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ABSTRACT

Can LLMs pick up language structure from examples? Evidence in prior work
seems to indicate yes, as pretrained models repeatedly demonstrate the ability to
adapt to new language structures. However, this line of research typically consid-
ers languages that are present within common pretraining datasets, or otherwise
share notable similarities with seen languages. In contrast, in this work we attempt
to measure models’ language understanding capacity while circumventing the risk
of dataset recall. We parameterize large families of language tasks recognized by
deterministic finite automata (DFAs), and can thus sample novel language reason-
ing problems to fairly evaluate LLMs regardless of training data. We find that,
even in the strikingly simple setting of 3-state DFAs, LLMs underperform unpa-
rameterized n-GRAM models on both language recognition and synthesis tasks.
These results suggest that LLMs struggle to match the ability of basic language
models in recognizing and reasoning over languages that are sufficiently distinct
from the ones seen at training time, underscoring the distinction between learning
individual languages and possessing a general theory of language.

1 INTRODUCTION

Contemporary LLMs have proven themselves to be highly sophisticated natural language comple-
tion models that demonstrate many properties of reasoning engines. This has prompted questions
surrounding the true intelligence of these models, with some arguing that they possess inherent
language learning capabilities (Millière (2024)). In this paper, we explore the question of whether
LLMs have the reasoning capacity to understand the structure of a new language. Specifically, we
are interested in problems where a model is given a small set of examples from a language and either
generates a new sample or determines whether a new sample is from the language or not.

Some work suggests that LLMs broadly understand language structure because they are able to
produce syntactically correct samples from languages they have not been trained on (Athiwaratkun
et al. (2022)), although LLMs’ performance on low-resource languages tends to be lower than their
ability on higher resource languages (Bogin et al. (2023)). On the other hand, some critics of LLMs
argue that LLMs cannot possess an understanding of language structure as they have learned from
data rather than possessing a priori universal grammar (Chomsky et al. (2023)). We do not view
learning from data as a fundamental limitation, but we are concerned with the possibility that a
language model might only be able to understand linguistic structures similar to those it has seen in
training data. To distinguish between these possibilities, we wish to evaluate LLMs on a benchmark
that considers wholly novel languages, eliminating the possibility of dataset leakage.

Ideally, models would be tested on a set of language reasoning problems disjoint from data seen
during training and validation. However, as training datasets for LLMs are generally closed and
incredibly vast, human-generated problems in natural language are likely to at least partially overlap
in syntax or concept with content LLMs have already seen, making probing a model for its ability
to reason about the structure of natural languages nearly impossible. Additionally, the problem
of determining whether two tasks are semantically identical is itself a nontrivial one. Therefore,
ensuring that even an entirely novel invented problem is not a variation on a theme is intractable.

To circumvent this problem, we propose the following general approach: first we define a large,
exhaustive, and parsimoniously-defined space of languages that represents all languages of a certain
difficulty level. Then, we sample random languages from this space. By sampling randomly, we
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can guarantee no bias towards canonical languages that might share structure with common ones in
the training dataset. In this work, we use languages recognized by 3-state DFAs as these are the
lowest nontrivial difficulty level, but this technique can be generalized to produce benchmarks of
any difficulty level.

Figure 1: We sample randomly gen-
erated languages to test LLMs by
sampling deterministic finite automata
(DFAs). (a) The DFA shown here, mod-
eling the sum modulo 3 operation (with
abc representing 0, 1, and 2 respec-
tively), can be used to accept or reject
strings from a 3-character alphabet. Ac-
cepted strings belong to the grammar,
and rejected strings do not. We evalu-
ate models on their ability to (b) act as a
transducer, recognizing strings that be-
long to the DFA-defined grammar, and
(c) generate new strings following the
grammar.

Experimental results using this approach suggest that
contemporary LLMs possess less sophisticated language
pattern recognition abilities than expected; underperform-
ing basic, parameter-free n-gram language models on
even the simplest languages. These results, combined
with LLMs’ impressive results on a variety of specific
tasks, suggest that LLMs function as ensemble models
over language tasks they have seen in their dataset, but
do not possess the ability to generalize to entirely novel
language reasoning tasks.

In summary, we make the following contributions:

1. We introduce a benchmark for LLM language
reasoning evaluation, disjoint from natural lan-
guage web data.

2. We evaluate a suite of popular LLMs on in-
stances of this benchmark and demonstrate that
LLMs underperform compared to simple lan-
guage model baselines.

3. We analyze the differences in behavior between
these models, illustrating the influence of RLHF
and chain-of-thought prompting on language
reasoning capacity.

2 RELATED WORK

2.1 REASONING WITH LLMS

Reasoning is one of many “emergent abilities” (Wei et al.
(2022a)) possibly possessed by LLMs (Huang & Chang
(2022)), although the nonlinear dependence of such emer-
gent abilities on model size is disputed (Schaeffer et al.
(2024)). The chain-of-thought prompting technique (Wei
et al. (2022b)) has inspired a number of approaches to en-
courage the latent reasoning ability of models (Yao et al.
(2023); Besta et al. (2024); Kojima et al. (2022)), includ-
ing neuro-symbolic methods (Hua & Zhang (2022); Weir et al. (2023; 2024)). Building on this, other
work considers how to optimize exemplars used for in-context learning (Dong et al. (2022)) and
chain-of-thought prompting, known as “rationale refinement” (Liu et al. (2021); Fu et al. (2022)).
Problem-decomposition is also shown to be effective (Zhou et al. (2022); Khot et al. (2022)).

2.2 LLM REASONING EVALUATION

LLM reasoning abilities are often tested on natural language benchmarks and commonly seen prob-
lems like arithmetic (Cobbe et al. (2021); Amini et al. (2019); Hendrycks et al. (2021)), common-
sense reasoning (Bhargava & Ng (2022)), and other, sometimes generative, tasks (Lake & Baroni
(2018); Pasupat & Liang (2015); Lin et al. (2019)) and task collections (Srivastava et al. (2022)).
LLMs have been shown to lack sufficient reasoning capability across a range of tasks including
multi-step planning and complex inference (Valmeekam et al. (2022)). Fan et al. (2023) introduce an
LLM reasoning benchmark on algorithmic problems through NP-hard complexity, and Hazra et al.
(2024) show that LLMs struggle to complete simple 3SAT problems. Patel et al. (2021) demonstrate
that much of LLM mathematical reasoning can be explained by shallow heuristics, and Razeghi
et al. (2022) similarly find that term frequency in training data impacts models’ in-context learning
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ability. In comparison to these, we explore the distinction described by Patel et al. (2021), but push
both language simplicity and language unfamiliarity to their limits, by exploring simple languages
recognized by randomly sampled DFAs. This enables us to evaluate the ability of LLMs to reason
about language.

2.3 LANGUAGE UNDERSTANDING AND LLMS

LLMs can be quite adept at generating programs in general-purpose programming languages (Xu
et al. (2022a)). In contrast, adapting models to understand domain-specific languages (Mernik et al.
(2005)) introduces unique problems such as navigating idiosyncratic syntax and semantics, and
leveraging sparse collections of sample language data. To address these challenges, researchers
have considered how well general-purpose LLMs can use language reasoning skills to quickly un-
derstand rare or unseen DSLs with only a small set of exemplars (Joel et al. (2024)). While most
work in this vein focuses on semantic parsing for downstream applications (Lin et al. (2023)), se-
lecting exemplars (Zhao et al. (2021)), and improving DSL recognition by leveraging more common
languages (Bogin et al. (2023)), experiments show strong baseline performance for LLM DSL recog-
nition and parsing out-of-the-box (Wang et al. (2024)), indicating that LLMs may possess emergent
language reasoning abilities.

Related lines of work are compositional generalization (Xu et al. (2022b)), which assesses models’
ability to organize known units into novel structures, and structural generalization (Yao & Koller
(2022)), which assesses models’ ability to recognize new structures. Yao & Koller (2022) show that
smaller language models like BART and T5 can struggle on these tasks, but to our knowledge there
are not comprehensive experiments extending this line of work to LLMs.

3 DFA REASONING TASKS

3.1 DFAS AND REGULAR LANGUAGES

The original Chomsky Hierarchy (Chomsky (1959)) separates language into four types (Figure 2).
We focus on the task of understanding Type 3 languages, the simplest form of language in the
hierarchy, that are recognized by a Deterministic Finite Automaton (DFA). Examples of languages
recognized by DFAs include simple ones like binary strings with an even number
of ones, and even such examples as numbers in base 10 divisible by 7. Type 3
languages are also known as regular languages, which are recognized by regular expressions.

One simple metric of the difficulty of a regular language is the number of states in the corresponding
DFA, which represents the amount of memory the automaton has at any point while processing a
given sequence.1 DFAs with 2 states have the property that their set of states is no larger than the
output set {0, 1}, and, therefore, do not have any hidden state. We thus explore 3-state DFAs, as this
is the simplest nontrivial case.

3.2 SEQUENCE COMPLETION TASK

We first pose a sequence completion task, in which models must complete a sequence in a given
DFA’s language. We study this task primarily because, in practice, most language data that mod-
els encounter will be in roughly this format, with several example sequences in a given language
followed by a distinct prefix that needs to be completed via next token prediction.

To generate test cases for this task given a DFA, we first (1) sample 30 example sequences of length
10 that this DFA accepts, and then (2) sample a distinct prefix of length 5 that is not a prefix of any
of our 30 example sequences, with the property that there exists some length-≤ 5 completion of
this prefix that the DFA would accept. The task is to find a completion (not necessarily the same
completion found in sampling) of this prefix of between 1 and 5 characters such that the DFA accepts
the full sequence. For details on sampling, see Appendix A.2.

We evaluate models by (1) sampling a DFA, (2) sampling 30 problem instances at random (each
of which contains 30 example sequences and a distinct prefix), and then (3) computing a binary

1There are other metrics of difficulty, but we choose number of states as it is highly parsimonious.
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prediction score (whether or not the predicted completion creates a valid string in the language) for
each instance separately, then computing a correctness metric as a fraction. We then average this
metric over several sampled DFAs to produce our accuracy score.

3.3 TRANSDUCER TASK

Figure 2: An illustration of Chomsky’s hierar-
chy of languages, ranging from Type 0 to Type 3,
which are defined by what formal models can rec-
ognize their grammars. In this work, we focus on
the simplest language type in the hierarchy, regu-
lar grammars, which are recognized by determin-
istic finite automata (DFAs).

While the sequence completion task is the nat-
ural one that comes to mind as a basic language
task, it has a difficulty-gap problem. Specifi-
cally, the issue is that many DFAs, including
the one shown in Figure 1, recognize languages
that are particularly difficult to identify based
on a set of examples, unless you build some
kind of world model. Other DFAs end up be-
ing trivial to generate a completion for by an-
alyzing common suffixes.2 To provide a more
direct evaluation of non-world-modeling-based
pattern recognition, we explore the Transducer
task.

In this task, an input sequence is annotated
with an output at each token, the final output
is masked, and the masked output is predicted
by a language model. We call this a trans-
ducer task, as the DFA is used as a machine that converts a sequence of inputs into a sequence
of outputs. E.g., given the language does the string have an even number of ’a’
tokens and the input abcabcaabbccaa, the annotated string (all that is provided to the model)
is a0b0c0a1b1c1a0a1b1b1c1c1a0a and the output to predict is 1. For each problem instance,
we provide 30 symbols, and for the first 29, the corresponding transducer output.

This task is significantly more transparent than the sequence completion task as the model has access
to intermediate transducer outputs, an (imperfect) proxy for intermediate state.

3.4 BASELINES

To contextualize LLM accuracies, we provide several baseline models with varying degrees of so-
phistication.

Sequence Completion Task For the Sequence Completion task, we have three kinds of baseline.

• RANDOMS baseline: produce a random string of length 5 characters. While this might
seem redundant as it should have a success rate of 50%, in practice our rejection sampling
approach (see Appendix A.2) leads to a slight bias towards DFAs with more accept states.
This baseline measures that bias.

• COMMON-SUFFIXS baseline: find the completion s of length between 1 and 5 that maxi-
mizes (# of occurrences as a suffix×|s|). This baseline does not take the distinct prefix into
account, and instead tries to find a universal completion that will always end in an accept
state for this language.

• n-GRAMS baseline: we take the last n−1 characters of the distinct prefix and search to see
if they appear in any of the example sequences at a position where the sequence following
is an appropriate length to be a completion (at least 1 but at most 5). We then take a
plurality vote among the completions and return this, breaking ties arbitrarily. If there are
no matches, we return the result of (n− 1)-GRAMS . Technically these cover more than n

2The difficulty gap exists because a set of recognized sequences of length 10 gives no direct insight into
intermediate states between the first and tenth token. As such, to be able to utilize this information for languages
like the one in Figure 1 where there are no “resets” (sequences of symbols that necessarily lead to a particular
state), a model must be capable of hollistically evaluating the entire sequence, probably requiring a world
model. Many other DFAs contain these resets, but do so in such a way that makes it possible to e.g., recognize
that all sequences that end in a are in the language, making the problem trivial.
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characters, since the completion is often > 1 character long; for simplicity, however, we
keep the naming consistent with the Transducer baselines.

• BRUTE-FORCES : take all possible DFAs with 3 states and 3 symbols. Filter for ones that
accept all the example sequences. Then try all remaining DFAs on all 35 possible 5-length
completions and return the completion that the maximal number of DFAs accept, breaking
ties arbitrarily.

Note that these baselines are entirely unparameterized and operate identically regardless of the un-
derlying DFA. This makes them direct comparisons to using LLMs in in-context-learning. We do
not consider BRUTEFORCES to be a reasonable comparison due to its computational complexity,
and instead consider it an upper bound on performance on this particular task.

Transducer Task We have similar baselines for the Transducer task.

• NULLT baseline: for a given DFA, whichever of the following strategies produces a higher
accuracy: always predict 0 or always predict 1.

• n-GRAMT baseline: take the n−1 symbols ending at the end of the concatenated transducer
sequence (e.g., for n = 5 and the above example, this would be 1a0a). If that sequence
does not appear elsewhere in the sequence, return the result of the (n−1)-GRAMT baseline.
Otherwise, take the token that appears immediately after each occurrence. If there is a
majority, return that, otherwise return the last example.

• BRUTEFORCET : take all possible DFAs with 3 states and 3 symbols. Filter them for ones
that match the given transducer sequence. Take this set and predict the next token. Take a
majority vote among these, returning 1 by default if there is no majority.

4 EXPERIMENTS

We evaluated the open-source models Llama 3-8B, Llama 3-70B (AI@Meta (2023)), and Llama
3-8B-Instruct (AI@Meta (2024)), Mistral Nemo Minitron 8B (NVIDIA (2024)), Mistral Nemo
Base 2407 (Mistral AI (2024b)) and Mistral Nemo Instruct 2407 (Mistral AI (2024c)), Gemma
7B (Google (2024)), and Falcon 7B (Almazrouei et al. (2023)).

We also evaluated the open-source code models StarCoder2-15B (Lozhkov et al. (2024)), Codestral-
22B-v0.1 (Mistral AI (2024a)), Deepseek Coder 33B Instruct (Deepseek (2024)), Qwen2.5-Coder-
7B, Qwen2.5-Coder-7B-Instruct, and Qwen2.5-Coder-32B-Instruct (Hui et al. (2024)).

Finally, we evaluated the proprietary models GPT-3.5-turbo-instruct, GPT-3.5 Chat (turbo-0125)
(OpenAI (2024a)), GPT-4o-mini (2024-07-18), GPT 4o (2024-05-13) (OpenAI (2024b)), o1-
preview (2024-09-12) (OpenAI et al. (2024)), and Claude 3.5 Sonnet (Anthropic (2024)).

For each open source model, we used a local VLLM (Kwon et al. (2023)) server for evaluation and
always evaluated on 1000 distinct DFAs. For GPT-4o and Claude, we evaluated on 30 DFAs due to
computation costs. For o1-preview we evaluated on only 10 DFAs, and only on the Transducer task
(which we felt was a better fit for a reasoning model). For gpt-3.5 and gpt-4o-mini, we evaluated on
100 DFAs. All models were evaluated with temperature 0, except o1-preview3.

For both tasks, we consider four prompting formats. BASIC provides no context, presenting the
problem as a generic sequence generation or next-token prediction task, where output is provided
immediately following the input, with no space to think. MORE-EXPL explains that the strings are
generated from a DFA with 3 states, but is otherwise identical to BASIC. This remains a sequence
generation/next token prediction task. COT provides the same information as MORE-EXPL and
additionally invokes chain-of-thought reasoning to help the model reason over the task. Here, the
model is given space to reason before providing a tagged answer. RED-GREEN casts the tasks
as independent word problems that describe the underlying grammar structure without relying on
world knowledge about DFAs and regular languages. It describes an N-state DFA as a house with
N rooms, each of which has 3 portals that deterministically go to other rooms (or back to the same
room), where the walls of each room are red or green (mirroring transducer output symbols 0 and
1). Similarly to COT, the model is given space to show work before providing a tagged answer.

3o1-preview does not allow setting a non-default temperature.
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We produce versions of each of these prompts for each task, denoting these with a subscript S for
sequence completion prompts and T for transducer prompts. Full listings of these prompts can be
found in Appendix F, with Table 5 containing a summary of each prompt. While no finite set of
prompts will be fully sufficient to capture all possible model behavior, we believe our set of prompts
captures common prompting strategies.

Model Size IT? Code? S.C. SR Tr. TR
Baselines

BRUTEFORCE – 100.0 (99.9–100.0) 1 96.4 (96.2–96.7) 1
6-GRAM – 91.7 (91.0–92.4) 2 93.5 (93.1–93.9) 2
5-GRAM – 91.2 (90.4–91.9) 3 93.4 (93.0–93.7) 3
4-GRAM – 89.6 (88.7–90.4) 4 91.1 (90.6–91.6) 4
3-GRAM – 87.0 (86.1–87.8) 5 87.0 (86.4–87.6) 16
2-GRAM – 83.3 (82.2–84.2) 8 74.5 (73.6–75.3) 25
COMMON-SUFFIX – 84.7 (83.6–85.6) 6 – –
RANDOMS /NULLT – 53.3 (51.7–54.7) 26 68.9 (68.2–69.6) 26

Open Source Completion
llama3-8B 8.0B 73.8 (72.4–75.1) 18 87.5 (86.9–88.0) 14
llama3-70B 70.6B 71.4 (70.0–72.7) 23 87.7 (87.2–88.3) 12
llama3.1-8B-Instruct 8.0B ✓ 75.3 (74.0–76.6) 16 85.9 (85.3–86.5) 18
mistral-nemo-minitron-8B 8.4B 78.7 (77.5–79.8) 12 88.6 (88.0–89.1) 5
mistral-nemo-base-12B 12.2B 75.5 (74.3–76.6) 15 87.9 (87.4–88.4) 10
mistral-nemo-instruct-12B 12.2B ✓ 72.2 (70.9–73.4) 22 88.0 (87.5–88.5) 8
gemma-7b 8.5B 72.6 (71.3–73.7) 20 82.1 (81.4–82.7) 22
falcon-7b 7.2B 69.0 (67.6–70.2) 24 84.9 (84.3–85.5) 20

Open Source Code
starcoder2-15b 16.0B ✓ 73.5 (72.0–74.7) 19 87.7 (85.8–89.5) 13
codestral-22B 22.2B ✓ 78.0 (76.8–79.1) 13 86.6 (86.0–87.1) 17
deepseek-coder-33b-instruct 33.3B ✓ ✓ 76.7 (75.3–77.8) 14 85.6 (85.0–86.2) 19
qwen-2.5-coder-7B 7.6B ✓ 79.5 (78.4–80.5) 9 88.2 (87.6–88.7) 7
qwen-2.5-coder-instruct-7B 7.6B ✓ ✓ 79.5 (78.3–80.5) 10 88.3 (87.8–88.8) 6
qwen-2.5-coder-instruct-32B 32.8B ✓ ✓ 79.2 (78.0–80.3) 11 87.9 (87.4–88.4) 9

Proprietary
gpt-3.5-instruct ? ✓ 67.3 (63.1–71.5) 25 87.8 (85.9–89.6) 11
gpt-3.5-chat ? ✓ N/A – 66.8 (63.4–69.8) 27
gpt-4o-mini ? ✓ 72.4 (68.1–76.3) 21 79.8 (77.3–82.2) 23
gpt-4o ? ✓ 74.4 (69.9–78.6) 17 83.7 (80.1–86.9) 21
claude-3.5 ? ✓ 84.0 (79.3–88.4) 7 87.1 (83.9–90.2) 15
o1-preview ? ✓ – – 76.5 (69.4–84.3) 24

Table 1: Results for our experiments. We present model metadata alongside model results on both
the Transducer and Sequence completion tasks. Each cell contains the mean performance across
DFAs for the best-performing prompt (see Table 2 for details), with 95% confidence intervals of the
mean in parentheses. “N/A” is used whenever the model returned an invalid result at least 25% of
the time. (IT = Instruction-Tuned, TR/SR = Transducer/Sequence Completion rank, the ordinal rank
of the given model on the given task.)

5 RESULTS

Main results for all tasks are presented in Table 1. For all LLMs, we ignore non-answers, i.e., if for
a given DFA a model gets 25 correct answers, 1 incorrect answer, and responds with an unparseable
result on 4, this counts as a 25/26, not a 25/29. We then report the mean across DFAs and 95%
bootstrap confidence intervals.

5.1 SEQUENCE COMPLETION

As seen in Table 1, this task is nearly always fully determined, that is, it can be solved with ∼100%
accuracy in theory, as demonstrated by BRUTEFORCES results. Of course, BRUTEFORCES is ex-
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tremely computationally expensive, and, as such, we primarily focus on the n-GRAMS heuristics as
our baselines. Still, we find that n-GRAMS heuristics tend to outperform LLMs.

As seen in Table 2, we find that giving the model the opportunity to logically reason about the
prompt via chain-of-thought and present a conclusion has inconsistent results. Specifically, we find
that BASICS is the best prompt for gpt-4o-mini, but not gpt-4o, where the best performing prompt
is RED-GREENS . We find that claude-3.5 is entirely unable to follow the sequence completion
prompts BASICS and MORE-EXPLS , and performs best at the COTS prompt.

Additionally, we find that in this task, code-specific open-source models tend to perform better than
sequence completion models, suggesting some generalized ability to produce strings from novel lan-
guages demonstrated by example. Overall, the relative performances of LLMs and prompts comport
somewhat well to heuristics on which models and prompting strategies should work best. Nonethe-
less, LLMs underperform simple n-GRAM heuristics.

One potential problem with using this task for cross-model comparisons is the relevance of tokeniza-
tion. Unfortunately, we found that forcing uniform tokenization by using commas in the prompt
uniformly reduced accuracy, see Appendix E for details.

Model BASIC MORE-EXPL COT RED-GREEN

Sequence Completion
gpt-4o-mini 72.4 (68.1–76.3) 70.5 (66.4–74.6) 58.0 (53.4–62.4) 59.1 (54.9–63.2)
gpt-4o 72.1 (65.9–78.2) N/A 67.4 (60.8–73.8) 74.4 (69.9–78.6)
claude-3.5 N/A N/A 84.0 (79.3–88.4) 80.0 (74.9–85.2)
Transducer
gpt-4o-mini 79.8 (77.3–82.2) 76.7 (74.2–79.3) 65.2 (63.1–67.4) 74.5 (72.0–77.0)
gpt-4o 83.7 (80.1–86.9) 82.6 (79.1–85.9) 67.8 (63.1–72.3) 82.6 (78.8–86.3)
claude-3.5 86.9 (83.3–90.0) 87.1 (83.9–90.2) 76.4 (72.9–79.9) 82.9 (78.9–86.9)

Table 2: Results for models where we investigated multiple prompts (we only used BASIC on other
models). We bold the best prompt for each model. Non-COT prompts consistently work better for
the Transducer task, with more mixed results on sequence completion.

5.2 TRANSDUCER

Unlike sequence completion, this task is generally not fully determined, with the BRUTEFORCET

model only achieving 96.4% accuracy. However, relative results should still be valid as the impos-
sible problem instances are present with equal probability for all models.

We find that in general all LLMs underperform a 4-GRAMT model, demonstrating that they are
unable to adequately solve this task. The relative performance of the models also does not corre-
spond to their overall scale, with open source LLama-3 and Mistral Nemo 8B parameter models
outperforming Claude and GPT-4o. Even within a model class we find no clear pattern: GPT-4o and
o1-preview4 are outperformed by GPT 3.5, Llama 3-70B has similar performance to Llama 3-8B,
and the Mistral Nemo 12B models perform similarly to Nemo Minitron 8B. Coding models also
demonstrate no advantage on this task.

The generally lower performance of chat-oriented models suggests this task is better suited to non-
chat models. To investigate that this is not specific to the BASIC prompt, we investigate other
prompts for chat models. As seen in Table 2, our chain-of-though and word problem prompts,
which attempt to leverage the full reasoning capabilities of chat models, also fare poorly, performing
similarly or worse to the BASIC prompt on the Transducer task in all cases.

Overall, we conclude that LLMs are unable to perform the DFA transducer inference task to a
reasonable degree. This failure cannot be attributed to a lack of world modeling ability, as n-GRAMT

models do not construct world models. Instead, it seems the LLMs are unable to detect patterns when

4The particularly poor performance of o1-preview may be due to the model not supporting temperature 0.
In other experiments, we found that GPT models with temperature 1 tended to perform poorly. See Appendix B
for more details.
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those patterns are drawn from an unfamiliar source, even a relatively simple one. For a detailed
analysis of a case study, see Appendix C.

5.3 COMPARISON OF BENCHMARKS

Figure 3: Transducer and sequence completion results plotted against each other. Points represent
the mean over several DFAs and intervals represent 95% confidence intervals. Points are colored by
model type, with the best and worst model by each metric in each category labeled, as well as all
baseline and proprietary models.

Figure 3 displays the relationship between model performance on the Sequence Completion and
Transducer benchmarks. While at a high level, there is a positive correlation between the two, there
are a few notable differences. For one, the Code models perform notably better than other open
source models on Sequence Completion, but not on Transducer. Additionally, on Transducer, a
ceiling on performance is observed, where LLMs cluster together between 3-GRAMT and 4-GRAMT

performance; this clustering does not appear on the Sequence Completion benchmark.

6 CONCLUSION

Our findings highlight significant weaknesses in large language models’ ability to generalize to
entirely novel language reasoning problems, even simple ones solely involving next-token prediction
on basic languages recognized by 3-state DFAs. These results, combined with that of previous
work demonstrating that large language models can quite accurately perform a variety of language
tasks, suggests that LLMs solve language problems via a mechanism distinct from general language
reasoning ability. Our use of n-gram baselines and next-token prediction tasks allows us to exclude
the possibility that the issue is primarily related to LLMs’ lack of world modeling or any inherent
limitations of next-token prediction models. We believe our results suggest that LLMs have learned
individual models of particular languages, but not a general theory of language.

Interestingly, in our transducer experiments, LLMs consistently perform better by directly predict-
ing the next token than by explicitly reasoning through the problem. While our conclusions are
limited by the finite nature of our prompt set, this suggests that they do, in fact, possess some latent
understanding of language, but this understanding is inferior to basic n-gram models for n > 3.

Many potential foundation model applications involve tasks that are not expressed in familiar human
languages or pre-existing programming languages. More specifically, in tasks where there is a need
to produce an output in a precise, atypical, format, we should be skeptical of the ability of LLMs to
in-context-learn this format. For these tasks, it may be prudent to seek a new approach.
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IMPACT STATEMENT

Aside from the social consequences of this work as related to advancing the field of Machine Learn-
ing in general, this work has the goal of advancing the field of benchmarks in Machine Learning.
While we view this as a positive objective, as it ensures that models are being evaluated fairly, it
might have negative consequences insofar as benchmarking techniques might be best left unpub-
lished to prevent deliberate or unintentional overfitting.
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A DETAILS ON SAMPLING

A.1 SAMPLING OF DFAS

We use rejection sampling to sample DFAs. Specifically, we uniformly sample a start state, then for
each (source state, symbol) pair, we sample a post-transition state. We also randomly assign each
state to be accept or reject with probability 50%. We then reject any DFA that has all accept or all
reject states (so only DFAs with 1 or 2 accept states are allowed), or for which certain states are
unreachable from the start state.

A.2 SAMPLING OF SEQUENCE COMPLETION TASKS

To sample a sequence completion task, we first sample a DFA as described in Appendix A.1.

To sample a task instance, we sample example sequences and distinct prefix. Each example sequence
is sampled uniformly from the space of {a, b, c}10 and then rejected if the DFA does not accept the
sequence. Our distinct prefix and completion are sampled uniformly from {a, b, c}5 × {a, b, c}5,
and are rejected if the DFA does not accept the concatenation of the two, or if the prefix is the prefix
of any of the previous sequences. We then discard the completion. If we, at any point, reject 50
sequences when attempting to sample a sequence or prefix, we return an error.

We run a “pilot” sampling for a DFA to ensure that it is valid, in which we sample an instance as
described above. If there is an error in sampling this pilot instance, we reject the DFA. Otherwise,
we proceed to sample our task instances. At this stage, if there is an error in sampling, we reject the
instance rather than the DFA. This pilot sample rejection procedure leads to a slight bias towards
2-accept state DFAs over 1-accept state DFAs, as measured by the RANDOMS baseline.

A.3 SAMPLING OF TRANSDUCER TASKS

We sample a DFA as described in Appendix A.1, and then sample random sequences (30 in our
experiments) and generate transducer traces. If every transducer trace ends with a 0 or every trace
ends with a 1, we reject the DFA and resample.

B RESULTS OF O1-PREVIEW

We evaluated o1-preview on 10 DFAs, using 30 problem instances per DFA of the Transducer task,
as in other Transducer experiments, and the BASICT prompt, as this is the most neutral prompt. Ta-
ble 3 displays results on each DFA. Overall, while these results are not on a particularly large sample,
they fairly definitively demonstrate that o1-preview does not achieve strikingly good performance
on this task.

DFA o1-preview gpt-4o 6-GRAM
1 25/30 27/30 26/30
2 23/29 24/30 25/30
3 19/30 23/30 28/30
4 22/30 23/30 28/30
5 29/29 30/30 30/30
6 19/30 24/30 30/30
7 17/29 23/30 25/30
8 23/30 25/30 26/30
9 21/30 28/30 30/30

10 29/30 29/30 30/30

Table 3: Results on each DFA. We find that in 7 cases, o1-preview underperforms gpt-4o, in 2 cases
it gets the same number of instances wrong but provides a non-answer on an additional instance,
and in 1 case it ties gpt-4o. In no cases does it outperform.
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C CASE STUDY: SUM MODULO 3 DFA

(a)

(b)

Correct Incorrect
Total 30 30

a is no-op 21 22
1b and 1c lead to 0 14 17

2-periodic 9 14
3-periodic 4 4

2 red rooms 2 3

Figure 4: Results on Sum Modulo 3 DFA.
(a) MB=mistral-nemo-minitron-8B/BASICT ,
CR=claude-3.5/RED-GREENT . Venn diagram
of errors (out of 1000). Labeled percentages are
accuracies. (b) Results of qualitative analysis, out
of 30 in both cases.

We investigate the transducer task on the DFA
depicted in Figure 1. This DFA can be inter-
preted as an arithmetic check, where a repre-
sents 0, b represents 1, and c represents 2, and
the DFA accepts strings whose sum is equal to 0
modulo 3. For this case study, we focus on the
model/prompt combinations MB and CR, de-
fined as

• MB: mistral-nemo-minitron-
8B/BASICT . Selected as it is the
best performing combination overall.

• CR: claude-3.5/RED-GREENT . Se-
lected as it is the best performing com-
bination that provides an explanation
(needed later for our qualitative analy-
sis)

Figure 4a depicts the number of errors each
model receives on 1000 instances of the trans-
ducer task for this DFA. In general, nearly all
errors made by the 6-GRAMT model were also
made by at least one LLM model, while the
two LLM models often made unique errors. In-
terestingly, while this task is better-known than
most DFAs, we find that all 3 models perform
worse on this DFA than their average across
random DFAs.

We also performed a qualitative analysis, inves-
tigating CR’s outputs on the RED-GREENT prompt to see what kind of reasoning it is using; specif-
ically we sampled 30 examples where it had the correct answer, and 30 examples where it had the
incorrect answer but the 6-GRAMT model had the correct answer. Results of this analysis can be
found in Figure 4b. We find that, in general, CR is following a 3-GRAM approach, learning rules
relating to the conditions under which the previous output and symbol can be used to predict the
next output. Specifically, it is able to learn that a does not change the output, and that b and c will
lead a 1 state to a 0 state. These results comport with the overall finding of Table 1, where we found
that 3-GRAMT was the largest n-GRAMT that any LLM outperformed.

The model occasionally makes attempts at more sophisticated pattern match reasoning, but rarely is
successful in doing so. It also attempts to identify periodic patterns, but identifies period-2 patterns
more than period-3 patterns, despite knowing that there are three “rooms” (states). At no point in
any of the 60 reasoning traces analyzed does it realize that this is a version of the Sum Modulo
3 DFA5, or fully determine the DFA in any other way, but it does show some glimmers of world
modeling. Specifically, in a few cases it correctly determines that there are two red rooms; but this
does not seem to lead to any further discoveries. It is not superior reasoning that leads to correct
solutions, rather the correct examples are more likely to be ones that a 3-GRAM model would infer
correctly, i.e., those traces ending in a, 1b, or 1c, which occur cumulatively in 5

9 of cases6.

Despite transformers’ high computational capacity, without the ability to pattern match to existing
problems, Claude uses an unsophisticated and ineffectual approach.

5In fact in none of the 1000 reasoning traces do the substrings “sum” or “mod” appear, except once as a part
of “assuming”

6Looking at the ∼ 5
9

of examples that follow this pattern, we find that CR achieves 93.5%, to the 6-GRAMT ’s
97.3%, and on the remaining ∼ 4

9
, it achieves only 43.8%, or worse than chance, to the 6-GRAMT ’s 60.7%.

Detailed Venn diagrams on these conditions can be found in Appendix D.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D MORE DETAILS ON SUM MODULO 3 DFA CASE STUDY

Figure 5 depicts the results of the Sum Modulo 3 experiment, but filtered for two conditions. In the
(a) condition, the trace ends in such a way that a 3-GRAM model would be able to determine the
output, and the (b) condition is the complement.

(a)

(b)

Figure 5: Results on Sum Modulo 3 DFA under trivial / nontrivial conditions. Percentages are
accuracy numbers, and venn diagram is error counts. (a) In this condition, CR and the 6-GRAMT

both get very high accuracies, with nearly all 6-GRAMT also being CR errors. MB does relatively
poorly. (b) In this condition, models do significantly more poorly overall, with CR in particular
performing worse than chance. Here, errors are more symmetric, with more 6-GRAMT errors that
are not accounted for by either or both model, indicating that a larger fraction of both successes and
failures in this condition are down to random chance.
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Model BASICS BASIC-COMMASS
qwen-2.5-coder-7B 79.5 (78.4–80.5) 60.7 (59.3–62.1)

qwen-2.5-coder-instruct-7B 79.5 (78.3–80.5) 55.5 (54.0–56.9)
qwen-2.5-coder-instruct-32B 79.2 (78.0–80.3) 55.2 (53.7–56.7)

mistral-nemo-minitron-8B 78.7 (77.5–79.8) 59.3 (57.9–60.8)
codestral-22B 78.0 (76.8–79.1) 59.0 (57.5–60.3)

deepseek-coder-33b-instruct 76.7 (75.3–77.8) 54.9 (53.0–56.8)
mistral-nemo-base-12B 75.5 (74.3–76.6) 60.6 (59.1–62.2)

llama3.1-8B-Instruct 75.3 (74.0–76.6) 56.3 (54.4–58.1)
llama3-8B 73.8 (72.4–75.1) 61.5 (60.2–62.9)

starcoder2-15b 73.5 (72.0–74.7) 58.2 (56.7–59.8)
gemma-7b 72.6 (71.3–73.7) 54.0 (51.9–56.0)

gpt-4o-mini 72.4 (68.1–76.3) 64.1 (59.5–68.3)
mistral-nemo-instruct-12B 72.2 (70.9–73.4) 58.2 (56.4–59.8)

gpt-4o 72.1 (65.9–78.2) 66.8 (58.5–74.8)
llama3-70B 71.4 (70.0–72.7) 56.4 (54.7–58.0)

falcon-7b 69.0 (67.6–70.2) 56.1 (54.5–57.6)
gpt-3.5-instruct 67.3 (63.1–71.5) 52.3 (46.5–57.9)

claude-3.5 N/A N/A
gpt-3.5-chat N/A N/A

Table 4: Results on Sequence Completion Task. We compare BASICS to the comma-variant BASIC-
COMMASS .

E SEQUENCE COMPLETION TASK PROMPT WITH COMMAS

To avoid tokenization differences with models, we also investigate a version of our Sequence Com-
pletion prompt that uses spaces and commas between the elements of the sequence. Unfortunately,
results using this prompt were uniformly worse than results on the prompt without spaces and com-
mas. Table 4 shows the results on a variety of models. All are worse with commas than without.

F PROMPT LISTINGS

F.1 SUMMARIES

Table 5 contains summaries of each prompt.

F.2 FULL EXAMPLE LISTINGS
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Prompt T S

BASIC

You are a sequence completion model. Output the
next element of the sequence, and nothing
else.

<TRANSDUCER PREFIX>,

The following strings come from an alien language
that follows a simple grammar. Infer the
alien grammar using the example strings.
Then, add a suffix to the final string using
between 1 and 5 characters such that the
full string follows the grammar. Output only
the necessary suffix to complete the final
string, and nothing else.

<EXAMPLES>
<PREFIX>

MORE-EXPL

You are a sequence completion model. The following
sequence is generated from an unknown but
consistent grammar. Identify the patterns
within the sequence to determine its next
element. Output the next element of the
sequence, and nothing else.

<TRANSDUCER PREFIX>,

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the
underlying DFA model using these strings and
complete the final string, using up to n
characters, such that it is also a valid
string. Output only the necessary suffix to
complete the final string, and nothing else.

<EXAMPLES>
<PREFIX>

COT

A DFA is a finite-state machine that accepts or
rejects a given string of symbols, by
running through a n-state sequence uniquely
determined by the string.

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect the inputs and outputs into
an input sequence and an output sequence.
Infer the underlying DFA model to predict
the next integer in the output sequence.
Reason step by step, and then output the
next output integer using <answer> tags,
like <answer>0</answer>.

Input sequence: <TRANSDUCER PREFIX>
Output sequence:

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the
underlying DFA model using these strings and
complete the final string, using up to n
characters, such that it is also a valid
string. Reason step by step, and then output
the next necessary suffix for this final
string, <answer> tags, like <answer>ab</
answer>.

Given these valid strings:
<EXAMPLES>

Complete the following string:
<PREFIX>

RED-GREEN

‘‘‘
You are in a house of rooms and portals. There are

3 rooms in the house, and each room has 3
unique portals labeled A, B, and C. Each
portal teleports you to one room of the
house (and sometimes the destination is the
room the portal is in). Every portal in a
given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *three* rooms in total, so you
cannot determine which room you are in by
color alone, and two rooms of the same color
may have portals that behave differently.
As you move through the house, at each time
step you write down what portal you take and
the color of the room you arrive (or stay)
in. Based on your notes, predict what color
room you will end up in after the last step.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "<TRANSDUCER
PREFIX>" and end up in a red room.

‘‘‘

You are outside a house of rooms and portals.
There are 3 rooms in the house, and each
room has 3 unique portals labeled a, b, and
c. Each portal teleports you to one room of
the house (and sometimes the destination is
the room the portal is in). Every portal in
a given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *3* rooms in total, so you cannot
determine which room you are in by color
alone, and two rooms of the same color may
have portals that behave differently. You’ve
been into this house many times before.
Each time, as you move through the house,
you write down what series of portals you
take and the color of the room you end up in
. You have a collection of paths you’ve
taken where you’ve ended up in a room with
green walls, listed below. Given the final
incomplete path at the bottom, write a
series of up to 5 remaining steps that will
cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

Given these paths that end in a room with green
walls:

<EXAMPLES>

Complete the following path:
<PREFIX>

Table 5: Shortened summary of each prompt
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F.2.1 BASICT

You are a sequence completion model. Output the next element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

F.2.2 MORE-EXPLT

You are a sequence completion model. The following sequence is generated from an unknown but consistent
grammar. Identify the patterns within the sequence to determine its next element. Output the next
element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

F.2.3 COTT

A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running through a n-
state sequence uniquely determined by the string.

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect the inputs and
outputs into an input sequence and an output sequence. Infer the underlying DFA model to predict the
next integer in the output sequence. Reason step by step, and then output the next output integer using
<answer> tags, like <answer>0</answer>.

Input sequence: a, b, a, b, b, c, a, c, a, a, a, c, b, c, c, a, b, b, b, b, a, b, a, a, b, c, a, c, a, b
Output sequence: 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

F.2.4 RED-GREENT

‘‘‘
You are in a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique portals

labeled A, B, and C. Each portal teleports you to one room of the house (and sometimes the destination
is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *three* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. As you move

through the house, at each time step you write down what portal you take and the color of the room you
arrive (or stay) in. Based on your notes, predict what color room you will end up in after the last step
.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a ...
‘‘‘

F.2.5 BASICS
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The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

F.2.6 BASIC-COMMASS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

c, b, c, b, a, b, b, c, c, a
a, b, c, a, a, a, c, b, a, a
a, a, b, c, c, b, a, b, b, b
b, b, b, c, c, b, b, b, c, a
a, a, b, a, b, a, c, c, b, a
a, a, a, a, c, b, a, c, a, c
b, a, a, c, b, c, c, b, a, a
c, b, b, a, a, c, a, b, c, c
b, a, a, b, a, a, c, a, a, b
b, b, b, b, b, c, a, c, a, b
a, c, a, a, b, c, b, b, b, a
a, c, a, a, c, b, c, c, a, c
c, a, c, b, a, b, c, b, b, a
a, b, c, b, c, b, c, b, c, c
c, c, a, c, c, c, c, a, b, a
b, c, b, c, a, b, b, c, c, a
b, a, a, b, a, c, a, b, c, a
c, a, a, b, a, b, a, c, a, c
b, a, c, a, c, a, c, c, a, a
b, c, a, c, b, b, b, b, c, a
b, c, b, b, b, c, a, c, c, c
c, c, a, b, b, c, c, c, b, b
b, c, c, b, c, a, b, b, c, a
b, a, a, c, b, a, b, c, b, c
c, c, a, c, a, b, c, c, a, b
c, a, a, c, b, c, a, a, a, b
c, a, c, b, a, a, c, c, a, c
a, a, c, c, b, c, a, a, b, b
a, b, a, c, a, b, c, a, a, b
b, a, c, b, c, b, c, a, c, a
c, a, a, c, b,

F.2.7 MORE-EXPLS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Output only the
necessary suffix to complete the final string, and nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
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aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

F.2.8 COTS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Reason step by step,
and then output the next necessary suffix for this final string, <answer> tags, like <answer>ab</answer
>.

Given these valid strings:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following string:
caacb

F.2.9 RED-GREENS

You are outside a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique
portals labeled a, b, and c. Each portal teleports you to one room of the house (and sometimes the
destination is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *3* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. You’ve been into
this house many times before. Each time, as you move through the house, you write down what series of
portals you take and the color of the room you end up in. You have a collection of paths you’ve taken
where you’ve ended up in a room with green walls, listed below. Given the final incomplete path at the
bottom, write a series of up to 5 remaining steps that will cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.
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1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Given these paths that end in a room with green walls:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following path:
caacb

22


	Introduction
	Related Work
	Reasoning with LLMs
	LLM reasoning evaluation
	Language Understanding and LLMs

	DFA Reasoning Tasks
	DFAs and Regular Languages
	Sequence Completion Task
	Transducer Task
	Baselines

	Experiments
	Results
	Sequence Completion
	Transducer
	Comparison of Benchmarks

	Conclusion
	Details on Sampling
	Sampling of DFAs
	Sampling of Sequence Completion Tasks
	Sampling of Transducer Tasks

	Results of o1-preview
	Case Study: Sum Modulo 3 DFA
	More details on Sum Modulo 3 DFA case study
	Sequence Completion task prompt with Commas
	Prompt Listings
	Summaries
	Full example listings
	BasicT
	More-ExplT
	COTT
	Red-GreenT
	BasicS
	Basic-CommasS
	More-ExplS
	COTS
	Red-GreenS



