
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RANDOMLY SAMPLED LANGUAGE REASONING PROB-
LEMS REVEAL LIMITS OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Can LLMs pick up language structure from examples? Evidence in prior work
seems to indicate yes, as pretrained models repeatedly demonstrate the ability to
adapt to new language structures. However, this line of research typically consid-
ers languages that are present within common pretraining datasets, or otherwise
share notable similarities with seen languages. In contrast, in this work we attempt
to measure models’ language understanding capacity while circumventing the risk
of dataset recall. We parameterize large families of language tasks recognized by
deterministic finite automata (DFAs), and can thus sample novel language reason-
ing problems to fairly evaluate LLMs regardless of training data. We find that,
even in the strikingly simple setting of 3-state DFAs, LLMs underperform unpa-
rameterized n-GRAM models on both language recognition and synthesis tasks.
These results suggest that LLMs struggle to match the ability of basic language
models in recognizing and reasoning over languages that are sufficiently distinct
from the ones seen at training time, underscoring the distinction between learning
individual languages and possessing a general theory of language.

1 INTRODUCTION

Contemporary LLMs have proven themselves to be highly sophisticated natural language comple-
tion models that demonstrate many properties of reasoning engines. This has prompted questions
surrounding the true intelligence of these models, with some arguing that they possess inherent
language learning capabilities (Millière (2024)). In this paper, we explore the question of whether
LLMs have the reasoning capacity to understand the structure of a new language. Specifically, we
are interested in problems where a model is given a small set of examples from a language and either
generates a new sample or determines whether a new sample is from the language or not.

Some work suggests that LLMs broadly understand language structure because they are able to
produce syntactically correct samples from languages they have not been trained on (Athiwaratkun
et al. (2022)), although LLMs’ performance on low-resource languages tends to be lower than their
ability on higher resource languages (Bogin et al. (2023)). On the other hand, some critics of LLMs
argue that LLMs cannot possess an understanding of language structure as they have learned from
data rather than possessing a priori universal grammar (Chomsky et al. (2023)). We do not view
learning from data as a fundamental limitation, but we are concerned with the possibility that a
language model might only be able to understand linguistic structures similar to those it has seen in
training data. To distinguish between these possibilities, we wish to evaluate LLMs on a benchmark
that considers wholly novel languages, eliminating the possibility of dataset leakage.

Ideally, models would be tested on a set of language reasoning problems disjoint from data seen
during training and validation. However, as training datasets for LLMs are generally closed and
incredibly vast, human-generated problems in natural language are likely to at least partially overlap
in syntax or concept with content LLMs have already seen, making probing a model for its ability
to reason about the structure of natural languages nearly impossible. Additionally, the problem
of determining whether two tasks are semantically identical is itself a nontrivial one. Therefore,
ensuring that even an entirely novel invented problem is not a variation on a theme is intractable.

To circumvent this problem, we propose the following general approach: first we define a large,
exhaustive, and parsimoniously-defined space of languages that represents all languages of a certain
difficulty level. Then, we sample random languages from this space. By sampling randomly, we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

can guarantee no bias towards canonical languages that might share structure with common ones in
the training dataset. In this work, we use languages recognized by 3-state DFAs as these are the
lowest nontrivial difficulty level, but this technique can be generalized to produce benchmarks of
any difficulty level.

Figure 1: We sample randomly gen-
erated languages to test LLMs by
sampling deterministic finite automata
(DFAs). (a) The DFA shown here, mod-
eling the sum modulo 3 operation (with
abc representing 0, 1, and 2 respec-
tively), can be used to accept or reject
strings from a 3-character alphabet. Ac-
cepted strings belong to the grammar,
and rejected strings do not. We evalu-
ate models on their ability to (b) act as a
transducer, recognizing strings that be-
long to the DFA-defined grammar, and
(c) generate new strings following the
grammar.

Experimental results using this approach suggest that
contemporary LLMs possess less sophisticated language
pattern recognition abilities than expected; underperform-
ing basic, parameter-free n-gram language models on
even the simplest languages. These results, combined
with LLMs’ impressive results on a variety of specific
tasks, suggest that LLMs function as ensemble models
over language tasks they have seen in their dataset, but
do not possess the ability to generalize to entirely novel
language reasoning tasks.

In summary, we make the following contributions:

1. We introduce a benchmark for LLM language
reasoning evaluation, disjoint from natural lan-
guage web data.

2. We evaluate a suite of popular LLMs on in-
stances of this benchmark and demonstrate that
LLMs underperform compared to simple lan-
guage model baselines.

3. We analyze the differences in behavior between
these models, illustrating the influence of RLHF
and chain-of-thought prompting on language
reasoning capacity.

2 RELATED WORK

2.1 REASONING WITH LLMS

Reasoning is one of many “emergent abilities” (Wei et al.
(2022a)) possibly possessed by LLMs (Huang & Chang
(2022)), although the nonlinear dependence of such emer-
gent abilities on model size is disputed (Schaeffer et al.
(2024)). The chain-of-thought prompting technique (Wei
et al. (2022b)) has inspired a number of approaches to en-
courage the latent reasoning ability of models (Yao et al.
(2023); Besta et al. (2024); Kojima et al. (2022)), includ-
ing neuro-symbolic methods (Hua & Zhang (2022); Weir et al. (2023; 2024)). Building on this, other
work considers how to optimize exemplars used for in-context learning (Dong et al. (2022)) and
chain-of-thought prompting, known as “rationale refinement” (Liu et al. (2021); Fu et al. (2022)).
Problem-decomposition is also shown to be effective (Zhou et al. (2022); Khot et al. (2022)).

2.2 LLM REASONING EVALUATION

LLM reasoning abilities are often tested on natural language benchmarks and commonly seen prob-
lems like arithmetic (Cobbe et al. (2021); Amini et al. (2019); Hendrycks et al. (2021)), common-
sense reasoning (Bhargava & Ng (2022)), and other, sometimes generative, tasks (Lake & Baroni
(2018); Pasupat & Liang (2015); Lin et al. (2019)) and task collections (Srivastava et al. (2022)).
LLMs have been shown to lack sufficient reasoning capability across a range of tasks including
multi-step planning and complex inference (Valmeekam et al. (2022)). Fan et al. (2023) introduce an
LLM reasoning benchmark on algorithmic problems through NP-hard complexity, and Hazra et al.
(2024) show that LLMs struggle to complete simple 3SAT problems. Patel et al. (2021) demonstrate
that much of LLM mathematical reasoning can be explained by shallow heuristics, and Razeghi
et al. (2022) similarly find that term frequency in training data impacts models’ in-context learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ability. In comparison to these, we explore the distinction described by Patel et al. (2021), but push
both language simplicity and language unfamiliarity to their limits, by exploring simple languages
recognized by randomly sampled DFAs. This enables us to evaluate the ability of LLMs to reason
about language.

2.3 LANGUAGE UNDERSTANDING AND LLMS

LLMs can be quite adept at generating programs in general-purpose programming languages (Xu
et al. (2022a)). In contrast, adapting models to understand domain-specific languages (Mernik et al.
(2005)) introduces unique problems such as navigating idiosyncratic syntax and semantics, and
leveraging sparse collections of sample language data. To address these challenges, researchers
have considered how well general-purpose LLMs can use language reasoning skills to quickly un-
derstand rare or unseen DSLs with only a small set of exemplars (Joel et al. (2024)). While most
work in this vein focuses on semantic parsing for downstream applications (Lin et al. (2023)), se-
lecting exemplars (Zhao et al. (2021)), and improving DSL recognition by leveraging more common
languages (Bogin et al. (2023)), experiments show strong baseline performance for LLM DSL recog-
nition and parsing out-of-the-box (Wang et al. (2024)), indicating that LLMs may possess emergent
language reasoning abilities.

Related lines of work are compositional generalization (Xu et al. (2022b)), which assesses models’
ability to organize known units into novel structures, and structural generalization (Yao & Koller
(2022)), which assesses models’ ability to recognize new structures. Yao & Koller (2022) show that
smaller language models like BART and T5 can struggle on these tasks, but to our knowledge there
are not comprehensive experiments extending this line of work to LLMs.

3 DFA REASONING TASKS

3.1 DFAS AND REGULAR LANGUAGES

The original Chomsky Hierarchy (Chomsky (1959)) separates language into four types (Figure 2).
We focus on the task of understanding Type 3 languages, the simplest form of language in the
hierarchy, that are recognized by a Deterministic Finite Automaton (DFA). Examples of languages
recognized by DFAs include simple ones like binary strings with an even number
of ones, and even such examples as numbers in base 10 divisible by 7. Type 3
languages are also known as regular languages, which are recognized by regular expressions.

One simple metric of the difficulty of a regular language is the number of states in the corresponding
DFA, which represents the amount of memory the automaton has at any point while processing a
given sequence.1 DFAs with 2 states have the property that their set of states is no larger than the
output set {0, 1}, and, therefore, do not have any hidden state. We thus explore 3-state DFAs, as this
is the simplest nontrivial case.

3.2 SEQUENCE COMPLETION TASK

We first pose a sequence completion task, in which models must complete a sequence in a given
DFA’s language. We study this task primarily because, in practice, most language data that mod-
els encounter will be in roughly this format, with several example sequences in a given language
followed by a distinct prefix that needs to be completed via next token prediction.

To generate test cases for this task given a DFA, we first (1) sample 30 example sequences of length
10 that this DFA accepts, and then (2) sample a distinct prefix of length 5 that is not a prefix of any
of our 30 example sequences, with the property that there exists some length-≤ 5 completion of
this prefix that the DFA would accept. The task is to find a completion (not necessarily the same
completion found in sampling) of this prefix of between 1 and 5 characters such that the DFA accepts
the full sequence. For details on sampling, see Appendix A.2.

We evaluate models by (1) sampling a DFA, (2) sampling 30 problem instances at random (each
of which contains 30 example sequences and a distinct prefix), and then (3) computing a binary

1There are other metrics of difficulty, but we choose number of states as it is highly parsimonious.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

prediction score (whether or not the predicted completion creates a valid string in the language) for
each instance separately, then computing a correctness metric as a fraction. We then average this
metric over several sampled DFAs to produce our accuracy score.

3.3 TRANSDUCER TASK

Figure 2: An illustration of Chomsky’s hierar-
chy of languages, ranging from Type 0 to Type 3,
which are defined by what formal models can rec-
ognize their grammars. In this work, we focus on
the simplest language type in the hierarchy, regu-
lar grammars, which are recognized by determin-
istic finite automata (DFAs).

While the sequence completion task is the nat-
ural one that comes to mind as a basic language
task, it has a difficulty-gap problem. Specifi-
cally, the issue is that many DFAs, including
the one shown in Figure 1, recognize languages
that are particularly difficult to identify based
on a set of examples, unless you build some
kind of world model. Other DFAs end up be-
ing trivial to generate a completion for by an-
alyzing common suffixes.2 To provide a more
direct evaluation of non-world-modeling-based
pattern recognition, we explore the Transducer
task.

In this task, an input sequence is annotated
with an output at each token, the final output
is masked, and the masked output is predicted
by a language model. We call this a trans-
ducer task, as the DFA is used as a machine that converts a sequence of inputs into a sequence
of outputs. E.g., given the language does the string have an even number of ’a’
tokens and the input abcabcaabbccaa, the annotated string (all that is provided to the model)
is a0b0c0a1b1c1a0a1b1b1c1c1a0a and the output to predict is 1. For each problem instance,
we provide 30 symbols, and for the first 29, the corresponding transducer output.

This task is significantly more transparent than the sequence completion task as the model has access
to intermediate transducer outputs, an (imperfect) proxy for intermediate state.

3.4 BASELINES

To contextualize LLM accuracies, we provide several baseline models with varying degrees of so-
phistication.

Sequence Completion Task For the Sequence Completion task, we have three kinds of baseline.

• RANDOMS baseline: produce a random string of length 5 characters. While this might
seem redundant as it should have a success rate of 50%, in practice our rejection sampling
approach (see Appendix A.2) leads to a slight bias towards DFAs with more accept states.
This baseline measures that bias.

• COMMON-SUFFIXS baseline: find the completion s of length between 1 and 5 that maxi-
mizes (# of occurrences as a suffix×|s|). This baseline does not take the distinct prefix into
account, and instead tries to find a universal completion that will always end in an accept
state for this language.

• n-GRAMS baseline: we take the last n−1 characters of the distinct prefix and search to see
if they appear in any of the example sequences at a position where the sequence following
is an appropriate length to be a completion (at least 1 but at most 5). We then take a
plurality vote among the completions and return this, breaking ties arbitrarily. If there are
no matches, we return the result of (n− 1)-GRAMS . Technically these cover more than n

2The difficulty gap exists because a set of recognized sequences of length 10 gives no direct insight into
intermediate states between the first and tenth token. As such, to be able to utilize this information for languages
like the one in Figure 1 where there are no “resets” (sequences of symbols that necessarily lead to a particular
state), a model must be capable of hollistically evaluating the entire sequence, probably requiring a world
model. Many other DFAs contain these resets, but do so in such a way that makes it possible to e.g., recognize
that all sequences that end in a are in the language, making the problem trivial.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

characters, since the completion is often > 1 character long; for simplicity, however, we
keep the naming consistent with the Transducer baselines.

• BRUTE-FORCES : take all possible DFAs with 3 states and 3 symbols. Filter for ones that
accept all the example sequences. Then try all remaining DFAs on all 35 possible 5-length
completions and return the completion that the maximal number of DFAs accept, breaking
ties arbitrarily.

Note that these baselines are entirely unparameterized and operate identically regardless of the un-
derlying DFA. This makes them direct comparisons to using LLMs in in-context-learning. We do
not consider BRUTEFORCES to be a reasonable comparison due to its computational complexity,
and instead consider it an upper bound on performance on this particular task.

Transducer Task We have similar baselines for the Transducer task.

• NULLT baseline: for a given DFA, whichever of the following strategies produces a higher
accuracy: always predict 0 or always predict 1.

• n-GRAMT baseline: take the n−1 symbols ending at the end of the concatenated transducer
sequence (e.g., for n = 5 and the above example, this would be 1a0a). If that sequence
does not appear elsewhere in the sequence, return the result of the (n−1)-GRAMT baseline.
Otherwise, take the token that appears immediately after each occurrence. If there is a
majority, return that, otherwise return the last example.

• BRUTEFORCET : take all possible DFAs with 3 states and 3 symbols. Filter them for ones
that match the given transducer sequence. Take this set and predict the next token. Take a
majority vote among these, returning 1 by default if there is no majority.

4 EXPERIMENTS

We evaluated the open-source models Llama 3-8B, Llama 3-70B (AI@Meta (2023)), and Llama
3-8B-Instruct (AI@Meta (2024)), Mistral Nemo Minitron 8B (NVIDIA (2024)), Mistral Nemo
Base 2407 (Mistral AI (2024b)) and Mistral Nemo Instruct 2407 (Mistral AI (2024c)), Gemma
7B (Google (2024)), and Falcon 7B (Almazrouei et al. (2023)).

We also evaluated the open-source code models StarCoder2-15B (Lozhkov et al. (2024)), Codestral-
22B-v0.1 (Mistral AI (2024a)), Deepseek Coder 33B Instruct (Deepseek (2024)), Qwen2.5-Coder-
7B, Qwen2.5-Coder-7B-Instruct, and Qwen2.5-Coder-32B-Instruct (Hui et al. (2024)).

Finally, we evaluated the proprietary models GPT-3.5-turbo-instruct, GPT-3.5 Chat (turbo-0125)
(OpenAI (2024a)), GPT-4o-mini (2024-07-18), GPT 4o (2024-05-13) (OpenAI (2024b)), o1-
preview (2024-09-12) (OpenAI et al. (2024)), and Claude 3.5 Sonnet (Anthropic (2024)).

For each open source model, we used a local VLLM (Kwon et al. (2023)) server for evaluation and
always evaluated on 1000 distinct DFAs. For GPT-4o and Claude, we evaluated on 30 DFAs due to
computation costs. For o1-preview we evaluated on only 10 DFAs, and only on the Transducer task
(which we felt was a better fit for a reasoning model). For gpt-3.5 and gpt-4o-mini, we evaluated on
100 DFAs. All models were evaluated with temperature 0, except o1-preview3.

For both tasks, we consider four prompting formats. BASIC provides no context, presenting the
problem as a generic sequence generation or next-token prediction task, where output is provided
immediately following the input, with no space to think. MORE-EXPL explains that the strings are
generated from a DFA with 3 states, but is otherwise identical to BASIC. This remains a sequence
generation/next token prediction task. COT provides the same information as MORE-EXPL and
additionally invokes chain-of-thought reasoning to help the model reason over the task. Here, the
model is given space to reason before providing a tagged answer. RED-GREEN casts the tasks
as independent word problems that describe the underlying grammar structure without relying on
world knowledge about DFAs and regular languages. It describes an N-state DFA as a house with
N rooms, each of which has 3 portals that deterministically go to other rooms (or back to the same
room), where the walls of each room are red or green (mirroring transducer output symbols 0 and
1). Similarly to COT, the model is given space to show work before providing a tagged answer.

3o1-preview does not allow setting a non-default temperature.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We produce versions of each of these prompts for each task, denoting these with a subscript S for
sequence completion prompts and T for transducer prompts. Full listings of these prompts can be
found in Appendix F, with Table 5 containing a summary of each prompt. While no finite set of
prompts will be fully sufficient to capture all possible model behavior, we believe our set of prompts
captures common prompting strategies.

Model Size IT? Code? S.C. SR Tr. TR
Baselines

BRUTEFORCE – 100.0 (99.9–100.0) 1 96.4 (96.2–96.7) 1
6-GRAM – 91.7 (91.0–92.4) 2 93.5 (93.1–93.9) 2
5-GRAM – 91.2 (90.4–91.9) 3 93.4 (93.0–93.7) 3
4-GRAM – 89.6 (88.7–90.4) 4 91.1 (90.6–91.6) 4
3-GRAM – 87.0 (86.1–87.8) 5 87.0 (86.4–87.6) 16
2-GRAM – 83.3 (82.2–84.2) 8 74.5 (73.6–75.3) 25
COMMON-SUFFIX – 84.7 (83.6–85.6) 6 – –
RANDOMS /NULLT – 53.3 (51.7–54.7) 26 68.9 (68.2–69.6) 26

Open Source Completion
llama3-8B 8.0B 73.8 (72.4–75.1) 18 87.5 (86.9–88.0) 14
llama3-70B 70.6B 71.4 (70.0–72.7) 23 87.7 (87.2–88.3) 12
llama3.1-8B-Instruct 8.0B ✓ 75.3 (74.0–76.6) 16 85.9 (85.3–86.5) 18
mistral-nemo-minitron-8B 8.4B 78.7 (77.5–79.8) 12 88.6 (88.0–89.1) 5
mistral-nemo-base-12B 12.2B 75.5 (74.3–76.6) 15 87.9 (87.4–88.4) 10
mistral-nemo-instruct-12B 12.2B ✓ 72.2 (70.9–73.4) 22 88.0 (87.5–88.5) 8
gemma-7b 8.5B 72.6 (71.3–73.7) 20 82.1 (81.4–82.7) 22
falcon-7b 7.2B 69.0 (67.6–70.2) 24 84.9 (84.3–85.5) 20

Open Source Code
starcoder2-15b 16.0B ✓ 73.5 (72.0–74.7) 19 87.7 (85.8–89.5) 13
codestral-22B 22.2B ✓ 78.0 (76.8–79.1) 13 86.6 (86.0–87.1) 17
deepseek-coder-33b-instruct 33.3B ✓ ✓ 76.7 (75.3–77.8) 14 85.6 (85.0–86.2) 19
qwen-2.5-coder-7B 7.6B ✓ 79.5 (78.4–80.5) 9 88.2 (87.6–88.7) 7
qwen-2.5-coder-instruct-7B 7.6B ✓ ✓ 79.5 (78.3–80.5) 10 88.3 (87.8–88.8) 6
qwen-2.5-coder-instruct-32B 32.8B ✓ ✓ 79.2 (78.0–80.3) 11 87.9 (87.4–88.4) 9

Proprietary
gpt-3.5-instruct ? ✓ 67.3 (63.1–71.5) 25 87.8 (85.9–89.6) 11
gpt-3.5-chat ? ✓ N/A – 66.8 (63.4–69.8) 27
gpt-4o-mini ? ✓ 72.4 (68.1–76.3) 21 79.8 (77.3–82.2) 23
gpt-4o ? ✓ 74.4 (69.9–78.6) 17 83.7 (80.1–86.9) 21
claude-3.5 ? ✓ 84.0 (79.3–88.4) 7 87.1 (83.9–90.2) 15
o1-preview ? ✓ – – 76.5 (69.4–84.3) 24

Table 1: Results for our experiments. We present model metadata alongside model results on both
the Transducer and Sequence completion tasks. Each cell contains the mean performance across
DFAs for the best-performing prompt (see Table 2 for details), with 95% confidence intervals of the
mean in parentheses. “N/A” is used whenever the model returned an invalid result at least 25% of
the time. (IT = Instruction-Tuned, TR/SR = Transducer/Sequence Completion rank, the ordinal rank
of the given model on the given task.)

5 RESULTS

Main results for all tasks are presented in Table 1. For all LLMs, we ignore non-answers, i.e., if for
a given DFA a model gets 25 correct answers, 1 incorrect answer, and responds with an unparseable
result on 4, this counts as a 25/26, not a 25/29. We then report the mean across DFAs and 95%
bootstrap confidence intervals.

5.1 SEQUENCE COMPLETION

As seen in Table 1, this task is nearly always fully determined, that is, it can be solved with ∼100%
accuracy in theory, as demonstrated by BRUTEFORCES results. Of course, BRUTEFORCES is ex-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

tremely computationally expensive, and, as such, we primarily focus on the n-GRAMS heuristics as
our baselines. Still, we find that n-GRAMS heuristics tend to outperform LLMs.

As seen in Table 2, we find that giving the model the opportunity to logically reason about the
prompt via chain-of-thought and present a conclusion has inconsistent results. Specifically, we find
that BASICS is the best prompt for gpt-4o-mini, but not gpt-4o, where the best performing prompt
is RED-GREENS . We find that claude-3.5 is entirely unable to follow the sequence completion
prompts BASICS and MORE-EXPLS , and performs best at the COTS prompt.

Additionally, we find that in this task, code-specific open-source models tend to perform better than
sequence completion models, suggesting some generalized ability to produce strings from novel lan-
guages demonstrated by example. Overall, the relative performances of LLMs and prompts comport
somewhat well to heuristics on which models and prompting strategies should work best. Nonethe-
less, LLMs underperform simple n-GRAM heuristics.

One potential problem with using this task for cross-model comparisons is the relevance of tokeniza-
tion. Unfortunately, we found that forcing uniform tokenization by using commas in the prompt
uniformly reduced accuracy, see Appendix E for details.

Model BASIC MORE-EXPL COT RED-GREEN

Sequence Completion
gpt-4o-mini 72.4 (68.1–76.3) 70.5 (66.4–74.6) 58.0 (53.4–62.4) 59.1 (54.9–63.2)
gpt-4o 72.1 (65.9–78.2) N/A 67.4 (60.8–73.8) 74.4 (69.9–78.6)
claude-3.5 N/A N/A 84.0 (79.3–88.4) 80.0 (74.9–85.2)
Transducer
gpt-4o-mini 79.8 (77.3–82.2) 76.7 (74.2–79.3) 65.2 (63.1–67.4) 74.5 (72.0–77.0)
gpt-4o 83.7 (80.1–86.9) 82.6 (79.1–85.9) 67.8 (63.1–72.3) 82.6 (78.8–86.3)
claude-3.5 86.9 (83.3–90.0) 87.1 (83.9–90.2) 76.4 (72.9–79.9) 82.9 (78.9–86.9)

Table 2: Results for models where we investigated multiple prompts (we only used BASIC on other
models). We bold the best prompt for each model. Non-COT prompts consistently work better for
the Transducer task, with more mixed results on sequence completion.

5.2 TRANSDUCER

Unlike sequence completion, this task is generally not fully determined, with the BRUTEFORCET

model only achieving 96.4% accuracy. However, relative results should still be valid as the impos-
sible problem instances are present with equal probability for all models.

We find that in general all LLMs underperform a 4-GRAMT model, demonstrating that they are
unable to adequately solve this task. The relative performance of the models also does not corre-
spond to their overall scale, with open source LLama-3 and Mistral Nemo 8B parameter models
outperforming Claude and GPT-4o. Even within a model class we find no clear pattern: GPT-4o and
o1-preview4 are outperformed by GPT 3.5, Llama 3-70B has similar performance to Llama 3-8B,
and the Mistral Nemo 12B models perform similarly to Nemo Minitron 8B. Coding models also
demonstrate no advantage on this task.

The generally lower performance of chat-oriented models suggests this task is better suited to non-
chat models. To investigate that this is not specific to the BASIC prompt, we investigate other
prompts for chat models. As seen in Table 2, our chain-of-though and word problem prompts,
which attempt to leverage the full reasoning capabilities of chat models, also fare poorly, performing
similarly or worse to the BASIC prompt on the Transducer task in all cases.

Overall, we conclude that LLMs are unable to perform the DFA transducer inference task to a
reasonable degree. This failure cannot be attributed to a lack of world modeling ability, as n-GRAMT

models do not construct world models. Instead, it seems the LLMs are unable to detect patterns when

4The particularly poor performance of o1-preview may be due to the model not supporting temperature 0.
In other experiments, we found that GPT models with temperature 1 tended to perform poorly. See Appendix B
for more details.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

those patterns are drawn from an unfamiliar source, even a relatively simple one. For a detailed
analysis of a case study, see Appendix C.

5.3 COMPARISON OF BENCHMARKS

Figure 3: Transducer and sequence completion results plotted against each other. Points represent
the mean over several DFAs and intervals represent 95% confidence intervals. Points are colored by
model type, with the best and worst model by each metric in each category labeled, as well as all
baseline and proprietary models.

Figure 3 displays the relationship between model performance on the Sequence Completion and
Transducer benchmarks. While at a high level, there is a positive correlation between the two, there
are a few notable differences. For one, the Code models perform notably better than other open
source models on Sequence Completion, but not on Transducer. Additionally, on Transducer, a
ceiling on performance is observed, where LLMs cluster together between 3-GRAMT and 4-GRAMT

performance; this clustering does not appear on the Sequence Completion benchmark.

6 CONCLUSION

Our findings highlight significant weaknesses in large language models’ ability to generalize to
entirely novel language reasoning problems, even simple ones solely involving next-token prediction
on basic languages recognized by 3-state DFAs. These results, combined with that of previous
work demonstrating that large language models can quite accurately perform a variety of language
tasks, suggests that LLMs solve language problems via a mechanism distinct from general language
reasoning ability. Our use of n-gram baselines and next-token prediction tasks allows us to exclude
the possibility that the issue is primarily related to LLMs’ lack of world modeling or any inherent
limitations of next-token prediction models. We believe our results suggest that LLMs have learned
individual models of particular languages, but not a general theory of language.

Interestingly, in our transducer experiments, LLMs consistently perform better by directly predict-
ing the next token than by explicitly reasoning through the problem. While our conclusions are
limited by the finite nature of our prompt set, this suggests that they do, in fact, possess some latent
understanding of language, but this understanding is inferior to basic n-gram models for n > 3.

Many potential foundation model applications involve tasks that are not expressed in familiar human
languages or pre-existing programming languages. More specifically, in tasks where there is a need
to produce an output in a precise, atypical, format, we should be skeptical of the ability of LLMs to
in-context-learn this format. For these tasks, it may be prudent to seek a new approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

IMPACT STATEMENT

Aside from the social consequences of this work as related to advancing the field of Machine Learn-
ing in general, this work has the goal of advancing the field of benchmarks in Machine Learning.
While we view this as a positive objective, as it ensures that models are being evaluated fairly, it
might have negative consequences insofar as benchmarking techniques might be best left unpub-
lished to prevent deliberate or unintentional overfitting.

REFERENCES

AI@Meta. Llama 3 model card, 2023. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

AI@Meta. Llama 3.1 8b instruct, 2024. URL https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large lan-
guage model with state-of-the-art performance. 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319, 2019.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of
code generation models. arXiv preprint arXiv:2210.14868, 2022.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Prajjwal Bhargava and Vincent Ng. Commonsense knowledge reasoning and generation with pre-
trained language models: A survey. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 12317–12325, 2022.

Ben Bogin, Shivanshu Gupta, Peter Clark, and Ashish Sabharwal. Leveraging code to improve
in-context learning for semantic parsing. arXiv preprint arXiv:2311.09519, 2023.

Noam Chomsky. On certain formal properties of grammars. Information and control, 2(2):137–167,
1959.

Noam Chomsky, Ian Roberts, , and Jeffrey Watumull. Noam chomsky: The false promise of
chatgpt. The New York Times, 2023. URL https://www.nytimes.com/2023/03/08/
opinion/noam-chomsky-chatgpt-ai.html.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Deepseek. Deepseek coder 33b instruct, 2024. URL https://huggingface.co/
deepseek-ai/deepseek-coder-33b-instruct.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html
https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang Ling, and Yongfeng Zhang. Nphardeval: Dynamic
benchmark on reasoning ability of large language models via complexity classes. arXiv preprint
arXiv:2312.14890, 2023.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. In The Eleventh International Conference on Learning Representations,
2022.

Google. gemma-7b, 2024. URL https://huggingface.co/google/gemma-7b.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos Martires, and Luc De Raedt. Can large lan-
guage models reason? a characterization via 3-sat. arXiv preprint arXiv:2408.07215, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Wenyue Hua and Yongfeng Zhang. System 1+ system 2= better world: Neural-symbolic chain of
logic reasoning. In Findings of the Association for Computational Linguistics: EMNLP 2022, pp.
601–612, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Sathvik Joel, Jie JW Wu, and Fatemeh H Fard. A survey on llm-based code generation for low-
resource and domain-specific programming languages. arXiv preprint arXiv:2410.03981, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. arXiv
preprint arXiv:2210.02406, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning,
pp. 2873–2882. PMLR, 2018.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. Commongen: A constrained text generation challenge for generative commonsense
reasoning. arXiv preprint arXiv:1911.03705, 2019.

Kevin Lin, Patrick Xia, and Hao Fang. Few-shot adaptation for parsing contextual utterances with
llms. arXiv preprint arXiv:2309.10168, 2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, In-
draneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii
Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli
He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham

10

https://huggingface.co/google/gemma-7b

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan
Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han
Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Cha-
pados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming
Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Star-
coder 2 and the stack v2: The next generation, 2024.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-specific
languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

Raphaël Millière. Language models as models of language. arXiv preprint arXiv:2408.07144, 2024.

Mistral AI. Codestral-22b-v0.1, 2024a. URL https://huggingface.co/mistralai/
Codestral-22B-v0.1.

Mistral AI. Mistral-nemo-base-2407, 2024b. URL https://huggingface.co/
mistralai/Mistral-Nemo-Base-2407.

Mistral AI. Mistral-nemo-instruct-2407, 2024c. URL https://huggingface.co/
mistralai/Mistral-Nemo-Instruct-2407.

NVIDIA. Mistral-nemo-minitron-8b-base, 2024. URL https://huggingface.co/
nvidia/Mistral-NeMo-Minitron-8B-Base.

OpenAI. Gpt 3.5 turbo, 2024a. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

OpenAI. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410.21276.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan

11

https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Codestral-22B-v0.1
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base
https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://arxiv.org/abs/2410.21276

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
arXiv preprint arXiv:1508.00305, 2015.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar prompt-
ing for domain-specific language generation with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Nathaniel Weir, Peter Clark, and Benjamin Van Durme. Nellie: A neuro-symbolic inference engine
for grounded, compositional, and explainable reasoning. Preprint, 2023.

Nathaniel Weir, Kate Sanders, Orion Weller, Shreya Sharma, Dongwei Jiang, Zhengping Zhang,
Bhavana Dalvi Mishra, Oyvind Tafjord, Peter Jansen, Peter Clark, et al. Enhancing systematic de-
compositional natural language inference using informal logic. arXiv preprint arXiv:2402.14798,
2024.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, pp. 1–10, 2022a.

Zhenlin Xu, Marc Niethammer, and Colin A Raffel. Compositional generalization in unsupervised
compositional representation learning: A study on disentanglement and emergent language. Ad-
vances in Neural Information Processing Systems, 35:25074–25087, 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv. org/pdf/2305.10601. pdf, 2023.

12

https://arxiv.org/abs/2412.16720

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuekun Yao and Alexander Koller. Structural generalization is hard for sequence-to-sequence mod-
els. arXiv preprint arXiv:2210.13050, 2022.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International conference on machine learning, pp.
12697–12706. PMLR, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS ON SAMPLING

A.1 SAMPLING OF DFAS

We use rejection sampling to sample DFAs. Specifically, we uniformly sample a start state, then for
each (source state, symbol) pair, we sample a post-transition state. We also randomly assign each
state to be accept or reject with probability 50%. We then reject any DFA that has all accept or all
reject states (so only DFAs with 1 or 2 accept states are allowed), or for which certain states are
unreachable from the start state.

A.2 SAMPLING OF SEQUENCE COMPLETION TASKS

To sample a sequence completion task, we first sample a DFA as described in Appendix A.1.

To sample a task instance, we sample example sequences and distinct prefix. Each example sequence
is sampled uniformly from the space of {a, b, c}10 and then rejected if the DFA does not accept the
sequence. Our distinct prefix and completion are sampled uniformly from {a, b, c}5 × {a, b, c}5,
and are rejected if the DFA does not accept the concatenation of the two, or if the prefix is the prefix
of any of the previous sequences. We then discard the completion. If we, at any point, reject 50
sequences when attempting to sample a sequence or prefix, we return an error.

We run a “pilot” sampling for a DFA to ensure that it is valid, in which we sample an instance as
described above. If there is an error in sampling this pilot instance, we reject the DFA. Otherwise,
we proceed to sample our task instances. At this stage, if there is an error in sampling, we reject the
instance rather than the DFA. This pilot sample rejection procedure leads to a slight bias towards
2-accept state DFAs over 1-accept state DFAs, as measured by the RANDOMS baseline.

A.3 SAMPLING OF TRANSDUCER TASKS

We sample a DFA as described in Appendix A.1, and then sample random sequences (30 in our
experiments) and generate transducer traces. If every transducer trace ends with a 0 or every trace
ends with a 1, we reject the DFA and resample.

B RESULTS OF O1-PREVIEW

We evaluated o1-preview on 10 DFAs, using 30 problem instances per DFA of the Transducer task,
as in other Transducer experiments, and the BASICT prompt, as this is the most neutral prompt. Ta-
ble 3 displays results on each DFA. Overall, while these results are not on a particularly large sample,
they fairly definitively demonstrate that o1-preview does not achieve strikingly good performance
on this task.

DFA o1-preview gpt-4o 6-GRAM
1 25/30 27/30 26/30
2 23/29 24/30 25/30
3 19/30 23/30 28/30
4 22/30 23/30 28/30
5 29/29 30/30 30/30
6 19/30 24/30 30/30
7 17/29 23/30 25/30
8 23/30 25/30 26/30
9 21/30 28/30 30/30

10 29/30 29/30 30/30

Table 3: Results on each DFA. We find that in 7 cases, o1-preview underperforms gpt-4o, in 2 cases
it gets the same number of instances wrong but provides a non-answer on an additional instance,
and in 1 case it ties gpt-4o. In no cases does it outperform.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C CASE STUDY: SUM MODULO 3 DFA

(a)

(b)

Correct Incorrect
Total 30 30

a is no-op 21 22
1b and 1c lead to 0 14 17

2-periodic 9 14
3-periodic 4 4

2 red rooms 2 3

Figure 4: Results on Sum Modulo 3 DFA.
(a) MB=mistral-nemo-minitron-8B/BASICT ,
CR=claude-3.5/RED-GREENT . Venn diagram
of errors (out of 1000). Labeled percentages are
accuracies. (b) Results of qualitative analysis, out
of 30 in both cases.

We investigate the transducer task on the DFA
depicted in Figure 1. This DFA can be inter-
preted as an arithmetic check, where a repre-
sents 0, b represents 1, and c represents 2, and
the DFA accepts strings whose sum is equal to 0
modulo 3. For this case study, we focus on the
model/prompt combinations MB and CR, de-
fined as

• MB: mistral-nemo-minitron-
8B/BASICT . Selected as it is the
best performing combination overall.

• CR: claude-3.5/RED-GREENT . Se-
lected as it is the best performing com-
bination that provides an explanation
(needed later for our qualitative analy-
sis)

Figure 4a depicts the number of errors each
model receives on 1000 instances of the trans-
ducer task for this DFA. In general, nearly all
errors made by the 6-GRAMT model were also
made by at least one LLM model, while the
two LLM models often made unique errors. In-
terestingly, while this task is better-known than
most DFAs, we find that all 3 models perform
worse on this DFA than their average across
random DFAs.

We also performed a qualitative analysis, inves-
tigating CR’s outputs on the RED-GREENT prompt to see what kind of reasoning it is using; specif-
ically we sampled 30 examples where it had the correct answer, and 30 examples where it had the
incorrect answer but the 6-GRAMT model had the correct answer. Results of this analysis can be
found in Figure 4b. We find that, in general, CR is following a 3-GRAM approach, learning rules
relating to the conditions under which the previous output and symbol can be used to predict the
next output. Specifically, it is able to learn that a does not change the output, and that b and c will
lead a 1 state to a 0 state. These results comport with the overall finding of Table 1, where we found
that 3-GRAMT was the largest n-GRAMT that any LLM outperformed.

The model occasionally makes attempts at more sophisticated pattern match reasoning, but rarely is
successful in doing so. It also attempts to identify periodic patterns, but identifies period-2 patterns
more than period-3 patterns, despite knowing that there are three “rooms” (states). At no point in
any of the 60 reasoning traces analyzed does it realize that this is a version of the Sum Modulo
3 DFA5, or fully determine the DFA in any other way, but it does show some glimmers of world
modeling. Specifically, in a few cases it correctly determines that there are two red rooms; but this
does not seem to lead to any further discoveries. It is not superior reasoning that leads to correct
solutions, rather the correct examples are more likely to be ones that a 3-GRAM model would infer
correctly, i.e., those traces ending in a, 1b, or 1c, which occur cumulatively in 5

9 of cases6.

Despite transformers’ high computational capacity, without the ability to pattern match to existing
problems, Claude uses an unsophisticated and ineffectual approach.

5In fact in none of the 1000 reasoning traces do the substrings “sum” or “mod” appear, except once as a part
of “assuming”

6Looking at the ∼ 5
9

of examples that follow this pattern, we find that CR achieves 93.5%, to the 6-GRAMT ’s
97.3%, and on the remaining ∼ 4

9
, it achieves only 43.8%, or worse than chance, to the 6-GRAMT ’s 60.7%.

Detailed Venn diagrams on these conditions can be found in Appendix D.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D MORE DETAILS ON SUM MODULO 3 DFA CASE STUDY

Figure 5 depicts the results of the Sum Modulo 3 experiment, but filtered for two conditions. In the
(a) condition, the trace ends in such a way that a 3-GRAM model would be able to determine the
output, and the (b) condition is the complement.

(a)

(b)

Figure 5: Results on Sum Modulo 3 DFA under trivial / nontrivial conditions. Percentages are
accuracy numbers, and venn diagram is error counts. (a) In this condition, CR and the 6-GRAMT

both get very high accuracies, with nearly all 6-GRAMT also being CR errors. MB does relatively
poorly. (b) In this condition, models do significantly more poorly overall, with CR in particular
performing worse than chance. Here, errors are more symmetric, with more 6-GRAMT errors that
are not accounted for by either or both model, indicating that a larger fraction of both successes and
failures in this condition are down to random chance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Model BASICS BASIC-COMMASS
qwen-2.5-coder-7B 79.5 (78.4–80.5) 60.7 (59.3–62.1)

qwen-2.5-coder-instruct-7B 79.5 (78.3–80.5) 55.5 (54.0–56.9)
qwen-2.5-coder-instruct-32B 79.2 (78.0–80.3) 55.2 (53.7–56.7)

mistral-nemo-minitron-8B 78.7 (77.5–79.8) 59.3 (57.9–60.8)
codestral-22B 78.0 (76.8–79.1) 59.0 (57.5–60.3)

deepseek-coder-33b-instruct 76.7 (75.3–77.8) 54.9 (53.0–56.8)
mistral-nemo-base-12B 75.5 (74.3–76.6) 60.6 (59.1–62.2)

llama3.1-8B-Instruct 75.3 (74.0–76.6) 56.3 (54.4–58.1)
llama3-8B 73.8 (72.4–75.1) 61.5 (60.2–62.9)

starcoder2-15b 73.5 (72.0–74.7) 58.2 (56.7–59.8)
gemma-7b 72.6 (71.3–73.7) 54.0 (51.9–56.0)

gpt-4o-mini 72.4 (68.1–76.3) 64.1 (59.5–68.3)
mistral-nemo-instruct-12B 72.2 (70.9–73.4) 58.2 (56.4–59.8)

gpt-4o 72.1 (65.9–78.2) 66.8 (58.5–74.8)
llama3-70B 71.4 (70.0–72.7) 56.4 (54.7–58.0)

falcon-7b 69.0 (67.6–70.2) 56.1 (54.5–57.6)
gpt-3.5-instruct 67.3 (63.1–71.5) 52.3 (46.5–57.9)

claude-3.5 N/A N/A
gpt-3.5-chat N/A N/A

Table 4: Results on Sequence Completion Task. We compare BASICS to the comma-variant BASIC-
COMMASS .

E SEQUENCE COMPLETION TASK PROMPT WITH COMMAS

To avoid tokenization differences with models, we also investigate a version of our Sequence Com-
pletion prompt that uses spaces and commas between the elements of the sequence. Unfortunately,
results using this prompt were uniformly worse than results on the prompt without spaces and com-
mas. Table 4 shows the results on a variety of models. All are worse with commas than without.

F PROMPT LISTINGS

F.1 SUMMARIES

Table 5 contains summaries of each prompt.

F.2 FULL EXAMPLE LISTINGS

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt T S

BASIC

You are a sequence completion model. Output the
next element of the sequence, and nothing
else.

<TRANSDUCER PREFIX>,

The following strings come from an alien language
that follows a simple grammar. Infer the
alien grammar using the example strings.
Then, add a suffix to the final string using
between 1 and 5 characters such that the
full string follows the grammar. Output only
the necessary suffix to complete the final
string, and nothing else.

<EXAMPLES>
<PREFIX>

MORE-EXPL

You are a sequence completion model. The following
sequence is generated from an unknown but
consistent grammar. Identify the patterns
within the sequence to determine its next
element. Output the next element of the
sequence, and nothing else.

<TRANSDUCER PREFIX>,

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the
underlying DFA model using these strings and
complete the final string, using up to n
characters, such that it is also a valid
string. Output only the necessary suffix to
complete the final string, and nothing else.

<EXAMPLES>
<PREFIX>

COT

A DFA is a finite-state machine that accepts or
rejects a given string of symbols, by
running through a n-state sequence uniquely
determined by the string.

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect the inputs and outputs into
an input sequence and an output sequence.
Infer the underlying DFA model to predict
the next integer in the output sequence.
Reason step by step, and then output the
next output integer using <answer> tags,
like <answer>0</answer>.

Input sequence: <TRANSDUCER PREFIX>
Output sequence:

I have a 3-state DFA model that outputs either 0
or 1 after each element I input. 1 indicates
that the input string thus far results in a
"valid" state, and 0 indicates that it does
not. I collect a set of valid strings using
this DFA, listed below. Infer the
underlying DFA model using these strings and
complete the final string, using up to n
characters, such that it is also a valid
string. Reason step by step, and then output
the next necessary suffix for this final
string, <answer> tags, like <answer>ab</
answer>.

Given these valid strings:
<EXAMPLES>

Complete the following string:
<PREFIX>

RED-GREEN

‘‘‘
You are in a house of rooms and portals. There are

3 rooms in the house, and each room has 3
unique portals labeled A, B, and C. Each
portal teleports you to one room of the
house (and sometimes the destination is the
room the portal is in). Every portal in a
given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *three* rooms in total, so you
cannot determine which room you are in by
color alone, and two rooms of the same color
may have portals that behave differently.
As you move through the house, at each time
step you write down what portal you take and
the color of the room you arrive (or stay)
in. Based on your notes, predict what color
room you will end up in after the last step.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "<TRANSDUCER
PREFIX>" and end up in a red room.

‘‘‘

You are outside a house of rooms and portals.
There are 3 rooms in the house, and each
room has 3 unique portals labeled a, b, and
c. Each portal teleports you to one room of
the house (and sometimes the destination is
the room the portal is in). Every portal in
a given room always behaves the same way.

In this house, each of the rooms look exactly the
same, except some of the rooms have red
walls and some have green walls. However,
there are *3* rooms in total, so you cannot
determine which room you are in by color
alone, and two rooms of the same color may
have portals that behave differently. You’ve
been into this house many times before.
Each time, as you move through the house,
you write down what series of portals you
take and the color of the room you end up in
. You have a collection of paths you’ve
taken where you’ve ended up in a room with
green walls, listed below. Given the final
incomplete path at the bottom, write a
series of up to 5 remaining steps that will
cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

Given these paths that end in a room with green
walls:

<EXAMPLES>

Complete the following path:
<PREFIX>

Table 5: Shortened summary of each prompt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.2.1 BASICT

You are a sequence completion model. Output the next element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

F.2.2 MORE-EXPLT

You are a sequence completion model. The following sequence is generated from an unknown but consistent
grammar. Identify the patterns within the sequence to determine its next element. Output the next
element of the sequence, and nothing else.

a, 1, b, 1, a, 1, b, 1, b, 1, c, 0, a, 1, c, 1, a, 1, a, 1, a, 1, c, 1, b, 1, c, 0, c, 1, a, 1, b, 1, b, 1, b,
1, b, 1, a, 1, b, 1, a, 1, a, 1, b, 1, c, 0, a, 1, c, 1, a, 1, b,

F.2.3 COTT

A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running through a n-
state sequence uniquely determined by the string.

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect the inputs and
outputs into an input sequence and an output sequence. Infer the underlying DFA model to predict the
next integer in the output sequence. Reason step by step, and then output the next output integer using
<answer> tags, like <answer>0</answer>.

Input sequence: a, b, a, b, b, c, a, c, a, a, a, c, b, c, c, a, b, b, b, b, a, b, a, a, b, c, a, c, a, b
Output sequence: 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

F.2.4 RED-GREENT

‘‘‘
You are in a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique portals

labeled A, B, and C. Each portal teleports you to one room of the house (and sometimes the destination
is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *three* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. As you move

through the house, at each time step you write down what portal you take and the color of the room you
arrive (or stay) in. Based on your notes, predict what color room you will end up in after the last step
.

Tag your final answer like <answer>color</answer>.

You walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a red room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "C" and end up in a green room.
Then, you walk through a portal labeled "A" and end up in a green room.
Then, you walk through a portal labeled "B" and end up in a ...
‘‘‘

F.2.5 BASICS

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

F.2.6 BASIC-COMMASS

The following strings come from an alien language that follows a simple grammar. Infer the alien grammar using
the example strings. Then, add a suffix to the final string using between 1 and 5 characters such that

the full string follows the grammar. Output only the necessary suffix to complete the final string, and
nothing else.

c, b, c, b, a, b, b, c, c, a
a, b, c, a, a, a, c, b, a, a
a, a, b, c, c, b, a, b, b, b
b, b, b, c, c, b, b, b, c, a
a, a, b, a, b, a, c, c, b, a
a, a, a, a, c, b, a, c, a, c
b, a, a, c, b, c, c, b, a, a
c, b, b, a, a, c, a, b, c, c
b, a, a, b, a, a, c, a, a, b
b, b, b, b, b, c, a, c, a, b
a, c, a, a, b, c, b, b, b, a
a, c, a, a, c, b, c, c, a, c
c, a, c, b, a, b, c, b, b, a
a, b, c, b, c, b, c, b, c, c
c, c, a, c, c, c, c, a, b, a
b, c, b, c, a, b, b, c, c, a
b, a, a, b, a, c, a, b, c, a
c, a, a, b, a, b, a, c, a, c
b, a, c, a, c, a, c, c, a, a
b, c, a, c, b, b, b, b, c, a
b, c, b, b, b, c, a, c, c, c
c, c, a, b, b, c, c, c, b, b
b, c, c, b, c, a, b, b, c, a
b, a, a, c, b, a, b, c, b, c
c, c, a, c, a, b, c, c, a, b
c, a, a, c, b, c, a, a, a, b
c, a, c, b, a, a, c, c, a, c
a, a, c, c, b, c, a, a, b, b
a, b, a, c, a, b, c, a, a, b
b, a, c, b, c, b, c, a, c, a
c, a, a, c, b,

F.2.7 MORE-EXPLS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Output only the
necessary suffix to complete the final string, and nothing else.

cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca
caacb

F.2.8 COTS

I have a 3-state DFA model that outputs either 0 or 1 after each element I input. 1 indicates that the input
string thus far results in a "valid" state, and 0 indicates that it does not. I collect a set of valid
strings using this DFA, listed below. Infer the underlying DFA model using these strings and complete
the final string, using up to n characters, such that it is also a valid string. Reason step by step,
and then output the next necessary suffix for this final string, <answer> tags, like <answer>ab</answer
>.

Given these valid strings:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following string:
caacb

F.2.9 RED-GREENS

You are outside a house of rooms and portals. There are 3 rooms in the house, and each room has 3 unique
portals labeled a, b, and c. Each portal teleports you to one room of the house (and sometimes the
destination is the room the portal is in). Every portal in a given room always behaves the same way.

In this house, each of the rooms look exactly the same, except some of the rooms have red walls and some have
green walls. However, there are *3* rooms in total, so you cannot determine which room you are in by
color alone, and two rooms of the same color may have portals that behave differently. You’ve been into
this house many times before. Each time, as you move through the house, you write down what series of
portals you take and the color of the room you end up in. You have a collection of paths you’ve taken
where you’ve ended up in a room with green walls, listed below. Given the final incomplete path at the
bottom, write a series of up to 5 remaining steps that will cause you to end up in a room with green
walls again.

Tag your final answer like <answer>ab</answer>.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Given these paths that end in a room with green walls:
cbcbabbcca
abcaaacbaa
aabccbabbb
bbbccbbbca
aababaccba
aaaacbacac
baacbccbaa
cbbaacabcc
baabaacaab
bbbbbcacab
acaabcbbba
acaacbccac
cacbabcbba
abcbcbcbcc
ccaccccaba
bcbcabbcca
baabacabca
caababacac
bacacaccaa
bcacbbbbca
bcbbbcaccc
ccabbcccbb
bccbcabbca
baacbabcbc
ccacabccab
caacbcaaab
cacbaaccac
aaccbcaabb
abacabcaab
bacbcbcaca

Complete the following path:
caacb

22

	Introduction
	Related Work
	Reasoning with LLMs
	LLM reasoning evaluation
	Language Understanding and LLMs

	DFA Reasoning Tasks
	DFAs and Regular Languages
	Sequence Completion Task
	Transducer Task
	Baselines

	Experiments
	Results
	Sequence Completion
	Transducer
	Comparison of Benchmarks

	Conclusion
	Details on Sampling
	Sampling of DFAs
	Sampling of Sequence Completion Tasks
	Sampling of Transducer Tasks

	Results of o1-preview
	Case Study: Sum Modulo 3 DFA
	More details on Sum Modulo 3 DFA case study
	Sequence Completion task prompt with Commas
	Prompt Listings
	Summaries
	Full example listings
	BasicT
	More-ExplT
	COTT
	Red-GreenT
	BasicS
	Basic-CommasS
	More-ExplS
	COTS
	Red-GreenS

