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Using Electrodermal Activity Signal

 
Abstract—Inappropriate driver behavior is a leading cause of 

traffic accidents, contributing to 94% of crashes, according to the 

National Motor Vehicle Crash Causation Survey. Factors such as 

individual driving styles, risk-taking tendencies, and non-

compliance with traffic regulations increase the likelihood of 

conflicts and accidents, emphasizing the need for a deeper 

understanding of driver behavior. Despite existing studies on 

driving behavior, there is a lack of precise and comprehensive 

classification methods that effectively correlate physiological 

signals with driving actions. Current models do not fully capture 

the cognitive aspects of driving, limiting their applicability in 

enhancing traffic safety and accident prevention. The primary 

goal of this study is to identify the most relevant features that 

contribute to analyzing driving behavior and utilize them to 

classify driver actions accurately. We conducted feature extraction 

using 52 distinct features to analyze driving behavior. Following 

this, feature selection was performed using the Random Forest 

Recursive Feature Elimination method to identify the 10 most 

significant features. These important features were then used for 

driver behavior classification with machine learning models, 

ensuring improved accuracy and efficiency in identifying different 

driving patterns. 

Keywords—Electrodermal Activity, Galvanic Skin Response, 
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I. INTRODUCTION   

Traffic accidents remain a significant global concern, with 

most collisions attributed to human-related factors, including 

behavior, decision-making, and reaction time. Predominantly, 

crashes result from inappropriate driving behaviors such as 

non-compliance with traffic regulations, engagement in risky 

driving practices, and impaired judgment [1]. Variables such 

as age and cognitive abilities introduce significant risks to 

driving safety [2]. Given the inherent complexity and 

variability of human behavior, manual behavior analysis 

remains limited in scope and effectiveness. Machine learning 

presents a scalable solution by uncovering complex patterns 

within large datasets, thereby enhancing the accuracy of 

behavior prediction and facilitating real-time interventions. 

Integrating insights from psychology, physiology, and 

engineering can further advance the development of 

intelligent safety systems, enabling a more holistic approach 

to understanding and mitigating human-related risks [3].  

Detecting driver stress is pivotal for enhancing road 

safety, prompting extensive research into various detection 

methodologies [4]. Traditional approaches have focused on 

physiological measurements, such as heart rate variability 

(HRV), electroencephalography (EEG), and electrodermal 

activity (EDA). For instance, a real-time cardiac 

measurement study demonstrated that heart rate changes 

effectively indicate driver stress and hazard anticipation [5]. 

However, HRV and EEG monitoring often require intrusive 

equipment, limiting their practicality in real-world driving 

scenarios.  

In contrast, EDA, which measures skin conductance 

changes associated with sweat gland activity, offers a more 

feasible alternative [6]. This response indicates physiological 

arousal, providing insights into emotional and cognitive 

states. The EDA analysis not only provides a less intrusive 

means of monitoring but also delivers high accuracy in 

detecting driver stress, making it a superior choice for 

practical applications [6]. EDA signals consist of two 

components: the tonic and the phasic components. The tonic 

component represents the baseline skin conductance during a 

resting state, reflecting general arousal and alertness over 

time. The phasic component represents rapid fluctuations in 

conductance in response to stimuli or internal changes, 

known as skin conductance responses (SCRs) [7]. Phasic 

responses are more commonly emphasized due to their 

sensitivity to specific stimuli and ability to capture immediate 

reactions, making them helpful in studying emotional or 

cognitive responses [7]. Our research focused on the phasic 

component of EDA signals to classify driver states. 

Recent studies have utilized EDA signals for driver stress 

detection using various feature extraction and classification 

techniques. Memar and Mokaribolhassan employed 

statistical features like mean and variance to classify stress 

levels during driving [8]. Similarly, Zontone et al [9], 

developed a low-complexity classification algorithm that 

incorporated adaptive filtering to mitigate motion artifacts in 

EDA signals, followed by statistical feature extraction and 

SVM classification, resulting in an accuracy of 87.40% in 

stress detection. Khai Ooi et al.  developed an EDA emotion 

recognition framework that can accurately recognize stress 

and anger from neutral emotion, with Significant differences 

in classification accuracy of 85% and insignificant 

differences in classification accuracy of 70% [10]. Jiao et al. 

combined EDA and HRV signals to evaluate driver fatigue 

using wearable devices [11].  

Building on these studies, our work presents a lightweight 

and interpretable framework for driver behavior 

classification using only basic time-domain features from 

EDA signals. Unlike prior approaches relying on complex 

preprocessing or deep models, we apply Random Forest 

Recursive Feature Elimination (RFRFE) to select the top 10 

features from an initial set of 52. These selected features are 

then used to train machine learning classifiers for accurate 

and real-time stress detection.  

 

 The contributions of this study are twofold: 

 (i) Demonstrating that basic time-domain features can 

effectively differentiate driver emotional states with high 

accuracy when carefully selected.  

(ii) Providing a lightweight and computationally efficient 

framework that facilitates practical real-time driver 

monitoring applications. 
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II. METHODOLOGY 

EDA signals are collected from the Multimodal 

Physiological Dataset for Driving Behavior (MPDB) [12]. 

The EDA signals are decomposed into phasic and tonic 

components to isolate the rapid, event-related responses 

better. From the phasic component, a comprehensive set of 

time-domain features is extracted to capture the dynamic 

characteristics of the EDA signals. Subsequently, a Recursive 

Feature Removal based on Random Forest (RFRFE) method 

is employed for feature selection, followed by classification 

using machine learning algorithms. Fig.1 shows the block 

diagram of the methodology used in the study. 

 

1. Collection of  EDA Signals: 

 

In this study, EDA signals are collected from the publicly 

available dataset [12]. The EDA signals were collected from 

35 voluntary participants (26 males, 9 females, aged 20–60 

years, average age 25.06 ± 7.90 years) from Tsinghua 

University participated in the experiment, which involved 

150-minute event-related driving tasks. Participants were 

required to have a valid driving license (minimum grade C) 

and at least one year of driving experience. To minimize 

external factors that could affect physiological signals, 

participants were instructed to ensure adequate rest prior to 

the experiment and to refrain from consuming stimulants or 

drugs. During the experiment, data were collected while 

participants engaged in five different driving behaviors: 

smooth driving, acceleration, deceleration, lane-change, and 

turning. These physiological signals were recorded 

synchronously, and the data were later used for further 

analysis in this study [12]. Table 1 summarizes the 

demographic and EDA data of the participants 

TABLE I.  EDA AND PARTICIPANT DEMOGRAPHIC DATA 

Category Description 

Number of 
Participants 

35 (26 males, 9 females) 

Age Range 20–60 years (Average age = 25.06 years, SD = 7.90) 

Driving 

Experience 

1–20 years (Average driving experience = 3.03 years, 

SD = 3.68) 

Driving 

License 

Grade C or above (People's Republic of China) 

Experimental 

Duration 

150 minutes of event-related driving tasks 

Physiological 

Data 

Collected 

EDA, EEG, ECG, Eye Tracking, EMG, GSR 

Data 
Collection 

System 

NeuSen W GSR Series Wireless GSR Acquisition 
System (Sampling rate: 1000 Hz) 

Event Types Smooth driving (control), acceleration, deceleration, 
lane-change, turning 

2. Decomposition: 

EDA signals are typically decomposed into tonic and phasic 

components to better understand autonomic nervous system 

responses. Greco et al. [13] developed cvxEDA, a quadratic 

programming-based decomposition technique designed to 

decompose tonic and phasic components of EDA. The 

method represents the EDA as the sum of a fast phasic 

component (�) , a slow tonic component (�), and a Gaussian 

noise term (�) according to the equation ���	 = � + � + � . 

The phasic component is obtained through a convolution 

between a sparse, nonnegative SNA driver and an impulse 

response function (IRF), which is modeled using a Bateman 

function. The tonic component is estimated using cubic spline 

interpolation to determine the physiological characteristics 

such as temporal scale and smoothness. The method utilizes 

quadratic programming convex optimization to identify the 

optimal tonic and phasic components. Pre-processing 

involves z-score normalization of the EDA to offset 

individual baseline variations. The method has been 

evaluated for its ability to detect sympathetic nervous system 

(SNS) activity, robustness against noise, and effectiveness in 

separating stimulus inputs across multiple experimental 

sessions. The MATLAB implementation of the cvxEDA 

algorithm is available online, with parameters set to α = 

0.008, τ1 = 0.7s, τ2 = 2s, and γ = 0.01 in this study [13]. 

 

3. Feature extraction: 

 

In this study, a comprehensive set of 52 time-domain 

features [14] was extracted from the phasic component of 

EDA signals to capture the underlying emotional states of 

drivers. These features were selected to cover diverse signal 

characteristics, broadly grouped into categories such as 

statistical features (e.g., mean, standard deviation, skewness, 

kurtosis), signal power descriptors (e.g., energy, RMS, 

power), morphological descriptors (e.g., waveform length, 

average amplitude change, arc length), derivative-based 

measures (e.g., mean and standard deviation of first- and 

second-order differences), complexity measures (e.g., 

mobility, complexity, chaos, hazard), and entropy measures 

(e.g., Shannon entropy). This wide feature space ensures that 

subtle temporal and structural variations in the EDA signal 

relevant to emotional states are captured. The list of features 

are shown in Table II. 

TABLE II.  CATEGORIZATION OF TIME-DOMAIN FEATURES 

Category Selected Features 

Statistical 

Features 

Mean, Standard Deviation, Variance, Median, 

Skewness, Kurtosis, Coefficient of Variation (CV) 

Power/Amplitude 
Measures 

Energy, Power, RMS, Absolute Mean (MAD), 
Simple Square Integral (SSI), Log Detector (LOG), 

Mean Absolute Value (MAV) 

Morphological 

Features 

Average Amplitude Change (AAC), Difference 

Absolute Standard Deviation Value (DASDV), Arc 
Length (ARC), Perimeter-Area Ratio (APR), Energy-

Perimeter Ratio (EPR), Dynamic Range (DRSC) 

Derivative-based 
Features 

Mean of First Derivative, Mean of Negative First 
Derivative, Std. of First Derivative (FDSC), Mean 

and Std. of Second Derivatives (SMSC, SDSC) 

Peak/Extrema 
Features 

Minimum (MIN_SC), Maximum (MAX_SC), Crest 
Factor, Margin Factor, Impulse Factor 

Complexity 

Measures 

Activity, Mobility, Complexity, Chaos, Hazard 

Entropy Measure Shannon Entropy (SE) 

 

 

 

Fig.1 Block diagram of methodology used in the study 
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4. Feature selection: 

Feature selection is vital in improving model performance 

by identifying the most relevant features while minimizing 

redundancy. In this study, the top 10 features are selected 

from the 52 extracted features using the technique Random 

Forest Recursive Feature Elimination (RFRFE) [15]. RFRFE 

leverages the feature importance scores from a Random 

Forest model to iteratively remove the least significant 

features. Applying RFRFE ensures that only the most 

informative features are retained, reducing dimensionality 

and computational complexity while enhancing classification 

accuracy. This refined feature set allows the machine learning 

model to focus on the most critical aspects of the EDA signal, 

improving both interpretability and reliability in driver 

behavior classification [15]. 

5. Classification: 

The final step in our approach involves classifying driver 

behavior using machine learning models, including Support 

Vector Machine (SVM), Random Forest (RF), Linear 

Discriminant Analysis (LDA), and Multi-Layer Perceptron 

(MLP). These models are trained on the top 10 selected 

features from the EDA signal to categorize driving behaviors 

into five classes: Smooth Driving, Acceleration, 

Deceleration, Turning, and Lane Changing. SVM effectively 

handles high-dimensional data and finds optimal decision 

boundaries, while RF enhances robustness by combining 

multiple decision trees. LDA improves classification by 

maximizing class separability MLP, a neural network-based 

model, captures complex patterns within the data. We 

employed a One-vs-One (OvO) approach to enhance 

classification performance, which involves building separate 

models for each pair of behavior classes. This method breaks 

down the multi-class problem into simpler binary 

classification tasks, enabling the models to better learn the 

differences between specific behavior types. As a result, the 

OvO strategy improves precision and reduces confusion 

between similar classes, making it a valuable choice for 

multi-class driver behavior analysis. 

III. RESULTS AND DISCUSSION 

The EDA signals observed during various driving 

behaviors shows distinct patterns as illustrated in Fig.2. 

During smooth driving, a linear decrease in EDA is observed, 

likely reflecting a steady state of relaxation or lower stress, as 

the driver maintains a constant and controlled driving pace. 

In deceleration, a linear increase in EDA is seen initially, 

followed by a slower rise, which can be attributed to the 

driver's heightened physiological response as they anticipate 

a reduction in speed, followed by a period of gradual 

relaxation as the deceleration completes. Acceleration 

presents a rise in EDA up to a certain point, followed by a 

reduction, which may indicate an initial increase in stress or 

arousal as the driver accelerates, followed by a return to 

baseline once the task stabilizes. During turning, the EDA 

shows an exponential increase followed by a constant value, 

suggesting a rapid physiological response to the more 

demanding task of turning, followed by stabilization once the 

turn is completed. Finally, during lane changing, the EDA 

exhibits a bell-shaped curve, reflecting an initial increase in 

stress or alertness during the maneuver, followed by a 

decrease as the driver completes the lane change and regains 

a steady state. These EDA signal patterns are consistent with  

 
(a) 

 
(b) 
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Fig. 2 Representative EDA signals during (a) Smooth driving, (b) 

Deceleration, (c)Acceleration, (d)Turning, and (e) Lane change 

TABLE III.   TOP 10 FEATURES FROM RFRFE 

RFE 

Rank 

Feature RF 

Importance 

Feature Name 

1 F6 0.03 Kurtosis 

2 F40 0.03 SMSC (Spectral Moments of 

Second Order) 

3 F7 0.03 Skewness 

4 F12 0.03 CrestFactor 

5 F47 0.02 Chaos 

6 F46 0.02 Complexity 

7 F9 0.02 CoeffVar (Coefficient of 

Variation) 

8 F48 0.02 Hazard 

9 F39 0.02 FDSC (Frequency Domain 

Signal Complexity) 

10 F30 0.01 MAVSLP2 (Mean Absolute 
Value Slope 2) 

the expected physiological responses to these driving tasks, 
supporting the idea that changes in EDA are linked to the 
driver's cognitive and emotional state during different phases 
of driving. 

The top 10 features selected through RFE with RF 
importance are listed in Table III. It consist of a mix of 
statistical and signal complexity measures that are crucial for 
analyzing the underlying dynamics of the system. These 
features include Kurtosis, SMSC, Skewness, and CrestFactor, 
all with RF importance values of 0.03, which capture key 
statistical properties of the signal such as its distribution shape 
and peak characteristics. Other important features include 
Chaos, Complexity, Coefficient of Variation, Hazard, FDSC 
(Frequency Domain Signal Complexity), and MAVSLP2 
(Mean Absolute Value Slope 2), with importance values 
ranging from 0.02 to 0.01. These features provide critical 
insights into signal variability, frequency domain 
characteristics, and non-linear dynamics, highlighting their 
relevance for improving model performance and 
understanding complex patterns in the data. 



TABLE IV.    CLASSIFICATION METRICS OF SVM 

Class 

Pair 

Accuracy Precisio

n 

Recall F1 Score AUC 

1-2 0.594758 0.593496 0.996587 0.743949 0.46983 

1-3 0.617476 0.621094 0.990654 0.763505 0.576934 

1-4 0.677205 0.677205 1 0.80754 0.505661 

1-5 0.532688 0.545455 0.485714 0.513854 0.540183 

2-3 0.557025 0.567867 0.646688 0.60472 0.583366 

2-4 0.554269 0.554585 0.994778 0.71215 0.461683 

2-5 0.596421 0.5 0.108374 0.178138 0.540369 

3-4 0.55493 0.555887 0.953964 0.702448 0.568312 

3-5 0.578544 0.423077 0.050926 0.090909 0.545631 

4-5 0.547739 0.524096 0.679688 0.591837 0.569977 

 

The Table IV presents the classification metrics of the 
SVM classifier for different class pairs, showing its 
performance across various evaluation metrics including 
accuracy, precision, recall, F1 score, and AUC. The highest 
F1 score (0.80754), accuracy (0.677205), precision 
(0.677205), and recall (1) are observed between class 1 and 
class 4, indicating a strong classification performance for this 
pair. In contrast, the recall for class 1 and class 5 is notably 
lower (0.485714), with the F1 score also being reduced 
(0.513854), reflecting a weaker performance. The area under 
the curve (AUC) is highest between class 2 and class 3 
(0.576934), suggesting better overall model discrimination 
between these classes. Overall, the SVM classifier 
outperforms the other machine learning models in terms of F1 
score, accuracy, precision, and recall, with class 1 and class 4 
demonstrating the most reliable classification results.

 

Fig.3 ROC Curve 

The area under the curve (AUC) for Class 2 vs. Class 3 is 

around 0.58, representing the highest separability observed 

among all class combinations is depicted in Fig.3. 

IV. CONCLUSION 

This study proposes a robust and efficient framework for 

classifying driver behavior using Electrodermal Activity 

(EDA) signals. By decomposing the signals and focusing on 

the phasic component, 52 statistical, temporal, and 

complexity-based features were extracted. Random Forest 

Recursive Feature Elimination (RFRFE) was applied to select 

the top 10 most significant features, which were then used to 

train machine learning models including SVM, RF, LDA, and 

MLP. Among these, SVM outperformed others in accurately 

classifying five driving behaviors: Smooth Driving, 

Acceleration, Deceleration, Turning, and Lane Changing. 

One-vs-One analysis further highlighted the strong 

classification performance between Smooth Driving and 

Turning. The results demonstrate that the proposed approach 

is both accurate and computationally efficient, making it well-

suited for real-time driver behavior and stress monitoring 

applications. This study is limited by a small, single-

institution sample and pairwise metrics; future work will 

expand participants and include full multi-class evaluations. 
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