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Abstract001

Explaining why content is hateful using natural002
language is crucial for fostering transparency in003
automated content moderation systems. How-004
ever, evaluating the quality of such explana-005
tions remains an open challenge. General-006
purpose reward models (RMs), commonly used007
for scoring natural language outputs, are typ-008
ically optimized for broad notions of safety.009
As a result, they tend to penalize necessary010
references to stereotypes or offensive fram-011
ing, elements that are essential for faithful012
hate speech explanations. To address this013
gap, we introduce SBIC-Explain, a dataset014
of 370,788 LLM generated NLEs for offen-015
sive content, spanning three levels of human-016
annotated contextual richness: Tier 1: text-017
only, Tier 2: + classification-aware, and Tier018
3: + semantics-informed. We hypothesize that019
as human-annotated context increases, explana-020
tions should better reflect human preferences.021
Yet, we find that existing RMs systematically022
assign lower scores to more contextually rich023
(and often more offensive) explanations, re-024
vealing a misalignment between model prefer-025
ences and explanatory fidelity for this context.026
We propose HARM (Hate-Aware Reward027
Model), a RM that integrates interpretable sig-028
nals to better align reward scores with the029
needs of hate speech explanation. HARM out-030
performs general-purpose baselines, improv-031
ing NLE pair-wise preference, taking accuracy032
from 0.66 to 0.80.033

1 Introduction034

The proliferation of hate speech on social media035

poses substantial risks to individuals and communi-036

ties, threatening social cohesion and even inciting037

real-world violence (Jahan and Oussalah, 2021;038

Malik et al., 2023). In response, automated hate039

speech detection systems have become essential for040

moderating online content and ensuring safer dig-041

ital environments (Narula and Chaudhary, 2024).042

Figure 1: Concept Overview. We leverage the SBIC
dataset (Sap et al., 2020) (top) to generate LLM syn-
thetic NLEs (middle) under three levels of contextual
access. Intuitively, access to richer human context
should yield explanations that receive higher reward
scores. However, existing general-purpose reward mod-
els (RMs) assign lower scores as the language becomes
more sensitive (bottom). Our proposed method, HARM,
learns to correctly reflect the expected preference order-
ing: Tier 1 < Tier 2 < Tier 3.

However, beyond mere classification, a central chal- 043

lenge lies in understanding why content is hateful. 044

One promising solution is the use of AI-generated 045

NLEs, which aim to make model reasoning inter- 046

pretable, enhancing transparency and fostering user 047

trust (Mathew et al., 2022). 048

Yet, effectively training and evaluating such ex- 049

planations remains difficult, in part due to limita- 050
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tions in current explainable hate speech datasets.051

Most existing resources rely on shallow signals,052

such as highlighting offensive spans (Mathew et al.,053

2022; Arshad and Shahzad, 2024; Delbari et al.,054

2024; Hoang et al., 2023; Pavlopoulos et al., 2021;055

Ravikiran and Annamalai, 2021), which lack the056

depth needed to support rich, contextual, and057

stereotype-aware explanations (Sap et al., 2020).058

While useful for pinpointing relevant tokens, such059

approaches often fail to capture the broader social060

context or implicit stereotypes that underpin many061

harmful messages. For example, highlighting the062

word “ginger” does little to surface its role as a slur063

against redheads. Similarly, in the statement “Dark064

Humour is like a job Not everyone gets it” (from065

Figure 1), the surface tone masks a stereotype as-066

sociating racial groups with unemployment (Sap067

et al., 2020).068

The Social Bias Inference Corpus (SBIC) (Sap069

et al., 2020) addresses these shortcomings by in-070

cluding human-written “implied statements” that071

surface the stereotypical or biased assumptions072

underlying ostensibly innocuous content. While073

SBIC was originally constructed to capture offen-074

siveness, it offers a rich annotation framework for075

studying implicit hate speech (the kind that relies076

on euphemism, ambiguity, or stereotypes rather077

than explicit slurs (Kim et al., 2023; Fortuna and078

Nunes, 2018)).079

Despite the growing use of LLM-generated080

NLEs in hate speech detection (Huang et al., 2024,081

2023), existing datasets such as HateCOT (Nghiem082

and Daumé Iii, 2024) overlook this contextual083

depth. They do not systematically evaluate how ac-084

cess to rich, stereotype-aware human annotations,085

like those in SBIC, affects explanation quality. This086

gap raises a crucial question: How much does087

access to human-annotated contextual informa-088

tion improve the quality of NLEs in hate speech089

detection?090

This gap in explanation quality evaluation is not091

just a data issue, it also stems from how expla-092

nation outputs are scored. Beyond their role in093

reinforcement learning for fine-tuning language094

models (e.g., RLHF), reward models (RMs) are in-095

creasingly used as scoring functions to evaluate the096

quality of LLM-generated content, including NLEs.097

However, general-purpose RMs are poorly aligned098

with the goals of hate speech explanation (Chris-099

tian et al., 2025). Trained primarily to promote100

safety, they tend to penalize outputs that reference101

stereotypes or offensive language, even when such102

content is necessary for a truthful explanation (En- 103

tezami and Naseh, 2025; Lambert et al., 2024a). 104

This misalignment incentivizes the production of 105

sanitized yet unfaithful explanations, which sacri- 106

fice nuance and clarity for safety compliance. The 107

result reflects a deeper alignment dilemma: while 108

harmful language must be curbed, faithful expla- 109

nations often require referencing uncomfortable 110

truths (Chua et al., 2024; Lyu et al., 2024). 111

To investigate these phenomena, we intro- 112

duce SBIC-Explain, a dataset of synthetic NLEs 113

grounded in SBIC’s human-annotated stereotypes. 114

We show that state-of-the-art reward models sys- 115

tematically undervalue faithful hate speech expla- 116

nations, particularly those referencing offensive 117

stereotypes. To bridge this gap, we propose a 118

lightweight method for building a domain-specific 119

Hate-Aware Reward Model (HARM), which re- 120

weights interpretable outputs of general-purpose 121

reward models to better evaluate hate-related con- 122

tent. 123

We organize our contributions as follows: 124

(i) We construct and release SBIC-Explain, 125

a multi-tier, multi-model synthetic NLE dataset 126

grounded in stereotype-level annotations, to bench- 127

mark the effect of contextual depth on hate speech 128

explanation. (ii) We reveal a critical failure mode in 129

current reward models in the context of NLE for of- 130

fensive content, showing how safety-oriented train- 131

ing biases them against truthful explanations. (iii) 132

We propose HARM, a hate-aware reward model 133

that uses a lightweight adapter to improve NLE 134

evaluation for sensitive content. We show that 135

general-purpose, interpretable reward models can 136

be re-prioritized to serve this goal. 137

2 Related Work 138

2.1 Explainable Hate Speech Datasets 139

In the landscape of existing explainable hate speech 140

datasets, Table 5 in Appendix E reveal that most 141

works treat explainability as a span annotation. 142

Predominance of Span Rationales. Seven out 143

of nine listed datasets (HateBRXplain (Mathew 144

et al., 2022), HateInsights (Arshad and Shahzad, 145

2024), PHate (Delbari et al., 2024), ViHOS (Hoang 146

et al., 2023), HateXplain (Mathew et al., 2022), 147

SemEval-2021 (Pavlopoulos et al., 2021), DOSA 148

(Ravikiran and Annamalai, 2021)) rely primarily on 149

span rationales, where annotators highlight token- 150

level or phrase-level segments deemed offensive. 151
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While span rationales help models locate surface152

clues (e.g., explicit slurs), they frequently omit153

the broader socio-historical context behind a slur’s154

offensiveness. In practice, this limitation can lead155

to shallow explanations, a classifier may learn to156

flag a word without understanding why that term is157

harmful to a particular group.158

Unique Role of SBIC’s Free-Text Annotations.159

SBIC (Sap et al., 2020) stands out in Table160

5 because it provides not only a binary of-161

fensiveness label (offensiveYN) and categorical162

fields (targetMinority, targetCategory) but163

also free-text “implied statements” capturing why164

a particular target is stigmatized. Although SBIC165

has been used for training classifiers and for cate-166

gorization tasks, downstream explainability work167

has largely ignored the option it offers for system-168

atically testing the impact of its 34K implied state-169

ments for explainability (Nghiem and Daumé Iii,170

2024). This underutilization represents a missed171

opportunity: free-text stereotypes offer semantic172

depth that neither span highlights nor simple labels173

can provide for grounding explanations.174

Therefore, this work aims to test how much the175

incorporation of such semantic depth improves the176

perceived quality of NLEs, particularly in the eyes177

of reward models. Our hypothesis is that expla-178

nations grounded in richer, stereotype-informed179

context will better align with human prefer-180

ences.181

2.2 Evaluating NLEs with Preference182

Modeling183

Early approaches that aimed to compare AI gen-184

erated content with a human ground truth relied185

on lexical overlap metrics like BLEU (Papineni186

et al., 2002) and ROUGE (Lin, 2004), but these are187

poorly correlated with human judgments of expla-188

nation quality (Sai et al., 2020). More recent met-189

rics based on pre-trained language models (PLMs),190

like BERTScore (Zhang et al., 2020), offer better191

semantic evaluation, but are notorious for carrying192

unfair stereotypical bias such as racial, gender, or193

religion bias (Kaneko and Bollegala, 2021; Sun194

et al., 2022). This behavior is unacceptable for a195

work that aims to specifically deal with hate speech.196

Reward Models (RMs) were created to im-197

prove the challenge of aligning large language198

models (LLMs) with human preferences, initially199

trained to predict a single scalar scalar score for a200

given context, and generated continuation (Ziegler201

et al., 2020; Chen et al., 2024b). These scalar- 202

valued RMs underpin alignment techniques such 203

as Reinforcement Learning from Human Feedback 204

(RLHF) (Ouyang et al., 2022). However, human 205

preferences are rarely monolithic; they are inher- 206

ently multi-dimensional, encompassing trade-offs 207

between attributes like helpfulness, safety, coher- 208

ence, and informativeness (Yu et al., 2025; Bai 209

et al., 2022). 210

These limitations are especially pronounced in 211

domains involving sensitive or identity-related lan- 212

guage (Sap et al., 2019). Scalar reward models 213

often fail to distinguish between harmful and con- 214

textually appropriate uses of terms like “sex” or 215

“Black people,” leading to large misalignments 216

with human preferences (Christian et al., 2025). 217

The deeper issue lies in RMs’ tendency to penal- 218

ize such terms uniformly in pursuit of a general- 219

ized harmlessness objective. This can result in 220

overcensorship, linguistic erasure, and the suppres- 221

sion of valid discourse, particularly harmful in hate 222

speech explanation, where referencing stereotypes 223

may be necessary to faithfully convey intent (Chris- 224

tian et al., 2025). 225

Multi-attribute RMs are a natural evolution of 226

single scalar RM, generating multiple scalars that 227

disentangle genuine helpfulness from unimportant 228

factors like length bias and offer precise, steerable 229

rewards (Chen et al., 2024a). Datasets such as 230

HelpSteer (Wang et al., 2023b) and UltraFeedback 231

(Cui et al., 2024) provide fine-grained annotations 232

across multiple dimensions. Building on these, Ar- 233

moRM (Wang et al., 2024) learns to predict multi- 234

objective reward scalars (191) for each response, 235

trained using a standard regression loss against the 236

annotated vector. To reduce these multidimensional 237

outputs to a scalar reward for ranking or preference 238

learning, ArmoRM learns a prompt-dependent gat- 239

ing function, which outputs non-negative weights 240

over the reward dimensions (summing to one). This 241

ideally allows the model to dynamically adjust the 242

relative importance of each attribute. 243

Potential issue on RMs evaluation. To test RMs 244

like ArmoRM, leading benchmarks such as Re- 245

wardBench (Lambert et al., 2024b) and Reward- 246

Bench 2 (Malik et al., 2025) are the standard for 247

testing generalization across diverse tasks. Their 248

1
All atribuites: helpsteer-helpfulness, helpsteer-correctness, helpsteer-coherence,

helpsteer-complexity, helpsteer-verbosity, ultrafeedback-overall_score, ultrafeedback-
instruction_following, ultrafeedback-truthfulness, ultrafeedback-honesty, ultrafeedback-
helpfulness, beavertails-is_safe, prometheus-score, argilla-overall_quality, argilla-judge_lm,
code-complexity, code-style, code-explanation, code-instruction_following, code-readability
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evaluation of safety, a critical component, is heav-249

ily focused on a model’s ability to refuse to gener-250

ate harmful content. RewardBench, for example,251

draws from datasets like XSTest (Röttger et al.,252

2024) and Do-Not-Answer (Wang et al., 2023a),253

where the preferred response is a refusal and the254

rejected response is harmful. Similarly, Reward-255

Bench 2 leverages the CoCoNot taxonomy (Brah-256

man et al., 2024) to assess compliance but explicitly257

excludes debatable categories to maintain a conser-258

vative stance on safety. While this emphasis on259

avoidance is crucial, it may inadvertently degrade260

model faithfulness in tasks that require nuanced dis-261

cussion of sensitive topics. The CoCoNot dataset262

itself (Brahman et al., 2024) marks progress by263

proposing a broader taxonomy for noncompliance264

beyond just safety, yet it relies on synthetically265

generated data and a US-centric view of legality.266

Thus, while we recognize the importance of cur-267

rent benchmarks, their design may unintentionally268

steer models toward over-cautiousness, potentially269

sacrificing faithfulness for broad-stroke safety.270

To address this, we introduce a benchmark fo-271

cused on contextual accuracy in hate-explicit272

scenarios and propose a method to re-weight273

general-purpose, multi-attribute reward mod-274

els to prioritize explanatory faithfulness over275

blanket safety. Together, these contributions en-276

able more accurate evaluation and development277

of models that balance informativeness with harm278

reduction.279

3 HARM - A Hate-Aware Reward Model280

via Interpretable Attributes281

Re-weighting282

3.1 Reward Model283

Our RM is designed to score the quality of NLEs284

for hate speech. This model, which we call Hate-285

Aware Reward Model (HARM), leverages pre-286

trained multi-attribute reward model by reweight-287

ing its interpretable dimensions, based on the dis-288

cussions of Section 2.2.289

Multi-Attribute Reward Model Backbone. Let290

x be a hate speech post from SBIC, and E =291

G
(t)
i (x) be a model-generated explanation (NLE)292

produced by language model Mi under condition-293

ing tier t, as defined in Section 4. Each explanation294

E is passed through a reward model that outputs a295

vector of d interpretable attribute scores: vE ∈ Rd.296

These scores reflect semantic and stylistic proper-297

ties such as helpfulness, coherence, truthfulness, 298

and safety, depending on the training sources of the 299

backbone reward model. 300

Mixture-of-Experts-Inspired Reward Modeling 301

(HARM-MOE). We propose a RM formulation 302

inspired by Mixture-of-Experts (MoE) architec- 303

tures. Our approach conceptualizes the problem 304

as a multitask learning challenge, similar to prior 305

work in hate speech detection that uses specialized 306

units to disentangle sentiment knowledge and im- 307

prove system performance (Zhou et al., 2021). We 308

hypothesize that an analogous division of labor is 309

optimal for reward modeling in this domain, where 310

the "tasks" correspond to judging explanations of 311

either offensive or non-offensive content. 312

Building on prior work (Christian et al., 2025; 313

Jiang et al., 2025), we posit that the underlying 314

reward function is inherently sparse: depending 315

on the input’s nature, different evaluative criteria 316

dominate. Leveraging this sparsity through con- 317

ditional computation is increasingly seen as key 318

to improving specialization, reducing interference, 319

and scaling capacity efficiently (Fedus et al., 2022; 320

Pfeiffer et al., 2024; Shen et al., 2023; Zoph et al., 321

2022; Du et al., 2022; Shazeer et al., 2017). We 322

therefore adopt a fixed two-expert architecture to 323

exploit this structure: 324

Let vE ∈ Rd denote the interpretable attribute 325

vector for an explanation E, where each element 326

represents a different explanation feature (e.g., 327

specificity, offensiveness, clarity). 328

HARM computes a reward score using two 329

expert branches: (i) a positive expert (non- 330

offensive), and (ii) a negative expert (offensive) 331

that accounts for offensive aspects. 332

As highlight in Figure 2, HARM-MOE-Off is 333

designed in the following way: 334

(1) Expert Gating. Each expert uses a learned 335

gating matrix to select and scale relevant attributes: 336

gs = σ(Wg,svE)⊙ vE , s ∈ {pos, neg} 337

where Wg,pos,Wg,neg ∈ Rd×d are learned gating 338

matrices and σ(·) is the element-wise sigmoid. The 339

result is a gated attribute vector for each expert. 340

(2) Expert Scoring. Each expert maps its gated 341

vector to a scalar score using a learned projection: 342

spos = Ws,posgpos, sneg = Ws,neggneg 343

where Ws,pos,Ws,neg ∈ R1×d are learned scoring 344

weights. 345
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Figure 2: HARM-MOE-Off: Architecture inspired by Mixture of Experts with interpretable intermediate attribute
re-weighting. The model receives one explanation candidate at a time and re-aggregates pre-trained attribute scores
into a offensive-aware scalar reward.

(3) Output Mixing. A softmax over the in-346

put vector determines how much each expert con-347

tributes:348

p = Softmax(WpvE), with p = [p1, p2]349

where Wp ∈ R2×d is a learned mixing matrix. The350

weights p1 and p2 represent the learned importance351

of each expert, conditioned on the explanation’s352

attributes.353

(4) Final Reward. The final HARM score is a354

weighted combination of the expert scores:355

RHARM(E) = β · (p1 · spos + p2 · sneg)356

where β is a learned scalar used to calibrate reward357

scale.358

We investigate two specialization mechanisms:359

HARM-MOE-Un (Unsupervised Output Mix-360

ing): p is trained using reward prediction alone,361

letting specialization patterns emerge via gradi-362

ents (Zoph et al., 2022).363

HARM-MOE-Off (Supervised Output Mix-364

ing via Offensiveness): an auxiliary MSE loss365

Lgate aligns WpvE with SBIC offensiveness la-366

bels, improving expert regularization (Zhou et al.,367

2022).368

This approach integrates interpretable modu-369

lar bias and task-aware supervision, relating to370

ensemble-inspired uncertainty modeling (Lakshmi-371

narayanan et al., 2017) and recent efforts in modu-372

lar RL and evaluation (Aydın et al., 2025).373

3.2 Training via Bradley–Terry Loss374

To optimize toward a correct multi-explanation375

score ranking, we adopt the Bradley–Terry376

(Bradley and Terry, 1952) framework for pairwise 377

preference learning, following recent advances in 378

reward modeling (Rafailov et al., 2023; Wang et al., 379

2024). Given two explanations (Ei, Ej), where 380

Ei is preferred over Ej , the model learns to pre- 381

dict this preference through the scoring function 382

RHARM: 383

P (Ei ≻ Ej | θ) = σ(RHARM(Ei)−RHARM(Ej)) 384

The main loss function is the Bradley–Terry ob- 385

jective: 386

LBT = −
∑

(i,j)∈P

logP (Ei ≻ Ej | θ) 387

where P denotes the set of tiered explanation pairs. 388

Preference Pair Generation. We construct pair- 389

wise preferences by comparing explanation quality 390

across tiers, conditional on the offensiveness of the 391

post: 392

For posts marked as offensive 393

(offensiveYN ≥ 0.5), stereotype informa- 394

tion is crucial. Therefore, we generate full 395

orderings: E(Tier 3) ≻ E(Tier 2) ≻ E(Tier 1) 396

In these cases of non-offensive post, stereotype 397

content is generally irrelevant or absent. The focus 398

shifts to correctly communicating non-hatefulness, 399

so Tier 2 and Tier 3 are considered equally pre- 400

ferred over Tier 1: E(Tier 3) ∼ E(Tier 2) ≻ E(Tier 1) 401

Total Training Objective. We define six loss com- 402

ponents reflecting tiered comparisons between dif- 403

ferent content types (offensive vs. non-offensive), 404

along with gating supervision for offensiveness: 405

Loffi>j: Bradley Terry (BT) loss comparing Tier 406

j to Tier i for offensive content, where (i, j) ∈ 407

(1, 2), (1, 3), (2, 3). 408
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Lnoni>j: BT loss comparing Tier j to Tier i for409

non-offensive content, where (i, j) ∈ (1, 2), (1, 3).410

Lgate: mean squared error (MSE) loss for output411

mixing supervision in the MOE-Off module.412

The total loss is a weighted sum:413

Ltotal =
∑

k λkLk, where each λk is a414

scalar (learned or manually tuned), and Lk ∈415

{Loff1>2,Loff1>3,Loff2>3,Lnon1>2,Lnon1>3,416

Lgate}.417

Additional appendices (I, J and K) test the im-418

pact of different strategies for losses combination.419

4 SBIC-Explain - A Multi-Tiered420

synthetically generated NLE Dataset.421

Create SBIC-Explain: to create a dataset that422

allows for a controlled study of increasing hate-423

explicit information in NLE generation, the So-424

cial Bias Inference Corpus (SBIC) (Sap et al.,425

2020) was used as a foundation. For each post426

x in SBIC, we generate three tiers of expla-427

nations using a set of K pretrained language428

models, M = {M1, . . . ,MK}. The genera-429

tion for model Mi is defined as: G
(t)
i (x) =430

Mi

(
Prompt(x, C(t))

)
, t ∈ {1, 2, 3} where C(t)431

is the conditioning set for each tier: C(1) =432

{}, C(2) = {offensiveYN}, C(3) = { offensiveYN,433

targetMinority, targetCategory, targetStereotype}.434

Prompts used to generate inference can be found435

in Appendix C.436

To ensure that differences in explanations are437

due to the conditioning information and not sam-438

pling randomness, we use greedy decoding (i.e.,439

‘top_k=1‘) for all generations.440

We process the official train/dev/test splits of441

SBIC, selecting only instances that include a442

stereotype annotation (i.e., with non-null val-443

ues for targetMinority, targetCategory, and444

targetStereotype). To ensure a balanced repre-445

sentation of offensive and non-offensive content,446

we apply a downsampling strategy. Specifically, we447

retain all offensive instances (offensiveYN ≥ 0.5)448

that contain semantic stereotype information and449

randomly downsample the non-offensive subset to450

match this distribution. This rebalancing yields451

the final SBIC-Explain dataset, comprising 30,899452

aggregated instances.453

To synthesize the dataset, models were selected454

taking as a reference the top four models of455

Open LLM Leaderboard under 30B parameters456

and only official providers, using also their official457

GGUF quantized versions for efficient inference:458

Qwen/Qwen3-14B: A model by Alibaba Cloud 459

(q_8 GGUF official quantization (Yang et al., 2025) 460

qwen-source). Microsoft/Phi-4: A recent state-of- 461

the art 14B parameter model from Microsoft (q_8 462

GGUF official quantization (Abdin et al., 2024) 463

phi-source). TIIUAE/Falcon-3-10B-Instruct: A 464

high-performing instruction-tuned model from the 465

Technology Innovation Institute (q_8 GGUF of- 466

ficial quantization (Team, 2024) falcon-source). 467

Google/Gemma-3-27B-it: A recent, powerful 468

instruction-tuned model from Google (q4_0 GGUF 469

official quantization (Team et al., 2025) gemma- 470

source). 471

The final dataset was generated with the men- 472

tioned 30,899 unique SBIC posts, each post gener- 473

ated three levels of NLE, and each level of expla- 474

nation was generated by four models, producing a 475

dataset with a total of 370,788 synthetical NLEs. 476

The final dataset version is grouped per post and 477

per model, so that each instance has 3 NLEs that 478

were produced by model Mi. The final dataset 479

therefore has a total of 123,596 instances. 480

SBIC-Explain Diversity. To highlight the impor- 481

tance of considering different models, diversity of 482

model-generated content was assessed using com- 483

pression ratio of the concatenated outputs (Shaib 484

et al., 2025). This metric, defined as the ratio of the 485

compressed size (via gzip) to the original uncom- 486

pressed size, serves as a proxy for output redun- 487

dancy. Lower compression ratios indicate higher 488

diversity, as the content contains fewer repeated 489

substrings and patterns. We report each model’s 490

sentence length (Avg Words) right-trimming sen- 491

tences to a fixed size of 64 words (considering each 492

word is separated by white space), because Qwen3 493

was the model that generated the smaller sentences, 494

with an average of 64 words per sentence, and, as 495

stated by (Shaib et al., 2025), the length of the an- 496

alyzed text has to be reported alongside all these 497

scores. 498

Tiers 1 2 3 Avg Avg
Words

Model

Gemma3 3.17 3.23 3.34 3.24 63
Falcon3 3.31 3.5 3.85 3.56 63
Qwen3 3.65 3.94 4.3 3.96 59
Phi4 3.66 3.92 4.49 4.02 63

Table 1: Compression ratios of generated outputs under
increasing task complexity. Lower is more diverse.
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From Table 1 results, Gemma-3 generates the499

most diverse, while Phi-4 and Qwen-3 tend to re-500

peat structures or lexical patterns across samples.501

Falcon-3 occupies a middle ground, generating502

content with moderate variability.503

This aligns with downstream performance (Ap-504

pendix I - Table 8) trends from our reward mod-505

eling experiments, where HARM trained on data506

only generated by Falcon, Qwen, Phi, and Gemma507

achieve progressively lower overall test accuracy,508

respectively, and training on all models synthetic509

data generated higher testing accuracy.510

Interestingly, although Gemma-3 explanations are511

the most diverse, models trained alone on its data512

generalize the worst. This may suggest that high513

diversity alone does not ensure effective reward514

model training. In contrast, Falcon-3’s interme-515

diate diversity may offer a more balanced training516

signal, enabling stronger generalization across un-517

seen model outputs.518

5 Experiments and Results519

We evaluate HARM on our SBIC-Explain dataset520

using ArmoRM-Llama3-8B-v0.1 (Wang et al.,521

2024) as the backbone, prompt details are in Ap-522

pendix D. All models were trained using the Adam523

optimizer with a learning rate of 2.5e-3. To assess524

architectural trade-offs, we also test Linear and525

MLP variants as baselines (Appendix L).526

All experiments follow the same accuracy cal-527

culation, based on the expected explanation rank-528

ing. For offensive posts (offensiveYN ≥ 0.5),529

stereotype-relevant tiers should follow: E(3) ≻530

E(2) ≻ E(1). For non-offensive posts, Tier 2 and531

Tier 3 are treated as equally preferred over Tier 1,532

as discussed in Section 3.2.533

5.1 Baseline Misalignment: Off-the-Shelf534

RMs Fail to Value Context.535

Table 2 results confirm a critical failure: both state-536

of-the-art RMs (ArmoRM-Llama3-8B-v0.1 (Wang537

et al., 2024)2 and URM-LLaMa-3.1-8B (Lou et al.,538

2025)3) prefer label-aware (Tier 2) explanations539

and penalize the inclusion of rich stereotype infor-540

mation (Tier 3). This demonstrates that general-541

purpose reward functions are not suited for the542

nuances of this domain and actively discourage the543

generation of more insightful (but possible more544

language sensitive) explanations.545

2armorm-source
3urm-source

Baseline
Reward
Model

Tier
Reward

Difference
(mean ± std)

Accuracy

ArmoRM
(Wang et al., 2024)

2 > 1 0.039 ± 0.1 0.62
3 > 1 0.005 ± 0.2 0.49
3 > 2 -0.053 ± 0.1 0.28

URM
(Lou et al., 2025)

2 > 1 0.091 ± 0.6 0.58
3 > 1 0.011 ± 0.7 0.44
3 > 2 -0.136 ± 0.5 0.23

HARM
MOE-Off

2 > 1 0.07 ± 0.2 0.73
3 > 1 0.14 ± 0.2 0.87
3 > 2 0.09 ± 0.2 0.79

Table 2: Accuracy and Proportional differences
(diff(i, j) = (i − j)/j) between reward scores from
baseline RMs and HARM for different tiers.

Misalignment Hypothesis Rational. To better 546

understand how RMs may implicitly disincen- 547

tivize sensitive or emotionally charged content, we 548

compute Pearson correlation coefficients between 549

model-assigned rewards and external language clas- 550

sifiers targeting hate speech, offensiveness, and 551

sentiment. 552

We use the following pretrained detec- 553

tors from cardiffnlp: Sentiment (sent): 554

twitter-roberta-base-sentiment (Barbi- 555

eri et al., 2020) source. Hate speech (hate): 556

twitter-roberta-base-hate source. Offensive- 557

ness (off): twitter-roberta-base-offensive 558

source. 559

Overall, Table 3 shows moderate positive corre- 560

lations between rewards and non-offensive content 561

(up to r = 0.45 in Tier 3 for ArmoRM), suggest- 562

ing that RMs may indeed favor less offensive or 563

emotionally negative outputs. This aligns with pre- 564

vious findings that reward models often exhibit an 565

implicit bias toward “safe” or sanitized language 566

ArmoRM
(Wang et al., 2024)

URM
(Lou et al., 2025)

Reward Tier 1 Tier 2 Tier 3 Tier 1 Tier 2 Tier 3
Text Metric

Post
not hate 0.20 0.25 0.24 -0.07 0.07 0.13

not off 0.36 0.41 0.39 -0.01 0.18 0.20
sent (neg) -0.20 -0.25 -0.24 -0.01 -0.14 -0.17

Tier 1
not hate 0.13 0.18 0.17 -0.07 0.07 0.08

not off 0.36 0.44 0.42 -0.05 0.21 0.25
sent (neg) -0.31 -0.37 -0.38 -0.10 -0.27 -0.34

Tier 2
not hate 0.13 0.16 0.16 -0.05 0.05 0.10

not off 0.37 0.43 0.43 -0.03 0.17 0.27
sent (neg) -0.25 -0.36 -0.40 0.05 -0.24 -0.40

Tier 3
not hate 0.13 0.17 0.17 -0.05 0.06 0.13

not off 0.34 0.42 0.45 -0.03 0.20 0.37
sent (neg) -0.24 -0.35 -0.40 0.05 -0.25 -0.43

Table 3: Correlation between different methods reward
results and sentiment, offensive and hate measurements.
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Tier Expert MOE-Off MOE-Un

1 Offensive -0.59 -0.48
1 Non-Offensive 0.59 0.48
2 Offensive -0.78 -0.68
2 Non-Offensive 0.78 0.68
3 Offensive -0.82 -0.73
3 Non-Offensive 0.82 0.73

Table 4: Correlation of model output mixing (Wp ∈
R2×d) and offensive ground truth, across model tiers.

(Christian et al., 2025; Jiang et al., 2025).567

Moreover, reward tends to be negatively corre-568

lated with negative sentiment scores, especially569

in more complex explanations, reaching values as570

low as r = −0.43 in Tier 3 (URM). This implies571

that emotionally charged or confrontational expla-572

nations, while potentially necessary in sensitive573

domains like hate speech, may be under-rewarded.574

These trends highlight the presence of systematic575

bias in reward modeling, further motivating the576

development of HARM’s multi-expert mechanism.577

To further investigate, we manually sanitized of-578

fensive explanations, removing references to stereo-579

types and bias, and compared their reward scores580

using ArmoRM (Appendix N). On average, sani-581

tized explanations received 37% higher rewards,582

supporting the hypothesis that current RMs under-583

value faithful, socially grounded content.584

5.2 HARM Performance: Correcting the585

Misalignment586

We evaluate the explanations using our proposed587

HARM-MoE-Off. As shown in Table 2, HARM588

successfully recovers the expected hierarchy of ex-589

planation quality, assigning the highest rewards to590

Tier 3, demonstrating the relevance of re-weighting591

existing interpretable reward attributes. Notably,592

attributes like coherence and complexity receive593

higher weights, reflecting the importance of con-594

sistency and reasoning depth. A full analysis of595

learned weights is provided in Appendix F, with596

a dedicated discussion on text complexity in Ap-597

pendix G, and practical examples in Appendix N.598

Output Mixing: Offensive Post Prediction Ac-599

curacy. To evaluate whether supervised output600

mixing improves alignment between experts and601

offensive content, we analyzed the correlation be-602

tween gating values and the SBIC is_offensive603

continuous annotations on the test set.604

As shown in Table 4, the output mixing weights,605

particularly those selecting between the non- 606

offensive and offensive experts, show strong and 607

systematic correlations with the offensiveness sig- 608

nal. This alignment is further amplified in the 609

HARM-MOE-Off setting, where gating is explic- 610

itly supervised using is_offensive annotations. 611

Despite receiving no explicit guidance, the unsu- 612

pervised variant (HARM-MOE-Un) naturally de- 613

velops gating behaviors aligned with offensive con- 614

tent, indicating that the emergence of expert special- 615

ization along offensive/non-offensive dimensions 616

is an inductive bias reinforced by the task and data. 617

Notably, the supervised model (HARM-MOE-Off) 618

further amplifies this effect, achieving, on aver- 619

age, a 15% improvement in expert correlation with 620

offensive content, demonstrating its ability to dis- 621

entangle semantically meaningful behaviors more 622

clearly and robustly. These findings highlight the 623

interpretability of our output-gated architecture and 624

point toward the broader potential of supervised 625

and hybrid approaches for learning structured, dis- 626

entangled representations of social biases and lin- 627

guistic toxicity in a modular fashion. 628

6 Conclusion 629

We addressed a critical gap in the evaluation of 630

Natural Language Explanations (NLEs) for hate 631

speech by revealing how current reward models 632

(RMs) often penalize contextually appropriate ex- 633

planations, thereby misaligning with the goal of 634

faithful and socially grounded explanation. 635

To tackle this, we introduced HARM, a Hate- 636

Aware Reward Model that reweights interpretable 637

attributes to prioritize domain-relevant explanatory 638

quality. HARM not only recovers the intended hier- 639

archy across explanation tiers but also provides fine- 640

grained interpretability, making it a practical tool 641

for sensitive evaluation tasks. To support this ef- 642

fort, we also presented SBIC-Explain, a dataset of 643

370,788 LLM-generated explanations for offensive 644

content, annotated across three tiers of contextual 645

richness: Tier 1 (text-only), Tier 2 (+ classification- 646

aware), and Tier 3 (+ semantics-informed). 647

Although our work is grounded in the domain 648

of hate speech and offensive content, the problem 649

of misaligned evaluation extends to other linguisti- 650

cally sensitive settings (e.g. legal (Chalkidis et al., 651

2021) and medical (Agrawal et al., 2022; Han et al., 652

2025)). Our work aim to serve as a benchmark and 653

inspiration for developing more faithful systems in 654

sensitive contexts. 655
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Limitations656

Our approach has some limitations. First, while657

HARM improves alignment in hate speech/offen-658

sive contexts, its performance and learned weights659

depend on the choice of backbone reward model660

(e.g., ArmoRM), which itself may carry inherent661

biases from training data. Second, our evaluation662

relies on synthetic explanations (based on human663

rationals) rather than entirely human-authored ones,664

which may not capture the full variability or nuance665

of real-world reasoning. Third, the potential appli-666

cability to other domains such as law or medicine667

remains hypothetical, we encourage empirical val-668

idation before generalization. Finally, HARM, as669

it is, was mainly designed and tested for post hoc670

evaluation and does not directly influence genera-671

tion during model training; integrating it (or some672

variation of general purpose interpretable reward673

scores re-weighting) into reinforcement learning or674

DPO-style loops is a possible direction for future675

work.676
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A Licenses1076

All third-party models and datasets used in this1077

work are governed by their respective licenses:1078

• Qwen/Qwen3-14B: Apache License 2.0.1079

• Microsoft/Phi-4: MIT License.1080

• TIIUAE/Falcon-3-10B-Instruct: TII Falcon-1081

LLM License 2.0, which is based on Apache1082

License 2.0 with additional terms and restric-1083

tions.1084

• Google/Gemma-3-27B-it: Gemma License.1085

Notably, this license prohibits generation of sex-1086

ually explicit content except for scientific, edu-1087

cational, documentary, or artistic purposes.1088

• SBIC Dataset: CC BY 4.0 License.1089

Our use of these artifacts complies with all stated1090

licenses, particularly by ensuring that generated1091

content is used solely for scientific research and1092

not redistributed beyond the scope allowed by each1093

license.1094

B Software1095

Our experiments were implemented in Python, us-1096

ing PyTorch (Paszke et al., 2019) and Hugging-1097

Face’s Transformers library (Wolf et al., 2020) for1098

model training and inference. For model quan-1099

tized (GGUF) inference, we used llama_cpp4. To1100

analyze explanation quality and diversity, we em-1101

ployed the diversity5 package and textstat61102

(Shaib et al., 2025), which provide metrics for struc-1103

tural repetition and readability assessment, respec-1104

tively.1105

4llama_cpp source
5diversity source
6textstat source

C Prompt Templates For Dataset 1106

Generation 1107

Here we detail the exact prompt templates used for 1108

generating the NLEs for each tier. Different models 1109

had slight prompt variations to accommodate for 1110

different expected prompt structures (e.g. models 1111

that expect explicit reasoning tokens or slight varia- 1112

tion in system/user/assistant chat tokens to specify 1113

who is talking), always following each models best 1114

practices. 1115

C.1 Tier 1 Prompt 1116

1 <|im_start|>user 1117
2 ========= INFO TO FOLLOW WHEN GENERATING 1118

ANSWER 1119
3 Post Text: {post} 1120
4 ========= INFO TO FOLLOW WHEN GENERATING 1121

ANSWER <| im_end|> 1122
5 1123
6 <|im_start|>user 1124
7 Generate a natural language explanation 1125

of why this is or is not to be 1126
considerate offensive. 1127

8 Generate the most concise explanation 1128
version possible while still 1129
explaining all important aspects. 1130

9 You dont need to rewrite the whole 1131
sentence to explain it, but you can 1132
rewrite or reference specif parts to 1133
help on your explanation .<|im_end|> 1134

10 Write your explaination in english. 1135
11 <|im_end|> 1136
12 1137
13 <|im_start|>assistant /no_think 1138
14 1139
15 <think > 1140
16 1141
17 </think > 1142
18 1143
19 Explanation: 1144

C.2 Tier 2 Prompt 1145

1 <|im_start|>user 1146
2 ========= INFO TO FOLLOW WHEN GENERATING 1147

ANSWER 1148
3 Post Text: {post} 1149
4 {'POST TEXT IS CONSIDERED OFFENSIVE ' if 1150

is_offensive >=0.5 else 'POST TEXT IS 1151
NOT CONSIDERED OFFENSIVE '} 1152

5 ========= INFO TO FOLLOW WHEN GENERATING 1153
ANSWER <| im_end|> 1154

6 1155
7 <|im_start|>user 1156
8 Generate a natural language explanation 1157

of why this is or is not to be 1158
considerate offensive. 1159

9 Generate the most concise explanation 1160
version possible while still 1161
explaining all important aspects. 1162

10 You dont need to rewrite the whole 1163
sentence to explain it, but you can 1164
rewrite or reference specif parts to 1165
help on your explanation .<|im_end|> 1166

13
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11 Write your explaination in english.1167
12 <|im_end|>1168
131169
14 <|im_start|>assistant /no_think1170
151171
16 <think >1172
171173
18 </think >1174
191175
20 Explanation:1176

C.3 Tier 3 Prompt1177

1 <|im_start|>user1178
2 ========= INFO TO FOLLOW WHEN GENERATING1179

ANSWER1180
3 Post Text: {post}1181
4 {'POST TEXT IS CONSIDERED OFFENSIVE ' if1182

is_offensive >=0.5 else 'POST TEXT IS1183
NOT CONSIDERED OFFENSIVE '}1184

5 Targeted Minority: {targetMinority}1185
6 Targeted Category: {targetCategory}1186
7 Targeted Stereotype: {targetStereotype}1187
8 ========= INFO TO FOLLOW WHEN GENERATING1188

ANSWER <| im_end|>1189
91190

10 <|im_start|>user1191
11 Generate a natural language explanation1192

of why this is or is not to be1193
considerate offensive.1194

12 Generate the most concise explanation1195
version possible while still1196
explaining all important aspects.1197

13 You dont need to rewrite the whole1198
sentence to explain it, but you can1199
rewrite or reference specif parts to1200
help on your explanation .<|im_end|>1201

14 Write your explaination in english.1202
15 <|im_end|>1203
161204
17 <|im_start|>assistant /no_think1205
181206
19 <think >1207
201208
21 </think >1209
221210
23 Explanation:1211

D Templates For ArmoRM Generation1212

and URM1213

Here we detail the exact template used generating1214

Rewards using ArmoRM and URM.1215

D.1 ArmoRM and URM Template1216

1 [{1217
2 "role": "user", "content ": Generate a1218

natural language explanation of why1219
this post text is or is not1220
considered offensive.1221

3 Post text: {<post_text >}1222
4 },1223
5 {"role": "assistant", "content ": {<1224

ai_generate_NLE >}1225
6 }]1226

E Explainable Hate Speech Datasets 1227

Table 5 shows that most explainable hate speech 1228

datasets center around highlight-based rationales, 1229

where annotators mark specific words or spans per- 1230

ceived as offensive. This design, seen in datasets 1231

like HateXplain, SemEval-2021, and HateBRX- 1232

plain, prioritizes the surface detection of hateful 1233

expressions. However, it often neglects the deeper 1234

reasoning or hateful rationale, the underlying social 1235

stereotypes, historical marginalization, or implied 1236

harm, behind why a phrase is offensive. 1237

HateCOT introduces a promising step forward 1238

by generating synthetic natural language explana- 1239

tions (NLEs) that leverage broader context. How- 1240

ever, its approach directly injects all available meta- 1241

data (e.g., target labels, hate categories, spans) into 1242

the prompt, leaving open the question of how each 1243

type of information impacts explanation quality. 1244

This conflation makes it difficult to isolate which 1245

elements meaningfully improve explanation coher- 1246

ence or alignment with human values. 1247

In contrast, our work proposes a more structured 1248

investigation. By focusing on the semantic contri- 1249

bution of stereotype-informed free-text rationales, 1250

specifically, the “implied statements” from SBIC, 1251

we aim to disentangle how this deeper contextual 1252

information affects model-generated explanations. 1253

Moreover, we go beyond human-written ground 1254

truth by evaluating how these enriched explanations 1255

are perceived by reward models, offering insights 1256

into both performance and alignment. 1257
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Dataset Year Language(s) Source Do-
main

Explainability Annotation Size

HateBRXplain
(Salles et al., 2025)

2025 Portuguese
(Brazilian)

Instagram (com-
ments)

Span rationales
(text)

Expert annota-
tors

7,000

HateInsights (Ar-
shad and Shahzad,
2024)

2024
Urdu
(Roman
Arabic)

Twitter, Face-
book

Span rationales
(word/sentence)

Student annota-
tors

11,782

HateCOT (Nghiem
and Daumé Iii,
2024)

2024 English Multi ≈ source
(8 corpora)

Synthetic NLEs GPT-3.5-Turbo
+ human cura-
tion

52,137

PHate (Delbari
et al., 2024)

2024 Persian
(Farsi)

Twitter Span rationales +
target labels

Expert annota-
tors

7,000

ViHOS (Hoang
et al., 2023)

2023 Vietnamese Facebook,
YouTube

Span rationales
(text)

Human annota-
tors

11,056

HateXplain
(Mathew et al.,
2022)

2020 English Twitter, Gab Span rationales
(text)

AMT crowd-
workers

20,148

SemEval-2021
Task 5 (Toxic
Spans) (Pavlopou-
los et al., 2021)

2021 English Civil Com-
ments
(Wikipedia
talk)

Span rationales
(text)

Crowd workers 10,629

DOSA (Ravikiran
and Annamalai,
2021)

2021 Tamil
English,
Kannada
English

YouTube com-
ments

Span rationales
(words)

Human annota-
tors

4,786 (Tamil)
/ 1,097 (Kan-
nada)

Social Bias Frames
(SBIC) (Sap et al.,
2020)

2020 English Twitter, Reddit,
Gab, extremist
forums

Categorical labels
+ free-text “im-
plied statements”

Crowdsourced
(MTurk)

44,671 posts

Table 5: Overview of explainable hate speech detection datasets.

F Analyzing HARM’s Weights1258

One advantage of our Mixture-of-Experts formula-1259

tion is interpretability: HARM explicitly exposes1260

gating and scoring weights across expert dimen-1261

sions. We compute feature importance using a1262

composite of three components: (i) input gating1263

weights, (ii) expert scoring weights, and (iii) out-1264

put mixing weights. These are analyzed separately1265

for offensive and non-offensive content, then aver-1266

aged into two final metrics: Avg Scoring Impor-1267

tance (mean of i and ii) and Avg Output mixing1268

Importance (mean of iii).1269

Figure 3 illustrates how individual attributes1270

shape HARM’s expert behavior. Features like1271

helpsteer-coherence, helpsteer-complexity, and1272

helpsteer-helpfulness are consistently weighted1273

across both offensive and non-offensive set-1274

tings, reflecting the importance of coherence,1275

clarity, and reasoning depth in generating1276

nuanced hate speech explanations. Given1277

the prominence of complexity-related attributes1278

(helpsteer-complexity, code-complexity), we in-1279

clude a dedicated analysis in Appendix G.1280

In contrast, lower weights for attributes such as 1281

argilla-overall_quality, ultrafeedback-helpfulness, 1282

and code-style suggest that superficial fluency or 1283

stylistic quality is deprioritized. HARM instead 1284

favors factual and context-sensitive reasoning, es- 1285

pecially in high-risk cases. 1286

Safety-relevant features (beavertails-is_safe, 1287

helpsteer-correctness, ultrafeedback-truthfulness) 1288

receive stronger weights in offensive content pro- 1289

cessing, indicating an adaptive bias toward preci- 1290

sion and caution. 1291

The Avg weights row in Figure 3 further supports 1292

this: offensive input gating scores higher (0.42 vs. 1293

0.30), with more polarized output gating (-0.08 vs. 1294

0.06). This asymmetry shows that HARM becomes 1295

more selective and safety-aware when handling 1296

harmful inputs. 1297
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Figure 3: The learned weights of the best HARM-MOE-Off model for each of the 19 attributes from ArmoRM.
This reveals the relative importance of each attribute for scoring hate speech NLEs.

G Text Complexity Metrics1298

text Post Tier 1 Tier 2 Tier 3
Metric

flesch_reading_ease ↓ 72.998 29.349 29.154 25.107
mcalpine_eflaw ↑ 20.526 29.12 28.495 28.402
gunning_fog ↑ 8.689 17.782 17.668 18.37
smog_index ↑ 8.196 15.924 15.797 16.276
automated_readability_index ↑ 7.31 15.323 15.204 15.673
linsear_write_formula ↑ 7.748 14.824 14.813 15.327
flesch_kincaid_grade ↑ 6.667 14.392 14.329 14.953
coleman_liau_index ↑ 7.114 14.089 14.139 14.609
dale_chall_readability_score ↑ 8.956 11.27 11.3 11.372
spache_readability ↑ 4.46 7.035 6.997 7.115

Table 6: Complexity metrics (readability, complexity,
and grade level). ↑ and ↓ indicate the relationship of the
given metric and increase in complexity.

To further investigate the high importance of1299

complexity-related attributes observed in HARM’s1300

learned weights, particularly helpsteer-complexity1301

and code-complexity, we analyze textual complex-1302

ity across different input and explanation types in1303

our dataset.1304

We apply a suite of standard readability and com-1305

plexity metrics using the textstat Python pack-1306

age7. These include traditional readability scores1307

(e.g., Flesch Reading Ease), grade-level indicators1308

(e.g., Gunning Fog Index, SMOG), and composite1309

formulas (e.g., McAlpine EFLAW). Results are pre-1310

sented in Table 6, comparing complexity across the1311

original post texts and the three tiers of generated1312

explanations.1313

7https://pypi.org/project/textstat/

We observe a clear trend on Table 6: explana- 1314

tions, especially those from Tier 3, consistently 1315

exhibit higher complexity than the original posts or 1316

lower-tier explanations. For example, Tier 3 expla- 1317

nations have the lowest Flesch Reading Ease (25.1, 1318

lower is more complex) and the highest Gunning 1319

Fog Index (18.4, higher is more complex), indicat- 1320

ing more sophisticated and cognitively demanding 1321

language. This aligns with our hypothesis that 1322

more contextually informed explanations require 1323

greater linguistic and conceptual complexity. 1324

These findings support the observed model be- 1325

havior: attributes related to textual complexity re- 1326

ceive higher weighting during HARM’s scoring 1327

process, likely because they capture deeper rea- 1328

soning and nuance, critical for high-quality hate 1329

speech explanation. 1330
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H MLP Hidden Variation Ablation1331

To further understand baselines beyond our MOE1332

inspired architecture and the impact of model1333

capacity on HARM’s performance, we conduct1334

testes a non-linear two-layer multi-layer percep-1335

tron (MLP) with ReLU activations. We evaluate1336

five hidden size configurations ranging from 1281337

to 2048 hidden units, analyzing how architectural1338

choices affect both average performance and stabil-1339

ity across multiple training runs.1340

Table 7 presents statistics for each hidden layer1341

configuration. The results reveal relatively stable1342

performance across different hidden sizes, with all1343

configurations achieving mean accuracies between1344

0.70 and 0.71.1345

Hidden
Size Mean Std Min 50% Max

128 0.70 0.07 0.61 0.70 0.80
256 0.71 0.08 0.59 0.72 0.81
512 0.70 0.07 0.59 0.70 0.78
1024 0.70 0.07 0.60 0.72 0.79
2048 0.71 0.07 0.59 0.71 0.80

Table 7: MLP hidden layer size impact on accuracy.
(Train on all tiers and all models)

The 256-dimensional hidden layer configuration1346

achieves the highest mean accuracy (0.71) and max-1347

imum performance (0.81), though it also exhibits1348

the highest variance (0.08). This suggests that1349

while the 256-unit configuration can achieve peak1350

performance, it may be more sensitive to initializa-1351

tion and training dynamics. The 128-unit configura-1352

tion provides a good balance between performance1353

and stability, matching the mean accuracy of larger1354

configurations while maintaining reasonable vari-1355

ance.1356

Interestingly, increasing hidden layer size be-1357

yond 256 units does not yield consistent improve-1358

ments in mean performance. The 512, 1024, and1359

2048-unit configurations all achieve mean accu-1360

racies of 0.70-0.71, with the largest model (20481361

units) showing similar performance to the smallest1362

(128 units). This plateau effect suggests that the1363

complexity of the hate speech explanation evalua-1364

tion task may not require extensive model capacity,1365

and that the representation learning challenges are1366

more related to the quality of the re-weighting strat-1367

egy rather than raw parameter count.1368

The consistency in minimum performance across1369

configurations (0.59-0.61) indicates that all archi-1370

tectures are capable of learning meaningful rep- 1371

resentations, while the similar maximum perfor- 1372

mance values (0.78-0.81) suggest that the upper 1373

bound of performance is more constrained by the 1374

task complexity and dataset characteristics than by 1375

model capacity. These findings support the use of 1376

moderately sized hidden layers (128-256 units) for 1377

HARM, providing computational efficiency with- 1378

out sacrificing performance. 1379

I MOE-Off - Losses Combinations 1380

(Losses Included or Excluded) 1381

In this section, we investigate the effect of selec- 1382

tively including or excluding different training tiers 1383

when optimizing the MOE-Off reward model. Our 1384

goal is to understand how various data configura- 1385

tions contribute to generalization and performance 1386

across models, and which combinations offer the 1387

most effective supervision signal for the intended 1388

reward modeling objectives. 1389

Table 8 presents pairwise accuracies, general 1390

accuracy, and reward score distance across multi- 1391

ple tier combinations and backbone models. We 1392

compare these configurations against our reference 1393

models (ArmoRM and URM), and also explore the 1394

impact of using all available data versus subsets 1395

grouped by tier. 1396

Notably, training on Tiers 1 & 3 consistently 1397

yields the strongest results, achieving the highest 1398

overall accuracy (0.807) and the best average score 1399

distance (0.111). This indicates that the contrast be- 1400

tween these two extremes (Tier 1 (low preference) 1401

and Tier 3 (high preference)) provides the clearest 1402

and most informative supervision signal. In con- 1403

trast, combinations involving only Tiers 2 & 3 or 1404

Tiers 1 & 2 exhibit more moderate performance, 1405

likely due to the reduced contrast in reward prefer- 1406

ence, which makes learning signal less distinct. 1407

Among backbone models, the All ensemble con- 1408

sistently ranks highest or very close to best, high- 1409

lighting the benefit of incorporating diverse model 1410

perspectives during training. This supports our hy- 1411

pothesis that model diversity helps generalize the 1412

reward function across different architectures. 1413

Interestingly, although Gemma and Qwen 1414

achieve strong results in some configurations, they 1415

also show higher variance, particularly Qwen, 1416

which exhibits significant volatility in score dis- 1417

tance, likely due to instability in reward scaling. 1418

These findings suggest that while individual back- 1419

bones can be powerful, their behavior must be care- 1420
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Model
Configuration Pairwise Accuracy Reward Score Distance

(diff(i, j) = (i− j)/j)

Train
Tiers

Train
Model

2>1 3>1 3>2 Mean 2-1 3-1 3-2 Mean

Ref.
Results

ArmoRM 0.616 0.489 0.282 0.524 0.039 0.005 -0.053 0.016
URM 0.585 0.445 0.229 0.49 0.091 0.011 -0.136 0.038

Ti
er

s1
&

2 Falcon 0.747 0.67 0.385 0.669 0.335 0.318 -0.008 0.285
Gemma 0.725 0.687 0.42 0.676 2.761 3.172 -0.283 2.883
Phi 0.719 0.697 0.436 0.674 0.094 0.106 -0.008 0.09
Qwen 0.743 0.755 0.537 0.718 0.131 0.164 0.027 0.137

All 0.779 0.745 0.454 0.721 0.043 0.045 0.001 0.04

Ti
er

s1
&

3 Falcon 0.717 0.816 0.747 0.768 0.036 0.059 0.035 0.048
Gemma 0.669 0.735 0.658 0.709 0.027 0.037 0.017 0.033
Phi 0.644 0.816 0.8 0.743 0.03 0.098 0.081 0.067
Qwen 0.655 0.821 0.815 0.756 0.019 0.052 0.042 0.038

All 0.729 0.868 0.792 0.807 0.073 0.144 0.092 0.111

Ti
er

s2
&

3 Falcon 0.572 0.787 0.827 0.697 0.007 0.044 0.049 0.028
Gemma 0.345 0.492 0.75 0.448 -0.044 0.006 0.084 -0.01
Phi 0.479 0.738 0.847 0.632 -0.019 0.084 0.136 0.044
Qwen 0.551 0.767 0.84 0.686 0.003 0.04 0.047 0.025

All 0.495 0.763 0.86 0.655 -0.039 0.152 0.203 0.07

A
ll

Ti
er

s Falcon 0.687 0.813 0.76 0.75 0.068 0.196 0.2 0.142
Gemma 0.575 0.707 0.744 0.654 0.006 0.02 0.026 0.014
Phi 0.625 0.807 0.801 0.724 0.019 0.068 0.05 0.044
Qwen 0.639 0.804 0.816 0.736 0.01 0.042 0.031 0.023

All 0.689 0.849 0.808 0.775 0.03 0.083 0.069 0.059

Table 8: Performance of HARM-MOE-Off reward model across different training configurations. All reported
results are based on the entire test set, only training is being altered.

fully calibrated when used in isolation.1421

Overall, this analysis reinforces two key insights:1422

(1) contrastive supervision from clearly distinguish-1423

able preference tiers (especially Tiers 1 and 3) is1424

critical for effective reward modeling, and (2) in-1425

corporating multiple models helps stabilize and1426

improve reward quality across the board.1427

J MOE-Off - Losses Combination (Grid 1428

Search 0, 0.5, 1.) 1429

Loss Component Importance Correlation

Lnon1>3 0.685 0.761
Loff1>2 0.106 0.129
Loff1>3 0.076 0.186
Loff2>3 0.052 0.080
Lnon1>2 0.044 -0.128
Lgate 0.037 0.019

Table 9: Feature importance and correlation analysis for
MOE-Off loss weight parameters

To optimize the loss weighting strategy for our 1430

MOE-Off architecture, we conduct a comprehen- 1431

sive grid search across all loss components, system- 1432
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Test Acc. Loff1>2 Loff1>3 Loff2>3 Lnon1>2 Lnon1>3 Lgate

0.8061 0 0.5 0 0 1 1
0.8060 0 0.5 0 0 0.5 0.5
0.8056 0 1 0 0 1 1
0.8054 0 0.5 0 0 0.5 1
0.8049 0 1 0 0 1 0
0.8045 0 1 0 0 0.5 0.5
0.8043 1 0 0.5 0 0.5 0.5
0.8040 0.5 0.5 0 0 1 1
0.8030 0.5 0.5 0.5 0 1 1
0.8024 0.5 0 0.5 0 0.5 0.5

Table 10: Top 10 HARM-MOE-Off configurations of losses (different weights for each loss) ranked by test
accuracy.

atically varying each weight parameter between 0,1433

0.5, and 1.0. This exploration allows us to iden-1434

tify the optimal combination of loss terms and un-1435

derstand the relative importance of different train-1436

ing objectives in our hate-aware reward modeling1437

framework.1438

We employ a feature importance analysis tech-1439

nique inspired by (Fouodo et al., 2025), where we1440

train a random forest model using hyperparame-1441

ter configurations as inputs and place accuracy as1442

target outputs. The random forest’s feature impor-1443

tance values reveal which loss weights contribute1444

most significantly to model performance, while cor-1445

relation analysis shows the direction and strength1446

of these relationships.1447

Table 9 presents the feature importance and cor-1448

relation analysis for each loss weight parameter.1449

Lnon1>3 emerges as the most critical parameter,1450

achieving a feature importance of 0.685 and a1451

strong positive correlation of 0.761 with model per-1452

formance, indicating that non-offensive content dis-1453

crimination between models 1 and 3 is fundamen-1454

tal to achieving high accuracy. Notably, Lnon1>21455

exhibits the only negative correlation (-0.128), sug-1456

gesting that increasing this weight may actually1457

hurt performance.1458

The top-performing configurations from our1459

grid search validate these importance rankings,1460

as shown in Table 10. The best model achieves1461

80.61% test accuracy with λ = 1 for (Lnon1>3)1462

(maximizing the most important parameter) while1463

setting the negatively correlated λ = 0 for1464

(Lnon1>2). Examining the top 10 configurations1465

reveals consistent patterns: (Lnon1>3) is consis-1466

tently high λ (0.5 or 1.0),(Lnon1>2) remains at1467

λ = 0 in most cases, and (Loff1>3) shows moder-1468

ate values when active.1469

These findings suggest that our MOE-Off archi- 1470

tecture benefits most from strong supervision on 1471

non-offensive content discrimination, particularly 1472

between specific model pairs, while offensive con- 1473

tent discrimination plays a more nuanced role in 1474

optimization. 1475

K MOE-Off - Losses Combination 1476

(Learning to Weight Losses) 1477

Beyond manually including losses and grid search, 1478

we explore an adaptive approach to loss weighting 1479

using multi-task likelihood maximization (Kendall 1480

et al., 2018). This method automatically learns op- 1481

timal loss weights by maximizing Gaussian likeli- 1482

hood with homoscedastic uncertainty, where losses 1483

assigned lower weights can be interpreted as hav- 1484

ing higher uncertainty in their contribution to the 1485

overall objective. 1486

We implement the multi-task loss function based 1487

on the approach of (Kendall et al., 2018), which 1488

learns task-specific uncertainty parameters that ef- 1489

fectively weight different loss components. The 1490

learned weights are parameterized as log-variance 1491

terms, allowing the model to automatically balance 1492

the contribution of each loss component during 1493

training without requiring manual hyperparameter 1494

tuning. 1495

Table 11 presents the learned log-variance pa- 1496

rameters for each loss component after training 1497

convergence. The results reveal interesting patterns 1498

in how the model perceives the uncertainty and 1499

importance of different loss terms. loss_gating 1500

receives the most negative weight (-2.247), indi- 1501

cating the highest uncertainty and lowest effective 1502

contribution to the training objective. Conversely, 1503

(Loff2>3) achieves the least negative weight (- 1504
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0.473), suggesting this loss component is consid-1505

ered most reliable and receives the highest effective1506

weighting.1507

Loss Component Log-Variance

Loff2>3 -0.473
Lnon1>2 -0.778
Loff1>2 -1.177
Lnon1>3 -1.209
Loff1>3 -1.524
Lgate -2.247

Table 11: Learned log-variance parameters for multi-
task loss weighting

The adaptive weighting approach achieves a1508

maximum test accuracy of 78.73%, with the top 51509

configurations reaching 78.73%, 78.66%, 78.06%,1510

76.96%, and 75.68% respectively. While this rep-1511

resents a systematic and theoretically grounded1512

approach to loss balancing, the performance falls1513

short of our grid search results, which achieved1514

over 80% accuracy.1515

This performance gap suggests that while the1516

multi-task likelihood framework provides valuable1517

insights into loss component uncertainty, the auto-1518

matic weighting may not capture the specific re-1519

quirements of our hate-aware reward modeling task1520

as effectively as carefully tuned manual weights.1521

The learned weights show some disagreement with1522

our grid search findings, where (Lnon1>3) was1523

identified as most important but receives a rela-1524

tively high uncertainty weight (-1.209) in the adap-1525

tive approach. This discrepancy highlights the com-1526

plexity of loss balancing in multi-objective opti-1527

mization and suggests that domain-specific manual1528

tuning may still be necessary in our case.1529

L Statistical Evaluation 1530

This section presents a detailed statistical analysis 1531

of model performance and statistical testing, ag- 1532

gregating results across multiple training tiers and 1533

model variants. Here, we focus exclusively on mod- 1534

els trained with Tier 1&3 data, our best-performing 1535

configuration. 1536

L.1 Methodology 1537

To assess performance stability and significance, 1538

we implemented a 10-fold cross-validation proce- 1539

dure using only the training set of our dataset SBIC- 1540

Explain. For each fold, we trained the model on 9 1541

folds fold and tested it on the remaining one, yield- 1542

ing 10 accuracy scores per model. This approach 1543

allowed us to evaluate both overall performance 1544

distribution and consistency across folds. 1545

Before applying statistical tests, we verified the 1546

distributional properties of these results using the 1547

D’Agostino and Pearson test for normality. As 1548

shown in Table 12, most folds deviated from Gaus- 1549

sian assumptions. Consequently, we adopted the 1550

Kruskal-Wallis H-test, a non-parametric alternative 1551

to ANOVA, to test for differences in the distribution 1552

of accuracy scores across models. 1553

Also, to investigate how reward adaptation im- 1554

pacts explanation quality in hate speech contexts, 1555

we implement and compare two additional instanti- 1556

ations of HARM besides our main HARM-MOE, 1557

all leveraging ArmoRM’s attribute vector vE as 1558

input: 1559

• HARM-Linear: A linear re-weighting of the 1560

attribute vector, learning a single global weight 1561

per attribute to optimize alignment with hate- 1562

speech-specific preferences. 1563

• HARM-MLP: A non-linear variant employ- 1564

ing a two-layer multi-layer perceptron (MLP) 1565

with ReLU activations, enabling more expres- 1566

sive modeling of attribute interactions and con- 1567

textual nuances. An additional appendix was 1568

developed to test different hidden sizes for the 1569

MLP (Appendix H). 1570

Model Sizes and Infrastructure. The total num- 1571

ber of learnable parameters per variant is: 21 for 1572

HARM-Linear, 71,170 for HARM-MLP with 256 1573

hidden units, and 841 for our MoE-based vari- 1574

ants. All experiments were conducted on a sin- 1575

gle NVIDIA A6000 GPU with 48GB of memory. 1576

The compact size of our models ensures efficient 1577
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fine-tuning while still enabling meaningful reward1578

adaptations.1579

L.2 Results: Normality Checks1580

The normality test results confirm that accuracy1581

distributions are not reliably Gaussian across folds,1582

especially for MLP-256 and MOE-Un. While some1583

folds pass the test, the inconsistency across models1584

and splits supports our use of the Kruskal-Wallis1585

H-test for all subsequent comparisons.1586

Model Normality p-value

HARM-Linear 0.41
HARM-MLP-256 0.0
HARM-MOE-Off 0.76
HARM-MOE-Un 0.0

Table 12: Normality test p-values for each model
(D’Agostino-Pearson).

L.3 Inter-Model Comparison1587

To evaluate how different architectural choices im-1588

pact classification behavior, we used the 10 accu-1589

racy scores for each model and compared them1590

using the Kruskal-Wallis H-test. Results are shown1591

in Table 13. The linear model is significantly differ-1592

ent from all others, with near-zero p-values across1593

comparisons, reflecting both its lower performance1594

and distinct distribution. MLP-256 also diverges1595

from the MoE models, suggesting that its archi-1596

tecture leads to different generalization behavior.1597

Notably, MOE-Off and MOE-Un exhibit a high1598

p-value (0.58), indicating no statistically signifi-1599

cant difference in their accuracy distributions and1600

suggesting a strong alignment in performance char-1601

acteristics across folds.1602

Linear MLP-256 MOE-Off MOE-Un

Linear 1.00 0.00 0.00 0.00
MLP-256 0.00 1.00 0.00 0.00
MOE-Off 0.00 0.00 1.00 0.58
MOE-Un 0.00 0.00 0.58 1.00

Table 13: Kruskal-Wallis p-values for pairwise model
comparisons (inter-model accuracy distribution).

L.4 Performance by Class: Offensive vs.1603

Non-Offensive1604

To better understand the models’ behavior in con-1605

textually sensitive scenarios, we further disaggre-1606

gated results by label class, distinguishing between1607

offensive and non-offensive inputs. Table 14 re- 1608

ports classification accuracies separately for each 1609

class, along with results across tier comparisons. 1610

Across all models, performance is notably higher 1611

on non-offensive examples. The linear model 1612

achieves 0.76 on non-offensive data versus 0.74 1613

on offensive; this gap widens for larger models. 1614

MOE-Un, for instance, reaches 0.84 accuracy on 1615

non-offensive examples but drops to 0.768 on of- 1616

fensive samples. 1617

This discrepancy reflects the added complexity 1618

and ambiguity of offensive content. Detecting nu- 1619

anced or context-dependent offensiveness remains 1620

challenging, especially under distribution shifts be- 1621

tween training tiers. Still, MoE models, both su- 1622

pervised and unsupervised, maintain higher per- 1623

formance, suggesting that modularity and expert 1624

specialization help mitigate this difficulty. 1625

L.5 Discussion 1626

Overall, our results highlight the advantages of 1627

modular architectures in handling challenging lin- 1628

guistic phenomena. While all models struggle more 1629

on offensive content (likely due to greater linguistic 1630

diversity, annotation noise, or domain mismatch) 1631

MoE models consistently outperform MLP and 1632

linear baselines on both classes. The marginal dif- 1633

ferences between MOE-Off and MOE-Un suggest 1634

that expert output mixing (whether supervised or 1635

unsupervised) supports robustness to class imbal- 1636

ance and complexity, even in the absence of direct 1637

supervision. 1638

M AI Assistant 1639

Claude, ChatGPT and Gemini were used during 1640

coding and for correcting grammar issues during 1641

paper writing. 1642

21



CLS 2>1 CLS 3>1 CLS 3>2 Mean CLS
Offensive Model

No

ArmoRM (Wang et al., 2024) 0.682 0.638 — 0.660
URM (Lou et al., 2025) 0.669 0.647 — 0.658

HARM-Linear 0.722 0.798 — 0.760
HARM-MLP-256 0.791 0.859 — 0.825
HARM-MOE-Off 0.803 0.870 — 0.836
HARM-MOE-Un 0.806 0.873 — 0.840

Yes

ArmoRM (Wang et al., 2024) 0.551 0.344 0.282 0.392
URM (Lou et al., 2025) 0.503 0.247 0.229 0.326

HARM-Linear 0.669 0.819 0.731 0.740
HARM-MLP-256 0.649 0.858 0.793 0.767
HARM-MOE-Off 0.643 0.869 0.807 0.773
HARM-MOE-Un 0.643 0.863 0.799 0.768

All

ArmoRM (Wang et al., 2024) 0.616 0.489 0.282 0.524
URM (Lou et al., 2025) 0.585 0.445 0.229 0.490

HARM-Linear 0.694 0.809 0.731 0.749
HARM-MLP-256 0.718 0.859 0.793 0.795
HARM-MOE-Off 0.721 0.869 0.807 0.804
HARM-MOE-Un 0.723 0.868 0.799 0.803

Table 14: Cross validation (10-folds) results for offensive vs. non-offensive examples. Trained on Tier 1&3 with all
model variants.

1643 1644
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1645

N Practical Examples1646

N.1 Manually sanitized sentences change in1647

current Reward models1648

Original Post:
“what do you call an ethiopian athlete who uses
steroids ? lance no - armstrong”

base_model: Phi4-14B-Q8_0

Tier 3 Explanation (Original):
The post is considered offensive because it tar-
gets Ethiopians by making a joke about their
physical appearance, implying they are "thin
starving." This perpetuates harmful stereotypes
about Ethiopian culture and people, which is dis-
respectful and insensitive. Stereotyping based
on physical traits can contribute to negative per-
ceptions and discrimination, making such jokes
inappropriate and offensive.

Tier 3 Explanation (Sanitized):
The post may be interpreted as offensive due
to its humor relying on stereotypes about na-
tionality and physical appearance. Jokes that
draw on such characteristics risk perpetuating
demeaning generalizations, which can reinforce
harmful cultural narratives. Satire involving na-
tional identity should be approached with care
to avoid disrespect.

Reward Scores (ArmoRM):
Not Sanitized 0.0781
Sanitized 0.1215
Reward Increase +55.62%

Table 15: Effect of manual explanation sanitization on
ArmoRM reward scoring.

N.2 General examples of the difference in1649

current Reward models and HARM1650

Original Post:
“I painted my computer black hoping it’d run
faster, but now it doesn’t work.”

base_model: Phi4-14B-Q8_0

Tier 3 Explanation (Original):
The post is considered offensive because it uses
a racial stereotype to make a joke about the func-
tionality of a computer. The phrase "hoping it’d
run faster" plays on the stereotype that "black
people are fast," and the subsequent statement
"but now it doesn’t work" implies that "black
people don’t work," both of which are harmful
stereotypes. These stereotypes are offensive as
they perpetuate negative and inaccurate gener-
alizations about Black people, reducing them
to simplistic and derogatory caricatures. The
humor in the post relies on these stereotypes,
which can contribute to the marginalization and
discrimination of Black individuals. Therefore,
the post is offensive due to its reliance on racial
stereotypes that demean and dehumanize Black
people.

Tier 3 Explanation (Sanitized):
The post may be considered offensive because
it employs a metaphor that can invoke racial
stereotypes. While it attempts humor, it draws
on associations that generalize and caricature
identity, which can contribute to marginalization.
Humor based on such themes risks reinforcing
harmful biases.

Reward Scores (ArmoRM):
Not Sanitized 0.0015
Sanitized 0.02954
Reward Increase +1761.53%

Table 16: Effect of manual explanation sanitization on
ArmoRM reward scoring.
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Original Post:
“Walks into a post office to buy stamps. Me
(Hmong American):: Hello, I would like to get
the pixar stamps. Clerk:: *Takes out Chinese
New Year Stamps, while smiling like she made
my day* I think you’ll like these. Me:: *Looks
at her and the stamps...* No, it’s okay. I’ll just
get the pixar ones. Clerk:: *Pushes the stamps
forward* Awkward silence of me thinking... Me::
Okay *Buys and walks away* Clerk:: Xie xie
WTF?! with a tickle in my tummy... Did this just
really happen to me...?”

base_model: Falcon3-10B-Instruct-Q8_0

Tier 3 Explanation (Original):
The post text is considered offensive because
it perpetuates harmful stereotypes about Asian
individuals. Specifically, it suggests that Asian
people do not assimilate into American culture
and only appreciate Asian culture, which is a
stereotype that can lead to misunderstanding and
discrimination. This portrayal is not consider-
ate because it oversimplifies and generalizes the
diverse experiences and preferences of Asian
individuals, reinforcing negative biases. It’s im-
portant to recognize and respect the individuality
and cultural diversity within any racial or ethnic
group, rather than resorting to stereotypes that
can cause harm.

Tier 3 Explanation (Sanitized):
The post text reflects a personal encounter that
could be interpreted as involving cultural as-
sumptions. While it may be unintentional, it
risks reinforcing oversimplified views about cul-
tural identity and preferences. It’s important to
recognize the individuality and diversity of expe-
riences rather than drawing on generalizations.

Reward Scores (ArmoRM):
Not Sanitized 0.0888
Sanitized 0.1103
Reward Increase +24.17%

Table 17: Effect of manual explanation sanitization on
ArmoRM reward scoring.

Original Post:
“Today I got a joke email about adopting a fast-
food delivery robot and that was more believable
than the Trump presidency aprilfoolsday”

base_model: Phi4-14B-Q8_0

Tier 3 Explanation (Original):
The post is considered offensive because it tar-
gets conservatives by implying they are "stupid"
and "unwanted." The joke about the Trump pres-
idency being more believable than adopting a
fast-food delivery robot plays on the stereotype
that conservatives are gullible or foolish. This
kind of humor can perpetuate negative stereo-
types and marginalize the targeted group, mak-
ing it offensive.

Tier 3 Explanation (Sanitized):
The post is considered potentially offensive be-
cause it uses humor that could be interpreted as
targeting a political viewpoint. The comparison
may perpetuate negative generalizations, which
can marginalize individuals based on political
beliefs. It’s important to be mindful of how satire
might contribute to stereotypes about any group.

Reward Scores (ArmoRM):
Not Sanitized 0.0659
Sanitized 0.0878
Reward Increase +33.33%

Table 18: Effect of manual explanation sanitization on
ArmoRM reward scoring.
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Original Post:
“So I failed to get accepted at Harvard. So I worked in a coal mine for a while, and one day forgot
to shower after work. I visited Harvard again then I got accepted.”

base_model: Falcon3-10B-Instruct-Q8_0

Tier 1 Explanation:
The anecdote shared is not inherently offensive, but it may be perceived as insensitive or trivializing
to some readers. The individual’s journey from failing to get accepted into Harvard, working in a
coal mine, and then getting accepted after a seemingly unrelated incident (not showering) might
be seen as diminishing the struggles and efforts of those who genuinely face challenges in their
academic pursuits. It could also unintentionally mock the rigorous admissions process at prestigious
institutions like Harvard. However, the anecdote does not target any specific group or individual
with derogatory language, so it doesn’t meet the criteria for being offensive in a direct or personal
manner. The key aspect to consider is the tone and the potential implications of the story, which
might inadvertently belittle the experiences of others.

Tier 2 Explanation:
The post text you provided is considered offensive because it humorously suggests that not showering
after working in a coal mine led to acceptance at Harvard. This implies that personal hygiene is
irrelevant or even beneficial for academic acceptance, which is not only incorrect but also belittles
the rigorous and merit-based admissions process at prestigious institutions like Harvard. It can be
seen as disrespectful to those who genuinely work hard to meet the high standards required for
acceptance, and it trivializes the value of personal hygiene and professionalism. This kind of humor
at the expense of educational institutions and personal values can be hurtful and offensive to many
people.

Tier 3 Explanation:
The post text is considered offensive because it perpetuates harmful stereotypes about black individu-
als and the concept of affirmative action. It suggests that black people can only gain acceptance into
prestigious institutions like Harvard due to affirmative action, implying that they do not merit admis-
sion based on their own achievements. This reinforces the stereotype that minorities are accepted at
Harvard without merit. Additionally, the text draws a dehumanizing comparison between black skin
and coal, which is not only racially insensitive but also perpetuates the stereotype that black people’s
skin should be thought of like coal. This comparison is deeply offensive and disrespectful. The
post also implies that black individuals are unfairly promoted or given more opportunities without
merit, which is another harmful stereotype. It suggests that the individual gained acceptance to
Harvard not through their own efforts but because they visited the campus after working in a coal
mine without showering, implying that their acceptance was somehow tied to their racial background
and not their qualifications. Overall, the post text is offensive because it relies on and promotes
stereotypes about race and affirmative action, which can cause harm and perpetuate discrimination.
It is important to communicate respectfully and avoid language that could be interpreted as offensive
or discriminatory.

Reward Scores:
Tier ArmoRM HARM-MOE-Off
1 0.1245 10.25
2 0.0971 14.53
3 0.0039 26.49

Table 19: Change in reward scores of ArmoRM and HARM-MOE-Off
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Original Post:
“Do schools have speed bumps? Because I think I hit a couple eariler today but I never recall seeing
any at that school before.”

base_model: Qwen3-14B-Q8_0

Tier 1 Explanation:
The question is not offensive. It expresses a personal observation and a genuine curiosity about a
school’s infrastructure. The tone is neutral and does not imply judgment, criticism, or disrespect
toward the school or its environment. The mention of possibly hitting speed bumps is a matter-of-fact
statement, not an accusation or insult.

Tier 2 Explanation:
The post is considered offensive because it uses a potentially derogatory term ("speed bumps") in
a way that could be interpreted as mocking or belittling a person or group, depending on context.
While the literal mention of "speed bumps" may seem harmless, the phrasing and tone can be seen as
disrespectful or insensitive, especially if it implies a negative or dismissive attitude toward a school
or its environment. The use of such language in a public forum can contribute to an unwelcoming or
hostile atmosphere.

Tier 3 Explanation:
The post is offensive because it trivializes the serious issue of mass shootings by comparing them
to something as minor as hitting a speed bump. This comparison downplays the trauma and harm
experienced by victims, reinforcing a harmful stereotype that dismisses their suffering. The casual
tone and lack of sensitivity around such a sensitive topic contribute to the offensive nature of the
comment.

Reward Scores:
Tier ArmoRM HARM-MOE-Off
1 0.1201 21.28
2 0.0155 21.91
3 0.0003 35.29

Table 20: Change reward scores of ArmoRM and HARM-MOE-Off
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Original Post:
“Why was the pastor bad at slang? He took the saying, "I feel you" too literal.”

base_model: Phi4-14B-Q8_0

Tier 1 Explanation:
The statement is a light-hearted joke that plays on the literal interpretation of the phrase "I feel you,"
which is commonly used to express empathy or understanding. The humor arises from the pastor
taking the phrase literally, suggesting he physically feels someone else’s emotions. This type of
humor is generally not considered offensive as it does not target any specific group or individual in a
harmful way. It relies on wordplay and a benign misunderstanding rather than any derogatory or
harmful intent. However, context matters, and if the joke were used in a setting where sensitivity to
religious figures is required, it might be seen as less appropriate. Overall, the joke is intended to be
humorous and is unlikely to be offensive to most audiences.

Tier 2 Explanation:
The post can be considered offensive because it uses humor at the expense of a pastor, a religious
figure, by suggesting they are inept at understanding slang. This could be seen as disrespectful to
their intelligence or cultural awareness. Additionally, the joke relies on a stereotype that religious
figures are out of touch with modern language, which can perpetuate negative perceptions. While
the intent might be humorous, it risks offending those who hold religious figures in high regard or
who value linguistic diversity and understanding.

Tier 3 Explanation:
The post is considered offensive because it perpetuates harmful stereotypes about Christian religious
leaders, suggesting they are bad people or sexual predators. The joke relies on a stereotype that
Christian leaders, particularly pastors, are prone to inappropriate behavior, which can be damaging
and disrespectful to the Christian community. It also trivializes serious issues like abuse and
pedophilia, which are sensitive topics. By making light of these stereotypes, the post can contribute to
negative perceptions and discrimination against Christians, particularly those in religious leadership
roles.

Reward Scores:
Tier ArmoRM HARM-MOE-Off
1 0.1513 12.51
2 0.1328 11.62
3 0.0427 28.47

Table 21: Change reward scores of ArmoRM and HARM-MOE-Off
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Original Post:
“I painted my computer black hoping it’d run faster, but now it doesn’t work.”

base_model: Gemma-3-27b-it-Q4_0

Tier 1 Explanation:
The post is not offensive, but demonstrates a misunderstanding of how computers function. The
user’s belief that painting their computer would improve its speed ("I painted my computer black
hoping it’d run faster") is illogical; computer performance is determined by internal hardware and
software, not external aesthetics. The humor comes from this naive expectation and the resulting
malfunction ("but now it doesn’t work"). While the post *implies* a lack of technical knowledge, it
isn’t directed at any individual or group in a harmful way. It’s self-deprecating and unlikely to cause
distress or negativity to others. The situation described is a personal anecdote and doesn’t violate
standards of respectful communication.

Tier 2 Explanation:
The post, while seemingly harmless, subtly implies a lack of understanding of how computers
function. Suggesting painting a computer would affect its performance ("hoping it’d run faster")
demonstrates a significant misconception about technology. This can be perceived as dismissive or
belittling to those with technical knowledge, or as contributing to the spread of misinformation. The
resulting failure ("now it doesn’t work") reinforces this inaccurate idea and could encourage others to
attempt similarly ineffective-and potentially damagingactions. While not directly targeting a group,
it promotes a viewpoint that undermines informed understanding and could be seen as disrespectful
to expertise.

Tier 3 Explanation:
The post is offensive due to its reliance on harmful racial stereotypes. The user’s statement, "painted
my computer black hoping it’d run faster, but now it doesn’t work," implicitly connects the color
black with speed - a stereotype historically and negatively applied to Black people. The subsequent
claim that the computer "doesn’t work" after being painted reinforces the damaging and false idea
that things associated with Black people are unreliable or inherently flawed, mirroring stereotypes
about Black people not being capable or "working" properly. This isn’t simply a joke about color; it
leverages a prejudiced association to create a demeaning and disrespectful comparison. The humor
derives from, and perpetuates, racist tropes. The post touches on multiple harmful stereotypes
including the idea that Black people are "only good at running fast" and "don’t work".

Reward Scores:
Tier ArmoRM HARM-MOE-Off
1 0.1025 16.80
2 0.0795 14.55
3 0.0052 25.73

Table 22: Change reward scores of ArmoRM and HARM-MOE-Off
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