

EFFICIENTLY ESTIMATING DATA EFFICIENCY FOR LANGUAGE MODEL FINE-TUNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 While large language models (LLMs) demonstrate reasonable zero-shot capability
 012 across many downstream tasks, fine-tuning is a common practice to improve their
 013 performance. However, a task’s *data efficiency* — i.e., the number of fine-tuning
 014 examples needed to achieve a desired level of performance — is often unknown,
 015 resulting in costly cycles of incremental annotation and retraining. Indeed, we
 016 demonstrate across a curated set of 30 specialized tasks that performant LLMs
 017 may struggle zero-shot but can attain stronger performance after fine-tuning. This
 018 motivates the need for methods to predict a task’s data efficiency *without* requir-
 019 ing incremental annotation. After introducing a concrete metric that quantifies
 020 a task’s data efficiency, we propose using the *gradient cosine similarity of low-*
 021 *confidence examples* as a way to predict data efficiency based on a small number
 022 of labeled samples. We validate our approach on the collected set of tasks with
 023 varying data efficiencies, attaining 8.6% error in overall data efficiency prediction
 024 and eliminating hundreds of unnecessary annotations. Our experiment results and
 025 implementation code are available in the supplementary material.

1 INTRODUCTION

029 Large language models (LLMs) are increasingly treated as generalist systems that can competently
 030 perform any text-based task zero-shot, i.e., without requiring any task-specific training data (Brown
 031 et al., 2020). However, the zero-shot performance of an LLM often lags behind human-level (or
 032 otherwise acceptable) performance (Li et al. (2023); Liu et al. (2022b); Ouyang et al. (2022); Sanh
 033 et al. (2022); Singhal et al. (2023); Wei et al. (2022)). In such cases, fine-tuning on task-specific data
 034 can provide a simple way to improve an LLM’s performance by reinforcing the specified format of
 035 the model response (Ouyang et al. (2022); Sanh et al. (2022); Wei et al. (2022)) or specializing the
 036 LLM to the task (Li et al. (2023); Liu et al. (2022b); Singhal et al. (2023)). Indeed, fine-tuning a
 037 pre-trained LLM can require orders of magnitude less task-specific data than training on the task
 038 from scratch. Zhou et al. (2023) show that an LLM can easily learn to output high-quality responses
 039 with only hundreds or thousands of examples, which Aghajanyan et al. (2020) suggests is enabled
 040 by the pretraining phase compressing large-scale knowledge and reducing the downstream task’s
 041 intrinsic dimensionality.

042 A key consideration when fine-tuning LLMs is the task’s *data efficiency*, i.e., the number of task-
 043 specific labeled data points required to reach a desired performance level. Unfortunately, the data
 044 efficiency of a given task is generally not clear *a priori* — as we show in Section 2, some tasks require
 045 only a few dozens of samples to reach or exceed human-level performance while others may require
 046 thousands. A straightforward way of determining a task’s data efficiency is to collect a large pool of
 047 labeled data and fine-tune the model at various data budgets, evaluating performance at each budget
 048 and determining the amount of data required to reach desired performance. However, this approach
 049 requires annotating a large training dataset and fine-tuning many models, obviating the purpose of
 050 estimating the data efficiency in the first place. Fine-tuning scaling laws can be fit to explore the
 051 relationship between the model loss and fine-tuning data size (Zhang et al., 2024), but fitting these
 052 scaling laws involves specific parameters unknown before fine-tuning on the downstream task. We
 053 argue that a useful method for predicting fine-tuning data efficiency should be able to do so *efficiently*
 — i.e., based on a small number of task-specific labeled examples and requiring a small amount of
 computation.

Figure 1: Overview of our approach to predict task specific data efficiency from a few labeled data samples. We use CoS-Low to predict task data efficiency measured from 30 downstream tasks.

In this work, we propose a method that meets our desiderata for estimating data efficiency (Fig. 1). Specifically, we first introduce a precise definition of data efficiency based on the area under the data budget/task performance curve. We then explore different cheaply computable notions of task difficulty and ultimately find that the per-sample gradient cosine similarity of low-confidence examples (CoS-Low) is highly correlated with our notion of data efficiency, even when computed over a small number of labeled examples. We then formulate a procedure for estimating data efficiency that maps CoS-Low to a parametrized approximation of the data efficiency curve. We validate the effectiveness of this procedure on a curated set of 30 realistic specialized tasks (spanning applications in law, medicine, and well-known benchmarks) with varying levels of data efficiency. Our approach only requires collecting a small number of labeled examples and does not require fine-tuning or tracking training dynamics, making it a viable option for practitioners in resource-constrained settings that need to determine the number of examples to annotate to reach desired performance on a downstream task.

2 ESTABLISHING THE VARIABILITY OF DATA EFFICIENCY

A core assumption in our work is that the data efficiency — i.e., the relationship between the number of examples used for fine-tuning and performance — varies significantly from task to task. To support this assumption, we first curate a diverse set of 30 tasks from multiple domains, including science, medicine, law, finance, sports, customer inquiries, and natural language understanding. These tasks are sourced from popular datasets from HuggingFace as well as well-known benchmarks such as SuperGLUE (Wang et al., 2020), GLUE (Wang et al., 2019), and BIG-Bench (Srivastava et al., 2023). We mainly consider multi-class text classification or question-answering (QA) to allow consistent use of the exact string match accuracy to measure performance. We limit our selection to tasks with a known estimate of human-level performance and consider this to be the maximum attainable performance for each task. To address cases where human-level performance underestimates this ceiling, we use the higher of the human-level and the maximum performance observed within 5000 fine-tuning data budget. Additionally, we mainly consider tasks with at least 5000 available labeled examples so that we can measure performance up to a relatively high data budget. We report on tasks with fewer than 5000 labeled examples if the maximum performance is reached after fine-tuning on the available data points. The set of prompts we used for fine-tuning and evaluation¹ and further details on our chosen tasks are available in Section A.

We fine-tune the Llama 3.1 8B Instruct model (Grattafiori et al., 2024) on our set of downstream tasks to evaluate performance after fine-tuning on varying data sizes. Measuring the performance on every possible fine-tuning data size between 1 and 5000 would require 5000 fine-tuning runs for each task and therefore be prohibitively expensive. Instead, we fine-tune the model with 50, 100, 200, 500, 1000, 2500, and 5000 randomly selected data points. We use full model fine-tuning instead of parameter-efficient fine-tuning (PEFT) techniques such as LoRA (Hu et al., 2021), as PEFT methods can exhibit a notable performance gap compared to full model fine-tuning (Biderman et al. (2024); Zhang et al. (2024)) and greater sensitivity to the choice of hyperparameters. Our choice of hyperparameter and training settings are listed in Section C

¹redacted

Figure 2: Comparing data budget (from 0 to 5000 examples on log-scale, x-axis) and task performance (from zero-shot to human-level performance, y-axis) across the 30 downstream tasks. The plots are sorted by speed of convergence to the maximum performance level as the fine-tuning data size increases.

Our empirical results, shown in Fig. 2, demonstrate that the scaling relationship between fine-tuning data size and performance is highly task-dependent. Many tasks reach human-expert level performance with fewer than 5000 fine-tuning examples. Some tasks (top rows of figure Fig. 2) show little to no improvement in the lower data regime but display a substantial boost in performance after a certain inflection point. The others (bottom row of Fig. 2) show an almost immediate increase in accuracy with as few as 50 fine-tuning examples. Later in Section 3, we will define a metric that captures this variability in data efficiency.

Interestingly, zero-shot accuracy of a task does not necessarily correlate with task data efficiency; tasks with similarly low or high zero-shot accuracies can have widely different task data efficiencies. We discuss this further in Section A as we report the task-specific raw zero-shot and maximum accuracy.

3 MEASURING DATA EFFICIENCY

As discussed above, we informally define the “data efficiency” of a given task as the extent to which we expect performance to improve when annotating and training on additional training examples. In other words, the more data efficient a task is, the fewer data points are required for the model to “solve” it. To better quantify this notion, we require a precise measurement that reflects our definition.

To formulate a reliable metric for data efficiency, we make a series of assumptions inspired by the results of Section 2. First, we assume that, across all tasks, there is limited benefit in annotating additional examples above some maximum data budget. In Fig. 2, performance for many tasks has reached close to human-level performance or otherwise plateaued by 5000 examples, so we assume that for this choice of base model there is limited room for improvement after annotating 5000 examples. This assumption will prove valuable later when we aim to map the prediction of our data efficiency metric back to a concrete estimate of the number of training examples required to reach a certain level of performance. Second, we assume that task performance improves monotonically as the data budget increases. We consider this a safe assumption because, while it is nearly always true in practice, a practitioner would just choose to use a smaller training dataset in cases where training on *more* data results in *worse* performance. In the rare cases where this assumption did not hold in our experiments, we consequently replace the worse performance at the higher budget with the performance at the next-lowest budget, allowing us to capture the gains from additional data and the model’s saturation point.

3.1 DATA EFFICIENCY DEFINITION

Having motivated our notion of data efficiency and stated our assumptions, we now introduce our proposed metric for concretely measuring data efficiency. Given a fine-tuning data budget $n \in [0, N]$

162 where $N = 5000$ is the maximum available dataset size, task k , and performance function for task
 163 k $f_k(n) : n \rightarrow \text{acc}_k$ where $\text{acc}_k \in [0, 1]$ is a normalized accuracy that maps the raw zero-shot and
 164 maximum attainable (human-level) performance to 0 and 1 respectively, we define area under the
 165 curve (AUC) of $f_k(n)$ as the data efficiency measure:

$$166 \quad \text{AUC}_k = \frac{1}{N} \sum_{n=0}^N f_k(n)$$

169 where $\text{AUC}_k \in [0, 1]$. Mathematically, our notion of data efficiency measures the average performance
 170 as a function of the data budget. If AUC_k is close to 1, this implies that performance saturates
 171 early with a small number of labeled examples; if closer to zero, this means little to no improvement
 172 is attainable from annotating additional examples.
 173

174 3.2 PREDICTING DATA EFFICIENCY

175 Knowing the ground-truth performance curve $f_k(n)$ and its AUC_k for a given task k would inform
 176 the optimal fine-tuning data, but these measurements can only be made by fine-tuning the model at
 177 varying data budgets, necessitating access to a full fine-tuning dataset as well as sufficient computational
 178 resources. However, an accurate estimate of the data efficiency curve could provide answers
 179 to valuable questions, such as “how many data points should I collect in order to achieve a desired
 180 level of performance?” We therefore turn to devising a method for reliably estimate the data effi-
 181 ciency curve. Notably, such a method is only valuable insofar as it does not require many labeled
 182 examples to perform estimation.
 183

184 As far as we know, predicting the data efficiency of a task using cheap-to-compute metrics has not
 185 been explored before. We surveyed existing literature for metrics that can capture different aspect
 186 of data efficiency. At a high level, we hypothesize learning difficulty of a task, the *task difficulty*, to
 187 be related to its data efficiency, which quantifies how quickly the task is learned given more data.
 188 Similar notions of task difficulty have been extensively studied in past work in the context of data
 189 taxonomy analysis (Agarwal et al., 2022; Jiang et al., 2021; Siddiqui et al., 2022; Swayamdipta
 190 et al., 2020), difficult or mislabeled data identification (Agarwal et al., 2022; Jiang et al., 2021; Li
 191 et al., 2024; Pleiss et al., 2020), data selection for efficient training (Mindermann et al., 2022; Paul
 192 et al., 2023), model memorization and forgetting (Feldman & Zhang, 2020; Hooker et al., 2021)
 193 to name a few, and typically involve a measurement made on the model loss (Mindermann et al.,
 194 2022), predictions (Swayamdipta et al., 2020), or gradients (Agarwal et al., 2022; Paul et al., 2023).
 195 More concretely, we hypothesize that these measurements might be correlated to our notion of data
 196 efficiency. Our approach to predicting data efficiency, therefore, amounts to using task difficulty
 197 measurements to predict the task data efficiency AUC'_k using a simple linear regression (Section 3.3).

198 **Baselines predictors of task difficulty** As baseline metrics of task difficulty, we consider the *gradient*
 199 *norm* and the *model’s confidence*, as they capture different notions of the difficulty of individual
 200 data points. Unlike some of the past work tracking the variability of these metrics over the course
 201 of training (Agarwal et al., 2022; Paul et al., 2023; Swayamdipta et al., 2020), we simply compute
 202 them at inference time with a single step gradient descent on a handful of randomly selected data
 203 points. We discuss how each of the baseline predictors are computed in detail in Section B.

204 The *gradient norm* of the model’s weights with respect to the model loss relates to the magnitude
 205 of change in parameters required to shift the model’s prediction to the target. A larger per-example
 206 gradient norm indicates that a larger weight adjustment needs to be made to minimize the model
 207 error on the given example. Intuitively, learning a task with high gradient norm examples requires
 208 a larger change in the pre-trained model and therefore may require more data. Specifically, we
 209 compute per-sample L_2 gradient norm of weights with respect to the cross-entropy loss (Eq. (3))
 210 and aggregate to the task-level (Eq. (4)).

211 The *model confidence* quantifies the degree of model certainty in its prediction. In the context of pre-
 212 training data detection, Shi et al. (2024) demonstrates that high model-assigned probabilities on an
 213 input sequence can be used to detect whether the input was seen during pretraining. Extending this
 214 idea, we investigate whether high model-assigned probabilities on a model’s own prediction serve
 215 as a signal of familiarity with the task, possibly indicating higher data efficiency. Alternatively, high
 216 model confidence across task examples may indicate that the the typical examples have already been
 217 learned. Then fitting on the remaining long-tailed instances must rely on memorization (Feldman &

216 [Zhang, 2020](#)) — which makes learning data inefficient ([Achille et al., 2020](#); [Jiang et al., 2021](#)). We
 217 compute the model confidence by averaging the model probabilities assigned to the tokens in the
 218 predicted target, consisting of the most confidently predicted tokens at each timestep (Eq. (5)). We
 219 then aggregate them to the task-level using median (Eq. (6)).

220 **Our predictor: Gradient cosine similarity** We ultimately find that these preexisting metrics do not
 221 serve as sufficiently reliable predictors of data efficiency in our experiments (Section 5). To address
 222 this shortcoming, we take inspiration from the multitask learning literature ([Liu et al., 2024](#); [Sener & Koltun, 2019](#); [Shi et al., 2023](#); [Yu et al., 2020](#)) that studies the *conflicting gradient* problem, where
 223 data points from multiple tasks point in different directions, resulting in suboptimal multitask models.
 224 To capture gradient conflict, it is typical to measure the cosine similarity between per-sample
 225 gradients of the model’s weights with respect to the loss for different examples. Intuitively, the
 226 gradient cosine similarity measures the conflict in the learning signal from different task examples.
 227 Unlike in the multitask learning methods that aim to minimize gradient conflict, we measure the
 228 degree of conflict *within* a single task to estimate the task’s learnability. Specifically, we compute
 229 the median batch gradient cosine similarities of task examples (Eq. (1)):

$$\text{cos_sim}_k = \text{median}\{\cos(g_i, g_j) \mid (x_i, y_i), (x_j, y_j) \in B, i \neq j\} \quad (1)$$

231 where (x_i, y_i) and (x_j, y_j) are a pair of task data points in B , g_i, g_j are the corresponding gradient of
 232 the weights with respect to the loss, and $\cos(g_i, g_j)$ measures the cosine similarity of two gradient
 233 vectors $\frac{g_i \cdot g_j}{\|g_i\| \|g_j\|}$. By definition, this metric ignores the magnitude of the gradient updates. In our
 234 experiments, we find that cos_sim_k of the low-confidence segment of task examples (Eq. (2)) is
 235 the most predictive of our data efficiency metric:

$$\text{CoS-Low} = \text{median}\{\cos(g_i, g_j) \mid (x_i, y_i), (x_j, y_j) \in B, i \neq j, B \subseteq U_{0.1}\} \quad (2)$$

236 Specifically, the batch of examples B is sampled from $U_{0.1}$, the top 10% of the low-confidence
 237 task examples. In the active learning literature, some works find that examples with high model
 238 uncertainty are the most informative for improving model performance ([Dredze & Crammer \(2008\)](#);
 239 [Hübötter et al. \(2025\)](#)). The importance of the low-confidence examples in improving model
 240 performance may help explain why our method — which captures the alignment of the learning
 241 signals from low-confidence examples — is most effective at predicting data efficiency, defined as
 242 how quickly a model improves with additional data. However, further theoretical analysis of our
 243 method’s effectiveness is left for future work.

244 3.3 MAPPING TASK DIFFICULTY TO DATA EFFICIENCY

245 Recall that our overarching goal is to find a cheaply computable metric that correlates with our
 246 notion of data efficiency (Section 3.1). Given such a correlation, we might hope to be able to
 247 predict data efficiency and, consequently, the data budget required to achieve a certain level of
 248 performance. Concretely, we use the predicted task data efficiency to estimate the corresponding
 249 performance curve $\hat{f}_k(n)$, which informs the number of fine-tuning data size required to reach a
 250 target performance. We include a high-level algorithm for efficiently estimating fine-tuning data
 251 size to reach a target performance in Section K.

252 To map one of the aforementioned task difficulty metrics to a task’s data efficiency, we fit a simple
 253 linear regression to obtain the predicted AUC, denoted by AUC' , as $c * d + I$, where d is one of
 254 grad_norm_k , conf_avg_k , cos_sim_k , and CoS-Low , and $\{c, I\}$ are regression coefficients. To
 255 test each of the metrics on the 30 downstream tasks introduced in Section 2, we use a hold-one-out
 256 setting in which all tasks except the held-out task k are used in training to model the regressor
 257 $\text{AUC}' = c * d + I$, and AUC'_k is predicted using the fitted line.

258 We map the estimated task data efficiency, AUC'_k , to a specific performance curve $\hat{f}_k(n)$ such that
 259 its area under the curve (with both its axes normalized to 0 and 1) is precisely AUC'_k , allowing us
 260 to concretely predict the fine-tuning data size required for a performance level. However, there are
 261 multiple ways to model such a curve defined between 0 and 1 on both axes. Following the stated
 262 assumptions on the performance curve $f_k(n)$ (that it is a monotonically increasing curve defined
 263 between 0 and 1 on both axes, reaching the maximum performance within the maximum data budget

270 of 5000), we consider different parametric functions whose area under the curve matches AUC'_k .
 271 Among the curves satisfying the assumption, we use the the following power function to model
 272 $f_k(n)$:

273

$$274 \hat{f}_k(n) = n^p, \text{ where } p = \frac{1 - AUC'_k}{AUC'_k}$$

275

276 See Section D for details on different parametric curves considered to model a task specific perfor-
 277 mance curve $\hat{f}_k(n)$ and their fit against the actual curve $f_k(n)$.

279 4 EXPERIMENTAL SETUP

280

281 **Metric calculation details.** To justify the use of task difficulty proxies from Section 3 to pre-
 282 dict task data efficiency, each metric should incur minimal annotation. Therefore, we require that
 283 grad_norm_k , cos_sim_k and CoS-Low only use 32 annotated samples; deriving conf_avg_k
 284 is completely annotation-free. The per-sample grad_norm_k and conf_avg_k are aggregated to
 285 the task-level using median. Similarly, every pair-wise gradient cosine similarity for computing
 286 cos_sim_k and CoS-Low is aggregated using median. See Table 8 for detailed computation over-
 287 head for each metric calculation. Throughout our experiments, AUC_k are derived from the data
 288 efficiency curve with the data size in log-scale of base 2. grad_norm_k , conf_avg_k , cos_sim_k ,
 289 and CoS-Low are each used to fit the linear regression line to predict the task AUC for all 30
 290 downstream tasks in a hold-one-out setting (Section 3.3). We repeat the metric calculation on 32 ex-
 291 amples end-to-end 10 times to measure the variance in AUC prediction. In addition, to validate the
 292 robustness of our results across model families and sizes, we replicate our experiments on Mistral
 293 7B Instruct v0.3 (Jiang et al., 2023) and Qwen 2.5 14B Instruct (Bai et al., 2023) (Section 6).

294 As CoS-Low requires identifying low confidence examples, we run forward passes on at most 2500
 295 *unlabeled* examples to identify the top 10% lowest confidence examples — i.e., examples with the
 296 lowest conf_avg — and randomly sample 32 from the segment. In practice, this extra compute cost
 297 can be lower, as CoS-Low is robust to noise in the low confidence example selection (Section 6).
 298 We run ablation studies calculating grad_norm_k and conf_avg_k on low confidence examples to
 299 fix the sample group as CoS-Low but do not find them to be very effective Section F.2.

300 **Using LoRA for gradient based metrics.** For calculating metrics requiring model gradients,
 301 grad_norm_k , cos_sim_k , and CoS-Low, we use rank-64 LoRA adaptors to store the gradients,
 302 which is both computation and memory efficient. LoRA gradients hold sufficient information needed
 303 to estimate task data efficiency compared to using full model gradients (Section F.3) and avoids the
 304 high cost for storing per-sample gradients in memory, which for Llama 3.1 8B Instruct model is
 305 $\approx \frac{32}{16} * 8 * 32 \text{ examples} \approx 512\text{GB}$, for a model loaded in half precision.

306 **Baselines.** We use `base_max` as an additional baseline that relies on the simple heuristic that
 307 there will be no performance increase before fine-tuning on the maximum budget (i.e., 5000 data
 308 points). This reflects an implicit assumption when the full annotation budget is used upfront before
 309 fine-tuning. As `base_max` assumes static data efficiency curves across tasks, it serves as an upper
 310 bound of data efficiency prediction error.

322 Figure 3: CoS-Low (right) shows the strongest relationship with task data efficiency among other
 323 task difficulty metrics. Each metric is compared with the ground-truth task data efficiency (y-axis)
 using Spearman’s rank correlation.

324

5 EXPERIMENTAL RESULTS

325
 326 Across our experiments, CoS-Low shows the strongest performance in efficiently estimating data
 327 efficiency and reliably predicts the required fine-tuning data budget across the 30 downstream tasks.
 328 To evaluate performance, we report 1) the correlation between each metric and the task data effi-
 329 ciency, 2) absolute mean error of AUC prediction using each metric, and 3) analysis using CoS-Low
 330 to predict the fine-tuning data size prediction across desired performance levels.
 331

332

5.1 AUC PREDICTION ACCURACY

333
 334 CoS-Low displays the strongest Spearman
 335 correlation (0.675) with task data efficiency
 336 among all metrics considered (Fig. 3). While
 337 past studies track model confidence or gradi-
 338 ent magnitude throughout training to surface
 339 challenging examples or estimate model’s
 340 generalization capability (Agarwal et al.,
 341 2022; Jiang et al., 2021; Li et al., 2024;
 342 Pleiss et al., 2020), our results show that
 343 grad_norm_k and conf_avg_k computed at
 344 inference time do not display strong rela-
 345 tionships with data efficiency. Consequently,
 346 predicting the task data efficiency using lin-
 347 ear regression yields a statistically signifi-
 348 cant result only for CoS-Low (p -value <
 349 0.0002) and achieves the lowest prediction
 350 error (Table 1).
 351

352 While CoS-Low provides a reliable signal for data efficiency, the relationship is much weaker for
 353 cos_sim_k , suggesting that gradient similarity provides a stronger signal among low confidence
 354 examples than from random examples. However, grad_norm_k or conf_avg_k computed on the
 355 same low confidence segment are not predictive of task data efficiency, which we further discuss in
 356 Section F.2. Consequently, we can conclude that CoS-Low ’s performance stems from the fact that
 357 the cosine similarity of gradients is an especially useful signal when computed over low-confidence
 358 examples.
 359

360

5.2 FINE-TUNING DATA SIZE PREDICTION ACCURACY

361 To translate the observed performance of CoS-Low into tangible cost savings, we run a cost anal-
 362 ysis comparing our task-specific data efficiency prediction method and alternative task-agnostic ap-
 363 proaches for finding the optimal fine-tuning data size for the desired performance level. In practice,
 364 one can incrementally annotate and repeatedly fine-tune the model until the target performance is
 365 reached (“incremental annotation”), or annotate the full dataset (up to 5000 examples) and run a
 366 single fine-tuning (“maximum annotation”). CoS-Low serves as an in-between approach, where
 367 we first fine-tune with the predicted data size, then only train further with incremental annotation
 368 approach if the desired performance has not been reached.
 369

370 We model the fine-tuning cost C as a fixed amount per training run, as the cost of repeated training
 371 include access to training resources and human oversight, which does not scale linearly with the
 372 dataset size. A denotes the per-example cost of annotation. We assume the number of fine-tuning
 373 examples required to reach near-human-level performance is one of 50, 100, 200, 500, 1000, 2500,
 374 and 5000. The ground truth data size required to reach the desired performance levels are empirically
 375 measured from the 30 downstream tasks.
 376

377 As shown in Table 2, CoS-Low ’s approach balance the trade-off between the “maximum annota-
 378 tion” and “incremental annotation” approaches, achieving relatively low excess annotation and few
 379 extra training runs compared to either extreme. With the cost of fine-tuning as a function of anno-
 380 tation and compute, practitioners can assess the given annotation and compute cost ratio to adopt a
 381 more desirable option. We include further analysis on the fine-tuning data size prediction error of
 382 our method in Section E.
 383

Methods	Overall Abs. Mean Error
<code>base_max</code>	0.391
grad_norm_k	0.130 ± 0.036
conf_avg_k	0.133 ± 0.036
cos_sim_k	0.124 ± 0.036
CoS-Low	0.086 ± 0.030

Table 1: Mean absolute error in the AUC prediction using each method. CoS-Low (ours) has the lowest overall prediction error (in **bold**) when tested on our downstream tasks for which we measured the actual AUCs.

Desired Perf.	Incremental Annotation		Maximum Annotation		Ours	
	Extra Annot.	Extra Training	Extra Annot.	Extra Training	Extra Annot.	Extra Training
70%	0	3C	3860A	0	219A	1C
80%	0	4C	3209A	0	748A	1C
90%	0	5C	2602A	0	701A	1C
95%	0	5C	1699A	0	1115A	1C

Table 2: Incremental annotation leads to 5 additional fine-tuning runs on average to reach 95% of the human-level performance. Maximum annotation wastes a lot of annotations across all desired performance levels. Even when CoS-Low approach underestimates the data size required, necessitating incremental annotation, it only requires one extra fine-tuning run on average and much lower wasted annotation cost.

Coefficient	Llama 3.1 8B-Instruct	Mistral 7B-Instruct v.03	Qwen 2.5 14B-Instruct
CoS-Low	0.545 ± 0.005	0.797 ± 0.012	0.526 ± 0.025
Intercept	0.310 ± 0.002	0.357 ± 0.002	0.305 ± 0.003

Table 3: Regression coefficient to map CoS-Low to data efficiency varies across model families.

6 ABLATION STUDIES AND FURTHER ANALYSIS

Does CoS-Low display strong correlation with data efficiency across models families of varying sizes? To address this question, we repeat our experiments on Mistral 7B Instruct v0.3 and Qwen 2.5 14B Instruct. Training setup and task data efficiency for these model families are discussed in Section G. CoS-Low remains the strongest metric for data efficiency prediction across model families (Fig. 12). A key step in our approach is the mapping from CoS-Low to data efficiency using the regression weights, and inconsistent regression weights across mode families poses a potential challenge (Table 3). However, we note that the regression weights only need to be computed once for each model and can be reused indefinitely for downstream tasks. Alternatively, the weights can be shared collaboratively within a community to support efficient training.

Can CoS-Low predict data efficiencies of out-of-distribution tasks? To test the generalizability of CoS-Low beyond the original 30 downstream tasks (primarily classification and multiple-choice QA), we extend our experiments to 10 out-of-distribution (OOD) tasks not included in the original set. The OOD tasks comprise two multi-task dataset, four generation tasks, and four domain-specific downstream tasks (see Section H for details). Specifically, we first validate whether CoS-Low continues to show strong correlation with task data efficiency among the OOD tasks. We then use their CoS-Low and the regression coefficients learned from the original 30 downstream tasks to predict the OOD tasks’ data efficiencies.

As shown in Fig. 4, CoS-Low reliably predicts how data efficiently each task is learned, with high Spearman’s rank correlation of 0.759 (Fig. 4a) and approximately linear trend between CoS-Low and task AUC (Fig. 4b). Moreover, once learned, the regression coefficients are reusable to predict data efficiency of unseen tasks. However, the mismatch between accuracy-based performance curves in the original 30 tasks and F1-based curves in generation tasks may introduce errors in the prediction (e.g. the outlier among generation tasks in Fig. 4b), requiring further study.

When is CoS-Low assumption not met? While empirically observed to be true among the tasks considered, our assumptions that performance reaches a known human-level performance within the given maximum budget may not always be true. For instance, MMLU (multitask accuracy across 57 subjects, spanning various topics from algebraic math to philosophy) (Hendrycks et al., 2021) and MedMCQA (more complex dataset, containing medical entrance exam covering 21 medical subjects and 2,400 healthcare topics) (Pal et al., 2022) are such tasks for which performance remains around < 75% of human-level with 10,000 training examples.

For such tasks (where the data efficiency curves of these tasks do not follow the proposed n^p curve) we observe that the error in fine-tuning data size prediction grows larger. This failure mode of

Task	Corr. with AUC	Abs. mean err
OOD tasks	0.727 ± 0.02	0.109 ± 0.05
OOD + Org. tasks	0.712 ± 0.04	0.086 ± 0.03
Org. tasks	0.675 ± 0.05	0.086 ± 0.03

(a) CoS-Low 's correlation with task data efficiency and its task AUC prediction error. CoS-Low consistently shows high Spearman's rank correlation with task data efficiency, and the learned coefficients can be reused to predict task data efficiencies.

(b) CoS-Low and task AUC across 30 original downstream tasks and 10 OOD tasks

Figure 4: Validating CoS-Low 's generalizability in 10 OOD-tasks, consisting of four multitask datasets (orange, cross), four generation tasks (red, triangle), and four domain-specific tasks (green, star).

CoS-Low highlights the difficulty of estimating the point of performance saturation for a given task, which may be below the human-level performance. Using human-level performance as a proxy for maximum attainable performance may overestimate the true saturation point of the model, adding noise to the prediction.

Is the maximum budget of 5000 data points sufficient? As we use the higher of human-level performance and the maximum observed accuracy within 5,000 examples to approximate the model's maximum attainable performance, it is important to confirm that the performance within this data budget is sufficiently close to the true maximum. To establish this cut-off, we first verify that performance gains beyond 5,000 data budget are marginal across the 30 tasks (Section F.4, Fig. 10a). In addition, we show the impact of increasing the maximum data budget to 10,000 and rerunning the experiments does not add significant changes to our findings (Section F.4, Fig. 10b). This result highlights that CoS-Low correlates most strongly with earlier performance improvements at smaller budgets, rather than the small gains observed at the tail end.

How robust is CoS-Low to Sample Size and Low-Confidence Segment? Throughout our experiments, we select 32 task data samples among the top 10% of low-confidence examples to calculate CoS-Low . While we have demonstrated its high correlation with our data efficiency measure, we explore how sensitive our method is to the choice of sample size and low-confidence segment. We vary the sample size and the low-confidence segment and examine 1) the correlation between the newly computed CoS-Low and task data efficiency, and 2) the mean absolute AUC prediction error.

We randomly select 4, 8, and 16 examples among the low-confidence segment of the downstream task to compute CoS-Low and use them to predict task data efficiency. We find that the relationship between CoS-Low and the task AUC becomes weaker (Fig. 8a in Section F.1) and the overall AUC prediction error increases with smaller batch size (Fig. 9a in Section F.1). However, the AUC prediction still has a statistical significance (p-value <0.05) using sample size of 8 or 16, suggesting our method is reasonably robust to the choice of sample size.

Another key step in computing CoS-Low is the selection of datapoints in the “low confidence segment” of the task dataset. To measure the sensitivity to datapoint selection from the low-confidence segment, we sample task data points from the top 30%, 50%, and 70% of the low-confidence segment. Notably, sampling examples from the top 30% or even 50% of low-confidence segment still produces a Spearman's rank correlation greater than 0.5 with the task data efficiency (Fig. 8b in Section F.1) and results in statistically significant AUC prediction (Fig. 9b in Section F.1). This result indicates that our method can perform well without needing to scan the entire dataset to identify the lowest-confidence examples.

486 7 RELATED WORK
487

488 **Data efficiency** In the context of pre-trained LLMs, past work (Aghajanyan et al. (2020); Brown
489 et al. (2020); Sanh et al. (2022); Wei et al. (2022); Zhou et al. (2023)) demonstrates that knowledge
490 is mostly learned during the pretraining phase, allowing for effective knowledge transfer during fine-
491 tuning. However, learning long-tail knowledge requires memorization and typically requires more
492 data (Achille et al. (2020); Feldman & Zhang (2020); Hooker et al. (2021); Jiang et al. (2021)).
493 Zhang et al. (2024) quantifies the impact of fine-tuning data size on the downstream performance
494 to establish a fine-tuning scaling law. For various data efficiency predictors discussed, we take
495 inspiration from multi-task learning and active learning literature. Multi-task learning literature Yu
496 et al. (2020); Liu et al. (2024); Sener & Koltun (2019); Shi et al. (2023); Yu et al. (2020) introduce the
497 concept of *conflicting gradients* among more than two tasks, causing convergence difficulty. Active
498 learning approaches aim to choose which unlabeled training samples should be selected for labeling,
499 using statistics such as model uncertainty (Dredze & Crammer (2008); Hübotter et al. (2025)).
500

501 **Task difficulty** Past work that aims to measure task difficulty often examines sample-level statistics
502 tracked over training. Some work tracks the variance of the model confidence (Swayamdipta et al.
503 (2020)) or per-sample gradients (Agarwal et al. (2022)) during training to surface hard or ambiguous
504 examples. Pleiss et al. (2020); Siddiqui et al. (2022) study data taxonomy (e.g. typical, atypical,
505 challenging, mislabeled, etc.) by observing a data point’s learning curve during training. Other work
506 aims to select a subset of more challenging or useful examples to learn the task more data-efficiently
507 (Mindermann et al. (2022); Paul et al. (2023)). These works observe that difficult examples tend to
508 be highly ambiguous or without consistent labels, impacting the rate of learning. We refer to these
509 works and use sample-level difficulty proxies to compute task-level difficulty, but our setting differs
510 because we cannot measure training trajectories without performing fine-tuning.
511

512 8 CONCLUSION
513

514 In our work, we introduce a notion of task data efficiency using the AUC of performance curve as
515 the fine-tuning data size increases. We empirically show that data efficiency can vary dramatically
516 across downstream tasks and aim to predict data efficiency by exploring several measures of task
517 difficulty. Our chosen method leverages the median gradient cosine similarity of low-confidence
518 examples, CoS-Low , and can efficiently estimate the task data efficiency using as few as 32 task
519 examples. Finally, we show that using our method to find the optimal data size for a desired per-
520 formance level can save unnecessary annotation or fine-tuning cost incurred when using simple
521 heuristics.

522 One future direction of our work is to extend our method to generation tasks using non-accuracy
523 based metrics (e.g., BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) scores, or even LLM-as-
524 a-judge evaluation (Gu et al., 2025)). Another direction is establishing a more rigorous relationship
525 between model evolution after fine-tuning and low-confidence training samples’ gradient cosine
526 similarity. Currently, our work focuses on practical implementation with high-level theoretical jus-
527 tification. Lastly, we assume either the highest observed performance within the data budget or
528 human-level performance is the maximum attainable performance on any given model. In future
529 research, metrics derived from model internals, including the ones considered in our work for task
530 difficulty estimation, can be used to check the degree of model saturation and find the model-specific
531 upper-bound.

532 REFERENCES
533

534 Alessandro Achille, Giovanni Paolini, Glen Mbeng, and Stefano Soatto. The information complexity
535 of learning tasks, their structure and their distance, 2020. URL <https://arxiv.org/abs/1904.03292>.

536 Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of
537 gradients, 2022. URL <https://arxiv.org/abs/2008.11600>.

538 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
539 fectiveness of language model fine-tuning, 2020. URL <https://arxiv.org/abs/2012.13255>.

540 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 541 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
 542 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
 543 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
 544 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
 545 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
 546 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
 547 <https://arxiv.org/abs/2309.16609>.

548 Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
 549 Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and John P.
 550 Cunningham. Lora learns less and forgets less, 2024. URL <https://arxiv.org/abs/2405.09673>.

551 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 552 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
 553 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
 554 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
 555 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
 556 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
 557 <https://arxiv.org/abs/2005.14165>.

558 Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient in-
 559 tent detection with dual sentence encoders. In Tsung-Hsien Wen, Asli Celikyilmaz, Zhou Yu,
 560 Alexandros Papangelis, Mihail Eric, Anuj Kumar, Iñigo Casanueva, and Rushin Shah (eds.),
 561 *Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI*, pp.
 562 38–45, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 563 nlp4convai-1.5. URL <https://aclanthology.org/2020.nlp4convai-1.5/>.

564 Mark Dredze and Koby Crammer. Active learning with confidence. In Johanna D. Moore, Simone
 565 Teufel, James Allan, and Sadaoki Furui (eds.), *Proceedings of ACL-08: HLT, Short Papers*, pp.
 566 233–236, Columbus, Ohio, June 2008. Association for Computational Linguistics. URL <https://aclanthology.org/P08-2059/>.

567 Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
 568 long tail via influence estimation, 2020. URL <https://arxiv.org/abs/2008.03703>.

569 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 570 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 571 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 572 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 573 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 574 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 575 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 576 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 577 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 578 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 579 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 580 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 581 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 582 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 583 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 584 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 585 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 586 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 587 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 588 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 589 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 590 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 591

594 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 595 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 596 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 597 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 598 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 599 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 600 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 601 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 602 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 603 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 604 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 605 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 606 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 607 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 608 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 609 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 610 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 611 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 612 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 613 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 614 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 615 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 616 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 617 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 618 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 619 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mont-
 620 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 621 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 622 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 623 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 624 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 625 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 626 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 627 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 628 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 629 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 630 son Rudolph, Helen Suk, Henry Aspégren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 631 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 632 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 633 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 634 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 635 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 636 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 637 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 638 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 639 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 640 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 641 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 642 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 643 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 644 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 645 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 646 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 647 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,

648 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 649 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 650 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 651 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 652 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 653 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 654 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihăilescu, Vladimir Ivanov,
 655 Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 656 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 657 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 658 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 659 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 660 <https://arxiv.org/abs/2407.21783>.

661 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
 662 Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
 663 Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL <https://arxiv.org/abs/2411.15594>.

664 Aditya Gupta, Jiacheng Xu, Shyam Upadhyay, Diyi Yang, and Manaal Faruqui. Disfl-qa: A
 665 benchmark dataset for understanding disfluencies in question answering, 2021. URL <https://arxiv.org/abs/2106.04016>.

666 Harsha Gurulingappa, Abdul Mateen Rajput, Angus Roberts, Juliane Fluck, Martin Hofmann-
 667 Apitius, and Luca Toldo. Development of a benchmark corpus to support the automatic
 668 extraction of drug-related adverse effects from medical case reports. *Journal of Biomed-
 669 ical Informatics*, 45(5):885–892, 2012. ISSN 1532-0464. doi: <https://doi.org/10.1016/j.jbi.2012.04.008>. URL <https://www.sciencedirect.com/science/article/pii/S1532046412000615>. Text Mining and Natural Language Processing in Pharmacogenomics.

670 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 671 cob Steinhardt. Measuring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

672 Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do
 673 compressed deep neural networks forget?, 2021. URL <https://arxiv.org/abs/1911.05248>.

674 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 675 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

676 Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
 677 Active fine-tuning of llms, 2025. URL <https://arxiv.org/abs/2410.08020>.

678 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 679 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 680 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 681 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

682 Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C. Mozer. Characterizing structural
 683 regularities of labeled data in overparameterized models, 2021. URL <https://arxiv.org/abs/2002.03206>.

684 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
 685 comprehension dataset from examinations, 2017. URL <https://arxiv.org/abs/1704.04683>.

686 Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill,
 687 Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars.
 688 An evaluation dataset for intent classification and out-of-scope prediction. In Kentaro Inui, Jing

702 Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical
703 Methods in Natural Language Processing and the 9th International Joint Conference on
704 Natural Language Processing (EMNLP-IJCNLP)*, pp. 1311–1316, Hong Kong, China, November
705 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1131. URL
706 <https://aclanthology.org/D19-1131/>.

707 Dongyang Li, Junbing Yan, Taolin Zhang, Chengyu Wang, Xiaofeng He, Longtao Huang, Hui Xue,
708 and Jun Huang. On the role of long-tail knowledge in retrieval augmented large language models,
709 2024. URL <https://arxiv.org/abs/2406.16367>.

710 Yunxiang Li, Zihan Li, Kai Zhang, Rui long Dan, Steve Jiang, and You Zhang. Chatdoctor: A
711 medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain
712 knowledge, 2023. URL <https://arxiv.org/abs/2303.14070>.

713 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
714 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
715 URL <https://aclanthology.org/W04-1013/>.

716 Zi Lin, Zihan Wang, Yongqi Tong, Yangkun Wang, Yuxin Guo, Yujia Wang, and Jingbo Shang.
717 Toxicchat: Unveiling hidden challenges of toxicity detection in real-world user-ai conversation,
718 2023. URL <https://arxiv.org/abs/2310.17389>.

719 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
720 multi-task learning, 2024. URL <https://arxiv.org/abs/2110.14048>.

721 Emmy Liu, Chen Cui, Kenneth Zheng, and Graham Neubig. Testing the ability of language models
722 to interpret figurative language, 2022a. URL <https://arxiv.org/abs/2204.12632>.

723 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
724 Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning,
725 2022b. URL <https://arxiv.org/abs/2205.05638>.

726 Annie Louis, Dan Roth, and Filip Radlinski. “I’d rather just go to bed”: Understanding indirect
727 answers. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020
728 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7411–7425,
729 Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
730 emnlp-main.601. URL <https://aclanthology.org/2020.emnlp-main.601/>.

731 Sören Mindermann, Jan Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch, Winnie
732 Xu, Benedikt Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin Gal.
733 Prioritized training on points that are learnable, worth learning, and not yet learnt, 2022. URL
734 <https://arxiv.org/abs/2206.07137>.

735 Robert Munro. *Processing short message communications in low-resource languages*. PhD the-
736 sis, Stanford University, Stanford, CA, 6 2012. URL <https://purl.stanford.edu/cg721hb0673>.

737 Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. Adver-
738 sarial NLI: A new benchmark for natural language understanding. In Dan Jurafsky, Joyce Chai,
739 Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Associa-
740 tion for Computational Linguistics*, pp. 4885–4901, Online, July 2020. Association for Compu-
741 tational Linguistics. doi: 10.18653/v1/2020.acl-main.441. URL <https://aclanthology.org/2020.acl-main.441/>.

742 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
743 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
744 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
745 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
746 URL <https://arxiv.org/abs/2203.02155>.

747 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa : A large-scale
748 multi-subject multi-choice dataset for medical domain question answering, 2022. URL <https://arxiv.org/abs/2203.14371>.

756 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 757 evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
 758 *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp.
 759 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
 760 tics. doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040/>.

761 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Find-
 762 ing important examples early in training, 2023. URL <https://arxiv.org/abs/2107.07075>.

763

764 Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, and Kilian Q. Weinberger. Identifying mislabeled
 765 data using the area under the margin ranking, 2020. URL <https://arxiv.org/abs/2001.10528>.

766

767 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions
 768 for squad, 2018. URL <https://arxiv.org/abs/1806.03822>.

769

770 Siva Reddy, Danqi Chen, and Christopher D. Manning. Coqa: A conversational question answering
 771 challenge, 2019. URL <https://arxiv.org/abs/1808.07042>.

772

773 Anna Rogers, Olga Kovaleva, Matthew Downey, and Anna Rumshisky. Getting closer to ai com-
 774 plete question answering: A set of prerequisite real tasks. *Proceedings of the AAAI Conference*
 775 *on Artificial Intelligence*, 34(05):8722–8731, Apr. 2020. doi: 10.1609/aaai.v34i05.6398. URL
 776 <https://ojs.aaai.org/index.php/AAAI/article/view/6398>.

777

778 Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, An-
 779 toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
 780 Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chh-
 781 ablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Mat-
 782 teo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang,
 783 Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan
 784 Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M.
 785 Rush. Multitask prompted training enables zero-shot task generalization, 2022. URL <https://arxiv.org/abs/2110.08207>.

786

787 Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization, 2019. URL
 788 <https://arxiv.org/abs/1810.04650>.

789

790 Guangyuan Shi, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
 791 conflicting gradients from the root for multi-task learning, 2023. URL <https://arxiv.org/abs/2302.11289>.

792

793 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 794 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models, 2024. URL
 795 <https://arxiv.org/abs/2310.16789>.

796

797 Shoaib Ahmed Siddiqui, Nitarshan Rajkumar, Tegan Maharaj, David Krueger, and Sara Hooker.
 798 Metadata archaeology: Unearthing data subsets by leveraging training dynamics, 2022. URL
 799 <https://arxiv.org/abs/2209.10015>.

800

801 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark,
 802 Stephen Pfahl, Heather Cole-Lewis, Darlene Neal, Mike Schaeckermann, Amy Wang, Mohamed
 803 Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska,
 804 Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara
 805 Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan
 806 Karthikesalingam, and Vivek Natarajan. Towards expert-level medical question answering with
 807 large language models, 2023. URL <https://arxiv.org/abs/2305.09617>.

808

809 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 810 Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
 811 Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
 812 Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,

810 Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, An-
 811 ders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, An-
 812 drew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
 813 Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
 814 sum, Arul Menezes, Arun Kirubarajan, Asher Mollokandov, Ashish Sabharwal, Austin Her-
 815 rick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
 816 Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
 817 Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
 818 Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh,
 819 Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
 820 Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
 821 Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
 822 rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
 823 Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
 824 Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
 825 nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
 826 Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
 827 terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliza-
 828 beth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem,
 829 Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Ev-
 830 genii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé,
 831 Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán
 832 Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-
 833 López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh
 834 Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hong-
 835 ming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson
 836 Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel,
 837 James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema
 838 Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova,
 839 Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Ji-
 840 acheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis,
 841 Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph
 842 Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua,
 843 Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja
 844 Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chia-
 845 fullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo
 846 Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency,
 847 Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón,
 848 Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Fa-
 849 rooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria
 850 Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast,
 851 Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody
 852 Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy,
 853 Michael Starritt, Michael Strube, Michał Swedrowski, Michele Bevilacqua, Michihiro Yasunaga,
 854 Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal,
 855 Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan A.
 856 Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron,
 857 Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar,
 858 Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar El-
 859 baghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung,
 860 Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Pe-
 861 ter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour,
 862 Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
 863 Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
 Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Ro-
 man Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov,
 Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Moham-
 mad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R.
 Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghaz-

864 arian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schus-
 865 ter, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar
 866 Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upad-
 867 hyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy,
 868 Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene,
 869 Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Pianta-
 870 dosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen,
 871 Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore
 872 Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Chick, Timofei Kornev, Ti-
 873 tulus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz,
 874 Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh,
 875 Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saun-
 876 ders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong
 877 Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi
 878 Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary
 879 Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. Beyond the im-
 880 itation game: Quantifying and extrapolating the capabilities of language models, 2023. URL
<https://arxiv.org/abs/2206.04615>.

881 Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi,
 882 Noah A. Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with
 883 training dynamics, 2020. URL <https://arxiv.org/abs/2009.10795>.

884 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 885 tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 886 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 887 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 888 and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
 889 putational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

890 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 891 Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.
 892 URL <https://arxiv.org/abs/1804.07461>.

893 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
 894 Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose language
 895 understanding systems, 2020. URL <https://arxiv.org/abs/1905.00537>.

896 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 897 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
 898 Fan, Xiang Yue, and Wenhui Chen. Mmlu-pro: A more robust and challenging multi-task language
 899 understanding benchmark, 2024. URL <https://arxiv.org/abs/2406.01574>.

900 Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 901 Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022. URL
<https://arxiv.org/abs/2109.01652>.

902 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
 903 Gradient surgery for multi-task learning, 2020. URL <https://arxiv.org/abs/2001.06782>.

904 Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
 905 effect of data, model and finetuning method, 2024. URL <https://arxiv.org/abs/2402.17193>.

906 Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. When does
 907 pretraining help? assessing self-supervised learning for law and the casehold dataset, 2021. URL
 908 <https://arxiv.org/abs/2104.08671>.

909 Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
 910 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
 911 Lima: Less is more for alignment, 2023. URL <https://arxiv.org/abs/2305.11206>.

918 **A DOWNSTREAM TASK OVERVIEW**
919
920
921

922 We select 30 downstream tasks that span multiple domains including healthcare, law, finance, safety,
923 and other domains requiring natural language reasoning ability. All but three tasks have at least
924 2500 training examples (*Temporal_sequences* (Srivastava et al., 2023) has 800, *RTE* (Wang et al.,
925 2020) 2241, *Overruling* (Zheng et al., 2021) 1920). Since our data efficiency metric—task AUC—
926 requires evaluating model performance with up to 5000 fine-tuning examples, we extrapolate the
927 performance for these tasks by assuming their peak performance at the maximum available data size
928 is comparable to the performance at fine-tuning data size of 5000.

929 Table 4 provides a high-level overview of each task, including its zero-shot accuracy, maximum
930 performance after fine-tuning, maximum attainable performance (defined as the greater of known
931 human-level accuracy or the best fine-tuned performance with the 5000-example data budget), and
932 the task data efficiency. We show that neither high or low task zero-shot performance consistently
933 predicts task data efficiency in Fig. 5, highlighting that estimating downstream task data efficiency is
934 a non-trivial problem. Below, we categorize the tasks by their relevant domains and briefly describe
935 each.

936 **Medical**

937 *Ade_corpus_v2_classification* (Gurulingappa et al., 2012) consists of medical statements indicating
938 the presence of an adverse drug event (ADE=1 or 0), designed to support the extraction of drug-
939 related adverse effects from medical case reports. *MedMCQA* (Pal et al., 2022) is a multiple-choice
940 question dataset derived from a real-world medical entrance exam covering 21 medical subjects and
941 2,400 healthcare topics.

942 **Law**

943 *Overruling* (Zheng et al., 2021) comprises extracted sentences from legal opinions, a subset of which
944 overrule a prior decision (label=1, 0 otherwise).

945 **Intent Detection**

946 Banking77 (Casanueva et al., 2020) consists of online banking queries labeled with one of 77 pre-
947 defined user intent categories, supporting intent classification in the financial service domain. *Toxic-
948 Chat* (Lin et al., 2023) consists of user prompts collected from the Vicuna online demo, annotated for
949 toxicity in the user prompts. *Circa* (Louis et al., 2020) presents brief question-answer dialogues with
950 ambiguous responses and crowd-sourced ground-truth labels indicating the underlying intention of
951 the ambiguous answer.

952 **World Knowledge**

953 *CommonsenseQA* (Talmor et al., 2019) evaluates commonsense reasoning ability requiring prior
954 knowledge across a range of target concepts. *MMLU* (Hendrycks et al., 2021) assesses multi-
955 task accuracy across 57 subjects, spanning various topics from algebraic math to philosophy.
956 *Sports_understanding* (Srivastava et al., 2023) examines general understanding of sports by pre-
957 senting plausible or implausible statements related to sports, given specific actions in sports and
958 names of athletes. *Hyperbaton* (Srivastava et al., 2023) tests the ability to identify the correct order
959 of adjectives in given text.

960 **Logical Deduction and Reasoning**

961 *Boolean_expressions* and *Web_of_lies* (Srivastava et al., 2023) consist of nested boolean logic,
962 presented either in formal notation or natural language, that evaluate to True or False. *For-
963 mal_fallacies_syllogisms_negation* (Srivastava et al., 2023) assesses the ability to distinguish be-
964 tween deductively valid and invalid arguments given a premise and corresponding argument. *Ob-
965 ject_counting* (Srivastava et al., 2023) evaluates the ability to count simple objects described in a
966 sentence while ignoring irrelevant distractors. *Temporal_sequences* (Srivastava et al., 2023) requires
967 deduction over a sequence of temporally ordered events. *Tracking_shuffled_objects* (Srivastava et al.,
968 2023) tests the ability to track object ownership as the object is transferred among multiple individ-
969 uals in a sequence of actions.

970 **Classic Natural Language Inference**

972 *ANLI* (Nie et al., 2020) and *MNLI* (Wang et al., 2019), and *RTE* (Wang et al., 2020) are natural
 973 language inference (NLI) benchmarks, each consisting of a premise and a hypothesis, with their
 974 relationship categorized as entailment, contradiction, or neutral. *ANLI* is constructed via adversar-
 975 ial human-and-model-in-the-loop procedure; *MNLI* consists of text extracted from speech, fiction,
 976 government speech; and *RTE* comprises news and Wikipedia texts.

977 Miscellaneous Natural Language Understanding

978 *QQP* (Wang et al., 2019) and *MRPC* (Wang et al., 2019) assess semantic equivalence between pairs
 979 of sentences extracted from the Quora discussion forum and online news respectively. *SST-2* (Wang
 980 et al., 2019) is a sentiment classification task based on movie reviews. *Fig-QA* (Liu et al., 2022a)
 981 evaluates the ability to interpret figurative language given human-written creative metaphors. *WiC*
 982 (Wang et al., 2020) is a word sense disambiguation task determining if a polysemous word has the
 983 same meaning in two different text snippets.

984 Reading Comprehension

985 *QuAIL* (Rogers et al., 2020) and *RACE* (Lai et al., 2017) are multiple-choice reading comprehension
 986 tasks. *QuAIL* consists of texts extracted from fiction, news articles, blogs, and the Quora forum.
 987 *RACE* is based on English exam passages designed for Chinese students aged between 12 and 18;
 988 in our experiments, we use the subset containing high-school level passages. *BoolQ* (Wang et al.,
 989 2020) consists of a short passage paired with a yes-or-no question related to the passage. *QNLI*
 990 (Wang et al., 2019) assesses whether the answer to a question can be inferred from a given paragraph
 991 extracted from Wikipedia.

992 Visual and Spatial Reasoning

993 *MNIST_ascii* (Srivastava et al., 2023) is a multi-label classification task based on the original MNIST
 994 dataset, where digits from 0 to 9 are rendered in ASCII string format rather than images. *Reason-
 995 ing_about_colored_objects* (Srivastava et al., 2023) assesses the ability to understand spatial rela-
 996 tionships by interpreting visual descriptions of scenes involving colored objects.

1001 Figure 5: Relationship between zero-shot accuracy and task data efficiency. While higher zero-
 1002 shot accuracy of tasks close to performance saturation may indicate lower task data accuracy,
 1003 the relationship is not consistent (Spearman rank correlation of -0.3139).

1018 B TASK DIFFICULTY METRIC DEFINITIONS

1019 We compute grad_norm_k as per-sample L₂ gradient norm of weights with respect to the cross-
 1020 entropy loss (Eq. (3)), aggregated to the task-level:

$$\text{grad_norm}(x_i, y_i) = \|\nabla_w L(x_i, y_i)\| \quad (3)$$

$$\text{grad_norm}_k = \text{median}\{\text{grad_norm}(x_i, y_i) \mid (x_i, y_i) \in B\} \quad (4)$$

	Task	Model Accuracy		Max Attain. Acc.	Task AUC
		Zero-shot	Max Fine-tuned		
1026	BoolQ	0.85	0.90	0.90	0.165
1027	ANLI	0.39	0.74	0.92	0.184
1028	WiC	0.62	0.86	0.86	0.186
1029	SST-2	0.89	0.95	0.98	0.235
1030	Formal_fallacies_syllogisms_negation	0.48	0.99	0.99	0.245
1031	Tracking_shuffled_objects	0.20	0.95	1.00	0.256
1032	MRPC	0.75	0.88	0.88	0.291
1033	Reasoning_about_colored_objects	0.39	0.94	1.00	0.332
1034	Web_of_lies	0.52	1.00	1.00	0.338
1035	MedMCQA	0.42	0.79	0.90	0.343
1036	QQP	0.76	0.86	0.86	0.381
1037	MMLU	0.25	0.65	0.90	0.382
1038	Sports_understanding	0.66	0.99	1.00	0.386
1039	Boolean_expressions	0.71	0.99	1.00	0.397
1040	MNIST_ascii	0.09	0.94	0.98	0.397
1041	MNLI	0.64	0.87	0.92	0.417
1042	Banking77	0.33	0.93	0.93	0.434
1043	Fig_qa	0.55	0.95	0.95	0.446
1044	Toxicchat0124	0.88	0.97	1.00	0.489
1045	QuAIL	0.29	0.84	0.84	0.492
1046	RACE	0.50	0.84	0.85	0.500
1047	CommonsenseQA	0.23	0.80	0.89	0.504
1048	Overruling	0.82	0.97	0.97	0.516
1049	RTE	0.26	0.88	0.94	0.518
1050	Object_counting	0.25	0.97	0.97	0.523
1051	Hyperbaton	0.60	1.00	1.00	0.604
1052	QNLI	0.57	0.93	0.93	0.660
1053	Ade_corpus_v2_classification	0.47	0.95	0.95	0.664
1054	Circa	0.11	0.91	0.92	0.671
1055	Temporal_sequences	0.25	1.00	1.00	0.770

Table 4: Downstream task’s zero-shot accuracy, maximum accuracy after fine-tuning, maximum attainable accuracy (greater of the the human-level performance or the maximum fine-tuned accuracy), and task data efficiency metric (AUC). The tasks are sorted in the order of ascending task AUC, just as in Fig. 2

where (x_i, y_i) is an i -th input and corresponding target label with length T , from a randomly sampled set of task data points B . L is the cross-entropy loss $-\frac{1}{T} \sum_{t=0}^T \log P[y_{it}]$, and $P[y_{it}]$ is the probability assigned by the model to the t -th target label.

conf_avg_k is computed by averaging the model probabilities assigned to the predicted target y'_i generated using greedy decoding (Eq. (5)). We then aggregate them to the task-level using median (Eq. (6)).

$$\text{conf_avg}(x_i, y_i) = \frac{1}{T} \sum_{t=1}^T P[y'_{it}] \quad (5)$$

$$\text{conf_avg}_k = \text{median}\{\text{conf_avg}(x_i, y_i) \mid (x_i, y_i) \in B\} \quad (6)$$

Note that T is the length of the target label y and is known in advance because our setup mainly considers short generation tasks.

C FINE-TUNING SETUP

To measure task data efficiencies, we run full model fine-tuning on Llama 3.1 8B Instruct, Mistral 7B Instruct v0.3 and Qwen 2.5 14B Instruct on each of the 30 downstream tasks (results in Section 2). All experiments are conducted using two Nvidia H100 GPUs for the 8B and 7B models, four for the 14B model, on a high-performance compute cluster. We use a warmup ratio of 0.1, an effective

1080 batch size of 32, a learning rate of 1e-5, and a cosine learning rate scheduler. Models are trained
 1081 for a maximum of 500 steps, and the reported fine-tuned performance corresponds to the checkpoint
 1082 with the lowest evaluation loss within the 500 steps. We use early stopping with a patience of
 1083 20, terminating training if the evaluation loss does not improve over 20 consecutive logging steps.
 1084 Training examples with sequence lengths exceeding 2048 tokens are filtered out. All training runs
 1085 use a fixed random seed for reproducibility.

1086 Rounds of fine-tuning and evaluation with varying fine-tuning data sizes (50, 100, 200, 500, 1000,
 1087 2500, 5000) use the same test split within the same task. The test set contains up to 5000 examples.
 1088 Validation set sizes are capped at 20% of the corresponding training size (e.g., a training set of 50
 1089 examples use a validation set of at most 10 examples) to reflect realistic low-resource fine-tuning
 1090 conditions.

1092 D PARAMETRIC CURVE TO MODEL DATA EFFICIENCY

1093 As discussed in Section 3.3, we map the predicted task data efficiency AUC'_k to a task-specific
 1094 performance curve $\hat{f}_k(x)$ using a power function x^p , where $p = \frac{1-AUC'_k}{AUC'_k}$, to model the relationship
 1095 between fine-tuned performance and fine-tuning data size. In this section, we show an alternative
 1096 approach using a piecewise linear function Eq. (7) to map AUC'_k to the performance curve $\hat{f}_k(x)$:

$$1100 \hat{f}_k(x) = \begin{cases} \min\left\{\frac{1}{2(1-AUC'_k)} * x, 1\right\} & AUC'_k \geq 0.5 \\ \max\left\{\frac{1}{2AUC'_k}(x-1) + 1, 0\right\} & AUC'_k < 0.5 \end{cases} \quad (7)$$

1101 where x is the percentage of the data budget (i.e., data size normalized between 0 and 1). We
 1102 compare the fit of the predicted performance curves $\hat{f}_k(x)$, estimated using either the power function
 1103 or the piecewise linear function, with the original performance curves $f_k(x)$ (Fig. 6).

1129 (b) Actual performance curve and the predicted performance curve using power function.

1130 Figure 6: The actual performance curve compared with both power and linear functions.

1131 The absolute error of the fit for the power function is slightly higher, at 8.47% error, whereas the
 1132 piecewise linear function has 8% error. Despite the marginal difference, we choose the power func-

tion in our analyses as it better captures the gradual performance improvements in the low-data regime, whereas the piecewise linear function introduce a sharp transition.

E FINE-TUNING DATA SIZE PREDICTION ERROR

Figure 7: Actual vs. Predicted fine-tuning data size across all desired performance levels between 40% and 95%.

Fig. 7 illustrates CoS-Low 's data size prediction error across varying desired performance levels of 40%, 50%, 60%, 70%, 80%, 90%, and 95%. Fig. 7 illustrates that our method is able to identify cases where only a small number of fine-tuning examples are sufficient (illustrated by the darker blue diagonal squares in the upper-left corner of Fig. 7).

F ABLATION STUDIES

F.1 SAMPLE SIZE AND CONFIDENCE SEGMENT

Fig. 8 and Fig. 9 demonstrate that CoS-Low is reasonably robust to both the sample size and the threshold of low-confidence segments. Fig. 8a shows that CoS-Low continues to exhibit a non-random relationship with task data efficiency even when the number of task examples used to compute CoS-Low is less than 32 (our default). In particular, the prediction of task data efficiency made using as few as 8 or 16 examples remains statistically significant ($p\text{-value} < 0.05$).

Similarly, CoS-Low derived using confidence thresholds higher than the default top 10% is predictive of the task data efficiency, as reported in Fig. 9b. Although the strength of the relationship becomes weaker, using samples from top 50% low-confidence segment still yields statistically significant meaningful predictions (Fig. 9b).

F.2 CALCULATING GRAD_NORM_k AND CONF_AVG_k ON LOW CONFIDENCE EXAMPLES

We run additional ablation studies to calculate grad_norm_k and conf_avg_k ; gradient norm and average model confidence on the low-confidence examples used for CoS-Low (Table 5). Among all task difficulty metrics considered, CoS-Low (ours) is the most predictive of the data efficiency, which indicates that its predictive power not only comes from the low confidence examples but also from gradient signal conflict from cosine similarity metric.

F.3 FULL VS. LOW DIMENSION MODEL GRADIENT

Figure 8: Relationship between the task data efficiency and Cos-Low , across varying sample sizes and low-confidence segment. The strength of the relationship is captured using Spearman's rank correlation.

Batch Size	Mean Abs. Error	p-val
4	0.121	0.068
8	0.111	0.015
16	0.103	0.0048

(a) AUC prediction error by batch size.

Conf. segment	Mean Abs. Error	p-val
30%	0.095	0.00066
50%	0.107	0.0064
70%	0.128	0.18

(b) AUC prediction error by low-confidence segment threshold.

Figure 9: The mean absolute AUC prediction error across all downstream tasks using CoS-Low with varying batch sizes and low-confidence segment thresholds. Fig. 9a and Fig. 9b display statistically significant predictions (p -value < 0.05) can be made with the sample size as small as 8 and low-confidence threshold as high as 50%.

We explore the amount of information retained or lost due to using rank 64 LoRA gradient or dimensionality reduction technique such as Gaussian random projection, instead of full model gradients when computing `CoS-Low`. For Gaussian random projection, we randomly project each layer's full gradient to a lower dimension and concatenate them into a single vector to compute the metric.

We do not observe a clear advantage in using a much lower dimensional gradient (Table 6), supporting that using low-rank gradients is an effective and efficient way of computing data efficiency predictor, CoS-Low .

Methods	Correlation with data efficiency
grad_norm _k	-0.1054 ± 0.041
conf_avg _k	-0.1374 ± 0.023
CoS-Low	0.675 ± 0.056

Table 5: Correlation between data efficiency and task difficulty metrics computed on low-confidence examples.

Methods	Correlation with data efficiency	Size of Gradient Vector
Full gradient <code>grad_norm_k</code>	0.160 ± 0.021	8GB
Full gradient <code>CoS-Low</code>	0.628 ± -0.052	8GB
Rank 64 <code>CoS-Low</code> (our choice)	0.675 ± 0.056	approx. 160M
Random Projection <code>CoS-Low</code>	0.630 ± 0.053	approx. 1.6M

Table 6: `CoS-Low` computed with rank 64 LoRA gradient outperforms alternate approaches and is relatively memory efficient compared to `CoS-Low` computed with full gradient vectors.

F.4 INCREASING THE MAXIMUM DATA BUDGET TO 10,000

We measure the average raw accuracy at each fine-tuning data size across the 30 tasks, and use tasks with more than 10,000 available data points (15 out of 30) to rerun the experiments end-to-end with the maximum data budget set to 10,000. Fig. 10 shows the

Data budget	50	100	200	500	1000	2500	5000	10000
Avg. acc.	0.155	0.180	0.233	0.322	0.360	0.400	0.412	0.415

(a) Avg. raw accuracy at each data budget across the 30 downstream tasks.

Max. data budget	Corr. with task data efficiency	Abs. mean error
5k budget (30 tasks)	0.675 ± 0.05	0.086 ± 0.030
10k budget (15 tasks)	0.699 ± 0.10	0.085 ± 0.031

(b) Spearman’s rank correlation between `CoS-Low` and task AUC, and the AUC prediction error when performance curves are measured with 10,000 as maximum data budget, instead of 5,000.

Figure 10: Across the 30 tasks, the accuracy gain is marginal when using more than 5000 fine-tuning data points, and `CoS-Low`’s high correlation with task AUC and its AUC prediction error remain stable when higher data budget is used (Fig. 10b).

F.5 PERFORMANCE CURVES UNDER DIFFERENT RANDOM SEED

We use a fixed seed (seed=123) when sampling data points to fine-tune for fine-tuning across varying data sizes and use these runs to plot the task performance curves (see Fig. 2). To account for performance variance due to randomness in sampling, we repeat Llama 3.1 8B Instruct fine-tuning with different random seeds for all data budgets (50, 100, 200, 500, 1000, 2500, 5000) on the 30 downstream tasks. We report the median raw accuracy for each of the three random runs, along with the accuracy differences between the original and the new random seed runs (Table 7). The resulting median differences in task AUCs are negligible, with -0.006 (seed 48) and -0.017 (seed 37) relative to the original task AUCs.

G GENERALIZING ACROSS MODEL FAMILIES

To assess generalizability across model families, we extend our experiments to the Mistral 7B Instruct v0.3 and Qwen 2.5 14B Instruct. We measure task data efficiency (Fig. 11) and compute corresponding task difficulty metrics to predict data efficiency, using the same compute resources and fine-tuning hyperparameters as in the Llama 3.1 8B Instruct experiments.

As shown in Fig. 12, `CoS-Low` consistently demonstrates the strongest correlation with task data efficiency and outperforms alternative metrics such as `grad_norm_k`, `conf_avg_k`, and `cos_sim_k`.

While these results demonstrate that task data efficiency prediction using `CoS-Low` generalizes beyond the Llama 3.1 8B Instruct model, the relationship between task data efficiency and `CoS-Low` is weaker in comparison. One possible explanation is the larger gap between the fine-tuned Mistral

1296 1297 1298	Data budget	Median raw accuracy			Median diff. in raw accuracy	
		Seed 123 (org)	Seed 48	Seed 37	Seed 123 vs. 48	Seed 123 vs. 37
1299	0	0.492	0.619	0.558	0.026	0.026
1300	50	0.67	0.728	0.708	0.028	0.028
1301	100	0.702	0.73	0.747	0.024	0.032
1302	200	0.784	0.777	0.771	0.023	0.020
1303	500	0.816	0.818	0.817	0.028	0.018
1304	1000	0.872	0.873	0.889	0.016	0.014
1305	2500	0.923	0.916	0.918	0.014	0.011
1306	5000	0.937	0.930	0.927	0.010	0.009

1307
1308
1309
Table 7: Raw accuracy at each data budget across three fine-tuning runs with different random
seeds, and the corresponding accuracy difference between the original run (seed=123) and the two
additional runs (seed=48, 37).

1310
1311
1312
1313 and Qwen model performance and human expert-level accuracy for some tasks, due to fine-tuning
1314 not improving the performance further from their zero-shot performance.

1315
1316 We hypothesize that the weaker relationship may also be partly attributed to the sensitivity of low-
1317 confidence example selection to model-specific tokenization. Our current approach selects low-
1318 confidence examples based on the lowest average token probabilities. However, for multi-token out-
1319 puts, simple averaging does not distinguish between uncertain predictions across all tokens and cases
1320 where a single high- or low-confidence token skew the average. The Mistral tokenizer encounters
1321 this problem, as it represents multi-digit numbers using multiple tokens. To address this problem, we
1322 test perplexity-based confidence estimation to select the low-confidence examples, which provides
1323 length-normalized uncertainty estimation. As shown in Fig. 12a, we find that perplexity-based low-
1324 confidence example sampling (“CoS-Low (PPL)”, correlation = 0.52) achieves higher correlation
1325 with data efficiency compared to probability averaging approach (“CoS-Low”, correlation =
1326 0.5). This improvement suggests that CoS-Low can benefit from refined low-confidence estimation,
especially for tasks involving longer target outputs.

H GENERALIZING TO OUT-OF-DISTRIBUTION TASKS

1327
1328
1329
1330 OOD-tasks used to test the generalizability of CoS-Low beyond the 30 original downstream tasks
1331 (Section 6) consist of two multi-task datasets, four generation tasks, and four domain specific tasks.
1332 For all OOD-tasks, we use the model’s maximum performance within the 5,000 data budget as the
1333 maximum attainable performance proxy.

1334
1335
1336 Each of the *two multitask datasets* consist of five tasks sampled from the 30 downstream tasks, one
1337 consisting of MNIST_ascii, Boolean_expressions, Object_counting, Sports_understanding, Hyper-
1338 baton, and the other of Web_of_lies, Reasoning_about_colored_objects, Temporal_sequences, Track-
1339 ing_shuffled_objects, Formal_fallacies_syllogisms_negation.

1340
1341 The *four generation tasks* are SQuAD 2.0 (Rajpurkar et al., 2018), Disfl-QA (Gupta et al., 2021),
1342 QA WikiData (Srivastava et al., 2023), and CoQA (Reddy et al., 2019). For generation task, model
1343 perplexity (PPL) on the generated tokens to identify low-confidence segment instead of average
1344 probabilities of the generated tokens (see Section J for metrics considered to estimate model confi-
1345 dence).

1346
1347
1348 The *four domain-specific tasks* are intent-classification dataset (Larson et al., 2019), disaster mes-
1349 sage categorization (Munro, 2012), twitter sentiment analysis from HuggingFace (zeroshot/twitter-
financial-news-sentiment), and MMU-Pro (Wang et al., 2024). The four downstream tasks are
either classification or multiple-choice QnA style tasks, similar to the 30 downstream tasks consid-
ered, but do not have a reported human-level performance.

Figure 11: Comparing data budget (from 0 to 5000 examples on log-scale, x-axis) and task performance (from zero-shot to human-level performance, y-axis) across the 30 downstream tasks, for Mistral 7B Instruct v0.3 and Qwen 2.5 14B Instruct.

Figure 12: CoS-Low shows the strongest correlation with task data efficiency. The relationship is the strongest, however, for Llama 3.1 8B Instruct, followed by Mistral 7B Instruct v0.3 and Qwen 2.5 14B Instruct.

I COMPUTATION AND MEMORY REQUIREMENT FOR TASK DIFFICULTY METRIC CALCULATION

We assuming backward pass takes twice as much time as forward pass. The main memory requirement is that the model fits in a GPU to be able to run forward and backward pass. The metrics requiring gradients use per-sample gradients of rank 64 LoRAs, takes 1% of the model weights,

Method	Compute cost		Memory requirement
	Forward pass	Backward pass	
grad_norm _k	32 * C	32 * 2C	O(M)
conf_avg _k	32 * C	32 * 2C	O(M)
cos_sim _k	32 * C	32 * 2C	O(M)
CoS-Low	2500 * C + 32 * C	32 * 2C	O(M)

Table 8: Compute and memory requirement of calculating task difficulty metrics. C denotes the time of single forward pass, and M the size of the full model.

and adds only a minor memory requirement. CoS-Low requires additional forward passes to identify low confidence examples, but the same number of backward pass as it only uses 32 annotated examples for actual metric calculation.

For an 8B model, peak GPU memory storing the rank 64 LoRA gradients of the 32 samples is (BFLOAT16 memory) * (model parameter requiring gradients) * (batch size) \approx (2) * (8B parameters * 0.02) * (32) \approx 10 GB. The model loaded on GPU adds an extra (BFLOAT16 memory) * (full model parameter) = 2 * 8 \approx 16GB.

J ESTIMATING MODEL CONFIDENCE

In our exploration of model confidence estimation, many alternatives were considered, including model perplexity on its own generation (PPL) and variational ratio for original prediction (VRO). Among these, CoS-Low on the highest PPL segment showed the strongest correlation with data efficiency than VRO or average softmax probability (our approach). We choose average softmax-probability as confidence proxy for the ease of implementation and reasonably strong correlation with data efficiency; also, it does not require multiple model response generations and requires the least amount of compute. In our experiments, computing PPL required roughly 2x more forward passes, VRO up to 8x. Nonetheless, PPL may be preferred for tasks involving multi-token outputs, especially as average softmax-probability can be skewed by high or low probability tokens as the generation length increases.

K USING CoS-Low TO CONCRETELY ESTIMATE FINE-TUNING DATA SIZE

We describe a high-level algorithm using CoS-Low and the regression weights learned from ground-truth AUCs across fine-tuning tasks (i.e. Table 3) to predict the concrete fine-tuning data size required to reach the target performance.

Algorithm 1 Predicting Fine-tuning Data Requirements from CoS-Low

Require: CoS-Low ℓ , target performance y , coefficients (c, I) , max budget N_{\max}

- 1: **Step 1: Predict AUC from CoS-Low**
- 2: Predicted AUC: $\widehat{\text{AUC}} \leftarrow c \cdot \ell + I$
- 3: **Step 2: Estimate required data size**
- 4: % from data budget needed: $p \leftarrow y^{\frac{\widehat{\text{AUC}}}{1 - \widehat{\text{AUC}}}}$
- 5: Estimated fine-tuning data size: $n_{\text{required}} \leftarrow 2^{p \cdot \log(N_{\max})}$
- 6: **return** n_{required}

Note that the log transformation is necessary because the x-axis (fine-tuning data budget) of the performance efficiency curve is on a log-scale (Section 4). Log scale captures the rapidly changing model performance improvements at smaller data sizes.