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ABSTRACT

While large language models (LLMs) demonstrate reasonable zero-shot capability
across many downstream tasks, fine-tuning is a common practice to improve their
performance. However, a task’s data efficiency — i.e., the number of fine-tuning
examples needed to achieve a desired level of performance — is often unknown,
resulting in costly cycles of incremental annotation and retraining. Indeed, we
demonstrate across a curated set of 30 specialized tasks that performant LLMs
may struggle zero-shot but can attain stronger performance after fine-tuning. This
motivates the need for methods to predict a task’s data efficiency without requir-
ing incremental annotation. After introducing a concrete metric that quantifies
a task’s data efficiency, we propose using the gradient cosine similarity of low-
confidence examples as a way to predict data efficiency based on a small number
of labeled samples. We validate our approach on the collected set of tasks with
varying data efficiencies, attaining 8.6% error in overall data efficiency prediction
and eliminating hundreds of unnecessary annotations. Our experiment results and
implementation code are available in the supplementary material.

1 INTRODUCTION

Large language models (LLMs) are increasingly treated as generalist systems that can competently
perform any text-based task zero-shot, i.e., without requiring any task-specific training data (Brown
et al., 2020). However, the zero-shot performance of an LLM often lags behind human-level (or
otherwise acceptable) performance (Li et al. (2023); Liu et al. (2022b); Ouyang et al. (2022); Sanh
et al. (2022); Singhal et al. (2023); Wei et al. (2022)). In such cases, fine-tuning on task-specific data
can provide a simple way to improve an LLM’s performance by reinforcing the specified format of
the model response (Ouyang et al. (2022); Sanh et al. (2022); Wei et al. (2022)) or specializing the
LLM to the task (Li et al. (2023); Liu et al. (2022b); Singhal et al. (2023)). Indeed, fine-tuning a
pre-trained LLM can require orders of magnitude less task-specific data than training on the task
from scratch. Zhou et al. (2023) show that an LLM can easily learn to output high-quality responses
with only hundreds or thousands of examples, which Aghajanyan et al. (2020) suggests is enabled
by the pretraining phase compressing large-scale knowledge and reducing the downstream task’s
intrinsic dimensionality.

A key consideration when fine-tuning LLMs is the task’s data efficiency, i.e., the number of task-
specific labeled data points required to reach a desired performance level. Unfortunately, the data
efficiency of a given task is generally not clear a priori – as we show in Section 2, some tasks require
only a few dozens of samples to reach or exceed human-level performance while others may require
thousands. A straightforward way of determining a task’s data efficiency is to collect a large pool of
labeled data and fine-tune the model at various data budgets, evaluating performance at each budget
and determining the amount of data required to reach desired performance. However, this approach
requires annotating a large training dataset and fine-tuning many models, obviating the purpose of
estimating the data efficiency in the first place. Fine-tuning scaling laws can be fit to explore the
relationship between the model loss and fine-tuning data size (Zhang et al., 2024), but fitting these
scaling laws involves specific parameters unknown before fine-tuning on the downstream task. We
argue that a useful method for predicting fine-tuning data efficiency should be able to do so efficiently
– i.e., based on a small number of task-specific labeled examples and requiring a small amount of
computation.
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Figure 1: Overview of our approach to predict task specific data efficiency from a few labeled data
samples. We use CoS-Low to predict task data efficiency measured from 30 downstream tasks.

In this work, we propose a method that meets our desiderata for estimating data efficiency (Fig. 1).
Specifically, we first introduce a precise definition of data efficiency based on the area under the
data budget/task performance curve. We then explore different cheaply computable notions of task
difficulty and ultimately find that the per-sample gradient cosine similarity of low-confidence exam-
ples (CoS-Low) is highly correlated with our notion of data efficiency, even when computed over a
small number of labeled examples. We then formulate a procedure for estimating data efficiency that
maps CoS-Low to a parametrized approximation of the data efficiency curve. We validate the ef-
fectiveness of this procedure on a curated set of 30 realistic specialized tasks (spanning applications
in law, medicine, and well-known benchmarks) with varying levels of data efficiency. Our approach
only requires collecting a small number of labeled examples and does not require fine-tuning or
tracking training dynamics, making it a viable option for practitioners in resource-constrained set-
tings that need to determine the number of examples to annotate to reach desired performance on a
downstream task.

2 ESTABLISHING THE VARIABILITY OF DATA EFFICIENCY

A core assumption in our work is that the data efficiency — i.e., the relationship between the number
of examples used for fine-tuning and performance — varies significantly from task to task. To
support this assumption, we first curate a diverse set of 30 tasks from multiple domains, including
science, medicine, law, finance, sports, customer inquiries, and natural language understanding.
These tasks are sourced from popular datasets from HuggingFace as well as well-known benchmarks
such as SuperGLUE (Wang et al., 2020), GLUE (Wang et al., 2019), and BIG-Bench (Srivastava
et al., 2023). We mainly consider multi-class text classification or question-answering (QA) to
allow consistent use of the exact string match accuracy to measure performance. We limit our
selection to tasks with a known estimate of human-level performance and consider this to be the
maximum attainable performance for each task. To address cases where human-level performance
underestimates this ceiling, we use the higher of the human-level and the maximum performance
observed within 5000 fine-tuning data budget. Additionally, we mainly consider tasks with at least
5000 available labeled examples so that we can measure performance up to a relatively high data
budget. We report on tasks with fewer than 5000 labeled examples if the maximum performance is
reached after fine-tuning on the available data points. The set of prompts we used for fine-tuning
and evaluation1 and further details on our chosen tasks are available in Section A.

We fine-tune the Llama 3.1 8B Instruct model (Grattafiori et al., 2024) on our set of downstream
tasks to evaluate performance after fine-tuning on varying data sizes. Measuring the performance
on every possible fine-tuning data size between 1 and 5000 would require 5000 fine-tuning runs
for each task and therefore be prohibitively expensive. Instead, we fine-tune the model with 50,
100, 200, 500, 1000, 2500, and 5000 randomly selected data points. We use full model fine-tuning
instead of parameter-efficient fine-tuning (PEFT) techniques such as LoRA (Hu et al., 2021), as
PEFT methods can exhibit a notable performance gap compared to full model fine-tuning (Biderman
et al. (2024); Zhang et al. (2024)) and greater sensitivity to the choice of hyperparameters. Our
choice of hyperparameter and training settings are listed in Section C

1redacted
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Figure 2: Comparing data budget (from 0 to 5000 examples on log-scale, x-axis) and task perfor-
mance (from zero-shot to human-level performance, y-axis) across the 30 downstream tasks. The
plots are sorted by speed of convergence to the maximum performance level as the fine-tuning data
size increases.

Our empirical results, shown in Fig. 2, demonstrate that the scaling relationship between fine-tuning
data size and performance is highly task-dependent. Many tasks reach human-expert level perfor-
mance with fewer than 5000 fine-tuning examples. Some tasks (top rows of figure Fig. 2) show little
to no improvement in the lower data regime but display a substantial boost in performance after a
certain inflection point. The others (bottom row of Fig. 2) show an almost immediate increase in
accuracy with as few as 50 fine-tuning examples. Later in Section 3, we will define a metric that
captures this variability in data efficiency.

Interestingly, zero-shot accuracy of a task does not necessarily correlate with task data efficiency;
tasks with similarly low or high zero-shot accuracies can have widely different task data efficiencies.
We discuss this further in Section A as we report the task-specific raw zero-shot and maximum
accuracy.

3 MEASURING DATA EFFICIENCY

As discussed above, we informally define the “data efficiency” of a given task as the extent to which
we expect performance to improve when annotating and training on additional training examples.
In other words, the more data efficient a task is, the fewer data points are required for the model
to “solve” it. To better quantify this notion, we require a precise measurement that reflects our
definition.

To formulate a reliable metric for data efficiency, we make a series of assumptions inspired by the
results of Section 2. First, we assume that, across all tasks, there is limited benefit in annotating
additional examples above some maximum data budget. In Fig. 2, performance for many tasks has
reached close to human-level performance or otherwise plateaued by 5000 examples, so we assume
that for this choice of base model there is limited room for improvement after annotating 5000
examples. This assumption will prove valuable later when we aim to map the prediction of our data
efficiency metric back to a concrete estimate of the number of training examples required to reach a
certain level of performance. Second, we assume that task performance improves monotonically as
the data budget increases. We consider this a safe assumption because, while it is nearly always true
in practice, a practitioner would just choose to use a smaller training dataset in cases where training
on more data results in worse performance. In the rare cases where this assumption did not hold
in our experiments, we consequently replace the worse performance at the higher budget with the
performance at the next-lowest budget, allowing us to capture the gains from additional data and the
model’s saturation point.

3.1 DATA EFFICIENCY DEFINITION

Having motivated our notion of data efficiency and stated our assumptions, we now introduce our
proposed metric for concretely measuring data efficiency. Given a fine-tuning data budget n ∈ [0, N ]
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where N = 5000 is the maximum available dataset size, task k, and performance function for task
k fk(n) : n → acck where acck ∈ [0, 1] is a normalized accuracy that maps the raw zero-shot and
maximum attainable (human-level) performance to 0 and 1 respectively, we define area under the
curve (AUC) of fk(n) as the data efficiency measure:

AUCk =
1

N

N∑
n=0

fk(n)

where AUCk ∈ [0, 1]. Mathematically, our notion of data efficiency measures the average perfor-
mance as a function of the data budget. If AUCk is close to 1, this implies that performance saturates
early with a small number of labeled examples; if closer to zero, this means little to no improvement
is attainable from annotating additional examples.

3.2 PREDICTING DATA EFFICIENCY

Knowing the ground-truth performance curve fk(n) and its AUCk for a given task k would inform
the optimal fine-tuning data, but these measurements can only be made by fine-tuning the model at
varying data budgets, necessitating access to a full fine-tuning dataset as well as sufficient computa-
tional resources. However, an accurate estimate of the data efficiency curve could provide answers
to valuable questions, such as “how many data points should I collect in order to achieve a desired
level of performance?” We therefore turn to devising a method for reliably estimate the data effi-
ciency curve. Notably, such a method is only valuable insofar as it does not require many labeled
examples to perform estimation.

As far as we know, predicting the data efficiency of a task using cheap-to-compute metrics has not
been explored before. We surveyed existing literature for metrics that can capture different aspect
of data efficiency. At a high level, we hypothesize learning difficulty of a task, the task difficulty, to
be related to its data efficiency, which quantifies how quickly the task is learned given more data.
Similar notions of task difficulty have been extensively studied in past work in the context of data
taxonomy analysis (Agarwal et al., 2022; Jiang et al., 2021; Siddiqui et al., 2022; Swayamdipta
et al., 2020), difficult or mislabeled data identification (Agarwal et al., 2022; Jiang et al., 2021; Li
et al., 2024; Pleiss et al., 2020), data selection for efficient training (Mindermann et al., 2022; Paul
et al., 2023), model memorization and forgetting (Feldman & Zhang, 2020; Hooker et al., 2021)
to name a few, and typically involve a measurement made on the model loss (Mindermann et al.,
2022), predictions (Swayamdipta et al., 2020), or gradients (Agarwal et al., 2022; Paul et al., 2023).
More concretely, we hypothesize that these measurements might be correlated to our notion of data
efficiency. Our approach to predicting data efficiency, therefore, amounts to using task difficulty
measurements to predict the task data efficiency AUC′

k using a simple linear regression (Section 3.3).

Baselines predictors of task difficulty As baseline metrics of task difficulty, we consider the gradi-
ent norm and the model’s confidence, as they capture different notions of the difficulty of individual
data points. Unlike some of the past work tracking the variability of these metrics over the course
of training (Agarwal et al., 2022; Paul et al., 2023; Swayamdipta et al., 2020), we simply compute
them at inference time with a single step gradient descent on a handful of randomly selected data
points. We discuss how each of the baseline predictors are computed in detail in Section B.

The gradient norm of the model’s weights with respect to the model loss relates to the magnitude
of change in parameters required to shift the model’s prediction to the target. A larger per-example
gradient norm indicates that a larger weight adjustment needs to be made to minimize the model
error on the given example. Intuitively, learning a task with high gradient norm examples requires
a larger change in the pre-trained model and therefore may require more data. Specifically, we
compute per-sample L2 gradient norm of weights with respect to the cross-entropy loss (Eq. (3))
and aggregate to the task-level (Eq. (4)).

The model confidence quantifies the degree of model certainty in its prediction. In the context of pre-
training data detection, Shi et al. (2024) demonstrates that high model-assigned probabilities on an
input sequence can be used to detect whether the input was seen during pretraining. Extending this
idea, we investigate whether high model-assigned probabilities on a model’s own prediction serve
as a signal of familiarity with the task, possibly indicating higher data efficiency. Alternatively, high
model confidence across task examples may indicate that the the typical examples have already been
learned. Then fitting on the remaining long-tailed instances must rely on memorization (Feldman &
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Zhang, 2020) — which makes learning data inefficient (Achille et al., 2020; Jiang et al., 2021). We
compute the model confidence by averaging the model probabilities assigned to the tokens in the
predicted target, consisting of the most confidently predicted tokens at each timestep (Eq. (5)). We
then aggregate them to the task-level using median (Eq. (6)).

Our predictor: Gradient cosine similarity We ultimately find that these preexisting metrics do not
serve as sufficiently reliable predictors of data efficiency in our experiments (Section 5). To address
this shortcoming, we take inspiration from the multitask learning literature (Liu et al., 2024; Sener
& Koltun, 2019; Shi et al., 2023; Yu et al., 2020) that studies the conflicting gradient problem, where
data points from multiple tasks point in different directions, resulting in suboptimal multitask mod-
els. To capture gradient conflict, it is typical to measure the cosine similarity between per-sample
gradients of the model’s weights with respect to the loss for different examples. Intuitively, the
gradient cosine similarity measures the conflict in the learning signal from different task examples.
Unlike in the multitask learning methods that aim to minimize gradient conflict, we measure the
degree of conflict within a single task to estimate the task’s learnability. Specifically, we compute
the median batch gradient cosine similarities of task examples (Eq. (1)):

cos simk = median{cos(gi, gj) |(xi, yi), (xj , yj) ∈ B, i ̸= j} (1)

where (xi,yi) and (xj , yj) are a pair of task data points in B, gi, gj are the corresponding gradient of
the weights with respect to the loss, and cos(gi, gj) measures the cosine similarity of two gradient
vectors gi·gj

||gi||||gj || . By definition, this metric ignores the magnitude of the gradient updates. In our
experiments, we find that cos simk of the low-confidence segment of task examples (Eq. (2)) is
the most predictive of our data efficiency metric:

CoS-Low = median{cos(gi, gj) |(xi, yi), (xj , yj) ∈ B, i ̸= j, B ⊆ U0.1} (2)

Specifically, the batch of examples B is sampled from U0.1, the top 10% of the low-confidence
task examples. In the active learning literature, some works find that examples with high model
uncertainty are the most informative for improving model performance (Dredze & Crammer (2008);
Hübotter et al. (2025)). The importance of the low-confidence examples in improving model per-
formance may help explain why our method — which captures the alignment of the learning sig-
nals from low-confidence examples — is most effective at predicting data efficiency, defined as
how quickly a model improves with additional data. However, further theoretical analysis of our
method’s effectiveness is left for future work.

3.3 MAPPING TASK DIFFICULTY TO DATA EFFICIENCY

Recall that our overarching goal is to find a cheaply computable metric that correlates with our
notion of data efficiency (Section 3.1). Given such a correlation, we might hope to be able to
predict data efficiency and, consequently, the data budget required to achieve a certain level of
performance. Concretely, we use the predicted task data efficiency to estimate the corresponding
performance curve f̂k(n), which informs the number of fine-tuning data size required to reach a
target performance. We include a high-level algorithm for efficiently estimating fine-tuning data
size to reach a target performance in Section K.

To map one of the aforementioned task difficulty metrics to a task’s data efficiency, we fit a simple
linear regression to obtain the predicted AUC, denoted by AUC′, as c ∗ d + I , where d is one of
grad normk, conf avgk, cos simk, and CoS-Low, and {c, I} are regression coefficients. To
test each of the metrics on the 30 downstream tasks introduced in Section 2, we use a hold-one-
out setting in which all tasks except the held-out task k are used in training to model the regressor
AUC′ = c ∗ d+ I , and AUC′

k is predicted using the fitted line.

We map the estimated task data efficiency, AUC′
k, to a specific performance curve f̂k(n) such that

its area under the curve (with both its axes normalized to 0 and 1) is precisely AUC′
k, allowing us

to concretely predict the fine-tuning data size required for a performance level. However, there are
multiple ways to model such a curve defined between 0 and 1 on both axes. Following the stated
assumptions on the performance curve fk(n) (that it is a monotonically increasing curve defined
between 0 and 1 on both axes, reaching the maximum performance within the maximum data budget

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of 5000), we consider different parametric functions whose area under the curve matches AUC′
k.

Among the curves satisfying the assumption, we use the the following power function to model
fk(n):

f̂k(n) = np, where p =
1− AUC′

k

AUC′
k

See Section D for details on different parametric curves considered to model a task specific perfor-
mance curve f̂k(n) and their fit against the actual curve fk(n).

4 EXPERIMENTAL SETUP

Metric calculation details. To justify the use of task difficulty proxies from Section 3 to pre-
dict task data efficiency, each metric should incur minimal annotation. Therefore, we require that
grad normk, cos simk and CoS-Low only use 32 annotated samples; deriving conf avgk

is completely annotation-free. The per-sample grad normk and conf avgk are aggregated to
the task-level using median. Similarly, every pair-wise gradient cosine similarity for computing
cos simk and CoS-Low is aggregated using median. See Table 8 for detailed computation over-
head for each metric calculation. Throughout our experiments, AUCk are derived from the data
efficiency curve with the data size in log-scale of base 2. grad normk, conf avgk, cos simk,
and CoS-Low are each used to fit the linear regression line to predict the task AUC for all 30
downstream tasks in a hold-one-out setting (Section 3.3). We repeat the metric calculation on 32 ex-
amples end-to-end 10 times to measure the variance in AUC prediction. In addition, to validate the
robustness of our results across model families and sizes, we replicate our experiments on Mistral
7B Instruct v0.3 (Jiang et al., 2023) and Qwen 2.5 14B Instruct (Bai et al., 2023) (Section 6).

As CoS-Low requires identifying low confidence examples, we run forward passes on at most 2500
unlabeled examples to identify the top 10% lowest confidence examples — i.e., examples with the
lowest conf avg— and randomly sample 32 from the segment. In practice, this extra compute cost
can be lower, as CoS-Low is robust to noise in the low confidence example selection (Section 6).
We run ablation studies calculating grad normk and conf avgk on low confidence examples to
fix the sample group as CoS-Low but do not find them to be very effective Section F.2.

Using LoRA for gradient based metrics. For calculating metrics requiring model gradients,
grad normk, cos simk, and CoS-Low, we use rank-64 LoRA adaptors to store the gradients,
which is both computation and memory efficient. LoRA gradients hold sufficient information needed
to estimate task data efficiency compared to using full model gradients (Section F.3) and avoids the
high cost for storing per-sample gradients in memory, which for Llama 3.1 8B Instruct model is
≈ 32

16 ∗ 8 ∗ 32 examples ≈ 512GB, for a model loaded in half precision.

Baselines. We use base max as an additional baseline that relies on the simple heuristic that
there will be no performance increase before fine-tuning on the maximum budget (i.e., 5000 data
points). This reflects an implicit assumption when the full annotation budget is used upfront before
fine-tuning. As base max assumes static data efficiency curves across tasks, it serves as an upper
bound of data efficiency prediction error.
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 grad_norm_k | corr 0.131 ± 0.042

0.4 0.6 0.8 1.0

 conf_avg_k | corr -0.042 ± 0.015

0.0 0.2 0.4

 cos_sim_k | corr 0.29 ± 0.061

0.0 0.2 0.4 0.6

 CoS-Low | corr 0.675 ± 0.05

Figure 3: CoS-Low (right) shows the strongest relationship with task data efficiency among other
task difficulty metrics. Each metric is compared with the ground-truth task data efficiency (y-axis)
using Spearman’s rank correlation.
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5 EXPERIMENTAL RESULTS

Across our experiments, CoS-Low shows the strongest performance in efficiently estimating data
efficiency and reliably predicts the required fine-tuning data budget across the 30 downstream tasks.
To evaluate performance, we report 1) the correlation between each metric and the task data effi-
ciency, 2) absolute mean error of AUC prediction using each metric, and 3) analysis using CoS-Low
to predict the fine-tuning data size prediction across desired performance levels.

5.1 AUC PREDICTION ACCURACY

Methods Overall Abs. Mean Error

base max 0.391
grad normk 0.130 ± 0.036
conf avgk 0.133 ± 0.036
cos simk 0.124 ± 0.036
CoS-Low 0.086 ± 0.030

Table 1: Mean absolute error in the AUC prediction
using each method. CoS-Low (ours) has the lowest
overall prediction error (in bold) when tested on our
downstream tasks for which we measured the actual
AUCs.

CoS-Low displays the strongest Spearman
correlation (0.675) with task data efficiency
among all metrics considered (Fig. 3). While
past studies track model confidence or gradi-
ent magnitude throughout training to surface
challenging examples or estimate model’s
generalization capability (Agarwal et al.,
2022; Jiang et al., 2021; Li et al., 2024;
Pleiss et al., 2020), our results show that
grad normk and conf avgk computed at
inference time do not display strong rela-
tionships with data efficiency. Consequently,
predicting the task data efficiency using lin-
ear regression yields a statistically signifi-
cant result only for CoS-Low (p-value <
0.0002) and achieves the lowest prediction
error (Table 1) .

While CoS-Low provides a reliable signal for data efficiency, the relationship is much weaker for
cos sim k, suggesting that gradient similarity provides a stronger signal among low confidence
examples than from random examples. However, grad norm k or conf avg k computed on the
same low confidence segment are not predictive of task data efficiency, which we further discuss in
Section F.2. Consequently, we can conclude that CoS-Low’s performance stems from the fact that
the cosine similarity of gradients is an especially useful signal when computed over low-confidence
examples.

5.2 FINE-TUNING DATA SIZE PREDICTION ACCURACY

To translate the observed performance of CoS-Low into tangible cost savings, we run a cost anal-
ysis comparing our task-specific data efficiency prediction method and alternative task-agnostic ap-
proaches for finding the optimal fine-tuning data size for the desired performance level. In practice,
one can incrementally annotate and repeatedly fine-tune the model until the target performance is
reached (“incremental annotation”), or annotate the full dataset (up to 5000 examples) and run a
single fine-tuning (“maximum annotation”). CoS-Low serves as an in-between approach, where
we first fine-tune with the predicted data size, then only train further with incremental annotation
approach if the desired performance has not been reached.

We model the fine-tuning cost C as a fixed amount per training run, as the cost of repeated training
include access to training resources and human oversight, which does not scale linearly with the
dataset size. A denotes the per-example cost of annotation. We assume the number of fine-tuning
examples required to reach near-human-level performance is one of 50, 100, 200, 500, 1000, 2500,
and 5000. The ground truth data size required to reach the desired performance levels are empirically
measured from the 30 downstream tasks.

As shown in Table 2, CoS-Low’s approach balance the trade-off between the “maximum annota-
tion” and “incremental annotation” approaches, achieving relatively low excess annotation and few
extra training runs compared to either extreme. With the cost of fine-tuning as a function of anno-
tation and compute, practitioners can assess the given annotation and compute cost ratio to adopt a
more desirable option. We include further analysis on the fine-tuning data size prediction error of
our method in Section E.
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Desired Perf. Incremental Annotation Maximum Annotation Ours
Extra Annot. Extra Training Extra Annot. Extra Training Extra Annot. Extra Training

70% 0 3C 3860A 0 219A 1C
80% 0 4C 3209A 0 748A 1C
90% 0 5C 2602A 0 701A 1C
95% 0 5C 1699A 0 1115A 1C

Table 2: Incremental annotation leads to 5 additional fine-tuning runs on average to reach 95% of
the human-level performance. Maximum annotation wastes a lot of annotations across all desired
performance levels. Even when CoS-Low approach underestimates the data size required, necessi-
tating incremental annotation, it only requires one extra fine-tuning run on average and much lower
wasted annotation cost.

Coefficient Llama 3.1 8B-Instruct Mistral 7B-Instruct v.03 Qwen 2.5 14B-Instruct

CoS-Low 0.545±0.005 0.797±0.012 0.526±0.025
Intercept 0.310±0.002 0.357±0.002 0.305±0.003

Table 3: Regression coefficient to map CoS-Low to data efficiency varies across model families.

6 ABLATION STUDIES AND FURTHER ANALYSIS

Does CoS-Low display strong correlation with data efficiency across models families of vary-
ing sizes? To address this question, we repeat our experiments on Mistral 7B Instruct v0.3 and
Qwen 2.5 14B Instruct. Training setup and task data efficiency for these model families are dis-
cussed in Section G. CoS-Low remains the strongest metric for data efficiency prediction across
model families (Fig. 12). A key step in our approach is the mapping from CoS-Low to data effi-
ciency using the regression weights, and inconsistent regression weights across mode families poses
a potential challenge (Table 3). However, we note that the regression weights only need to be com-
puted once for each model and can be reused indefinitely for downstream tasks. Alternatively, the
weights can be shared collaboratively within a community to support efficient training.

Can CoS-Low predict data efficiencies of out-of-distribution tasks? To test the generalizability
of CoS-Low beyond the original 30 downstream tasks (primarily classification and multiple-choice
QA), we extend our experiments to 10 out-of-distribution (OOD) tasks not included in the original
set. The OOD tasks comprise two multi-task dataset, four generation tasks, and four domain-specific
downstream tasks (see Section H for details). Specifically, we first validate whether CoS-Low
continues to show strong correlation with task data efficiency among the OOD tasks. We then use
their CoS-Low and the regression coefficients learned from the original 30 downstream tasks to
predict the OOD tasks’ data efficiencies.

As shown in Fig. 4, CoS-Low reliably predicts how data efficiently each task is learned, with high
Spearman’s rank correlation of 0.759 (Fig. 4a) and approximately linear trend between CoS-Low
and task AUC (Fig. 4b). Moreover, once learned, the regression coefficients are reusable to predict
data efficiency of unseen tasks. However, the mismatch between accuracy-based performance curves
in the original 30 tasks and F1-based curves in generation tasks may introduce errors in the prediction
(e.g. the outlier among generation tasks in Fig. 4b), requiring further study.

When is CoS-Low assumption not met? While empirically observed to be true among the tasks
considered, our assumptions that performance reaches a known human-level performance within the
given maximum budget may not always be true. For instance, MMLU (multitask accuracy across 57
subjects, spanning various topics from algebraic math to philosophy) (Hendrycks et al., 2021) and
MedMCQA (more complex dataset, containing medical entrance exam covering 21 medical subjects
and 2,400 healthcare topics) (Pal et al., 2022) are such tasks for which performance remains around
< 75% of human-level with 10,000 training examples.

For such tasks (where the data efficiency curves of these tasks do not follow the proposed np curve)
we observe that the error in fine-tuning data size prediction grows larger. This failure mode of
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Task Corr. with AUC Abs. mean err

OOD tasks 0.727 ± 0.02 0.109 ± 0.05
OOD + Org. tasks 0.712 ± 0.04 0.086 ± 0.03

Org. tasks 0.675 ± 0.05 0.086 ± 0.03

(a) CoS-Low’s correlation with task data efficiency and its
task AUC prediction error. CoS-Low consistently shows
high Spearman’s rank correlation with task data efficiency,
and the learned coefficients can be reused to predict task data
efficiencies. CoS-Low

Ta
sk

 A
U

C

CoS-Low x Task AUC | original task + OOD tasks

30 tasks
multitask
generation
misc

(b) CoS-Low and task AUC across 30 origi-
nal downstream tasks and 10 OOD tasks)

Figure 4: Validating CoS-Low’s generalizability in 10 OOD-tasks, consisting of four multitask
datasets (orange, cross), four generation tasks (red, triangle), and four domain-specific tasks (green,
star).

CoS-Low highlights the difficulty of estimating the point of performance saturation for a given task,
which may be below the human-level performance. Using human-level performance as a proxy for
maximum attainable performance may overestimate the true saturation point of the model, adding
noise to the prediction.

Is the maximum budget of 5000 data points sufficient? As we use the higher of human-level per-
formance and the maximum observed accuracy within 5,000 examples to approximate the model’s
maximum attainable performance, it is important to confirm that the performance within this data
budget is sufficiently close to the true maximum. To establish this cut-off, we first verify that per-
formance gains beyond 5,000 data budget are marginal across the 30 tasks (Section F.4, Fig. 10a).
In addition, we show the impact of increasing the maximum data budget to 10,000 and rerunning
the experiments does not add significant changes to our findings (Section F.4, Fig. 10b). This re-
sult highlights that CoS-Low correlates most strongly with earlier performance improvements at
smaller budgets, rather than the small gains observed at the tail end.

How robust is CoS-Low to Sample Size and Low-Confidence Segment? Throughout our ex-
periments, we select 32 task data samples among the top 10% of low-confidence examples to calcu-
late CoS-Low. While we have demonstrated its high correlation with our data efficiency measure,
we explore how sensitive our method is to the choice of sample size and low-confidence segment.
We vary the sample size and the low-confidence segment and examine 1) the correlation between
the newly computed CoS-Low and task data efficiency, and 2) the mean absolute AUC prediction
error.

We randomly select 4, 8, and 16 examples among the low-confidence segment of the downstream
task to compute CoS-Low and use them to predict task data efficiency. We find that the relationship
between CoS-Low and the task AUC becomes weaker (Fig. 8a in Section F.1) and the overall
AUC prediction error increases with smaller batch size (Fig. 9a in Section F.1). However, the AUC
prediction still has a statistical significance (p-value <0.05) using sample size of 8 or 16, suggesting
our method is reasonably robust to the choice of sample size.

Another key step in computing CoS-Low is the selection of datapoints in the “low confidence seg-
ment” of the task dataset. To measure the sensitivity to datapoint selection from the low-confidence
segment, we sample task data points from the top 30%, 50%, and 70% of the low-confidence seg-
ment. Notably, sampling examples from the top 30% or even 50% of low-confidence segment still
produces a Spearman’s rank correlation greater than 0.5 with the task data efficiency (Fig. 8b in Sec-
tion F.1) and results in statistically significant AUC prediction (Fig. 9b in Section F.1). This result
indicates that our method can perform well without needing to scan the entire dataset to identify the
lowest-confidence examples.
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7 RELATED WORK

Data efficiency In the context of pre-trained LLMs, past work (Aghajanyan et al. (2020); Brown
et al. (2020); Sanh et al. (2022); Wei et al. (2022); Zhou et al. (2023)) demonstrates that knowledge
is mostly learned during the pretraining phase, allowing for effective knowledge transfer during fine-
tuning. However, learning long-tail knowledge requires memorization and typically requires more
data (Achille et al. (2020); Feldman & Zhang (2020); Hooker et al. (2021); Jiang et al. (2021)).
Zhang et al. (2024) quantifies the impact of fine-tuning data size on the downstream performance
to establish a fine-tuning scaling law. For various data efficiency predictors discussed, we take
inspiration from multi-task learning and active learning literature. Multi-task learning literature Yu
et al. (2020); Liu et al. (2024); Sener & Koltun (2019); Shi et al. (2023); Yu et al. (2020) introduce the
concept of conflicting gradients among more than two tasks, causing convergence difficulty. Active
learning approaches aim to choose which unlabeled training samples should be selected for labeling,
using statistics such as model uncertainty (Dredze & Crammer (2008); Hübotter et al. (2025)).

Task difficulty Past work that aims to measure task difficulty often examines sample-level statistics
tracked over training. Some work tracks the variance of the model confidence (Swayamdipta et al.
(2020)) or per-sample gradients (Agarwal et al. (2022)) during training to surface hard or ambiguous
examples. Pleiss et al. (2020); Siddiqui et al. (2022) study data taxonomy (e.g. typical, atypical,
challenging, mislabeled, etc.) by observing a data point’s learning curve during training. Other work
aims to select a subset of more challenging or useful examples to learn the task more data-efficiently
(Mindermann et al. (2022); Paul et al. (2023)). These works observe that difficult examples tend to
be highly ambiguous or without consistent labels, impacting the rate of learning. We refer to these
works and use sample-level difficulty proxies to compute task-level difficulty, but our setting differs
because we cannot measure training trajectories without performing fine-tuning.

8 CONCLUSION

In our work, we introduce a notion of task data efficiency using the AUC of performance curve as
the fine-tuning data size increases. We empirically show that data efficiency can vary dramatically
across downstream tasks and aim to predict data efficiency by exploring several measures of task
difficulty. Our chosen method leverages the median gradient cosine similarity of low-confidence
examples, CoS-Low, and can efficiently estimate the task data efficiency using as few as 32 task
examples. Finally, we show that using our method to find the optimal data size for a desired per-
formance level can save unnecessary annotation or fine-tuning cost incurred when using simple
heuristics.

One future direction of our work is to extend our method to generation tasks using non-accuracy
based metrics (e.g., BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) scores, or even LLM-as-
a-judge evaluation (Gu et al., 2025)). Another direction is establishing a more rigorous relationship
between model evolution after fine-tuning and low-confidence training samples’ gradient cosine
similarity. Currently, our work focuses on practical implementation with high-level theoretical jus-
tification. Lastly, we assume either the highest observed performance within the data budget or
human-level performance is the maximum attainable performance on any given model. In future
research, metrics derived from model internals, including the ones considered in our work for task
difficulty estimation, can be used to check the degree of model saturation and find the model-specific
upper-bound.
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Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Fa-
rooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria
Jose Ramı́rez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast,
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A DOWNSTREAM TASK OVERVIEW

We select 30 downstream tasks that span multiple domains including healthcare, law, finance, safety,
and other domains requiring natural language reasoning ability. All but three tasks have at least
2500 training examples (Temporal sequences (Srivastava et al., 2023) has 800, RTE (Wang et al.,
2020) 2241, Overruling (Zheng et al., 2021) 1920). Since our data efficiency metric—task AUC—
requires evaluating model performance with up to 5000 fine-tuning examples, we extrapolate the
performance for these tasks by assuming their peak performance at the maximum available data size
is comparable to the performance at fine-tuning data size of 5000.

Table 4 provides a high-level overview of each task, including its zero-shot accuracy, maximum
performance after fine-tuning, maximum attainable performance (defined as the greater of known
human-level accuracy or the best fine-tuned performance with the 5000-example data budget), and
the task data efficiency. We show that neither high or low task zero-shot performance consistently
predicts task data efficiency in Fig. 5, highlighting that estimating downstream task data efficiency is
a non-trivial problem. Below, we categorize the tasks by their relevant domains and briefly describe
each.

Medical

Ade corpus v2 classification (Gurulingappa et al., 2012) consists of medical statements indicating
the presence of an adverse drug event (ADE=1 or 0), designed to support the extraction of drug-
related adverse effects from medical case reports. MedMCQA (Pal et al., 2022) is a multiple-choice
question dataset derived from a real-world medical entrance exam covering 21 medical subjects and
2,400 healthcare topics.

Law

Overruling (Zheng et al., 2021) comprises extracted sentences from legal opinions, a subset of which
overrule a prior decision (label=1, 0 otherwise).

Intent Detection

Banking77 (Casanueva et al., 2020) consists of online banking queries labeled with one of 77 pre-
defined user intent categories, supporting intent classification in the financial service domain. Toxic-
Chat (Lin et al., 2023) consists of user prompts collected from the Vicuna online demo, annotated for
toxicity in the user prompts. Circa (Louis et al., 2020) presents brief question-answer dialogues with
ambiguous responses and crowd-sourced ground-truth labels indicating the underlying intention of
the ambiguous answer.

World Knowledge

CommonsenseQA (Talmor et al., 2019) evaluates commonsense reasoning ability requiring prior
knowledge across a range of target concepts. MMLU (Hendrycks et al., 2021) assesses mul-
titask accuracy across 57 subjects, spanning various topics from algebraic math to philosophy.
Sports understanding (Srivastava et al., 2023) examines general understanding of sports by pre-
senting plausible or implausible statements related to sports, given specific actions in sports and
names of athletes. Hyperbaton (Srivastava et al., 2023) tests the ability to identify the correct order
of adjectives in given text.

Logical Deduction and Reasoning

Boolean expressions and Web of lies (Srivastava et al., 2023) consist of nested boolean logic,
presented either in formal notation or natural language, that evaluate to True or False. For-
mal fallacies syllogisms negation (Srivastava et al., 2023) assesses the ability to distinguish be-
tween deductively valid and invalid arguments given a premise and corresponding argument. Ob-
ject counting (Srivastava et al., 2023) evaluates the ability to count simple objects described in a
sentence while ignoring irrelevant distractors. Temporal sequences (Srivastava et al., 2023) requires
deduction over a sequence of temporally ordered events. Tracking shuffled objects (Srivastava et al.,
2023) tests the ability to track object ownership as the object is transferred among multiple individ-
uals in a sequence of actions.

Classic Natural Language Inference
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ANLI (Nie et al., 2020) and MNLI (Wang et al., 2019), and RTE (Wang et al., 2020) are natural
language inference (NLI) benchmarks, each consisting of a premise and a hypothesis, with their
relationship categorized as entailment, contradiction, or neutral. ANLI is constructed via adversar-
ial human-and-model-in-the-loop procedure; MNLI consists of text extracted from speech, fiction,
government speech; and RTE comprises news and Wikipedia texts.

Miscellaneous Natural Language Understanding

QQP (Wang et al., 2019) and MRPC (Wang et al., 2019) assess semantic equivalence between pairs
of sentences extracted from the Quora discussion forum and online news respectively. SST-2 (Wang
et al., 2019) is a sentiment classification task based on movie reviews. Fig-QA (Liu et al., 2022a)
evaluates the ability to interpret figurative language given human-written creative metaphors. WiC
(Wang et al., 2020) is a word sense disambiguation task determining if a polysemous word has the
same meaning in two different text snippets.

Reading Comprehension

QuAIL (Rogers et al., 2020) and RACE (Lai et al., 2017) are multiple-choice reading comprehension
tasks. QuAIL consists of texts extracted from fiction, news articles, blogs, and the Quora forum.
RACE is based on English exam passages designed for Chinese students aged between 12 and 18;
in our experiments, we use the subset containing high-school level passages. BoolQ (Wang et al.,
2020) consists of a short passage paired with a yes-or-no question related to the passage. QNLI
(Wang et al., 2019) assesses whether the answer to a question can be inferred from a given paragraph
extracted from Wikipedia.

Visual and Spatial Reasoning

MNIST ascii (Srivastava et al., 2023) is a multi-label classification task based on the original MNIST
dataset, where digits from 0 to 9 are rendered in ASCII string format rather than images. Reason-
ing about colored objects (Srivastava et al., 2023) assesses the ability to understand spatial relation-
ships by interpreting visual descriptions of scenes involving colored objects.
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Spearman corr -0.3139

Figure 5: Relationship between zero-shot accuracy and task data efficiency. While higher zero-
shot accuracy of tasks close to performance saturation may indicate lower task data accuracy, the
relationship is not consistent (Spearman rank correlation of -0.3139).

B TASK DIFFICULTY METRIC DEFINITIONS

We compute grad normk as per-sample L2 gradient norm of weights with respect to the cross-
entropy loss (Eq. (3)), aggregated to the task-level:

grad norm(xi, yi) = ||∇wL(xi, yi)|| (3)

grad normk = median{grad norm(xi, yi) | (xi, yi) ∈ B} (4)
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Task Model Accuracy Max Attain. Acc. Task AUCZero-shot Max Fine-tuned

BoolQ 0.85 0.90 0.90 0.165
ANLI 0.39 0.74 0.92 0.184
WiC 0.62 0.86 0.86 0.186

SST-2 0.89 0.95 0.98 0.235
Formal fallacies syllogisms negation 0.48 0.99 0.99 0.245

Tracking shuffled objects 0.20 0.95 1.00 0.256
MRPC 0.75 0.88 0.88 0.291

Reasoning about colored objects 0.39 0.94 1.00 0.332
Web of lies 0.52 1.00 1.00 0.338
MedMCQA 0.42 0.79 0.90 0.343

QQP 0.76 0.86 0.86 0.381
MMLU 0.25 0.65 0.90 0.382

Sports understanding 0.66 0.99 1.00 0.386
Boolean expressions 0.71 0.99 1.00 0.397

MNIST ascii 0.09 0.94 0.98 0.397
MNLI 0.64 0.87 0.92 0.417

Banking77 0.33 0.93 0.93 0.434
Fig qa 0.55 0.95 0.95 0.446

Toxicchat0124 0.88 0.97 1.00 0.489
QuAIL 0.29 0.84 0.84 0.492
RACE 0.50 0.84 0.85 0.500

CommonsenseQA 0.23 0.80 0.89 0.504
Overruling 0.82 0.97 0.97 0.516

RTE 0.26 0.88 0.94 0.518
Object counting 0.25 0.97 0.97 0.523

Hyperbaton 0.60 1.00 1.00 0.604
QNLI 0.57 0.93 0.93 0.660

Ade corpus v2 classification 0.47 0.95 0.95 0.664
Circa 0.11 0.91 0.92 0.671

Temporal sequences 0.25 1.00 1.00 0.770

Table 4: Downstream task’s zero-shot accuracy, maximum accuracy after fine-tuning, maximum
attainable accuracy (greater of the the human-level performance or the maximum fine-tuned accu-
racy), and task data efficiency metric (AUC). The tasks are sorted in the order of ascending task
AUC, just as in Fig. 2

where (xi, yi) is an i-th input and corresponding target label with length T , from a randomly sam-
pled set of task data points B. L is the cross-entropy loss − 1

T

∑T
t=0 logP [yit], and P [yit] is the

probability assigned by the model to the t-th target label.

conf avgk is computed by averaging the model probabilities assigned to the predicted target y′i
generated using greedy decoding (Eq. (5)). We then aggregate them to the task-level using median
(Eq. (6)).

conf avg(xi, yi) =
1

T

T∑
t=1

P [y′it] (5)

conf avgk = median{conf avg(xi, yi) | (xi, yi) ∈ B} (6)

Note that T is the length of the target label y and is known in advance because our setup mainly
considers short generation tasks.

C FINE-TUNING SETUP

To measure task data efficiencies, we run full model fine-tuning on Llama 3.1 8B Instruct, Mistral 7B
Instruct v0.3 and Qwen 2.5 14B Instruct on each of the 30 downstream tasks (results in Section 2).
All experiments are conducted using two Nvidia H100 GPUs for the 8B and 7B models, four for
the 14B model, on a high-performance compute cluster. We use a warmup ratio of 0.1, an effective
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batch size of 32, a learning rate of 1e-5, and a cosine learning rate scheduler. Models are trained
for a maximum of 500 steps, and the reported fine-tuned performance corresponds to the checkpoint
with the lowest evaluation loss within the 500 steps. We use early stopping with a patience of
20, terminating training if the evaluation loss does not improve over 20 consecutive logging steps.
Training examples with sequence lengths exceeding 2048 tokens are filtered out. All training runs
use a fixed random seed for reproducibility.

Rounds of fine-tuning and evaluation with varying fine-tuning data sizes (50, 100, 200, 500, 1000,
2500, 5000) use the same test split within the same task. The test set contains up to 5000 examples.
Validation set sizes are capped at 20% of the corresponding training size (e.g., a training set of 50
examples use a validation set of at most 10 examples) to reflect realistic low-resource fine-tuning
conditions.

D PARAMETRIC CURVE TO MODEL DATA EFFICIENCY

As discussed in Section 3.3, we map the predicted task data efficiency AUC′
k to a task-specific

performance curve f̂k(x) using a power function xp, where p =
1−AUC′

k

AUC′
k

, to model the relationship
between fine-tuned performance and fine-tuning data size. In this section, we show an alternative
approach using a piecewise linear function Eq. (7) to map AUC′

k to the performance curve f̂k(x):

f̂k(x) =

{
min{ 1

2(1−AUC′
k)
∗ x, 1} AUC′

k ≥ 0.5

max{ 1
2AUC′

k
(x− 1) + 1, 0} AUC′

k < 0.5
(7)

where x is the percentage of the data budget (i.e., data size normalized between 0 and 1). We
compare the fit of the predicted performance curves f̂k(x), estimated using either the power function
or the piecewise linear function, with the original performance curves fk(x) (Fig. 6).
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(a) Actual performance curve and the predicted performance curve using linear function.
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(b) Actual performance curve and the predicted performance curve using power function.

Figure 6: The actual performance curve compared with both power and linear functions.

The absolute error of the fit for the power function is slightly higher, at 8.47% error, whereas the
piecewise linear function has 8% error. Despite the marginal difference, we choose the power func-
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tion in our analyses as it better captures the gradual performance improvements in the low-data
regime, whereas the piecewise linear function introduce a sharp transition.
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Figure 7: Actual vs. Predicted fine-tuning data size across all desired performance levels between
40% and 95%.

Fig. 7 illustrates CoS-Low’s data size prediction error across varying desired performance levels of
40%, 50%, 60%, 70%, 80%, 90%, and 95%. Fig. 7 illustrates that our method is able to identify
cases where only a small number of fine-tuning examples are sufficient (illustrated by the darker
blue diagonal squares in the upper-left corner of Fig. 7).

F ABLATION STUDIES

F.1 SAMPLE SIZE AND CONFIDENCE SEGMENT

Fig. 8 and Fig. 9 demonstrate that CoS-Low is reasonably robust to both the sample size and the
threshold of low-confidence segments. Fig. 8a shows that CoS-Low continues to exhibit a non-
random relationship with task data efficiency even when the number of task examples used to com-
pute CoS-Low is less than 32 (our default). In particular, the prediction of task data efficiency made
using as few as 8 or 16 examples remains statistically significant (p-value < 0.05).

Similarly, CoS-Low derived using confidence thresholds higher than the default top 10% is pre-
dictive of the task data efficiency, as reported in Fig. 9b. Although the strength of the relationship
becomes weaker, using samples from top 50% low-confidence segment still yields statistically sig-
nificant meaningful predictions (Fig. 9b).

F.2 CALCULATING GRAD NORM K AND CONF AVG K ON LOW CONFIDENCE EXAMPLES

We run additional ablation studies to calculate grad normk and conf avgk; gradient norm and
average model confidence on the low-confidence examples used for CoS-Low (Table 5). Among
all task difficulty metrics considered, CoS-Low (ours) is the most predictive of the data efficiency,
which indicates that its predictive power not only comes from the low confidence examples but also
from gradient signal conflict from cosine similarity metric.

F.3 FULL VS. LOW DIMENSION MODEL GRADIENT
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(a) Task data efficiency (AUC) and CoS-Low, derived using varying sample sizes of 4, 8, 16.
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(b) Task data efficiency (AUC) and CoS-Low, derived from the top 30, 50, 70% low-confidence segments.

Figure 8: Relationship between the task data efficiency and CoS-Low, across varying sample sizes
and low-confidence segment. The strength of the relationship is captured using Spearman’s rank
correlation.

Batch Size Mean Abs. Error p-val

4 0.121 0.068
8 0.111 0.015

16 0.103 0.0048

(a) AUC prediction error by batch size.

Conf. segment Mean Abs. Error p-val

30% 0.095 0.00066
50% 0.107 0.0064
70% 0.128 0.18

(b) AUC prediction error by low-confidence seg-
ment threshold.

Figure 9: The mean absolute AUC prediction error across all downstream tasks using CoS-Low
with varying batch sizes and low-confidence segment thresholds. Fig. 9a and Fig. 9b display statis-
tically significant predictions (p-value < 0.05) can be made with the sample size as small as 8 and
low-confidence threshold as high as 50%.

Methods Correlation with data efficiency

grad normk -0.1054 ± 0.041
conf avgk -0.1374 ± 0.023
CoS-Low 0.675 ± 0.056

Table 5: Correlation between data efficiency and task
difficulty metrics computed on low-confidence ex-
amples.

We explore the amount of information re-
tained or lost due to using rank 64 LoRA
gradient or dimensionality reduction tech-
nique such as Gaussian random projection,
instead of full model gradients when com-
puting CoS-Low. For Gaussian random
projection, we randomly project each layer’s
full gradient to a lower dimension and con-
catenate them into a single vector to com-
pute the metric.

We do not observe a clear advantage in using
a much lower dimensional gradient (Table 6), supporting that using low-rank gradients is an effective
and efficient way of computing data efficiency predictor, CoS-Low.
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Methods Correlation with data efficiency Size of Gradient Vector

Full gradient grad norm k 0.160 ± 0.021 8GB
Full gradient CoS-Low 0.628 ± -0.052 8GB

Rank 64 CoS-Low (our choice) 0.675 ± 0.056 approx. 160M
Random Projection CoS-Low 0.630 ± 0.053 approx. 1.6M

Table 6: CoS-Low computed with rank 64 LoRA gradient outperforms alternate approaches and is
relatively memory efficient compared to CoS-Low computed with full gradient vectors.

F.4 INCREASING THE MAXIMUM DATA BUDGET TO 10,000

We measure the average raw accuracy at each fine-tuning data size across the 30 tasks, and use tasks
with more than 10,000 available data points (15 out of 30) to rerun the experiments end-to-end with
the maximum data budget set to 10,000. Fig. 10 shows the

Data budget 50 100 200 500 1000 2500 5000 10000

Avg. acc. 0.155 0.180 0.233 0.322 0.360 0.400 0.412 0.415

(a) Avg. raw accuracy at each data budget across the 30 downstream tasks.

Max. data budget Corr. with task data efficiency Abs. mean error

5k budget (30 tasks) 0.675 ± 0.05 0.086 ± 0.030
10k budget (15 tasks) 0.699 ± 0.10 0.085 ± 0.031

(b) Spearman’s rank correlation between CoS-Low and task AUC, and the AUC prediction error when perfor-
mance curves are measured with 10,000 as maximum data budget, instead of 5,000.

Figure 10: Across the 30 tasks, the accuracy gain is marginal when using more than 5000 fine-tuning
data points, and CoS-Low’s high correlation with task AUC and its AUC prediction error remain
stable when higher data budget is used (Fig. 10b).

F.5 PERFORMANCE CURVES UNDER DIFFERENT RANDOM SEED

We use a fixed seed (seed=123) when sampling data points to fine-tune for fine-tuning across vary-
ing data sizes and use these runs to plot the task performance curves (see Fig. 2). To account for
performance variance due to randomness in sampling, we repeat Llama 3.1 8B Instruct fine-tuning
with different random seeds for all data budgets (50, 100, 200, 500, 1000, 2500, 5000) on the 30
downstream tasks. We report the median raw accuracy for each of the three random runs, along with
the accuracy differences between the original and the new random seed runs (Table 7). The resulting
median differences in task AUCs are negligible, with -0.006 (seed 48) and -0.017 (seed 37) relative
to the original task AUCs.

G GENERALIZING ACROSS MODEL FAMILIES

To assess generalizability across model families, we extend our experiments to the Mistral 7B In-
struct v0.3 and Qwen 2.5 14B Instruct. We measure task data efficiency (Fig. 11) and compute
corresponding task difficulty metrics to predict data efficiency, using the same compute resources
and fine-tuning hyperparameters as in the Llama 3.1 8B Instruct experiments.

As shown in Fig. 12, CoS-Low consistently demonstrates the strongest correlation with task
data efficiency and outperforms alternative metrics such as grad norm k, conf avg k, and
cos sim k.

While these results demonstrate that task data efficiency prediction using CoS-Low generalizes
beyond the Llama 3.1 8B Instruct model, the relationship between task data efficiency and CoS-Low
is weaker in comparison. One possible explanation is the larger gap between the fine-tuned Mistral
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Median raw accuracy Median diff. in raw accuracy
Data budget Seed 123 (org) Seed 48 Seed 37 Seed 123 vs. 48 Seed 123 vs. 37

0 0.492 0.619 0.558 0.026 0.026
50 0.67 0.728 0.708 0.028 0.028
100 0.702 0.73 0.747 0.024 0.032
200 0.784 0.777 0.771 0.023 0.020
500 0.816 0.818 0.817 0.028 0.018

1000 0.872 0.873 0.889 0.016 0.014
2500 0.923 0.916 0.918 0.014 0.011
5000 0.937 0.930 0.927 0.010 0.009

Table 7: Raw accuracy at each data budget across three fine-tuning runs with different random
seeds, and the corresponding accuracy difference between the original run (seed=123) and the two
additional runs (seed=48, 37).

and Qwen model performance and human expert-level accuracy for some tasks, due to fine-tuning
not improving the performance further from their zero-shot performance.

We hypothesize that the weaker relationship may also be partly attributed to the sensitivity of low-
confidence example selection to model-specific tokenization. Our current approach selects low-
confidence examples based on the lowest average token probabilities. However, for multi-token out-
puts, simple averaging does not distinguish between uncertain predictions across all tokens and cases
where a single high- or low-confidence token skew the average. The Mistral tokenizer encounters
this problem, as it represents multi-digit numbers using multiple tokens. To address this problem, we
test perplexity-based confidence estimation to select the low-confidence examples, which provides
length-normalized uncertainty estimation. As shown in Fig. 12a, we find that perplexity-based low-
confidence example sampling (“CoS-Low (PPL)”, correlation = 0.52) achieves higher correlation
with data data efficiency compared to probability averaging approach (“CoS-Low”, correlation =
0.5). This improvement suggests that CoS-Low can benefit from refined low-confidence estimation,
especially for tasks involving longer target outputs.

H GENERALIZING TO OUT-OF-DISTRIBUTION TASKS

OOD-tasks used to test the generalizability of CoS-Low beyond the 30 original downstream tasks
(Section 6) consist of two multi-task datasets, four generation tasks, and four domain specific tasks.
For all OOD-tasks, we use the model’s maximum performance within the 5,000 data budget as the
maximum attainable performance proxy.

Each of the two multitask datasets consist of five tasks sampled from the 30 downtream tasks, one
consisting of MNIST ascii, Boolean expressions, Object counting, Sports understanding, Hyper-
baton, and the other of Web of lies, Reasoning about colored objects, Temporal sequences, Track-
ing shuffled objects, Formal fallacies syllogisms negation.

The four generation tasks are SQuAD 2.0 (Rajpurkar et al., 2018), Disfl-QA (Gupta et al., 2021),
QA WikiData (Srivastava et al., 2023), and CoQA (Reddy et al., 2019). For generation task, model
perplexity (PPL) on the generated tokens to identify low-confidence segment instead of average
probabilities of the generated tokens (see Section J for metrics considered to estimate model confi-
dence).

The four domain-specific tasks are intent-classification dataset (Larson et al., 2019), disaster mes-
sage categorization (Munro, 2012), twitter sentiment analysis from HuggingFace (zeroshot/twitter-
financial-news-sentiment), and MMLU-Pro (Wang et al., 2024). The four downstream tasks are
either classification or multiple-choice QnA style tasks, similar to the 30 downstream tasks consid-
ered, but do not have a reported human-level performance.
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(a) Data Efficiency curves of Mistral 7B Instruct v0.3.
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(b) Data Efficiency curves of Qwen 2.5 14B Instruct.

Figure 11: Comparing data budget (from 0 to 5000 examples on log-scale, x-axis) and task per-
formance (from zero-shot to human-level performance, y-axis) across the 30 downstream tasks, for
Mistral 7B Instruct v0.3 and Qwen 2.5 14B Instruct.
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(a) Correlation between task difficulty metrics with data efficiency for Qwen 2.5 14B Instruct.
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Figure 12: CoS-Low shows the strongest correlation with task data efficiency. The relationship is
the strongest, however, for Llama 3.1 8B Instruct, followed by Mistral 7B Instruct v0.3 and Qwen
2.5 14B Instruct.

I COMPUTATION AND MEMORY REQUIREMENT FOR TASK DIFFICULTY
METRIC CALCULATION

We assuming backward pass takes twice as much time as forward pass. The main memory require-
ment is that the model fits in a GPU to be able to run forward and backward pass. The metrics
requiring gradients use per-sample gradients of rank 64 LoRAs, takes 1% of the model weights,
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Method Compute cost Memory requirementForward pass Backward pass

grad normk 32 * C 32 * 2C O(M)
conf avgk 32 * C O(M)
cos simk 32 * C 32 * 2C O(M)
CoS-Low 2500 * C + 32 * C 32 * 2C O(M)

Table 8: Compute and memory requirement of calculating task difficulty metrics. C denotes the
time of single forward pass, and M the size of the full model.

and adds only a minor memory requirement. CoS-Low requires additional forward passes to iden-
tify low confidence examples, but the same number of backward pass as it only uses 32 annotated
examples for actual metric calculation.

For an 8B model, peak GPU memory storing the rank 64 LoRA gradients of the 32 samples is
(BFloat16 memory) * (model parameter requiring gradients) * (batch size) ≈ (2) * (8B parameters
* 0.02) * (32) ≈ 10 GB. The model loaded on GPU adds an extra (BFloat16 memory) * (full model
parameter) = 2 * 8 ≈ 16GB.

J ESTIMATING MODEL CONFIDENCE

In our exploration of model confidence estimation, many alternatives were considered, including
model perplexity on its own generation (PPL) and variational ratio for original prediction (VRO).
Among these, CoS-Low on the highest PPL segment showed the strongest correlation with data
efficiency than VRO or average softmax probability (our approach). We choose average softmax-
probability as confidence proxy for the ease of implementation and reasonably strong correlation
with data efficiency; also, it does not require multiple model response generations and requires the
least amount of compute. In our experiments, computing PPL required roughly 2x more forward
passes, VRO up to 8x. Nonetheless, PPL may be preferred for tasks involving multi-token outputs,
especially as average softmax-probability can be skewed by high or low probability tokens as the
generation length increases.

K USING COS-LOW TO CONCRETELY ESTIMATE FINE-TUNING DATA SIZE

We describe a high-level algorithm using CoS-Low and the regression weights learned from
ground-truth AUCs across fine-tuning tasks (i.e. Table 3) to predict the concrete fine-tuning data
size required to reach the target performance.

Algorithm 1 Predicting Fine-tuning Data Requirements from CoS-Low

Require: CoS-Low ℓ, target performance y, coefficients (c, I), max budget Nmax

1: Step 1: Predict AUC from CoS-Low
2: Predicted AUC: ÂUC← c · ℓ+ I

3: Step 2: Estimate required data size

4: % from data budget needed: p← y
ÂUC

1−ÂUC

5: Estimated fine-tuning data size: nrequired ← 2 p·log(Nmax)

6: return nrequired

Note that the log transformation is necessary because the x-axis (fine-tuning data budget) of the
performance efficiency curve is on a log-scale (Section 4). Log scale captures the rapidly changing
model performance improvements at smaller data sizes.
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