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ABSTRACT

Vector-quantized based models have recently demonstrated strong potential for
visual prior modeling. However, existing VQ-based methods simply encode visual
features with nearest codebook items and train index predictor with code-level
supervision. Due to the richness of visual signal, VQ encoding often leads to large
quantization error. Furthermore, training predictor with code-level supervision can
not take the final reconstruction errors into consideration, result in sub-optimal
prior modeling accuracy. In this paper we address the above two issues and propose
a Texture Vector-Quantization and a Reconstruction Aware Prediction strategy.
The texture vector-quantization strategy leverages the task character of super-
resolution and only introduce codebook to model the prior of missing textures.
While the reconstruction aware prediction strategy makes use of the straight-
through estimator to directly train index predictor with image-level supervision.
Our proposed generative SR model (TVQ&RAP) is able to deliver photo-realistic
SR results with small computational cost.
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Figure 1: Vanilla VQ vs. Texture VQ. Vanilla VQ directly encode the entire visual feature space, a
large codebook is required to capture complex combinations of structure and texture information. Our
Texture VQ focuses on modling textures absent in LR inputs, thereby mitigating the difficulty of visual
encoding for generative super-resolution. Notably, TVQ achieves significantly better reconstruction
performance than the vanilla method across a range of codebook sizes. Experimental details can be
found in Section 4.3

1 INTRODUCTION

Image super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-
resolution (LR) counterparts. Classical SR methods target at minimizing the Root Mean Square Error
(RMSE) between HR estimation and ground truth image (Liang et al., 2021; Zhang et al., 2024; Long
et al., 2025), tend to produce overly smooth results (Ledig et al., 2017). To mitigate this limitation,
generative SR (GSR) methods introduce impressive generative modeling techniques, e.g. generative
adversarial networks (GANs) (Wang et al., 2018; 2021; Zhang et al., 2021) and diffusion-based
models (Rombach et al., 2022; Yue et al., 2023; Wang et al., 2024b; Zhang et al., 2025), to obtain the
capability of prior distribution modeling, has been a thriving research topic due to its highly practical
value in generating photo-realistic SR results.
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(b) Image-Level Reconstruction aware Prediction

Limitation

(a) Vanilla Code-Level Cross-Entropy Prediction

Different incorrect codes cause varying visual impacts. 

or

Figure 2: (a) Code-level loss ignores the visual
impacts caused by the predicting results and penal-
izes all non-ground-truth predictions equally. (b)
Our reconstruction-aware training strategy guides
the predictor according to the visual impacts intro-
duced by different code predictions.

Recently, besides the GAN-based and Diffusion-
based generative modeling techniques, another
category of generative visual modeling ap-
proaches, i.e. the vector-quantized variational
autoencoder (VQ-VAE), has shown advantages
in modeling accuracy and efficiency in image
generation tasks (Van Den Oord et al., 2017;
Esser et al., 2021; Ramesh et al., 2021; Lee
et al., 2022; Tian et al., 2025). At the core
of VQ-based model is a visual codebook, with
which visual features are encoded as their cor-
responding nearest codebook items and visual
prior is modeled by training codebook index pre-
dicting networks. Despite their great success in
visual prior modeling, the existing VQ-based
methods still suffer from the following two lim-
itations. First, most of the existing VQ-based
methods directly replace visual features with
nearest codebook items, due to the richness and
diversity of natural images, a large codebook is
often required to fulfill the requirement of cod-
ing accuracy (see Figure 1 (a)). However, the
incorporation of a large codebook not only in-
troduces heavy memory footprint but also esca-
lates training difficulty. Second, in the existing
VQ-based methods, visual prior is captured by
training the index predicting network with code-
level supervision, i.e. minimizing cross-entropy between predicted and target probability. This makes
index prediction accuracy the primary optimization target, which in practice does not strictly align
with image quality. As a result, such an indirect training paradigm ignores the different levels of
reconstruction impacts introduced by different incorrect codes, penalizing all predictions that deviate
from the ground-truth index even if the predicted code yields a visually plausible result (see Figure 2
(a)), which may cause optimization stagnation and ultimately result in sub-optimal prior modeling.

In this paper, we propose a novel VQ-based generative super resolution framework with Texture
Vector-Quantization (TVQ) and Reconstruction Aware Prediction (RAP) strategies. Inspired from
classical dictionary learning methods (Matsui et al., 2017; Zeyde et al., 2010; Gu et al., 2015), which
remove low-frequency intensity component to improve the representation capability of dictionary,
our TVQ strategy introduces visual texture codebook instead of vanilla codebook for predictive
prior modeling. Concretely, we decompose image into the structure and the texture components; the
structure component can be easily estimated by the LR input, and we only exploits texture codebook to
encode the remaining texture features. Removing structure information could significantly reduce the
diversity of feature space, therefore alleviating the coding error introduced by VQ and consequently
improving prior modeling accuracy. An illustration of our Texture VQ strategy versus vanilla VQ
paradigm can be found in Figure 1. Moreover, besides TVQ, another important innovation of our
paper lies in our predictor training scheme. As we have discussed previously, most of the existing
VQ-based methods (Van Den Oord et al., 2017; Esser et al., 2021; Zhou et al., 2022) train index
predictor with code-level supervision which ignores the consequences of selective predicting errors,
i.e. the final reconstruction error. While, we proposes a reconstruction aware training paradigm which
directly exploits image-level reconstruction supervision for training the predictor. As illustrated
in Figure 2, the predictor directly takes the quality of the reconstructed image into consideration,
aligning the optimization target with image quality and is expected to better capture the visual prior
for generating high-quality visual data. Building upon our proposed strategies, our proposed model is
able to achieve state-of-the-art GSR results with less computational footprints.

The contributions of this paper are summarized as follows: (i) We present a tailored visual prior
modeling framework for generative super-resolution, which takes inspiration from classical dictionary
learning method and establish texture codebook to mitigate the encoding difficulty of highly complex
visual signal. (ii) We propose an advanced training strategy for predictive visual prior modeling,
which directly take the final image-level reconstruction accuracy instead of intermediate code-level
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predicting accuracy as target to train index predictor. (iii) We conduct comprehensive experiments
on both synthetic and real-world datasets, our method is able to achieve state-of-the-art generative
super-resolution results with less computational footprint; detailed ablation studies are also provided
to validate the effectiveness of our innovations.

2 RELATED WORKS

2.1 VECTOR QUANTIZATION METHODS

The seminal VQ-VAE (Van Den Oord et al., 2017) introduced a learnable codebook to discretize
continuous latent representations, providing a foundation for subsequent generative modeling ap-
proaches. Building upon this, VQGAN (Esser et al., 2021) incorporated adversarial losses during
training, significantly improving the visual quality of reconstructed images. However, despite these
advancements, the overall performance of VQ-based models remains limited by the expressive
capacity of the codebook. To address this challenge, various strategies have been proposed to enhance
the representational power of VQ models. These include RQVAE (Lee et al., 2022) with multi-stage
recursive encoding for fine details, ViT-VQGAN (Yu et al., 2021) leveraging a larger codebook and
lower compression ratio for higher fidelity, and MoVQ (Zheng et al., 2022) using multi-channel
quantization to boost codebook expressiveness. While these techniques improve representation
capacity, they often introduce trade-offs such as increased model complexity and computational cost.
Moreover, existing VQ-based methods typically use per-code cross-entropy loss for code prediction,
which limits the model’s ability to capture the underlying distribution of visual data.

2.2 IMAGE SUPER-RESOLUTION

Image super-resolution (SR) is a longstanding ill-posed problem that remains a fundamental challenge
in low-level vision. Traditional SR methods (Dong et al., 2012; Gu et al., 2015) rely on handcrafted
priors and domain-specific knowledge to recover HR details. With the advent of deep learning,
data-driven approaches have become dominant in the SR domain (Dong et al., 2015; Wang et al.,
2020). Early SR methods (Liang et al., 2021; Zhang et al., 2024; Long et al., 2025) optimized
pixel-wise losses (e.g., mean squared error) to achieve high PSNR, but often produced overly smooth
results lacking realistic textures (Ledig et al., 2017). To address this limitation, photorealistic SR
approaches adopt generative models such as GANs (Wang et al., 2018; 2021; Zhang et al., 2021) and
diffusion models (Rombach et al., 2022; Yue et al., 2023; Wang et al., 2024b; Zhang et al., 2025; Wu
et al., 2024; Yang et al., 2024) to better capture complex image priors, leading to the reconstruction
of more natural and detailed textures. Despite significant advances, GAN-based methods continue to
face challenges such as training instability and difficulty balancing perceptual quality with fidelity.
Diffusion-based SR methods (Yue et al., 2023; Wang et al., 2024b; Zhang et al., 2025; Wu et al.,
2024; Yang et al., 2024) often incur substantial computational costs during inference, which further
diminishes their practicality for real-world applications.

2.3 VQ-BASED IMAGE SUPER-RESOLUTION

More recently, VQ-based super-resolution methods have emerged as promising alternatives by
incorporating discrete generative priors to enhance reconstruction quality. However, since most of
these methods inherit from VQ-based generative models, they face common limitations such as
under-expressive codebooks and indirect optimization objectives, which lead to suboptimal predictors.
For example, CodeFormer (Zhou et al., 2022) is specifically tailored for facial images, limiting
its generalizability. FeMaSR (Chen et al., 2022) struggles with complex scenes, often yielding
suboptimal restoration quality. AdaCode (Liu et al., 2023) introduces a multi-codebook quantization
pipeline that increases both training and inference complexity. VARSR (Qu et al., 2025), despite
its strong performance, depends on a complex multi-scale residual quantization mechanism and a
large pretrained autoregressive predictor, and thus shares the common limitation of diffusion-based
methods that use pretrained generative priors, such as high computational cost. In contrast, our
proposed framework is explicitly designed to address these limitations. By introducing a texture-
focused vector quantization scheme and incorporating image-level supervision in code prediction,
our method significantly enhances representational capacity while enabling direct optimization for
perceptual quality. Our method produces high-quality results while maintaining model efficiency.

3
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Figure 3: Overview of the proposed Texture Vector Quantization (TVQ) and Reconstruction Aware
Prediction (RAP) strategies. (a) Texture Vector Quantization, we decompose the image into the
structure and texture components, and only exploit codebook to generate discrete texture features;
removing the structure component could significantly reduce the complexity of visual feature space,
result in enhanced texture representation accuracy. (b) Reconstruction Aware Prediction, instead
of training predictor through indirect code-level supervision, we introduce image-level supervision
which take the reconstruction error lead by different predicting results into consideration; the predictor
is trained to select codebook items for generating high-quality image details.

3 METHODOLOGY

In this section, we present details of our proposed generative super-resolution method. We first
introduce how high-quality images are decomposed into structure and texture components to facilitate
learning a texture codebook for discrete texture encoding. Then, we describe our reconstruction
aware prediction training strategy which uses straight-through estimator (STE) (Bengio et al., 2013)
to train index predictor with image-level supervision.

3.1 IMAGE SEPARATION FOR TEXTURE VECTOR-QUANTIZATION

The VQ-based generative model (Van Den Oord et al., 2017; Esser et al., 2021; Ramesh et al., 2021;
Lee et al., 2022; Tian et al., 2025; Zhou et al., 2022; Yu et al., 2021; Zheng et al., 2022) encodes
continuous visual features with a learned codebook and trains a codebook index predicting network
to capture visual prior. At the core of VQ-based model is a visual codebook which comprises
typical visual features to encode continuous feature in a vector-quantization manner. The richness
and diversity of natural images makes the latent space of visual feature a highly complex space,
discrete representation with guaranteed reconstruction accuracy often relies on a large codebook with
enormous number of typical features. In this paper, we study the generative super-resolution task,
for which low-resolution information is available at the inference stage. The specific character of
super-resolution task inspires us to remove the available structure information and only discretization
the texture information for reducing the codebook complexity.

In order to decompose high-quality images into the structrue and texture components, we train
a multiscale autoencoder which extracts feature maps with two different resolutions, i.e. FH ∈
RCH×HH×WH and FL ∈ RCL×HL×WL :

[FH ,FL] = E(X), (1)

where X ∈ R3×HI×WI is the input high-quality image, E(·) is the image encoder. We expect the
low-resolution feature maps FL and high-resolution feature maps FH to encode the structure and
texture components, respectively. To achieve this goal, we generate a down-sampled low-resolution
image X↓ ∈ R3×HD×WD and train another auto-encoder on the down-sampled image,

F↓ = E↓(X↓), X̂↓ = D↓(F↓); (2)

where E↓(·) and D↓(·) are encoder and decoder for down-sampled image X↓. Please note that X↓ is
an extreme low-resolution image which is smaller than the low-resolution image to be super-resolved
in the testing phase, which means F↓ only include basic structure information of the image. With
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the help of F↓, we could disentangle basic structure information from X by aligning FL with F↓.
Consequently, as FL and vector-quantized version of FH are required to reconstruct high-quality
image, FH is learned to represent the structure-removed texture information of X . With separated
image components, we introduce codebook to generate discrete texture representation via vector-
quantization. Denote the texture codebook by CT , for each token in FH , it find neartest codebook
item in CT to establish vector-quantized texture feature FH−vq = Lookup(FH ,CT ). Lastly, FL

and FH−vq are combined to reconstruct the original high-quality image with decoder

X̂ = D(FH−vq,FL). (3)

Following the commonly used VQ-GAN (Esser et al., 2021), we adopt MSE loss, perceptual loss
and GAN loss to optimize the difference between X and X̂ . The alignment between FL and F↓
is achieved by minimizing the their Euclidean distance. We use the same stop-gradient strategy as
in (Van Den Oord et al., 2017; Esser et al., 2021; Ramesh et al., 2021; Lee et al., 2022; Tian et al.,
2025) to deal with the back-propagation issue introduced by codebook. An illustration of our Image
separation framework is shown in left part of Fig. 3. More implementation details can be found in
the experimental section 4.1 and appendix B.

3.2 RECONSTRUCTION AWARE PREDICTION

With the above TVQ training, we are able to represent high-quality image as continuous maps FL

and discrete representation FH−vq , where FL and FH−vq can be combined to generate the original
high-quality image. In the second stage of training, we aim to predict FL and FH−vq with the
corresponding low-resolution input image Y . Since X↓ in TVQ training is with lower resolution
than Y , all the information in FL can be easily regressed by Y , the major difficulty of generative SR
lies in predict FH−vq from Y . In vanilla VQ-based method, a probability predictor can be trained to
predict the probability of codebook indexes with cross-entropy loss:

LCE = −
∑

i
IHi log(Îi), (4)

where IH are the target codes achieved by TVQ from HR image. Although that LCE is able to guide
the predictor to estimate correct code for reconstructing the high-quality image, it treats all the pre-
diction errors equally and neglects the final reconstruction errors lead by different prediction choices.
In order to reduce the reconstruction error, which is the ultimate target of super-resolution task, we
introduce image-level supervision for training reconstruction aware index predictor. Considering the
forward process of predictive image reconstruction, let us denote the one-hot index as:

Îone−hot
i = OneHot(Îi), (5)

and the decoded texture feature is achieved by: F̂H−vq
i = CT (Îone−hot

i ). We plug F̂H−vq
i into the

pre-trained decoder in equation 3 to generate HR estimation, and backpropagate commonly used
reconstruction losses including the MSE loss, the perceptual loss and GAN loss to train the index
predictor. As the decoder is differentiable, the gradient can be easily back-propagated to Îone−hot

i

through F̂H−vq
i . To deal with the OneHot operator in Eq. equation 5, we reformulate Îone−hot

i as:

Îone−hot
i = Îi + (Îone−hot

i − Îi).detach (6)

in the network. The above straight-through estimator (STE) trick has been widely used in various
models. We use it to introduce image-level supervision for training code index predictor. In addition
to predicting the code indices, we also need to extract structural information from the LR input. As
FL is continuous and X↓ is with lower resolution than LR input, we simply MSE loss between
F̂L and its corresponding FL for supervision. More implementation details can be found in the
experimental section 4.1 and appendix B.

4 EXPERIMENTS

In this section, we conduct experiments to validate the effectivness of our proposed method. We
firstly introduce our experimental settings, and then compare our method with recently proposed
generative SR approaches. Lastly, a model analysis section is presented to validate the advantages of
our proposed TVQ and RAP strategies.
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Table 1: Quantitative results of models on ImageNet-Test. The best and second best results are
highlighted in bold and underline. (“-N” behind the method represents the number of inference steps)

Methods PSNR↑ SSIM↑ LPIPS↓ DISTS↓ CLIPIQA↑ MUSIQ↑ MANIQA↑ FID↓
ESRGAN (Wang et al., 2018) 20.67 0.448 0.485 0.3049 0.451 43.615 0.3212 73.02
BSRGAN (Zhang et al., 2021) 24.42 0.659 0.259 0.2207 0.581 54.697 0.3865 45.63
SwinIR (Liang et al., 2021) 23.99 0.667 0.238 0.2058 0.564 53.790 0.3882 35.73
RealESRGAN (Wang et al., 2021) 24.04 0.665 0.254 0.2174 0.523 52.538 0.3689 41.48
FeMaSR (Chen et al., 2022) 22.35 0.606 0.243 0.2089 0.662 55.930 0.4721 43.39
AdaCode (Liu et al., 2023) 23.30 0.626 0.237 0.2046 0.663 53.950 0.4171 40.59
LDM-15 (Rombach et al., 2022) 24.85 0.668 0.269 0.2101 0.510 46.639 0.3305 30.53
ResShift-15 (Yue et al., 2023) 24.94 0.674 0.237 0.1716 0.586 53.182 0.4191 19.53
SinSR-1 (Wang et al., 2024b) 24.70 0.663 0.218 0.1808 0.611 53.632 0.4161 25.58
UPSR-5 (Zhang et al., 2025) 23.77 0.630 0.246 0.2017 0.633 59.227 0.4591 37.92
TVQ&RAP (Ours) 22.49 0.603 0.210 0.1784 0.730 63.873 0.5530 26.57

(b) ResShift (c) SinSR (d) UPSR(a) LR image (f) Groud truth(e) Ours

Figure 4: Qualitative comparison between different methods on ImageNet-Test dataset.

4.1 EXPERIMENTAL SETTINGS

Training details. We follow the experimental settings of Yue et al. (2023) and train our method
on the ImageNet training set (Deng et al., 2009). For training SR model with zooming factor 4, we
utilize the degradation process in (Wang et al., 2021) to generate paired low-resolution (LR) and
high-resolution (HR) images. The down-sampled image X↓ for structure disentangle is obtained by
down-sampling the original image X with a factor of 8. The spatial size of the structure components
FL and texture components FH are 32 times and 8 times smaller than the size of HR image, i.e.
HL = HI/32, HH = HI/8, with channel numbers 64 and 256, respectively. We introduce texture
codebook with 1024 items, and conduct our TVQ training in Section 3.1 for 450K iterations with
512×512 images. As for the reconstruction aware prediction stage in Section 3.2, to reduce training
time, we firstly train the the predictor with code-level cross-entropy loss for 300K iterations, and
then finetune the predictor with image-level reconstruction aware training for another 10K iterations.
Detailed network architectures can be found in appendix B.2.

Testing details. Following recent work (Yue et al., 2023; Wang et al., 2024b; Zhang et al., 2025),
we evaluate our method on synthetic and real-world datasets. For the synthetic setting, we utilize the
ImageNet-Test dataset following Yue et al. (2023), which contains 3,000 images randomly selected
from the ImageNet validation set. Additionally, we adopt two real-world datasets, RealSR (Cai
et al., 2019) and RealSet65 (Yue et al., 2023), to assess the generalizability of our model in practical
scenarios. We report several commonly used quality measure metrics following previous works,
including full-reference metrics: PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018) and
DISTS (Ding et al., 2020), and no-reference metrics: FID (Heusel et al., 2017), NIQE (Mittal et al.,
2012), CLIPIQA (Wang et al., 2023), MANIQA (Yang et al., 2022), and MUSIQ (Ke et al., 2021).

4.2 COMPARISON WITH OTHER GENERATIVE SUPER-RESOLUTION METHODS

We benchmark our approach against several representative SR methods: ESRGAN (Wang et al.,
2018), BSRGAN (Zhang et al., 2021), SwinIR (Liang et al., 2021), RealESRGAN (Wang et al.,

6
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Table 2: Quantitative results of models on two real-world datasets. The best and second best results
are highlighted in bold and underline. Notably, as Real65 lacks ground-truth references, we report
only non-reference metrics following (Yue et al., 2023; Wang et al., 2024b; Zhang et al., 2025).

Methods
RealSR RealSet65

PSNR↓ SSIM↓ LPIPS↓ CLIPIQA↑ MUSIQ↑ MANIQA↑ NIQE↓ CLIPIQA↑ MUSIQ↑ MANIQA↑ NIQE↓

ESRGAN (Wang et al., 2018) 27.57 0.7742 0.4152 0.2362 29.037 0.2071 7.73 0.3739 42.366 0.3100 4.93
BSRGAN (Zhang et al., 2021) 26.51 0.7746 0.2685 0.5439 63.587 0.3702 4.65 0.6160 65.583 0.3888 4.58
RealESRGAN (Wang et al., 2021) 25.83 0.7726 0.2739 0.4923 59.849 0.3694 4.68 0.6081 64.125 0.3949 4.38
FeMaSR (Chen et al., 2022) 25.43 0.7540 0.2927 0.5598 58.774 0.3430 4.76 0.6821 64.416 0.4100 5.01
AdaCode (Liu et al., 2023) 26.26 0.7605 0.2773 0.6092 61.279 0.3567 4.26 0.6877 64.533 0.4043 4.65
StableSR-200 (Wang et al., 2024a) 26.19 0.7556 0.2806 0.4124 48.346 0.3021 5.87 0.4488 48.740 0.3097 5.75
LDM-15 (Rombach et al., 2022) 27.18 0.7853 0.3021 0.3748 48.698 0.2655 6.22 0.4313 48.602 0.2693 6.47
ResShift-15 (Yue et al., 2023) 26.80 0.7674 0.3411 0.5709 57.769 0.3691 5.93 0.6309 59.319 0.3916 5.96
SinSR-1 (Wang et al., 2024b) 26.01 0.7083 0.4015 0.6627 59.344 0.4058 6.26 0.7164 62.751 0.4358 5.94
UPSR-5 (Zhang et al., 2025) 26.44 0.7589 0.2871 0.6010 64.541 0.3828 4.02 0.6392 63.519 0.3931 4.23
TVQ&RAP (Ours) 24.71 0.7202 0.2944 0.6897 65.591 0.4337 3.97 0.7347 68.420 0.4814 4.34

(i) Ours(f) ResShift-15 (g) SinSR (h) UPSR(a) LR image

(b) BSRGAN (c) ESRGAN (d) RealESRGAN (e) LDM-15

(b) BSRGAN (c) ESRGAN (d) RealESRGAN (e) LDM-15

(i) Ours(f) ResShift-15 (g) SinSR (h) UPSR(a) LR image

Figure 5: Qualitative comparison between different methods on two real-world datasets.

2021), FeMaSR (Chen et al., 2022), AdaCode (Liu et al., 2023), StableSR (Wang et al., 2024a),
LDM (Rombach et al., 2022), ResShift (Yue et al., 2023), SinSR (Wang et al., 2024b) and UPSR
(Zhang et al., 2025). Table 1 and Table 2 report quantitative results on the synthetic ImageNet-Test
and two real-world validation sets, respectively. On the ImageNet-Test dataset, our method attains
the highest scores for both reference-based and no-reference perceptual metrics, while incurring
minimal PSNR/SSIM degradation compared to the best models. On real-world datasets, our method
either the best or the second best performance across the no-reference metrics. Figure 4 and Figure 5
present visual examples on synthetic datasets and real-world datasets: our reconstructions exhibit
richer details and more realistic textures, with virtually less artifacts. More comparison and visual
examples are provided in appendix C, D, F, H.

In addition to superior super-resolution results, another important advantage of our model lies in its
efficiency. In Table 3, we compare the runtime and the number of parameters of several recently
proposed generative super-resolution methods, including two VQ-based methods and several sota

7
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Table 3: We compare runtime efficiency and per-
ceptual performance with state-of-the-art methods.
All models are evaluated on 64×64 input images
using a single RTX 3090 GPU. The best results are
highlighted in bold.

Methods Runtime Params LPIPS↓ MUSIQ↑ CLIPIQA↑

FeMaSR 57ms 34M 0.243 55.930 0.662
AdaCode 104ms 57M 0.237 53.950 0.663
LDM-15 223ms 114M 0.2685 46.639 0.510
ResShift-15 689ms 119M 0.2371 53.128 0.586
SinSR-1 65ms 119M 0.2183 52.632 0.611
UPSR-5 230ms 119M 0.2460 59.227 0.633
Ours 38ms 57M 0.2101 63.873 0.730

diffusion-based methods. Following Yue et al.
(2023); Wang et al. (2024b); Zhang et al. (2025),
we report runtime (ms), params (MB), and
additionally several perceptual metrics on the
ImageNet-Test set from Table 1 for ease of com-
parison. As shown in Table 3, our predictive
method is able to deliver photorealistic GSR re-
sults with high efficiency. In comparison to state-
of-the-art multi-step diffusion based methods,
i.e. ResShift-15 (Yue et al., 2023) and UPSR-5
(Zhang et al., 2025), our model is able to ob-
tain comparable or better results with 5.5% and
16.5% of their runtime; in comparison with dis-
tilled one-step method SinSR-1 (Wang et al.,
2024b), our method could utilize less than 60% of its runtime to obtain better GSR results. In terms
of parameter count, our model also demonstrates competitiveness compared with competing methods.

Figure 6: Comparisons between vanilla code-
book and our proposed texture codebook.

Table 4: A comparison between Vanilla Code-
book and Texture Codebook. Evaluation is con-
ducted on ImageNet-Test, where ’r-’ denotes re-
construction metrics. Experimental details can
be found in Section 4.3.

Methods r-PSNR↑ r-LPIPS↓ r-FID↓ PSNR↑ LPIPS↓ FID↓
VQ 23.29 0.1271 12.81 22.87 0.2707 44.54
TVQ 26.20 0.0733 6.49 24.10 0.2216 33.23

4.3 MODEL ANALYSIS

In this part, we present detailed ablation studies to analyzes the advantages of our proposed Texture
Vector Quantization (TVQ) and Reconstruction Aware Prediction (RAP) strategies.

(a) LR image (c) Vallina Codebook (d) Textrue Codebook 

Figure 7: Visual comparisons between the super-
resolution results with vanilla codebook and our
proposed texture codebook. Experimental details
can be found in Section 4.3.

Effect of Texture Vector-Quantization. To
evaluate the effectiveness of the proposed tex-
ture vector quantization, we conduct ablation
studies with a lightweight variant of our architec-
ture. We compare our method against a vanilla
baseline with the structure branch removed. A
series of experiments examining performance
across different codebook sizes and training it-
erations are presented. As shown in Figure 6,
our method consistently achieves better perfor-
mance under the same codebook size and train-
ing iterations. Moreover, it outperforms com-
peting methods even with smaller codebooks
and fewer training iterations. Notably, TVQ-
256 at 100k iterations surpasses VQ-8192 at
300k, highlighting that our approach enables
more efficient codebook representation, thereby
enhancing prior modeling capability. To further
evaluate the benefit of the stronger prior for SR, we perform ablation studies on the SR task, compar-
ing our method with the vanilla baseline under a codebook size of 1024. For both models, we use
only the code-level loss to better isolate and verify the effectiveness of the texture codebook. Both
reconstruction and SR performance are evaluated on the ImageNet-Test dataset. As shown in Table 4,
the texture vector quantization substantially outperforms the vanilla baseline by a large margin,
demonstrating its superior representational capacity, which is highly beneficial for SR. Two visual
examples are provided in Figure 7. The model with texture codebook could generate photorealistic
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images with vivid textures. The above quantitative and qualitative advantages of texture codebook
over the vanilla codebook clearly validated our idea of texture vector quantization.

Table 5: A comparison between Code-Level supervision only and the integration of Image-Level
supervision on ImageNet-Test. Experimental details can be found in Section 4.3.

Method Accuracy↑ DISTS↓ LPIPS↓ FID↓ CLIPIQA↑ MUSIQ↑ MANIQ↑
Code-level supervision only 6.8% 0.1935 0.2159 32.876 0.6971 61.687 0.5303
+Image-level supervision 4.4% 0.1784 0.2101 26.567 0.7304 63.873 0.5530

(a) LR image (b) Code-level                               
supervision only

(c) + Image-level 
supervision 

Accuracy / LPIPS 7.4% / 0.3010 2.3% / 0.2287

Accuracy / LPIPS 5.2% / 0.2384 1.9% / 0.2365

Figure 8: Visual comparisons between code-level
supervision and our proposed reconstruction aware
image-level supervision. Experimental details can
be found in Section 4.3.

Effect of Reconstruction Aware Prediction.
To assess the effectiveness of the proposed
Reconstruction-Aware Prediction strategy, we
compare the super-resolution results of two train-
ing regimes: (1) models trained solely with code-
level cross-entropy loss, and (2) models further
fine-tuned using image-level supervision. As re-
ported in Table 5, while code-level supervision
achieves better index accuracy, incorporating
image-level supervision yields substantial gains
in both perceptual quality and structural fidelity.
This indicates that code-level loss targeting in-
dex accuracy does not always directly correlate
with image quality, whereas the proposed recon-
struction aware prediction strategy better aligns
with the goal of high-quality image reconstruc-
tion and thereby significantly enhances GSR
results. Figure 8 presents representative visual
results from our ablation study, further corrob-
orating this conclusion. Models trained with
image-level supervision achieve lower index ac-
curacy but produce more subtle detailed textures that are often lost in code-only training. These
improvements are especially pronounced in regions with complex patterns or high-frequency details.
The superior GSR results achieved by Reconstruction aware prediction suggest that image-level
supervision provides strong and explicit gradient signals to the code prediction network, significantly
enhances the predictor’s ability to generate high quality reconstruction results.

Collectively, our ablation study clearly validate the effectiveness of the proposed TVQ strategy and
RAP strategy. The TVQ strategy enhances the representational capacity by focusing on texture
details, while the RAP strategy improves the predictor’s ability to generate perceptually accurate
reconstructions through direct optimization with reconstruction-aware supervision. With the help of
the two strategies, we are able to obtain state-of-the-art generative super-resolution results with less
computatinal footprint. More ablation study are provided in appendix E, G.

5 CONCLUSION

In this paper, we propose TVQ&RAP, a VQ-based method for generative super-resolution. To reduce
the quantization error introduced by visual feature vector quantization, we decompose the image into
structure and texture components and propose a texture vector-quantization (TVQ) strategy which
introduce texture codebook to mitigate the difficulty in discrete visual representation. Furthermore,
in order to better training the prediction network, we suggest a reconstruction aware prediction
(RAP) strategy which utilizes the final reconstruction error to train code index predictor in an end-
to-end manner. With reduced difficulty in discrete visual representation and enhanced capability
in detail reconstruction, we combine our proposed TVQ and RAP to establish a novel generative
super-resolution framework. Extensive experimental results on synthetic and real-world datasets are
provided to evaluatet the proposed method. Our model is able to achieve state-of-the-art generative
super-resolution results with less computational footprint. Detailed ablation analysis are also provided
to validate the effectiveness of the proposed TVQ and RAP strategies.
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REPRODUCIBILITY STATEMENT

We provide detailed hyperparameter settings in Section 4.1 and Appendix B. To further facilitate
reproducibility, we will release our implementation and trained model checkpoints, enabling the
reported results to be reproduced.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to aid in polishing the writing. Specifically, LLMs were
employed to improve grammar, clarity, and readability of the manuscript. No part of the research
ideation, methodological design, or experimental analysis relied on LLMs.

B IMPLEMENTATION DETAILS

B.1 TRAINING DETAILS

As discuss in section 3.1, to supervise the multiscale tokenizer, following VQ-GAN (Esser et al.,
2021), we adopt a compound loss including: codebook loss Lcodebook, commit loss Lcommit, MSE loss
Lmse, perceptual loss Lper (Johnson et al., 2016; Zhang et al., 2018), and adversarial loss Ladv (Esser
et al., 2021). The overall loss function is formulated as:

L = Lcodebook + Lcommit + Lmse(X̂) + Lper(X̂) + λadv · Ladv(X̂), (7)

where λadv is a weighting factor, set to 0.75 empirically in our training. For the reconstruction task of
the tokenizer applied to X↓, our objective is not to generate a visually perfect image, but rather to
extract a meaningful feature representation that captures the basic structure information. Hence, we
employ a basic MSE loss:

L = Lmse(X̂↓). (8)

As discuss in section 3.2, we supervise the super resolution pipeline using both code-level and image-
level objectives. Specifically, the code-level ground truths: F̂Land IH , are obtained by feeding the
corresponding high-resolution image X into our pretrained reconstruction network. The code-level
loss consists of a MSE loss for regression and a cross-entropy loss for classification:

Lcode = ∥FL − F̂L∥22 + λCE · (−
∑

i
IHi log(Îi)). (9)

where λCE is a weighting factor that balances the two losses, empirically set to 0.5 in our training.
For the image-level supervision, we adopt the same loss formulation as Equation 7.
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B.2 NETWORK ARCHITECTURES

Following prior work (Esser et al., 2021; Zhou et al., 2022; Liu et al., 2023), we design a multiscale
VQ-tokenizer composed of residual blocks (He et al., 2016) and attention layers (Vaswani et al., 2017;
Liu et al., 2021; Liang et al., 2021). The tokenizer encodes the image into token maps at two spatial
resolutions, with downsampling factors of 8 and 32, respectively. The texture codebook contains
N = 1024 entries. The predictor is implemented using 12 Swin-Attention blocks. This modular
design ensures efficiency while maintaining strong representational capacity.

C COMPARISONS TO PRETRAINING-BASED SR METHODS.

Table 6: Comparisons with pretraining-based SR methods on RealSR.

Method Runtime Params Memory LPIPS↓ DISTS↓ FID↓ MANIQA↑ CLIPIQA↑ NIQE↓
SeeSR (Wu et al., 2024) 5740ms 2524M 8.8G 0.2806 0.1781 55.58 0.6122 0.6824 4.54
VARSR (Qu et al., 2025) 322ms 1102M 11.1G 0.3232 0.2025 61.53 0.6176 0.7020 4.49
Ours 110ms 57M 1.2G 0.2944 0.1793 54.97 0.5807 0.6897 3.97

Although methods based on pretrained generative models have demonstrated impressive performance,
their dependence on large, fixed backbones restricts flexibility—particularly when adapting to
lightweight architectures. This significantly limits their suitability for deployment in real-world,
resource-constrained environments. Moreover, such methods typically require massive model sizes
and incur substantial inference costs, placing them on a distinct path from our proposed approach.
Nevertheless, for completeness, we include comparisons with some state-of-arts pretrained-based
methods. Since our previous method of calculating MANIQA was different from (Wu et al., 2024; Qu
et al., 2025), we followed their testing approach and conducted the tests again. We evaluate quality
metrics on uncropped image and evaluate the Runtime and the Memory on 128×128 inputs using a
single RTX 4090 GPU. As reported in Table 6, our method achieves competitive performance while
using significantly fewer parameters and requiring much less inference time. Specifically, SeeSR
incurs a significant computational overhead, with 52× inference time and 44× parameters, whereas
VARSR also exhibits high resource demands, requiring 3× the inference time and 19× the parameters.

D EXPERIMENTS ON HIGH-RESOLUTION SCENARIOS

Table 7: Comparisons on DRealSR.

Method CLIPIQA ↑ MUSIQ ↑ MANIQA ↑ NIQE ↓

SinSR 0.6953 30.789 0.3589 5.79
UPSR 0.5319 33.060 0.3220 4.50
Ours 0.7377 34.102 0.4086 3.89

To evaluate our approach under high-resolution
settings, we conducted additional experiments
on the DRealSR dataset, which contains real-
world 4K–5K images. Table 7 shows the su-
perior performance of our method compared to
recent sota methods.

E FEATURE MAP RESOLUTION SELECTION IN OUR ARCHITECTURE

As discussed in Section 3.1, we represent an image using two components. The resolutions of the
structure and texture components are downsampled by factors of 32× and 8×, relative to the HR
image. For the texture branch, we follow the prior VQ-based super-resolution method (Zhou et al.,
2022), adopting an 8× downsampling strategy. This choice balances detailed representation and
computational efficiency. For the structure branch, we empirically adopt a larger downsampling factor
of 32×, motivated by the observation that structures can be effectively captured at coarser resolutions.

To investigate the impact of feature map resolution on SR performance, we conduct a focused study
using a lightweight variant. Specifically, we perform experiments with downsampling factors of
128×, 64×, 32×, 16×, and 8× relative to the HR image. As shown in Table 8, although 16× and 8×
downsampling achieve better reconstruction performance, the 32× configuration yields the best results
in SR. We attribute the poorer SR performance at 16× and 8× to the excessively large feature maps,
which make it difficult—despite the use of alignment loss—to fully suppress texture information
leakage through the structure branch. On the other hand, compared to 128× and 64× downsampling,
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the 32× setting retains relatively complete structural information, which is beneficial for effective
decoupling of structure and texture features.

Table 8: A a abaltion study on different downsampling rates for the structure branch in our architecture.
Evaluation is conducted on ImageNet-Test, where ’r-’ denotes reconstruction metrics.

Methods r-PSNR↑ r-LPIPS↓ r-DISTS ↓ r-FID↓ PSNR↑ LPIPS↓ DISTS↓ FID↓
128× 24.10 0.1196 0.1210 13.03 23.50 0.2279 0.1986 35.00
64× 24.70 0.1046 0.1101 10.54 23.70 0.2241 0.1969 34.08
16× 27.65 0.0525 0.0629 4.84 24.80 0.2594 0.2424 44.60
8× 33.43 0.0147 0.0239 1.78 24.57 0.4285 0.3425 72.57

32× 25.26 0.0898 0.0988 8.76 24.01 0.2220 0.1968 33.23

F SUBJECTIVE EVALUATION

Following the evaluation protocol of VARSR (Qu et al., 2025), we conduct a user study with 15
participants. Our method was compared against five representative ISR baselines (BSRGAN (Zhang
et al., 2021), Real-ESRGAN (Wang et al., 2021), Resshift (Yue et al., 2023), UPSR (Zhang et al.,
2025), and SinSR (Wang et al., 2024b)), using 90 images selected from three datasets: ImageNet-Test,
RealSR, and RealSet65 (the first 30 images from each). For each image, participants were asked
to select the best restoration among the six methods. This resulted in a total of 1350 responses (15
participants × 90 images). The results in Table 9 demonstrate that our method achieves the highest
user preference rate (48.8%), significantly outperforming other approaches.

Table 9: Results of User Study

Method BSRGAN Real-ESRGAN Resshift SinSR UPSR Ours

Preference (%) 0.0% 7.7% 10.0% 21.1% 12.2% 48.8%

G WHAT IS REPRESENTED IN TWO FEATURE MAP

To show analysis that what is represented in FL and FH , we conducted an additional analysis
by passing FL and FH separately through the decoder to obtain corresponding reconstructions.
The qualitative results in Figure 9 clearly show that: the FL-only reconstructions preserve coarse
structures and smooth areas, and the FH -only reconstructions retain high-frequency textures without
clear structural outlines. This aligns with our ideal of feature decomposition.

Full image -only -only Full image -only -only

Figure 9: Qualitative comparison between different methods on ImageNet-Test dataset.

H VISUAL COMPARISON

We provide more visual examples of our method compared with recent state-of-the-art methods on
ImageNet-Test and real- world datasets. Visual examples are shown in Figure 10, 11, 12, 13, and 14.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) LR image

(h) Ground truth

(b) RealESRGAN (c) LDM-15

(g) Ours(e) SinSR (f) UPSR

(d) ResShift-15

(a) LR image (b) RealESRGAN (c) LDM-15 (d) ResShift-15

(h) Ground truth(g) Ours(e) SinSR (f) UPSR

(a) LR image (b) RealESRGAN (c) LDM-15 (d) ResShift-15

(h) Ground truth(g) Ours(e) SinSR (f) UPSR

Figure 10: Qualitative comparison between different methods on ImageNet-Test dataset.
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(a) LR image (b) RealESRGAN (c) LDM-15 (d) ResShift-15

(h) Ground truth(g) Ours(e) SinSR (f) UPSR

(a) LR image (b) RealESRGAN (c) LDM-15 (d) ResShift-15

(h) Ground truth(g) Ours(e) SinSR (f) UPSR

(a) LR image (b) RealESRGAN (c) LDM-15 (d) ResShift-15

(h) Ground truth(g) Ours(e) SinSR (f) UPSR

Figure 11: Qualitative comparison between different methods on ImageNet-Test dataset.
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(a) LR image (b) RealESRGAN (c) LDM-15 (d) ResShift-15

(h) Ground truth(g) Ours(e) SinSR (f) UPSR
Figure 12: Qualitative comparison between different methods on ImageNet-Test dataset.

(a) LR image (b) BSRGAN (c) RealESRGAN (d) LDM-15

(h) Ours(e) ResShift-15 (f) SinSR (g) UPSR

(a) LR image (b) BSRGAN (c) RealESRGAN (d) LDM-15

(h) Ours(e) ResShift-15 (f) SinSR (g) UPSR

Figure 13: Qualitative comparison between different methods on two real-world datasets.
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(h) Ours(e) ResShift-15 (f) SinSR (g) UPSR

(a) LR image (b) BSRGAN (c) RealESRGAN (d) LDM-15

(a) LR image (b) BSRGAN (c) RealESRGAN (d) LDM-15

(h) Ours(e) ResShift-15 (f) SinSR (g) UPSR

(a) LR image (b) BSRGAN (c) RealESRGAN (d) LDM-15

(h) Ours(e) ResShift-15 (f) SinSR (g) UPSR

Figure 14: Qualitative comparison between different methods on two real-world datasets.
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