predictor results in an excessively53

high-dimensional input and a complex predictor. Instead, we propose using a shared MLP trained to54

generate a prediction map from each latent representation of the steps considered.55

We define our loss function as follows:56

ϕ = argmin EDEi,jEs∈S CE (Cϕ(z̃
i,j
s ), yi,j) (1)

At test time, we use a voting mechanism to ensemble the various prediction maps to obtain a final57

segmentation map. We call this technique “timestep ensembling" and show that it yields superior58

performance. Moreover, we leverage the insights from the preliminary results and combine predictions59

from the diffusion steps {1, 10, 25, 50, 200, 400, 600, 800}. This approach allows us to benefit from60
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Table 1: Models performance w.r.t. ground truth segmentations. Reported as mean ± standard
deviation over the dataset. Global CL, Global & Local CL and LEDM are a reproduction of Chen
et al. [2020], Chaitanya et al. [2020] and Baranchuk et al. [2021] respectively.

Training size 1 (1%) 3 (2%) 6 (3%) 12 (6%) 197 (100%)

JSRT (in-domain for classifier)

Sup. Baseline 84.4 ± 5.4 91.7 ± 3.7 93.3 ± 2.9 95.3 ± 2.3 97.3 ± 1.2
Global CL 88.8 ± 5.9 92.7 ± 1.8 93.6 ± 1.6 95.3 ± 1.1 97.1 ± 1.4
Global & Local CL 89.8 ± 5.2 93.1 ± 1.7 92.9 ± 1.9 94.8 ± 1.49 97.2 ± 1.2
LEDM 90.8 ± 3.5 94.1 ± 1.6 95.5 ± 1.4 96.4 ± 1.4 97.0 ± 1.3
LEDMe 93.7 ± 2.6 95.5 ± 1.5 96.7 ± 1.5 97.0 ± 1.1 97.6 ± 1.2
TEDM (ours) 93.1 ± 3.4 94.8 ± 1.4 95.8 ± 1.2 96.6 ± 1.1 97.3 ± 1.2

NIH (in-domain for DDPM, OOD for classifier)

Sup. Baseline 68.5 ± 12.8 71.2 ± 15.1 71.4 ± 15.9 77.8 ± 14.0 81.5 ± 12.7
Global CL 70.7 ± 14.6 80.3 ± 12.2 77.1 ± 16.4 84.6 ± 10.8 86.9 ± 10.8
Global & Local CL 71.1 ± 16.2 79.6 ± 12.7 81.1 ± 14.0 82.2 ± 13.6 87.4 ± 10.8
LEDM 63.3 ± 12.2 78.0 ± 10.1 81.2 ± 9.3 85.9 ± 7.4 88.9 ± 5.9
LEDMe 70.3 ± 11.4 78.3 ± 9.8 83.0 ± 8.6 84.4 ± 8.1 90.1 ± 5.3
TEDM (ours) 80.3 ± 9.0 86.4 ± 6.2 89.2 ± 5.5 91.3 ± 4.1 92.9 ± 3.2

Montgomery (OOD for DDPM and classifier)

Sup. Baseline 77.1 ± 12.0 83.0 ± 12.2 80.9 ± 14.7 83.8 ± 14.9 94.1 ± 6.6
Global CL 76.1 ± 15.0 87.6 ± 9.7 88.8 ± 11.4 90.4 ± 10.4 92.9 ± 10.8
Global & Local CL 77.4 ± 17.4 88.7 ± 9.14 89.9 ± 8.2 90.1 ± 10.9 92.5 ± 11.2
LEDM 79.3 ± 8.1 85.9 ± 7.4 89.4 ± 6.7 92.3 ± 7.2 94.4 ± 7.2
LEDMe 80.7 ± 6.6 86.3 ± 6.5 89.5 ± 5.9 91.2 ± 5.6 95.3 ± 4.0
TEDM (ours) 90.5 ± 5.3 91.4 ± 6.1 93.3 ± 6.0 94.6 ± 6.0 95.1 ± 6.9

the small steps information content and larger step regularisation effect, unlike LEDM, which only61

used timesteps {50, 125, 250}. To better understand the distinctions between our model and LEDM,62

please refer to Figure 1.63

4 Experiments64

We evaluate our work on the task of chest X-ray lung segmentation, training the DDPM on ChestX-65

ray8 [Wang et al., 2017], the MLP on JSRT [Van Ginneken et al., 2006] and testing on JSRT,66

NIH [Tang et al., 2019] and the Montgomery [Jaeger et al., 2014] datasets, where NIH is a labelled67

subset of ChestX-ray8. For details on the experimental setup, please refer to Appendix B.68

To test our semi-supervised method, we experiment with various percentages of the JSRT training set69

(100%, 12%, 6%, 3%, 2%, and 1%). We compare our timestep ensembling diffusion model (TEDM)70

to a fully supervised baseline (described in Appendix B), LEDM, and two other semi-supervised71

methods that use contrastive learning (CL): the ‘Global CL’ [Chen et al., 2020] and the ‘Local and72

Global CL’ [Chaitanya et al., 2020]. All methods were trained with the same backbone architecture.73

We perform ablations to analyse the impact of each component in our TEDM model. We compare the74

LEDM model with an instance trained using our diffusion steps, henceforth LEDMe. Additionally,75

we test the test-time voting mechanism using steps 1, 10, and 25 individually instead of the ensemble.76

Finally, we test the TEDM method on two additional datasets: the UK Biobank dataset and the BraTS77

dataset [Menze et al., 2014, Bakas et al., 2017, 2018]. In the UK Biobank dataset, we segment brain78

structures in 2D slices of brain MRI T1 images, while in the BraTS dataset, we segment tumours from79

brain MRI of patients. The former dataset is challenging due to the low intensity variation between80

structures and background, while the latter is even more difficult as it entails segmenting items of81

varied shapes and locations. Further details on the experimental process for these two datasets are82

available in Appendix C.83
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5 Results84

The performance results on chest X-rays and brain MRI are shown quantitatively in Tables 1 and 3,85

and qualitatively in Figure 4. The ablation results are shown in Table 2. Further results can be found86

in Appendix D. The best-performing models2 are highlighted in bold in all tables.87

Using small step sizes improves performance both in- and out-of-domain. Across all experi-88

ments, models with small diffusion steps perform the best: LEDMe outperforms LEDM in all but89

two experiments in Table 1, and for the UK Biobank and BraTS datasets in Table 3 for training sizes90

larger than 3 and 1, respectively.91

Concatenating latent representations hurts generalisability in the low data regime. TEDM92

outperforms LEDM and LEDMe, except for n=197, in NIH and Montgomery datasets. We deduce93

that concatenation in LEDM hurts generalisation. In addition, TEDM performs statistically similarly94

to LEDM for JSRT, indicating that its generalisability comes with no in-domain performance cost.95

Test-time ensembling over timesteps improves generalisation over single-step predictions. Ta-96

ble 2 shows that the voting mechanism used in TEDM is more effective than using any individual97

step, as different steps produce latent representations focused on different aspects of the image.98

TEDM performs robustly for increasingly challenging segmentation tasks. Table 3 shows that99

TEDM is statistically superior or equal to its competitors for all cases with less than 12 datapoints,100

demonstrates its competitiveness in challenging in-domain scenarios with low labelled data.101

Fully supervised baselines are competitive for in-domain harder segmentation tasks. Our102

method TEDM showcases excellent performance on very small dataset sizes (1, 2, 3 and 6 in Table 3).103

However, for larger datasets (6 patients or more), a well-designed baseline model is more effective104

than any of the semi-supervised models. This result suggests that although semi-supervised methods105

with self-supervised pretraining may have their limitations in providing task-specific performance for106

larger datasets, they present great potential for improving results on small datasets.107

6 Conclusions108

This study investigated the impact of different diffusion steps on the performance and generalisation109

of semi-supervised segmentation models. Our comprehensive experiments across multiple datasets110

revealed that small diffusion steps are crucial for domain generalisation, requiring only a few111

training samples to become powerful pixel-wise predictors. Furthermore, we found that ensembling112

segmentation maps over timesteps significantly improves model generalisation in the low data regime113

while offering competitive performance in-domain. Conversely, concatenating latent representations114

can hurt the generalisation of the pixel-wise classifier. These findings were demonstrated by the115

superior performance of our proposed Timestep Ensembling Diffusion Model on chest X-ray lung116

segmentation and more challenging tasks such as brain structure and tumour segmentation. Our117

results indicate that latent representations across different steps share semantics and act as a model118

regulariser, leading to better generalisation than competing methods. This analysis underscores the119

importance of thoroughly investigating the design decisions for auxiliary tasks in diffusion models,120

such as timestep selection and ensembling. These decisions can have a significant impact on the121

model’s performance.122

Our findings provide important new insights and may inform the development of new approaches123

leveraging powerful diffusion models for medical imaging tasks. In future work, the performance of124

TEDM and similar approaches should be compared to the emerging foundation model techniques,125

where the pre-training is executed at a larger scale than semi-supervised methods. Here, the ability of126

diffusion models to efficiently capture the data distribution from extensive, unlabelled data holds a127

promise to overcome the persistent data scarcity problem in medical image segmentation.128

2That is best-performing and statistically equivalent models
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A Diffusion models194

Diffusion models have garnered significant interest in the machine learning community due to their195

remarkable ability to model complex data distributions efficiently. Diffusion models utilise a series196

of simple and learnable transformations to diffuse noise iteratively and generate samples from the197

target distribution. Formally, a DDPM works as follows. Given a data distribution p(x0) and forward198

process:199

p(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where βt ∈ (0, 1) is the variance schedule and t ∈ [0, T ] is the Markov chain time step, a DDPM200

aims to learn µθ(xt, t) and Σθ(xt, t) which define the backward process:201

p(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (3)

In order to do so, Ho et al. [2020] fix the variance Σθ(xt, t), reparametrise µθ(xt, t) as a function of202

the noise ϵθ(xt, t)203

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)
)
, where αt = 1− βt, αt =

t∏
i=1

αi (4)

and design a UNet-based neural network architecture204

Gθ : (xt, t) → ϵθ(xt, t)

for learning to identify the noise. The UNet is trained through cross-entropy between the injected and205

predicted noise.206

B On the importance of the diffusion steps for domain generalisation207

Previous findings suggest that latent representations in larger steps contain coarse information, which208

becomes more granular as the diffusion steps approach the target data distribution [Baranchuk et al.,209

2021, Deja et al., 2023]. Here, we are interested in understanding how the wealth of information in210

each time step s ∈ S contributes to model generalisation when the training dataset size varies.211

We train a Ridge logistic regression-based pixel-wise classifier over latent representations extracted212

from specific timesteps t = {1, 10, 25, 50, 200, 400, 600, 800} to isolate the predictive power of each213

timestep. We compare these timestep-wise predictions to LEDM and a fully supervised baseline214

using the same UNet backbone as the DDPM backbone.215

We evaluate our work on the task of chest X-ray lung segmentation. Chest X-rays are among the most216

frequent radiological examinations in clinical practice, and automatically extracted features from217

anatomical regions such as the lungs can aid clinical decision-making. Moreover, the availability of218

6
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Figure 2: Performance of a logistic regression segmentation model trained on latent features from
individual diffusion steps.

several public datasets of chest X-ray images allows us to investigate the methods’ generalisation219

ability in the presence of changes in dataset characteristics.220

Following previous work in semi-supervised medical image segmentation [Rosnati et al., 2022],221

we use the ChestX-ray8 [Wang et al., 2017] (n=108k) as the unlabelled dataset to train the DDPM222

backbone over T = 1000 steps and a subset of the JSRT [Van Ginneken et al., 2006] (n=247) labelled223

dataset for training (n=197) and validating (n=25) our method. The dataset splits, architecture, and224

code are available in our code repository.225

We reserve the remaining JSRT samples (n=25) along with the NIH [Tang et al., 2019] (n=95), and226

Montgomery [Jaeger et al., 2014] (n=138) labelled datasets for final testing. Notably, the NIH dataset227

is an annotated subset of the ChestX-ray8 dataset. This setup allows us to test the models on data that228

is (i) in-domain for the classifier (JSRT), (ii) out-of-domain for the classifier but in-domain for the229

DDPM (ChesX-ray8/NIH) and (iii) out-of-domain for both (Montgomery).230

Figure 2 shows the Dice coefficients from the step-wise experiment when training our segmen-231

tation model, the baseline and LEDM on n = {197, 49, 24, 12, 6, 3, 1} JSRT labelled datapoints,232

corresponding to {100, 50, 25, 12, 6, 3, 2, 1} % of the training dataset. Surprisingly, LEDM does233

not significantly3 outperform the baseline in the one-shot setting for domain-shifted datasets (NIH,234

Montgomery). This indicates that LEDM may not fully utilise the latent representation information.235

Secondly, we find that the predictor trained on a single step t = 1 statistically outperforms both236

LEDM and the baseline for small training sizes (1, 3, 6 in NIH and Montgomery and for one datapoint237

in JSRT). In addition, this predictor remains competitive with both the baseline and LEDM across all238

other training dataset sizes.239

The experiment highlights that latent representations obtained from smaller steps are more powerful240

predictors than those obtained from larger steps, particularly for domain generalisation. In particular,241

the LEDM steps 50, 125 and 250 are not the optimal choice for segmentation as single-step approaches242

3Significance is calculated through a Wilcoxon paired test at level 0.05.
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Figure 3: Additional results on the performance of a logistic regression segmentation model trained
on latent features from individual diffusion steps.

with smaller steps perform better on out-of-distribution datasets. In the next section, we investigate243

whether ensembling different steps can still outperform single-step approaches given the right244

choice of steps. We investigate several ways of ensembling these steps and their impact on model245

generalisation.246

C Methods details247

C.1 UK Biobank data preprocessing248

The UK Biobank brains dataset contains 42 791 patients’ scans. We initially separate the data in three249

sets, a training set with ntrain = 34 230, a validation set with nval = 4280 and a test set of ntest =250

4280 patients. After evaluating some methods with ntest = 4280 and careful consideration of results251

variance, we reduced the test set to ntest = 500 without suffering any drops in metrics accuracy.252

All scans have voxel size 1mm3 and image size 189 × 233 × 197, and are paired with the seg-253

mentation of 15 subcortical structures’ volumes from FIRST (FMRIB’s Integrated Registration and254

Segmentation Tool Patenaude et al. [2011]) segmentation, and brain masks. For more details on the255

scan preprocessing, please refer to Alfaro-Almagro et al. [2018].256

We preprocess the images by clipping the intensities to [0, 1500] to remove large outliers, then257

normalise the brain pixels using the brain masks so that the 1st and 99th quantiles correspond to -1258

and 1 respectively:259

xnorm[mask ̸= 0] = a · x[mask ̸= 0] + b (5)

such that a =
2

x99% − x1%
and b = 1− a · x99% (6)

where x1% and x99% are the 1st and 99th quantiles of x[mask ̸= 0].260

We then split the image and segmentation in 189 2D slices, and discard all slices where no brain261

structures are present in the segmentation, resulting in roughly 100 2D slices per brain image.262
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Table 2: Ablation study on test-time ensembling over timesteps. Each ‘Step i’ experiment only uses
predictions from timestep i at test time.

Training size 1 (1%) 3 (2%) 6 (3%) 12 (6%) 197 (100%)

JSRT (in-domain for classifier)

Step 1 91.1 ± 5.0 94.5 ± 2.1 96.0 ± 1.4 96.8 ± 1.1 97.4 ± 1.3
Step 10 91.6 ± 4.6 94.6 ± 1.8 96.0 ± 1.3 96.9 ± 1.0 97.4 ± 1.2
Step 25 91.7 ± 4.2 94.5 ± 1.6 95.8 ± 1.2 96.8 ± 1.0 97.3 ± 1.2
TEDM 93.1 ± 3.4 94.8 ± 1.4 95.8 ± 1.2 96.6 ± 1.1 97.3 ± 1.2

NIH (in-domain for DDPM, OOD for classifier)

Step 1 70.4 ± 10.9 78.9 ± 9.4 84.2 ± 8.3 87.5 ± 6.5 91.9 ± 3.3
Step 10 73.2 ± 10.3 81.1 ± 8.3 85.8 ± 7.3 88.8 ± 5.6 91.8 ± 3.3
Step 25 75.1 ± 9.8 82.6 ± 7.7 86.5 ± 6.7 89.4 ± 5.2 91.9 ± 3.3
TEDM 80.3 ± 9.0 86.4 ± 6.2 89.2 ± 5.5 91.3 ± 4.1 92.9 ± 3.2

Montgomery (OOD for DDPM and classifier)

Step 1 85.9 ± 4.0 89.3 ± 4.2 92.2 ± 4.2 93.9 ± 3.9 94.9 ± 5.3
Step 10 87.1 ± 4.5 89.3 ± 4.8 92.1 ± 5.2 94.1 ± 5.0 94.8 ± 6.5
Step 25 87.4 ± 5.3 89.1 ± 5.5 91.7 ± 6.2 93.7 ± 6.3 94.6 ± 7.0
TEDM 90.5 ± 5.3 91.4 ± 6.1 93.3 ± 6.0 94.6 ± 6.0 95.1 ± 6.9

C.2 BraTS data preprocessing263

The BraTS dataset consists of 338 patients’ scans. For each patient, four scanner modalities are264

available, “native T1, post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated265

Inversion Recovery (T2-FLAIR) volumes"4. Segmentation maps for GD-enhancing tumour, the266

peritumoural oedema, and the necrotic and non-enhancing tumour core are provided. In addition, the267

scans are co-registered, resampled to 1mm3 resolution as skull stripped. For more information about268

the BraTS dataset preprocessing, please refer to Bakas et al. [2018], Menze et al. [2014]. We separate269

the data in three sets, a training set with ntrain = 269, a validation set with nval = 36 and a test set270

of ntest = 33. For each scan modality, we calculate the mean and variance of the brain pixels across271

the training set, excluding the background. We use the calculated mean and variance to normalise the272

data distribution to mean 0 and standard deviation 1.273

We then split the images and segmentation in 155 2D slices. For each slice, concatenate the four274

modalities, and take a centre crop of 176× 176.275

C.3 Training hyperparameters276

We train the DDPM for 100 000 steps with batch size 4 and learning rate η = 0.0001 on a single277

NVIDIA TITAN X GPU with 12GB capacity. Similarly, we train the Global CL and Global & Local278

CL models for 100 000 steps. All downstream models - the supervised baseline, Global CL and279

Global & Local CL fine-tuning, LEDM, LEDMe and TEDM - are trained for 20 000 steps, with the280

same learning rate.281

D Further results and visualisations282

4https://www.med.upenn.edu/cbica/brats2020/data.html
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Figure 4: Segmentation examples. Col. 1 and 2 are the image and ground truth segmentation.
Subsequent columns correspond to models trained with n training datapoints (see title). Row 1
corresponds to the baseline outcomes, and row 2, 3 and 4 to LEDM, LEDMe and TEDM (our method)
respectively.

Table 3: Dice scores on the UK Biobank and BraTS datasets. For both datasets, the model was trained
on 2D slices, the results are reported on the 3D images. The training size refers to the number of
patients in the labelled training set. The number of 2D slices is roughly 100x larger. Here, statistical
equivalence is calculated with Bonferroni correction to account for multiple classes per patient.

UK Biobank (nunlabelled
train = 34000, ntest = 500)

Training size 1 3 6 12 34 000

Sup. Baseline 54.6 ± 18.6 76.8 ± 12.3 83.1 ± 8.5 85.1 ± 7.6 89.6 ± 5.2
Global CL 42.7 ± 20.4 77.3 ± 11.0 82.0 ± 8.7 85.2 ± 7.4 88.7 ± 5.6
Global & Local CL 44.3 ± 20.3 74.0 ± 11.8 80.6 ± 9.4 82.0 ± 8.9 87.4 ± 6.8
LEDM 60.8 ± 17.1 81.3 ± 7.9 82.3 ± 8.9 83.0 ± 9.2 87.7 ± 5.8
LEDMe 54.7 ± 17.8 79.4 ± 10.8 82.5 ± 9.1 83.8 ± 8.6 86.6 ± 7.0
TEDM (ours) 71.0 ± 14.8 81.0 ± 9.0 82.8 ± 8.8 83.2 ± 9.3 85.1 ± 7.4

BraTS (nunlabelled
train = 268, ntest = 33)

Training size 1 3 6 12 33

Sup. Baseline 12.5 ± 18.9 30.9 ± 31.2 40.7 ± 33.1 47.1 ± 33.8 69.5 ± 25.7
Global CL 4.7 ± 13.6 25.5 ± 29.4 32.3 ± 32.1 40.5 ± 32.0 56.9 ± 28.6
Global & Local CL 11.7 ± 19.1 27.3 ± 30.5 34.1 ± 31.5 38.3 ± 32.2 55.4 ± 30.0
LEDM 24.0 ± 22.9 31.0 ± 31.4 40.8 ± 31.9 48.0 ± 31.2 62.6 ± 26.7
LEDMe 21.2 ± 22.7 33.1 ± 31.4 42.8 ± 32.7 49.5 ± 31.7 63.2 ± 27.6
TEDM (ours) 27.3 ± 26.1 35.6 ± 31.7 41.9 ± 32.3 47.5 ± 31.7 59.8 ± 29.0
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Table 4: Models precision and recall w.r.t. ground truth segmentations, as per Table 1.

Training size 1 3 6 12 197

Precision - JSRT (in-domain for classifier)

Sup. Baseline 89.2 ± 12.1 93.2 ± 7.2 93.8 ± 5.9 95.3 ± 3.7 97.9 ± 1.1
Global CL 86.8 ± 10.5 95.5 ± 3.0 97.3 ± 2.6 97.0 ± 2.0 97.7 ± 1.5
Global & Local CL 90.2 ± 9.2 97.1 ± 2.2 96.8 ± 2.0 96.2 ± 2.0 97.1 ± 1.6
LEDM 85.2 ± 5.8 91.7 ± 2.9 94.1 ± 1.9 96.3 ± 1.5 97.5 ± 1.3
LEDMe 90.1 ± 4.6 93.6 ± 2.3 96.2 ± 2.0 96.6 ± 1.6 97.9 ± 0.9
TEDM (ours) 91.3 ± 7.2 95.4 ± 2.9 95.6 ± 2.0 96.4 ± 1.7 97.5 ± 1.2

Recall - JSRT (in-domain for classifier)

Sup. Baseline 81.5 ± 6.6 90.6 ± 3.4 93.2 ± 2.6 95.4 ± 2.5 96.8 ± 2.2
Global CL 91.8 ± 3.2 90.2 ± 3.0 90.3 ± 3.8 93.8 ± 1.9 96.6 ± 2.3
Global & Local CL 90.0 ± 3.2 89.5 ± 3.3 89.5 ± 3.7 93.4 ± 2.4 97.2 ± 1.8
LEDM 97.4 ± 1.1 96.7 ± 1.2 97.0 ± 1.6 96.6 ± 2.1 96.6 ± 2.1
LEDMe 97.7 ± 1.0 97.5 ± 1.4 97.1 ± 1.5 97.4 ± 1.3 97.3 ± 1.9
TEDM (ours) 95.4 ± 2.1 94.3 ± 1.6 96.2 ± 1.5 96.9 ± 1.4 97.2 ± 1.9

Precision - NIH (in-domain for DDPM, OOD for classifier)

Sup. Baseline 63.0 ± 17.0 65.6 ± 18.3 63.6 ± 20.3 72.0 ± 18.3 80.5 ± 17.4
Global CL 60.8 ± 17.9 78.7 ± 15.9 76.0 ± 20.4 83.2 ± 14.4 89.4 ± 13.6
Global & Local CL 65.1 ± 19.1 81.7 ± 15.2 84.5 ± 15.4 81.7 ± 16.8 88.0 ± 13.9
LEDM 48.4 ± 13.6 69.4 ± 14.8 74.7 ± 14.0 83.0 ± 11.4 88.4 ± 9.2
LEDMe 56.8 ± 14.1 69.3 ± 13.7 77.0 ± 12.9 79.8 ± 12.0 90.8 ± 7.8
TEDM (ours) 70.5 ± 13.3 82.0 ± 10.6 86.3 ± 9.3 90.4 ± 6.9 95.3 ± 3.6

Recall - NIH (in-domain for DDPM, OOD for classifier)

Sup. Baseline 77.7 ± 10.3 80.5 ± 12.0 85.4 ± 10.1 87.4 ± 8.0 84.2 ± 9.9
Global CL 88.6 ± 9.7 83.6 ± 8.1 80.1 ± 13.6 87.4 ± 7.7 85.3 ± 8.9
Global & Local CL 80.9 ± 14.5 78.6 ± 11.7 78.9 ± 14.0 84.0 ± 11.5 87.6 ± 8.5
LEDM 96.4 ± 4.2 91.8 ± 5.5 91.1 ± 6.2 90.2 ± 6.5 89.9 ± 5.5
LEDMe 96.3 ± 3.2 92.5 ± 6.2 91.8 ± 6.7 90.9 ± 7.2 89.9 ± 5.7
TEDM (ours) 95.7 ± 4.0 92.4 ± 4.2 92.9 ± 4.1 92.7 ± 4.4 90.8 ± 5.0

Precision - Montgomery (OOD for DDPM and classifier)

Sup. Baseline 75.1 ± 16.4 77.6 ± 16.1 73.5 ± 18.6 78.1 ± 19.0 94.9 ± 8.9
Global CL 68.3 ± 18.3 86.7 ± 13.7 88.8 ± 15.8 89.2 ± 13.8 93.7 ± 14.1
Global & Local CL 72.2 ± 20.9 90.1 ± 12.7 92.2 ± 11.0 89.2 ± 14.4 92.9 ± 14.7
LEDM 68.7 ± 10.5 79.4 ± 9.7 85.9 ± 8.8 92.0 ± 6.8 97.5 ± 2.7
LEDMe 69.7 ± 9.2 78.8 ± 9.1 84.8 ± 8.5 88.5 ± 7.3 96.4 ± 3.7
TEDM (ours) 88.7 ± 5.3 90.9 ± 5.9 93.5 ± 4.9 96.9 ± 2.4 98.5 ± 1.0

Recall - Montgomery (OOD for DDPM and classifier)

Sup. Baseline 80.9 ± 7.2 90.9 ± 5.9 93.0 ± 5.6 93.0 ± 5.8 93.6 ± 4.8
Global CL 88.7 ± 7.2 89.9 ± 4.8 90.1 ± 5.5 92.8 ± 5.7 93.0 ± 6.5
Global & Local CL 86.1 ± 10.9 88.3 ± 5.5 88.4 ± 6.4 92.2 ± 5.9 93.2 ± 6.0
LEDM 94.9 ± 4.7 94.5 ± 4.2 93.9 ± 4.8 92.9 ± 8.3 92.0 ± 9.4
LEDMe 97.0 ± 3.5 96.3 ± 3.7 95.3 ± 4.3 94.3 ± 5.1 94.4 ± 5.1
TEDM (ours) 92.9 ± 6.7 92.4 ± 6.9 93.3 ± 7.1 92.8 ± 7.9 92.6 ± 9.1
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Table 5: Precision and recall scores on the UK Biobank and BraTS datasets, as per Table 3
.

UK Biobank (nunlabelled
train = 34 000, ntest = 500)

Training size 1 3 6 12 34 000

Precision

Sup. Baseline 67.3 ± 18.9 84.5 ± 11.4 84.0 ± 10.7 85.8 ± 9.5 88.7 ± 9.0
Global CL 59.3 ± 23.3 83.1 ± 11.5 82.9 ± 11.1 85.2 ± 9.7 89.4 ± 8.6
Global & Local CL 52.3 ± 22.5 75.1 ± 15.0 80.3 ± 11.5 81.7 ± 10.7 88.6 ± 9.2
LEDM 64.9 ± 21.3 83.2 ± 9.6 84.0 ± 9.6 85.5 ± 9.1 86.9 ± 8.8
LEDMe 51.3 ± 19.5 86.0 ± 8.9 86.4 ± 9.2 85.9 ± 9.0 88.5 ± 8.9
TEDM 85.9 ± 11.7 88.8 ± 8.3 86.8 ± 9.1 87.8 ± 9.0 87.7 ± 9.2

Recall

Sup. Baseline 41.3 ± 20.5 67.8 ± 16.4 79.7 ± 11.4 82.5 ± 11.2 88.6 ± 6.4
Global CL 30.6 ± 19.6 70.2 ± 14.9 78.8 ± 11.3 82.8 ± 10.4 85.8 ± 9.5
Global & Local CL 39.6 ± 19.4 73.6 ± 11.0 81.1 ± 9.9 82.7 ± 10.1 86.6 ± 7.6
LEDM 64.4 ± 17.7 76.2 ± 13.2 81.4 ± 10.2 81.5 ± 11.2 86.2 ± 8.0
LEDMe 66.0 ± 18.1 75.2 ± 12.7 79.4 ± 11.1 82.5 ± 10.7 85.0 ± 8.0
TEDM 58.6 ± 20.3 73.2 ± 13.3 79.7 ± 11.1 80.0 ± 11.9 83.0 ± 8.6

BraTS (nunlabelled
train = 268, ntest = 33)

Training size 1 3 6 12 33

Precision

Sup. Baseline 25.7 ± 30.0 45.1 ± 37.4 54.6 ± 37.6 62.2 ± 35.1 74.1 ± 26.8
Global CL 12.0 ± 25.3 38.6 ± 34.9 48.3 ± 37.1 57.1 ± 34.9 66.6 ± 29.9
Global & Local CL 31.6 ± 35.7 40.5 ± 37.2 49.5 ± 36.3 60.7 ± 35.1 66.3 ± 29.2
LEDM 26.4 ± 28.5 44.5 ± 37.9 56.7 ± 35.8 61.6 ± 35.0 70.6 ± 27.4
LEDMe 27.9 ± 29.4 51.2 ± 37.6 60.8 ± 35.2 61.4 ± 34.8 70.4 ± 27.5
TEDM 46.2 ± 34.2 61.4 ± 35.8 67.2 ± 33.6 67.4 ± 33.4 72.4 ± 27.0

Recall

Sup. Baseline 18.9 ± 28.4 43.7 ± 36.4 48.1 ± 35.8 49.5 ± 35.5 71.1 ± 26.2
Global CL 13.6 ± 29.1 38.9 ± 36.2 33.1 ± 33.6 45.2 ± 33.5 56.9 ± 30.9
Global & Local CL 21.0 ± 31.3 38.3 ± 35.8 40.6 ± 34.9 39.4 ± 33.3 56.8 ± 31.8
LEDM 35.8 ± 26.7 37.0 ± 34.3 45.8 ± 33.6 51.0 ± 32.0 63.8 ± 26.9
LEDMe 26.8 ± 26.8 36.0 ± 32.9 46.7 ± 34.6 53.1 ± 32.5 64.7 ± 27.7
TEDM 27.6 ± 28.2 37.3 ± 33.3 42.4 ± 33.3 47.9 ± 32.9 59.3 ± 30.2
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