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ABSTRACT

Score-based diffusion models have achieved incredible performance in generating
realistic images, audio, and video data. While these models produce high-quality
samples with impressive details, they often introduce unrealistic artifacts, such as
distorted fingers or hallucinated texts with no meaning. This paper focuses on tex-
tual hallucinations, where diffusion models correctly generate individual symbols
but assemble them in a nonsensical manner. Through experimental probing, we
consistently observe that such phenomenon is attributed it to the network’s local
generation bias. Denoising networks tend to produce outputs that rely heavily on
highly correlated local regions, particularly when different dimensions of the data
distribution are nearly pairwise independent. This behavior leads to a generation
process that decomposes the global distribution into separate, independent distribu-
tions for each symbol, ultimately failing to capture the global structure, including
underlying grammar. Intriguingly, this bias persists across various denoising net-
work architectures including MLP and transformers which have the structure to
model global dependency. These findings also provide insights into understanding
other types of hallucinations, extending beyond text, as a result of implicit biases in
the denoising models. Additionally, we theoretically analyze the training dynamics
for a specific case involving a two-layer MLP learning parity points on a hypercube,
offering an explanation of its underlying mechanism.

1 INTRODUCTION

Inspired by the diffusion process in physics (Sohl-Dickstein et al., 2015), diffusion models learn to
generate samples from a specific data distribution by fitting its score function, gradually transforming
pure Gaussian noise into desired samples. These models (Song et al., 2020a; Song & Ermon,
2019; Song et al., 2021; Ho et al., 2020) demonstrate remarkable capability in generating high-
quality samples with significant diversity, establishing them as the de facto standard generative
models for various tasks, including image generation, video generation (Brooks et al., 2024),
inpainting (Lugmayr et al., 2022), super-resolution (Gao et al., 2023), and more. However, despite
the impressively realistic details produced, diffusion models consistently exhibit artifacts in their
outputs. One common issue is the generation of plausible low-level features or local details while
failing to accurately model complex 3D objects or the underlying semantics (Borji, 2023; Liu et al.,
2023). This phenomenon, known as hallucination, occurs when the generated samples either do not
exist in real-world distributions or contain content that lacks semantic meaning. In practice, even
large generative models like StableDiffusion (Rombach et al., 2022), trained on enormous datasets,
still suffer from these issues—often generating hands with extra, missing, or distorted fingers.

In this work, we primarily focus on a special type of artifacts called text hallucinations, where genera-
tive model can correctly generate individual symbol in syllabus but assemble them in nonsensical
manner. This naturally raises the following question.

Why do diffusion models typically struggle with generating images that include text content? How
do they learn these distributions and end up generating hallucinated samples?

In this work, we take initial steps towards understanding these problems. We find text-form hallucina-
tion is closely related to an implicit bias of score networks when trained with score matching objective
which we term as Local Generation Bias. This means that the denoising network tends to produce
outputs based primarily on local regions of the input. Consequently, the denoising and generation
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(a) (b) (c) (d)

Figure 1: An illustration for local generation bias. We construct a synthetic dataset (a) that all images
satisfy the rule that sum of first row equals second row, i.e. 2+9=7+4. Diffusion model starts from
noise xt (b) and using denoising network to generate digit images in four quarters. We found that the
top-left region’s denoising primarily depends on its own data, depicted by saliency map (c). This
means the diffusion model independently generates each digit without caring any other digits, ends
up with x0 (d) failing to capture the relation between four digits.

process for each local part operates independently on its own data, end up with a list of symbols
uncorrelated. Using synthetic data, we investigate the mechanisms behind this bias, which appears
across various denoising architectures and distributions. We observe this phenomenon using saliency
map, where gradients are computed with respect to a certain symbol’s pixel region to examine its
dependence on the input. To measure the degree of local operation, we propose a probe called the
local Dependency Ratio (LDR), which quantifies the gradient magnitude within the same local region
compared with the entire input. A higher LDR indicates a stronger local generation bias. Interestingly,
we discover that a high LDR emerges early in training and persists throughout extensive training
steps. This implies that the diffusion model generates text samples in a simplified manner, factorizing
the entire distribution into a product of marginal distributions for individual tokens and sampling
each token independently, neglecting the subtle connections between tokens and the underlying rules.
LDR thus becomes a good indicator for the strength of local generation bias.

One might suspect that this bias originates from the model’s architectural design—for instance,
basic operations like convolution introduce such inductive biases and cause hallucinations. However,
our further experiments and theoretical analysis refute this hypothesis, demonstrating its intricacy.
Empirically, even when the network architecture is designed to have a global receptive field to
model long-range dependencies, such as transformer (Peebles & Xie, 2023; Vaswani, 2017) and
MLP, the same phenomenon persists. The model continues to build its output by relying solely on
local information. This suggests that the local generation bias arises from the fundamental training
dynamics of score matching for certain distributions, instead of its architecture.

To gain a deeper understanding of this phenomenon, we probe into a simple case, providing insights
into its underlying mechanism. Specifically, we analyze a two-layer ReLU network learning a
distribution supported on the vertices of a hypercube {±1}d. This distribution can be among the
vertices that satisfy a parity constraint, where the product of all x entries is 1. When fitting the target
denoising function for this distribution, we find that the network has certain training bias, inducing it
to separately learn d univariate target function for marginal distributions on each dimension, sampling
independently over {±1} for each entry. Eventually, the generation process samples uniformly
over the entire hypercube rather than parity subset, where hallucination happens. This introduces
an instance for how training bias may result in hallucinatory generations, and offers insights into
hallucinations across other domains and modalities.

In summary, this paper contributes in three key folds

• Identification of Local Generation Bias: We define and analyze the phenomenon of local
generation bias in diffusion models, which leads to artifacts like text hallucinations.

• Mechanistic Explanation: We provide a detailed theoretical and empirical investigation into the
causes of hallucinations, revealing that they stem from fundamental training dynamics rather than
architectural limitations.

• New Analytical Tools: We introduce the Local Dependency Ratio (LDR) as a measure of local
bias and apply it to explore the diffusion model’s behavior across training stages.
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Figure 2: Some examples of deformed hands artifacts and text hallucination in images generated by
StableDiffusion Rombach et al. (2022) and Midjourney. Images from prompting “woman showing
her hands”, “a road sign in a grassland” and “a Chinese traditional calligraphy art”.

2 RELATED WORK

Diffusion Model. Diffusion models, initially introduced by Sohl-Dickstein et al. (2015), are
probabilistic generative models that iteratively add and remove noise from data. Early work Ho et al.
(2020) laid the foundation and proposed Denoising Diffusion Probabilistic Models (DDPM) Ho
et al. (2020), which significantly improved sample quality and stability. Song et al. (2020b) also
proposed Score-Based Generative Models (SGMs), unifying diffusion models with other generative
frameworks. To address efficiency, Song et al. (2021) introduced Denoising Diffusion Implicit
Models (DDIM), reducing sampling steps without quality loss. Diffusion models have since been
applied beyond image generation, including video generation Brooks et al. (2024), text-to-image
models Rombach et al. (2022), and audio synthesis Kong et al. (2020). Despite advancements,
challenges remain, particularly in improving sampling speed and generalization to unseen data, as
highlighted by recent experiments in video generation and physics-informed modeling.

Hallucination in Language Generative Models. Hallucinations in large language models (LLMs)
are a significant challenge, particularly in safety-critical applications, where factually incorrect or
logically inconsistent outputs can have severe consequences Ye et al. (2023); Zhang et al. (2023).
LLMs may generate erroneous facts, misinterpret instructions, or introduce entirely new information
not present in the input, a phenomenon known as input-conflicting hallucination Zhang et al. (2023).
Mitigating these hallucinations has become a focus of research, with strategies such as enhancing
models with factual data Gunasekar et al. (2023) and integrating retrieval-based mechanisms to
ground responses in external knowledge Ram et al. (2023).

Hallucination in Diffusion Models. One common artifact of diffusion models is the generation of
distorted or deformed body parts, such as hands and legs, which is frequently observed in models
like Stable Diffusion Rombach et al. (2022) and Sora Brooks et al. (2024). Additionally, diffusion
models struggle with learning rare concepts, particularly those with fewer than 10,000 samples in the
training set Samuel et al. (2024). Other common failure modes include models neglecting spatial
relationships or confusing attributes, as discussed in prior research Borji (2023); Liu et al. (2023).
These issues highlight the limitations of diffusion models when tasked with generating realistic,
complex scenes, especially when dealing with rare data or intricate spatial compositions. Recent
work Aithal et al. (2024) explains the hallucination of diffusion model via the perspective of mode
interpolation, arguing that the improper interpolation between modes yields non-zero density between
them, which is the main cause for hallucination.

3 PRELIMINARY

3.1 BASIC NOTATIONS

Denote set {0, 1, 2, . . . , n−1} as [n]. To compute the cardinality of a set S we write |S|. For a vector
x, we use x(i) = x⊤ei to denote its ith dimension, and we use ei to denote the unit vector along the
i-th dimension. N (µ,Σ) means a Gaussian distribution with mean µ and covariance Σ, N (x;µ,Σ)
denotes its density at position x. Sampling x from distribution D is denoted as x ∼ D. Asymptotic
notation follows the common practice where f = O(g) means there exists a constant C > 0 and
x0 such that f(x) < C · g(x) for any x > x0. Similarly we write f = Ω(g) when f(x) > C · g(x)
for any x > x0 and f(x) = Θ(g(x)) if f = Ω(g) and f = O(g). And ∗ stands for convolution

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

operation between two distributions, f ∗ g(t) =
∫
Ω
f(τ)g(t− τ)dτ . We use ∆(S) to denote the set

of valid probability distributions over a compact set S. We use sgn(x) = 1[x > 0] − 1[x < 0] to
denote the sign function.

4 EXPERIMENT STUDY

In this section, we introduce the experimental setup and results of our study on text hallucination
in diffusion models. We first reproduce text hallucination phenomenon across different modalities
and text rules in our simple synthetic setting. To understand how it originates, a key probe called
Local Dependency Ratio (LDR) is introduced to quantitatively measure the denoising function’s
input dependency on local regions. With LDR as a probing tool, we discover the following important
observations that reveal the mechanism of hallucination.

• High LDR value is always observed when hallucination happens. This indicates that the
denoising model predicts noise by each symbol’s region itself, therefore conducting denoising
and generation iteration respectively with almost zero entanglement between different symbols.
Since the starting Gaussian distribution is also isotropic, the entire generation process for different
symbols becomes independent, resulting in incorrect assembly and hallucination.

• Such phenomenon is ubiquitous across different distributions and architectures, even for those
models with global receptive field such as MLP and DiT(Peebles & Xie, 2023). This indicates such
bias is related to ubiquitous implicit bias in training dynamics rather than architectural limitation.

• As training progresses, LDR decreases and the denoising model starts to overfit. After
extensive training, denoising network overfit to training dataset. This requires it to coordinate
different symbols to exact replicate training data, resulting in a drop in LDR.

4.1 FORMULATION OF TEXT DISTRIBUTION

The paradigm for constructing a synthetic text-like distribution is as follows. We first define a set of
discrete symbols S = {s1, s2, . . . , sK} as syllabus. Define symbol index list I = (i1, i2, . . . , iL) ⊆
[K]L which represents a list of token symbol (si1 , si2 , . . . , siL). A spelling/grammar rule is a
probability distribution PG deciding the validity of a symbol sequence by its density PG(I). Such list
of symbol tokens are further rendered into ambient space by a function h : S 7→ Rd which maps each
symbol to a vector in ambient space like image pixels or a single scalar. The full signal is obtained by
concatenating these vectors. Some examples of the signal are images with texts (where the pixels for
different letters do not overlap), time series, text sequences, etc. We wish to learn the distribution
of the signals for generation purposes. With a little abuse of notation, we use h(I) : SL 7→ Rd×L

to denote the rendering process for a list of tokens transformed into input space, which means we
can first sample a list of token I ∼ PG then apply the rendering function h. For simplicity, we fix L
throughout all the experiment for the same symbolic system.

In this paper, we mainly test two synthetic symbol assembling rules, including (i) Parity Parenthesis,
each sample image contains L parenthesis where left symbol “(” and right “)” both have even
numbers; (ii) Quarter MNIST, each sample image consists of four MNIST digits in the corners and
the sum of first row equals the second. More details are in appendix.

4.2 TEXT HALLUCINATION RESULTS

After constructing synthetic text distributions h(PG). The denoising model is trained to fit the score
function of these distributions in the ambient space. For embedding vector ambient space, we employ
MLP to learn the score function. For image sample, we use modern denoising network including
UNet Ronneberger et al. (2015) and DiT (Peebles & Xie, 2023). Note that both MLP and DiT have
global receptive field in its function, enabling them to model long range correlations. UNet also
embraces attention module in its pipeline.

Parity Parenthesis. Our initial attempt starts with parity rule with parenthesis symbol. We fix
L = 8, 16 and use image of left and right parenthesis to represent symbol 1 and −1. A UNet model
(with attention) is trained on this image distribution and learn to generate samples. The details of
model architecture is in the appendix. We are interested in whether diffusion model can find clues
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Figure 3: Experimental Result for UNet learning parity parenthesis L = 16 (left) and L = 8 (right).

about parity rule and faithfully reproduce it. An OCR function is utilized to transform the generated
image into binary sequences and test whether it satisfies the parity rule. For L = 8 we use half
fraction of the valid parity images and 5% for L = 16. The generated images are categorized into
four types, including (i) Invalid, the low level detail for each symbol is ambiguous and fuzzy hence
OCR fails; (ii) Hallucination, each symbol is clear but the overall combination does not fit in rules;
(iii) In Dataset, the model exactly reproduce dataset images; (iv) Extrapolation, the model generates
data sample that satisfy the rule while not presented in the dataset.

The diagram for different categories’ proportion is in figure 3. Note that random guess has 50%
chance of satisfying parity requirement. We can see the model quickly learn to generate individual
symbol’s appearance, and the proportion of invalid drops immediately. However, the diffusion model
fails to capture the parity rule, half of whose generated images are hallucination. The situation
diverges according to the sequence length. In L = 8 case the model eventually successfully overfits
to the training dataset, but still generates 25% hallucinated samples. For L = 16, The model
continues to generate correct samples only by chance till the end of training. This simple experiment
demonstrates the difficulty for pure-vision based model to learn underlying rule unconditionally.
Detailed generated samples is left in appendix.

Quarter-MNIST: We also test another symbol system, where four MNIST digit images are assigned
in four quarters of an image and satisfy simple arithmetic relations. To achieve low divergence
between generation distribution and real distribution, the diffusion model not only needs to generate
reasonable digits, but also understands the global relations between these digits.

Simple combinatorics tells there are total 670 combination of symbols (s1, s2, s3, s4) ∈ S4 satisfying
s1 + s2 = s3 + s4. We randomly leave out 200 combinations as test set and render the images of the
rest. Both UNet and DiT undergo a phase that most of its generated samples do not satisfy the addition
requirement, which means hallucination. As the training progresses, both models gradually learn
to reproduce sample within dataset. DiT performs better accuracy (∼ 90%) in generating samples
satisfying addition relations compared with UNet (20.6%). However, none of them is able to generate
valid symbol tuple beyond the training dataset, with a fraction only less than 0.5%. Therefore there is
no extrapolation region in figure 4. In other words, for such text distribution, diffusion model can
only struggle between hallucination and overfitting, if no prior knowledge is provided.

4.3 LOCAL DEPENDENCY RATIO ANALYSIS

To investigate the mechanism behind text hallucination. We propose a novel probe called Local
Dependency Ratio, or LDR in abbreviation. LDR quantitatively measures the degree of the diffusion
network that performs denoising and generation locally. Given a trained network sθ(·) and certain
fixed timestep t with corresponding parameter ᾱt. In the total input space Rd×L, denote the region of
interest as R ⊆ [d× L] referring to the set of entries corresponding to one (or few) symbol’s area.
Define indicator matrix PR = [ei]i∈R that filters out entries of R. We compute gradient of input x
with respect to function fR,θ(x) := P⊤

Rsθ(x) and get Jacobian matrix

JR,θ(x) :=
∂fR,θ

∂x
∈ R|R|×d. (1)
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Figure 4: Experimental Result for learning Quarter-MNIST using UNet (left) and DiT (right).

Figure 5: LDR trend for UNet (left) and DiT (right) at different denoising timestep and training itera-
tions. The LDR for UNet remains high throughout the training, therefore it stucks with hallucination.
While DiT successfully progress to reduce the LDR, meaning it starts to overfit and memorize the
dataset. We select timestep t corresponding to

√
ᾱt ≈ 0.1, 0.3, 0.5, 0.7, 0.9.

Define local Dependency Ratio (LDR) function for model sθ and region R as

LDR(θ,R) = Ex∼pt

[
Tr(P⊤

RJR,θ(x)
⊤JR,θ(x)PR)

Tr(JR,θ(x)⊤JR,θ(x))

]
. (2)

Intuitively, matrix J measures dependency of each output’s entry in R with respect to the input,
which is commonly known as saliency map (Simonyan, 2013). The difference to conventional
saliency map is that each input dimension x(i) receives a gradient vector gi ∈ R|R| rather a single
scalar. It records the sensitivity of output region R with respect to a certain input entry x(i).

Therefore, Tr(J⊤J) computes the Frobenius norm of J , which is the total sum of all gradient vectors’
squared norm. Meanwhile, JPR filters dependency gradient within R itself, thus Tr(P⊤

RJ⊤JPR)
measures the total summation of squared gradient norms within the same local region R. The LDR is
thus within range [0, 1], where a higher value indicates a more local denoising and generation manner.

With LDR, we can probe the model trained on different datasets at various checkpoints. Here
we mainly present our probing result for Quarter-MNIST dataset. More visualization and other
experimental detail is left to appendix. We select R to be the top left region, namely the first digit’s
position, and compute LDR for this region at different denoising steps and training iterations. As
shown in figure 5, UNet’s LDR remains more than 0.75 throughout the entire training process, which
means it highly focuses on region R itself to conduct denoising and generation. This could explain
why UNet ends up with a much lower accuracy. DiT also presents similar trend, showing a high LDR
value at initial stage of training, therefore generating hallucinated samples. However, due to strong
approximation power of transformer architecture, its LDR decreases at 30k to 50k iteration, and this
synchronizes with the rapid increase of the generated sample’s accuracy (see figure 4).

This result provides evidence for the local generation bias. Despite the capacity to modeling global
long-range relations, both attention version UNet and DiT appears to rely on information confined
within local regions. This is reasonable because in these symbolic systems PG, any two symbol’s
distribution is independent, namely PG(si = a, sj = b) = PG(si = a)PG(sj = b). Such
independence leads denoising network to treat symbols as uncorrelated. As a consequence of such
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local generation preference, the denoising network separately learns and samples from each symbol
token’s marginal distribution at early training stage, resulting in text hallucination.

This finding is consistent and universal across different denoising architectures and grammar rules.
More experiment details for different distributions are left in appendix. We also visualize J as
heatmap of each pixel’s gradient magnitude and verify its concentration near the selected region
R. For real-world distributions that do not satisfy independent condition, please refer to discussion
section.

5 DISTRIBUTIONS ON A HYPERCUBE: A THEORETICAL CASE STUDY

In this section, we consider a special case of |S| = 2, e.g. the generation of probability distributions
on hypercube {±1}d. We treat each dimension as a separate token in the distribution, and find that
neural networks provably prefers to learn the tokens in their marginal distributions and fails to learn
correlations that mark the semantic rules. The training dynamics leads to a sparse feature extraction
that let the model primarily builds each dimension of score only depending on same input dimension.
Note that our results can be generalized to any sequences that enjoy independent representation space
for different tokens, which may not be binary.

5.1 PROOF SKETCH AND INTUITION EXPLANATION

The theoretical analysis aims to give a comprehensive explanation under a simple yet non-trivial
setting. We admit that it may not directly apply to real-world complicated models, i.e. UNet, DiT, but
the point is to provide insight for why training dynamics prefers a local-generation manner. While it
is hard to prove things for general models due to technical difficulties, the two-layer network model
is widely used in previous theoretical literature for understanding learning phenomenon (Damian
et al., 2021; Barak et al.; Lyu et al., 2021).

The theoretical analysis explains why neural networks trained on hypercube data, {±1}d, with
weakly correlated marginals, tend to focus on local features, resulting in sparse representations and
hallucination-prone outputs. When marginals are nearly independent, the gradients primarily reflect
single-dimension features, biasing the network towards functions that depend only on individual coor-
dinates x(i). The core proof leverages gradient flow on a two-layer network, sθ(x, t), initialized with
small weights. It shows that early training amplifies weights wi,j,t aligned with specific dimensions
exponentially faster than others, as demonstrated by the growth rate Ki,t in Theorem 5.3. Fourier
expansion of the target distribution p0(x) reveals that under proper assumptions 5.1, symmetries in p0
enforce saddle points in the loss landscape. Theorem 5.2 identifies an invariant set, M , where weights
satisfy ai,j,t(I − eie

⊤
i )wi,j,t = 0, forcing s

(i)
θ to depend only on x(i). Training dynamics inherently

bias the model towards this set, where it approximates p0’s marginals but fails to capture correlations
across dimensions. This result explains why neural networks first prioritize marginal distributions in
denoising tasks, requiring prolonged training to escape saddles and learn global dependencies, often
leading to hallucination-prone outputs in the early stages.

5.2 PRELIMINARIES

Given a spelling/grammar rule PG over binary sequences, The marginal distribution pt of xt is the
convolution of original distribution using a Gaussian noise kernel as pt =

√
ᾱtp0 ∗N (0, (1− ᾱt)I).

To generate sample from distribution p0(x), diffusion model learns a denoising function sθ(xt, t)
that predicts the mean of the posterior distribution q(xt−1 | xt). Given x0, simple Bayesian rule
yields its conditional density as

q(xt−1 | xt,x0) = N (µ̃t(xt,x0), β̃I), (3)

µ̃t (xt,x0) :=

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt, β̃t :=

1− ᾱt−1

1− ᾱt
βt. (4)

The unconditional posterior density is the expectation over different starting points x0.

q(xt−1 | xt) = Ex0∼p0(x)[q(xt−1 | xt,x0)]. (5)
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Setting. Suppose that we wish to learn a distribution on the hypercube p0 ∈ ∆({±1}d), or equiv-
alently a binary sequence of length d. For any t > 0, the training data is drawn from distribution
xt ∼ pt (??) as xt =

√
ᾱt · x0 +

√
1− ᾱt · ξ, where x0 ∼ p0 and ξ ∼ N (0, Id). The loss for time t

can be decomposed as

Lt(θ) = Ex0,ξ ∥ξ − sθ(xt, t)∥2 = Ex0,ξ

∥∥∥∥xt −
√
ᾱtx0√

1− ᾱt
− sθ(xt, t)

∥∥∥∥2
= Ex0,ξ

∥∥∥∥xt −
√
ᾱtE(x0|xt)√
1− ᾱt

− sθ(xt, t)

∥∥∥∥2 + Ex0,ξ

∥∥∥∥ √
ᾱt√

1− ᾱt
(x0 − E(x0|xt))

∥∥∥∥2
= Ex0,ξ∥yt(xt)− sθ(xt, t)∥2 + Ct

Therefore the loss can be viewed as the square loss on the target vector yt(x) =
xt−

√
ᾱtE(x0|xt)√
1−ᾱt

. We
learn the target via running gradient flow (GF) on a two-layer neural network of hidden dimension
m. The i-th entry of the network output is s

(i)
θ (x, t) =

∑
j∈[m] ai,j,tσ(w

⊤
i,j,tx + bi,j,t) where

σ(x) = max(x, 0) is the ReLU function, and the parameters θ = (ai,j,t, wi,j,t, bi,j,t) are updated via
GF as d

dsθs = −∇θLt(θs).

Notice that Lt is always differentiable and smooth as the data x has a smooth probability density
function over the space. For a starting point θ0, we use Φ(θ0, s) to denote the endpoint θs of gradient
flow at time s. Given the smoothness of the loss function, there exists a unique solution to the gradient
flow given the starting point. We will show that there are invariant sets that gradient flow cannot
escape, namely the network may stuck in such invariant set in a way similar to saddle points. While
there is no model in the set that recover the true target well, there are models in the set that creates
both reasonable and hallucinatory generations. Furthermore, we introduce an instance of training
paradigm where the network model is biased towards the invariant set in the early training phase.

5.3 SPARSE WEIGHT IS A SADDLE POINT FOR OPTIMIZATION

By Fourier transformation on the hypercube, we can expand the target probability p0(x) =∑
I⊂[d] p̄0(I)xI where xI =

∏
i∈I xi are the Fourier basis. In the experiments, the observations are

that some symmetries of the data may blind the neural network from hidden patterns of the target
probability p0. We formalize some sufficient conditions of data symmetries as follows.

Assumption 5.1. For any i, j ∈ [d], p̄0(i) = 0 and p̄0(i, j) = 0.

This means that the marginal distribution for any digit in the sequence is uniform, and for any pair of
digits is independent. The examples of such distributions are all valid sequence vectors uniformly
drawn from a parity rule (e.g. satisfies

∏
i∈I xi = 1 for any I that |I| > 2).

We observe that such p0 will induce a diffused distribution pt and learning target yt(x) for any t > 0.
Thought the target may depend on all the coordinates of its input x, we observe in the experiments
that the neural network often learns a function that has much lower variance for the off-diagonal
entries compared with the true target, and it often takes a much longer training process for the network
to recover from such low variance. This hints a potential saddle point that the network may stuck into
during training. Please refer to appendix for more observed evidence if interested.

Theorem 5.2. Under Assumption 5.1, let M = {θ : ai,j,t(I − eie
⊤
i )wi,j,t = 0}, then M is an

invariant set under gradient flow. Namely, from any θ ∈ M , gradient flow Φ(θ, t) ∈ M , ∀t > 0.

We observe that for any θ ∈ M , s
(i)
θ (x, t) =

∑
j∈[m] ai,j,tσ(w

⊤
i,j,tx + bi,j,t) is irrelevant to

the dimensions of x other than x(i), therefore it cannot represent the true target for any distri-
bution that involves correlations over multiple dimensions. Actually since the denoising pro-
cess starts from a Gaussian distribution that enjoys independent entries for different dimen-
sions, the denoised sample will also have independent entries. For instance, for the generation
of the parity rule, the best model in M can only generate the uniform distribution over all of
the hypercube, giving a half chance of hallucination. Therefore it is favorable for optimiza-
tion to avoid the model stucking in the saddle set of M . However, we will show that having
wi,j,t sparse towards ei is implicitly induced by running gradient flow with small initialization.

8
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Figure 6: When learning s
(1)
θ (xt, t), the

average norm of neurons’ 1st dimension
weight |aw(1)| increase much faster than
∥a(w − w(1))∥. It means s(1)θ (xt, t) be-
comes a univariate function for x(1)

t .

5.4 TRAINING IS
BIASED TOWARDS SPARSE WEIGHT IN EARLY PHASE

A series of previous works (Woodworth et al., 2020; Jin
et al., 2023) adopts small initialization to assist representa-
tion learning for MLP networks, as opposed to the kernel
regime where the network representations barely changes.
We adopt the idea to check how network’s parameters
change in the early phase of training, and finding provably
biased towards sparse feature extraction. which means
the second layer only receives information from the same
corresponding dimension in input.

For a small constant σinit, we use the initialization scheme
for θ = (ai,j,t, wi,j,t, bi,j,t) as

wi,j,t(0) ∼ N (0, σ2
init), bi,j,t(0) ∼ N (0, σ2

initr
2), ai,j,t(0) ∼ Unif({±1})

√
∥wi,j,t(0)∥2 + bi,j,t(0)2.

Inspired by the G-function (Maennel et al., 2018; Lyu et al., 2021), when the initialization is very
small, the neural network output sθ(x, t) ≈ 0, so we can expand the loss as

Lt(θ) = Ext∥sθ(xt, t)− yt(xt)∥2 = Ext [∥yt(xt)∥2 − 2sθ(xt, t)
⊤yt(xt)] +O(Ext(s

2
θ(xt)))

So the initial trajectory of the neural network aims to optimize a surrogate loss L̃(θ) =

Ext
[−2sθ(xt, t)

⊤yt(xt)]. Hereinafter we consider a trajectory (ãi,j,t, w̃i,j,t, b̃i,j,t) on such a sur-
rogate loss.
Theorem 5.3. Under Assumption 5.1, the weight of each neuron |ai,j,t| grows exponentially in time:
for every i, t, there exists a function Ki,t : S

d → R such that

|ãi,j,t(s)| = |ãi,j,t(0)| exp

(
2sgn(ãi,j,t(0))

∫ s

0

Ki,t

(
w̃i,j,t(τ)

|ãi,j,t|(τ)
,
b̃i,j,t(τ)

|ãi,j,t|(τ)

)
dτ

)

The function Ki,t marks the growth rate. The rate satisfy

• 0 < Ki,t(w, b) <
√
1− ᾱt when w(i) > 0; 0 > Ki,t(w, b) > −

√
1− ᾱt, when w(i) < 0.

• When w(i) > 0, the maximal value of Ki,t(w, b) is uniquely achieved at (w, b) =
1√

1+(D∗)2
(ei, D

∗) for some D∗ ∈ R; When w(i) < 0, the minimal value of Ki,t(w, b)

is uniquely achieved at (w, b) = 1√
1+(D∗)2

(−ei,−D∗).

• the maximally-growing neuron directions
(

w̃i,j,t(τ)
|ãi,j,t|(τ) ,

b̃i,j,t(τ)
|ãi,j,t|(τ)

)
= 1√

1+(D∗)2
(ei, D

∗) for

ai,j,t > 0 and
(

w̃i,j,t(τ)
|ãi,j,t|(τ) ,

b̃i,j,t(τ)
|ãi,j,t|(τ)

)
= 1√

1+(D∗)2
(−ei,−D∗) for ai,j,t < 0 are invariant

under gradient flow.

The theorem depicts the representation learning process in the early phase of training. For a neu-
ron along the direction w̃i,j,t(0) = ∥w̃i,j,t(0)∥ei, with proper bias, the growth rate of its norm is
maximal and its direction does not alter, and therefore after a fixed period it will have an exponen-
tially larger impact than a neuron of suboptimal direction. Therefore after a few epochs, a neuron
(ai,j,t, wi,j,t, bi,j,t) either still has a small magnitude (|ai,j,t| and ∥wi,j,t∥), or its weight will be close
to the optimal direction w̃i,j,t(s) ≃ ∥w̃i,j,t(s)∥ei, making the whole network close to the saddle
set M introduced in Theorem 5.2. While it may take a long time for the network to escape the
neighborhood of M , the network can operate inside M to learn denoising functions that recovers
each marginal distribution of p0. In this way the model independently conducts denoising on each
individual dimension, performing local generation that introduces hallucination.

9
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6 DISCUSSION

Does local generation bias still hold for real world distribution? In our analysis and synthetic
text distribution, the condition that different token symbols are independent plays a critical role. Is
our discovered bias and mechanism still robust when the distribution does not strictly satisfy this
requirement? We conduct experiments on real world text distributions to answer these concerns. We
construct two datasets, one rendering 1,000 common English words and the other contains 1,000
common Chinese characters. When using diffusion model to learn score matching and generate
samples, we observe similar phenomenon persists to happen. Both models go through the “fuzzy-
hallucination-overfitting” three phases, randomly assembling radicals and letters in nonsensical way
at intial stage, and overfit to duplicate training data after long period of training. We also test LDR in
these scenarios, finding the same decreasing pattern. Note that we selcet

√
ᾱt = 0.2 because signal-

noise-ratio increase significant at this stage and it is critical for determining the final content. Result
shows the same local generation bias still exists at early stage of training and leads to hallucination
for real text distribution. It also confirms that the decrease of LDR implies overfitting.

Figure 7: LDR trend for UNet learning Chinese and English texts (left). Hallucination example for
misspelling words (middle) and Chinese characters (right).

No-Free Lunch Issue. It is not surprising that a vision generative model with zero prior knowledge
fails to learn human-contrived rule for spelling. Because without any assumption on the possible
grammar/spelling rules, it is intrinsically ambiguous to determine what is the real law. Therefore, the
main point of this work is to investigate the bias of modern deep learning models, i.e. MLP, UNet,
DiT, to understand how they tend to generate samples and show its discrepancies to real distributions.
Our work thus highlights the importance of introducing explicit modeling of text knowledge, without
which diffusion model is inevitable to hallucinate.

7 CONCLUSION

In this paper, we have presented a detailed investigation into the phenomenon of hallucinations in
generating text-related contents. By combining empirical observations with theoretical analysis, we
have demonstrated it to be closely related to the implicit bias of denoising network called local-
generation bias. We find that such bias is not a consequence of the model’s architecture but rather
an inherent property of the training dynamics driven by score matching. It is shown that diffusion
models, despite their global receptive field capabilities, tend to rely on local information during the
denoising process, generating symbols independently without capturing the global structure. The key
to form this bias is the nearly pairwise independence between marginal distributions for each token
symbol. We further introduced the Local Dependency Ratio (LDR) as a novel metric to quantify
the extent of this local generation bias and applied it to various diffusion models, showing that this
bias emerges early in training and persists through extensive training phases, even in real-world
distribution where independent condition does not strictly hold. This study may shed light on the
mechanisms behind hallucinations in diffusion models, highlighting the importance of addressing
local generation bias for more accurate and coherent generation in tasks requiring complex global
structure understanding.

10
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A APPENDIX

A.1 DIFFUSION MODEL

We adopt the conventions for diffusion models from Ho et al. (2020). Let p0(x) be the real data
distribution. We define a forward process xt where the signal gradually shrinks and Gaussian noise
is added at each timestep for total T steps.

x0 ∼ p0(x), p(xt | xt−1) = N (
√

1− βtxt−1, βtI), t = 1, 2, . . . , T. (6)

Here 0 < βt < 1 is a scale schedule of adding noise. Let αt = 1 − βt, ᾱT =
∏T

t=1 αt, and
β̃t =

1−ᾱt−1

1−ᾱt
βt. To sample from the distribution p0, we train a neural network sθ as the score model

and iteratively remove noise from a random gaussian variable as follows.

xT ∼ N (0, I), xt−1 ∼ N
(

1
√
αt

(
xt −

1− αt√
1− ᾱt

sθ (xt, t)

)
, β̃tI

)
(7)
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The score model is trained as the following process. For a batch of training data {(x0)i}i∈[N ], we add
independent Gaussian noise {ξi ∼ N (0, I)}i∈[N ], construct (xt)i =

√
ᾱt(x0)i +

√
1− ᾱtξi, and

then train a network sθ to predict ξ given xt and t. Namely, we train the score model to minimize
the loss function

L(θ) := 1

TN

∑
t∈[T ]

∑
i∈[N ]

λtEξ∼N (0,I)

[∥∥ξ − sθ(
√
ᾱt(x0)i +

√
1− ᾱtξ, t)

∥∥2] . (8)

The λt characterizes loss weight for different timesteps, and by default we set λt = 1.

A.2 FOURIER TRANSFORMATION

For real-valued functions supported on the hypercube {±1}d, the indicator functions xI =
∏

i∈I xi

forms an orthonormal basis over the uniform distribution D. That is, Ex∼DxIxJ = 1[I = J ]. For
any function f : {±1}d → R, we can expand the function in the Fourier basis as

f(x) =
∑

f̄IxI(x), f̄I = Ex∼Df(x)xI(x).

When f is a probability function, the set FS = {f̄I : I ⊂ S} gives the marginal distribution of
(xi : i ∈ S). For instance, when f̄(i,j) = f̄(i)f̄(j), xi and xj are independent in their marginal
distribution.

A.3 PROOF FOR THE SADDLE POINT THEOREM 5.2

For any θ ∈ M , we can set wi,j,t = ci,j,tei for any neuron that ai,j,t ̸= 0, where ci,j,t ∈ R are
scalars. Then the network outputs s

(i)
θ (x) =

∑
ai,j,tσ(ci,j,tx

(i) + bi,j,t) depend only on the i-th
coordinate of the input x.

Now we compute the gradient for wi,j,t as

d

ds
wi,j,t = −2Ext

(s
(i)
θ (xt)− yi(xt))ai,j,tσ

′(w⊤
i,j,txt + bi,j,t)xt

= −2Ex0,ξs
(i)
θ (xt)ai,j,tσ

′(ci,j,tx
(i)
t + bi,j,t)xt

+ 2Ex0,ξai,j,tξ
(i)σ′(

√
ᾱtci,j,tx

(i)
0 +

√
1− ᾱtci,j,tξ

(i) + bi,j,t)xt

Now we wish to show that d
dswi,j,t is still along the direction of ei, thereby gradient flow does not

escape the region of M . This is done by the following two lemmas.

Lemma A.1. For any k ̸= i,

Ex0,ξs
(i)
θ (xt)ai,j,tσ

′(ci,j,tx
(i)
t + bi,j,t)e

⊤
k xt = 0.

Proof.

Ex0,ξs
(i)
θ (xt)σ

′(ci,j,tx
(i)
t + bi,j,t)e

⊤
k xt

= Ex0,ξ

∑
j′

ai,j′,tσ(ci,j′,tx
(i)
t + bi,j′,t)σ

′(ci,j,tx
(i)
t + bi,j,t)x

(k)
t

Notice that by Assumption 5.1, x(i)
0 and x

(k)
0 are independent, and for standard Gaussian ξ(i) and

ξ(k) are independent. Furthermore Ex(k)
t =

√
ᾱtEx(k)

0 +
√
1− ᾱtEξ(k) = 0. Therefore,

Ex0,ξs
(i)
θ (xt)σ

′(ci,j,tx
(i)
t + bi,j,t)e

⊤
k xt

=
∑
j′

ai,j′,t[Ex
(i)
t
σ(ci,j′,tx

(i)
t + bi,j′,t)σ

′(ci,j,tx
(i)
t + bi,j,t)][Ex

(k)
t

x
(k)
t ]

= 0.
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Lemma A.2. For any k ̸= i,

Ex0,ξξ
(i)σ′(

√
ᾱtci,j,tx

(i)
0 +

√
1− ᾱtci,j,tξ

(i) + bi,j,t)e
⊤
k xt = 0.

Proof. Similarly, x(k)
t =

√
ᾱtx

(k)
0 +

√
1− ᾱtξ

(k) has mean 0. Since (x
(k)
0 , ξ(k)) and (x

(i)
0 , ξ(i)) are

independent, we know

Ex0,ξξ
(i)σ′(

√
ᾱtci,j,tx

(i)
0 +

√
1− ᾱtci,j,tξ

(i) + bi,j,t)e
⊤
k xt

= [E
x
(i)
0 ,ξ(i)

ξ(i)σ′(
√
ᾱtci,j,tx

(i)
0 +

√
1− ᾱtci,j,tξ

(i) + bi,j,t)][Ex
(k)
t

x
(k)
t ]

= 0.

Besides, for a neuron that ai,j,t = 0, from Lemma A.3 we know wi,j,t = 0 and bi,j,t = 0, so
d
dsai,j,t = 0. So ai,j,t will keep zero along the trajectory. THus M is indeed an invariant set under
gradient flow.

A.4 PROOF FOR THE IMPLICIT TRAINING BIAS THEOREM 5.3

Here we consider a fixed t and target dimension i, and we omit the subscripts of t and i for the
simplicity of notations. Thus for the network sθ(x) =

∑
j∈[m] ajσ(w

⊤
j x+ bj), we optimize it via

GF on the square loss L(θ) = Ext=x(sθ(x)− yi(x))
2 as

d

ds
aj = −2Ex(sθ(x)− yi(x))σ(w

⊤
j x+ bj)

d

ds
wj = −2Ex(sθ(x)− yi(x))ajσ

′(w⊤
j x+ bj)x

d

ds
bj = −2Ex(sθ(x)− yi(x))ajσ

′(w⊤
j x+ bj)

We write θ(s) to denote the value of the parameters at time s. First we observe that the two layers of
the network stay balanced throughout the course of the training process.

Lemma A.3. d
ds (a

2
j − ∥wj∥2 − b2j ) = 0.

Proof. This is obtained directly as

d

ds
(a2j − ∥wj∥2 − b2j ) = 2aj

d

ds
aj − 2w⊤

j

d

ds
wj − 2bj

d

ds
bj

= −4Ex(sθ(x)− y(x))aj
[
σ(w⊤

j x+ bj)

−σ′(w⊤
j x+ bj)(w

⊤
j x+ bj)

]
= 0.

Therefore aj = sgn(aj)
√
∥wj∥2 + b2j through out the process.

A.4.1 GROWTH RATE FOR THE FIRST LAYER WEIGHT

Inspired by the G-function (Maennel et al., 2018; Lyu et al., 2021), when the initialization is very
small, the neural network output sθ(x) ≈ 0, so we can expand the loss as

L(θ) = Ex(sθ(x)− yi(x))
2 = Exyi(x)

2 − 2sθ(x)yi(x) +O(s2θ(x))
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So the initial trajectory of the neural network aims to optimize a surrogate loss L̃(θ) = Ex −
2sθ(x)yi(x). We define the parameters θ̃ = (ãj , w̃j , b̃j) to be the parameters run specifically for the
surrogate loss, namely, let θ̃(0) = θ(0) and

d

ds
ãj = 2Exyi(x)σ(w̃

⊤
j x+ b̃j)

d

ds
w̃j = 2Exyi(x)ãjσ

′(w̃⊤
j x+ b̃j)x

d

ds
b̃j = 2Exyi(x)ãjσ

′(w̃⊤
j x+ b̃j).

We will have similarly, d
ds (ã

2
j − ∥w̃j∥2 − b̃2j ) = 0, so ãj = sgn(ãj)

√
∥w̃j∥2 + b̃2j through out the

process. Then we can actually show that the scale of ãj grows exponentially as a function of the

direction of ( w̃j

|ãj | ,
b̃j
|ãj | ) as

Lemma A.4. There exists a function K : Sd → R such that

|ãj(s)| = |ãj(0)| exp

(
2

∫ s

0

K

(
w̃j(τ)

|ãj |(τ)
,
b̃j(τ)

|ãj |(τ)

)
dτ

)
when ãj(0) > 0, and

|ãj(s)| = |ãj(0)| exp

(
−2

∫ s

0

K

(
w̃j(τ)

|ãj |(τ)
,
b̃j(τ)

|ãj |(τ)

)
dτ

)
when ãj(0) < 0.

Proof. We know

d

ds
ãj = 2Exyi(x)σ(w̃

⊤
j x+ b̃j)

= 2|ãj |Exyi(x)σ(
w̃j

|ãj |

⊤
x+

b̃j
|ãj |

)

The proof is then done by taking K(w, b) = Exyi(x)σ(w
⊤x + b). Notice that we only query K

when ∥w∥2 + b2 = 1.

Now we take a closer examination of the function K. Let ei be the unit vector along the i-th dimension
and Pi = I − eie

⊤
i be the projection matrix removing the i-th dimension. Since the data x is sampled

through the process x =
√
ᾱtx0 +

√
1− ᾱtξ for x0 ∈ {±1}d and ξ ∼ N (0, I), we know

K(w, b) = Exyi(x)σ(w
⊤x+ b)

= Ex0,ξ(ξ
(i)σ(

√
ᾱtw

⊤x0 +
√
1− ᾱtw

⊤Piξ +
√
1− ᾱtw

(i)ξ(i) + b))

Define A =
√
ᾱtw

⊤x0 +
√
1− ᾱtw

⊤Piξ + b, B =
√
1− ᾱtw

(i). since both A,B are independent
to ξ(i) ,

K(w, b) = Ex0,ξξ
(i)σ(A+Bξ(i))

=
1

2
EA(B + |B|erf( A√

2B
))

where we use the standard error function as erf(x) = 2√
π

∫ x

0
e−s2ds ∈ [−1, 1]. Furthermore, define

C = (
√
ᾱtw

⊤Pix0 +
√
1− ᾱtw

⊤Piξ + b)2 + (w(i))2, D =
√
ᾱtw

⊤Pix0+
√
1−ᾱtw

⊤Piξ+b
w(i) , we know
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B = sgn(B)
√

(1− ᾱt)
C

1+D2 , and

K(w, b) =

√
1− ᾱt

2

(
Esgn(B)

√
C

1 +D2
+ E

x
(i)
0 =1

1

2

√
C

1 +D2
erf

(
D√

2(1− ᾱt)
+

√
ᾱt

2(1− ᾱt)

)

+E
x
(i)
0 =−1

1

2

√
C

1 +D2
erf

(
D√

2(1− ᾱt)
−
√

ᾱt

2(1− ᾱt)

))
Observe that as x0 and ξ are independent with Ex0 = Eξ = 0, and x0 have pairwise independent
entries,

EC|x(i)
0 = Eᾱt(w

⊤Pix0)
2 + (1− ᾱt)(w

⊤Piξ)
2 + (w(i))2 + b2 = ∥w∥2 + b2 = 1.

When w(i) > 0, since erf(x) ∈ [−1, 1], we always have K(w, b) > 0. In this case, by Jensen’s
inequality,

K(w, b) ≤
√
1− ᾱt

2
sup
D∈R

1√
1 +D2

(
1 +

1

2
erf

(
D√

2(1− ᾱt)
+

√
ᾱt

2(1− ᾱt)

)

+
1

2
erf

(
D√

2(1− ᾱt)
−
√

ᾱt

2(1− ᾱt)

))
Symmetrically as erf is an odd function, when w(i) < 0, there is K(w, b) < 0, and

K(w, b) ≥ −
√
1− ᾱt

2
sup
D∈R

1√
1 +D2

(
1 +

1

2
erf

(
D√

2(1− ᾱt)
+

√
ᾱt

2(1− ᾱt)

)

+
1

2
erf

(
D√

2(1− ᾱt)
−
√

ᾱt

2(1− ᾱt)

))
.

The maximum of |K| is achieved when EC = (E
√
C)2 and D = D∗ that maximizes the above

functions, namely when w⊤Pi = 0 and b
w(i) = D∗. By the first-order condition of optimality, let

f(D) =
1√

1 +D2

(
1 +

1

2
erf

(
D√

2(1− ᾱt)
+

√
ᾱt

2(1− ᾱt)

)
+

1

2
erf

(
D√

2(1− ᾱt)
−
√

ᾱt

2(1− ᾱt)

))
then we know d

dDf(D∗) = 0, namely

1 + (D∗)2

D∗
√
2π(1− ᾱt)

exp

−( D∗√
2(1− ᾱt)

+

√
ᾱt

2(1− ᾱt)

)2
+ exp

−( D∗√
2(1− ᾱt)

−
√

ᾱt

2(1− ᾱt)

)2


=

(
1 +

1

2
erf

(
D∗√

2(1− ᾱt)
+

√
ᾱt

2(1− ᾱt)

)
+

1

2
erf

(
D∗√

2(1− ᾱt)
−
√

ᾱt

2(1− ᾱt)

))
Lemma A.5. |K(w, b)| ≤

√
1− ᾱt.

Proof. By symmetry, WLOG we consider the case where w(i) > 0. Then

K(w, b) ≤
√
1− ᾱt

2
sup
D∈R

1√
1 +D2

(
1 +

1

2
erf

(
D√

2(1− ᾱt)
+

√
ᾱt

2(1− ᾱt)

)

+
1

2
erf

(
D√

2(1− ᾱt)
−
√

ᾱt

2(1− ᾱt)

))

≤
√
1− ᾱt

2
(1 +

1

2
+

1

2
)

=
√
1− ᾱt.
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Next we examine the dynamics of a neuron along this optimal direction
(

w̃j(τ)
|ãj |(τ) ,

b̃j(τ)
|ãj |(τ)

)
=

1√
1+(D∗)2

(ei, D
∗) with w⊤Pi = 0 and b

w(i) = D∗. By Theorem 5.2 we know that the gradient of

w̃j is also along the direction of ei; furthermore, direct calculation plugging the above first-order
condition, we arrive at

d
dsb

d
dsw

(i)
=

Ex0,ξξσ
′((

√
ᾱtx0 +

√
1− ᾱtξ +D∗)w(i))

Ex0,ξξ(
√
ᾱtx0 +

√
1− ᾱtξ)σ′((

√
ᾱtx0 +

√
1− ᾱtξ +D∗)w(i))

= D∗.

This shows that a neuron along the direction
(

w̃j(τ)
|ãj |(τ) ,

b̃j(τ)
|ãj |(τ)

)
= (w, b) = 1√

1+(D∗)2
(ei, D

∗) keeps

the same direction during the course of the dynamics, thus the weight ãj can maintain the maximum
growing rate.

A.5 EXPERIMENTAL DETAILS

The details of experiment formulation is as below. Recall that a text distribution includes a set of
discrete symbols S = {s1, s2, . . . , sK} and a spelling/grammar rule PG. A list of symbol tokens are
further rendered into ambient space by a function h : S 7→ Rd which maps each symbol to a vector
in ambient space like image pixels or a single scalar. The full signal is obtained by concatenating
these vectors. We describe S and PG we used in experiments.

Parity: There are only two symbols S = {1,−1}. The rule is that there needs to be even number of
symbol s1. Namely PG(I) = 1

2L−1 · I
[∏L

j=1 sij = 1
]
. The ambient space rendering function can

either by a single scalar h(si) = si. It can also be two pixel image or embedding vector templates in
ambient observation space {o−1,o1} and h(si) = osi .

Quarter-MNIST: We combine four MNIST digits’ image to become a whole figure. the symbol
system is all digits S = [9]. We fix the length L = 4 and requires that s1 + s2 = s3 + s4, and we
have PG(I) = 1

Z · I [s1 + s2 = s3 + s4], Z = 670 is some normalization constant. The ambient
space rendering function is a probabilistic image drawing function h : {0, . . . , 9} 7→ Rd which maps
each digit to its hand-writing image.

Dyck: We also test dyck grammar, where S = {+1,−1}. A dyck sequence must have even number
of tokens s1, . . . , s2k, and satisfy

∑i
j=1 si ≥ 0 for i ∈ [2k]. Also it requires

∑2k
j=1 si = 0. This

can be regarded as a valid operation sequence for a stack where +1 means push and −1 means pop.
The requirement essentially means the stack cannot pop if it is empty, also it needs to be empty at
start and end. The rendering function is similar as parity. In our experiment we use left and right
parenthesis to represent +1 and −1, respectively.

As for denoising networks, we use attention-augmented UNet, where each block is equipped with
linear attention and middle bottleneck equipped with full attention. The image size is 64 and the initial
hidden width is 64, which means the bottleneck dimension is 512. We also adopted standard DiT-B
model with hidden size 384 and patch size 8. We train with Adam optimizer with lr = 8 × 10−5,
batch size bs = 16, total schedule ranging from 160k to 700k iterations.

Training Schedule and Model Details We use mainly two types of model for training in our
experiments, namely DiT and UNet augmented with attention. The DiT is standard DiT-S model,
with 33M parameter. The UNet initial channel is 64, and total parameter is ∼ 35.7M . We training
the score matching objective with equal λt. The training batch size is 16, 180k iteration for Quater-
MNIST and 1.1M iteration for parity parathensis images.

A.6 RECENT MODEL’S RESULTS

We also conduct experiment on most recent models such as StableDiffusion 3.5-medium (Esser et al.,
2024) and FLUX1-dev. We use prompt that requires the model to generate rich text content without
specifying concrete words. For instance, “A piece of calligraphy art”, “A newspaper reporting news”,
“A blackboard with formulas”. And here are the test results, we can see that text hallucination is still
ubiquitous. The seeds of six images of each model under same prompt are from 0 to 2, so all people
can reproduce these results.
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We also tried prompt to specify the content, i.e. “A paper saying ’To be or not to be, it is a question’.”
The results are plotted below. We can see both SD3.5 and FLUX1 still have text issues. SD3.5 has
missing words or incorrect spelling more often.

Figure 8: Visualizations of StableDiffusion 3.5’s results on prompt “A blackboard with formulas”

Figure 9: Visualizations of StableDiffusion 3.5’s results on prompt “A piece of calligraphy art.”

Figure 10: Visualizations of StableDiffusion 3.5’s results on prompt “A newspaper reporting news.”

A.7 VISUALIZATIONS

In this part, we will show detailed visualizations of our experiments. For each experiment, we
visualize following

• Generated hallucination samples.

• The trend of LDR along training process.

• The heatmap of LDR at some critical denoising timestep.

A.7.1 PARITY PARENTHESIS

Please refer to figure 7 for details of generated hallucination sample and LDR analysis. The LDR
heatmap is in figure 8.
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Figure 11: Visualizations of FLUX1’s results on prompt “A blackboard with formulas”

Figure 12: Visualizations of FLUX1’s results on prompt “A piece of calligraphy art.”

Figure 13: Visualizations of FLUX1’s results on prompt “A newspaper reporting news.”

Figure 14: Visualizations of StableDiffusion 3.5’s results on prompt “A paper saying ’To be or not to
be, it is a question’.”
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Figure 15: Visualizations of FLUX1’s results on prompt “A paper saying ’To be or not to be, it is a
question’.”

Figure 16: Some examples of generated hallucination samples at 300k steps. Note that only half of
them satisfy parity constraint (even number of both parenthesis). The LDR at

√
ᾱt = 0.1 is high

through all training procedure.

A.7.2 DYCK PARENTHESIS.

Perhaps surprisingly, we found that UNet model is capable of generating valid dyck sequences. After
60k iterations, the UNet model drops down and the accuracy for generated image increases. This can
also be validated from probing a parenthesis’ region to see which part of input noise the model is
looking at. We found that model will only focus on local noise at hallucination phase, resulting in a
high LDR. And when it overfits the data, the saliency map spreads globally and LDR decreases. See
figure 10 for more details.

A.7.3 QUARTER MNIST.

The LDR analysis is shown in main content. Here we show some hallucinated generation and heatmap
of LDR. As shown in figure 11, we can see that both UNet and DiT generate the top-left digit solely
by local region’s noise. As a consequence, these four digits are generated independently, therefore
can not capture the innate relationship and rules.

A.7.4 ENGLISH WORD AND CHINESE CHARACTERS.

Does hallucination in real-world text distribution also stem from local generation bias? We run
experiments to verify this mechanism with image distribution contains common English words and
Chinese characters. These English words are

[a, abandon, ability, able, about, above, accept, according, account, across, act, action,activity, ac-
tually, add, address, administration, admit, adult, affect, after, again,against, age, agency, agent,
ago, agree, agreement, ahead, air, all, allow, almost, alone,along, already, also, although, always,
American, among, amount, analysis, and, animal, another, answer, any, anyone, anything, appear,
apply, approach, area, argue, arm, around,arrive, art, article, artist, as, ask, assume, at, attack, attention,
attorney, audience,author, authority, available, avoid, away, baby, back, bad, bag, ball, bank, bar, base,
be,beat,beautiful, because, become, bed, before, begin, behavior, behind, believe, benefit, best,better,
between, beyond, big, bill, billion, bit, black, blood, blue, board, body,book,born, both, box, boy,
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Figure 17: An example of xt, x0 and LDR heatmap. The LDR in this image is 0.9736 and the
reference region is the second parenthesis. We can see the denoising model primarily only focues on
this parenthesis’ region to generate it. Therefore all the symbols are generated independent and fail
to satisfy parity constraint.

Figure 18: Generation proportion graph and LDR for t = 96. The reference region is the position
at second parenthesis. Although seemed difficult, Dyck grammar is actually much easier to learn
and extrapolate, since there are strong correlations between parenthesis. Interesting, there is still a
hallucination phase, and hallucinations fades as LDR decreases.

break, bring, brother, budget, build, building, business, but,buy,by, call, camera, campaign, can,
cancer, candidate, capital, car, card, care, career,carry,case, catch, cause, cell, center, central, century,
certain, certainly, chair, challenge,chance, change, character, charge, check, child, choice, choose,
church, citizen, city,civil,claim, class, clear, clearly, close, coach, cold, collection, college, color,
come,commercial,common, community, company, compare, computer, concern, condition, confer-
ence, Congress,consider,consumer, contain, continue, control, cost, could, country, couple, course,
court, cover,create, crime, cultural, culture, cup, current, customer, cut, dark, data, daughter,day,dead,
deal, death, debate, decade, decide, decision, deep, defense, degree, Democrat,democratic,describe,
design, despite, detail, determine, develop, development, die, difference,different,difficult, dinner,
direction, director, discover, discuss, discussion, disease, do, doctor,dog, door, down, draw, dream,
drive, drop, drug, during, each, early, east, easy,eat,economic, economy, edge, education, effect,
effort, eight, either, election, else,employee,end, energy, enjoy, enough, enter, entire, environment,
environmental, especially,establish,even, evening, event, ever, every, everybody, everyone, everything,
evidence, exactly,example,executive, exist, expect, experience, expert, explain, eye, face, fact, factor,
fail,fall,family, far, fast, father, fear, federal, feel, feeling, few, field, fight, figure,fill,film, final, finally,
financial, find, fine, finger, finish, fire, firm, first, fish,five,floor, fly, focus, follow, food, foot, for,
force, foreign, forget, form, former,forward,four, free, friend, from, front, full, fund, future, game,
garden, gas, general,generation,get, girl, give, glass, go, goal, good, government, great, green, ground,
group, grow,growth, guess, gun, guy, hair, half, hand, hang, happen, happy, hard, have, he,head,health,
hear, heart, heat, heavy, help, her, here, herself, high, him, himself, his,history,hit, hold, home, hope,
hospital, hot, hotel, hour, house, how, however, huge, human,hundred,husband, I, idea, identify,
if, image, imagine, impact, important, improve, in, include,including, increase, indeed, indicate,
individual, industry, information, inside, instead,institution,interest, interesting, international, in-
terview, into, investment, involve, issue, it, item,its,itself, job, join, just, keep, key, kid, kill, kind,
kitchen, know, knowledge, land,language,large, last, late, later, laugh, law, lawyer, lay, lead, leader,
learn, least, leave,left,leg, legal, less, let, letter, level, lie, life, light, like, likely, line, list,listen,little,
live, local, long, look, lose, loss, lot, love, low, machine, magazine, main,maintain,major, majority,
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Figure 19: The LDR analysis for 20k training steps (first row, in hallucination) and 170k training
steps (second row, correctly extrapolate). We can see a discrepancy for model’s behaviors in terms
of local v.s. global dependency. When model learns to correctly generate symbols, it will attend
to overall region for coordinating different symbols, which means LDR is low. From left to right
columns are xt, x0 and LDR heatmap.

Figure 20: DiT generated Hallucinated samples for Quarter-MNIST dataset. Each four digit form a
sample

make, man, manage, management, manager, many, market, marriage, material,matter,may, maybe,
me, mean, measure, media, medical, meet, meeting, member, memory, mention,message,method,
middle, might, military, million, mind, minute, miss, mission, model, modern,moment,money, month,
more, morning, most, mother, mouth, move, movement, movie, Mr, Mrs,much, music,must, my,
myself, name, nation, national, natural, nature, near, nearly, necessary,need, network,never, new,
news, newspaper, next, nice, night, no, none, nor, north, not, note,nothing, notice,now, n’t, number,
occur, of, off, offer, office, officer, official, often, oh, oil,ok, old,on, once, one, only, onto, open,
operation, opportunity, option, or, order,organization, other,others, our, out, outside, over, own,
owner, page, pain, painting, paper, parent,part, participant,particular, particularly, partner, party,
pass, past, patient, pattern, pay, peace,people, per,perform, performance, perhaps, period, person,
personal, phone, physical, pick, picture,piece, place,plan, plant, play, player, PM, point, police,
policy, political, politics, poor,popular, population,position, positive, possible, power, practice, pre-
pare, present, president, pressure,pretty, prevent,price, private, probably, problem, process, produce,
product, production, professional,professor, program,project, property, protect, prove, provide, pub-
lic, pull, purpose, push, put, quality,question, quickly,quite, race, radio, raise, range, rate, rather,
reach, read, ready, real, reality,realize, really,reason, receive, recent, recently, recognize, record,
red, reduce, reflect, region,relate, relationship,religious, remain, remember, remove, report, repre-
sent, Republican, require, research,resource, respond,response, responsibility, rest, result, return,
reveal, rich, right, rise, risk, road,rock, role,room, rule, run, safe, same, save, say, scene, school,
science, scientist, score, sea,season, seat,second, section, security, see, seek, seem, sell, send, senior,
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Figure 21: The LDR analysis for UNet (top row) and DiT (second) learning Quarter-MNIST dataset.√
ᾱt = 0.1 and the reference region is top-left quarter. From left to right columns are xt, x0 and

LDR heatmap.

sense, series, serious,serve, service,set, seven, several, sex, sexual, shake, share, she, shoot, short,
shot, should,shoulder, show, side,sign, significant, similar, simple, simply, since, sing, single, sister,
sit, site,situation, six, size,skill, skin, small, smile, so, social, society, soldier, some, somebody,
someone,something, sometimes,son, song, soon, sort, sound, source, south, southern, space, speak,
special, specific,speech, spend,sport, spring, staff, stage, stand, standard, star, start, state, state-
ment, station,stay, step, still,stock, stop, store, story, strategy, street, strong, structure, student, study,
stuff,style, subject, success,successful, such, suddenly, suffer, suggest, summer, support, sure, surface,
system,table, take, talk, task,tax, teach, teacher, team, technology, television, tell, ten, tend, term,
test, than,thank, that, the, their,them, themselves, then, theory, there, these, they, thing, think, third,
this, those,though, thought, thousand,threat, three, through, throughout, throw, thus, time, to, today,
together, tonight,too, top, total, tough, toward,town, trade, traditional, training, travel, treat, treatment,
tree, trial, trip, trouble,true, truth, try, turn,TV, two, type, under, understand, unit, until, upon, use,
usually, value, various,very, victim, view, violence,visit, voice, vote, wait, walk, wall, want, war,
watch, water, way, we, weapon,wear, week, weight, well, west,western, what, whatever, when, where,
whether, which, while, white, who, whole, whom,whose, why, wide, wife, will,win, wind, window,
wish, with, within, without, woman, wonder, word, work, worker,world, worry, would, write,writer,
wrong, yard, yeah, year, yes, yet, you, young, your, yourself].

Also we construct a dataset using 3,000 common Chinese characters and render them in Kai font
images. We use UNet to learn to generate images of these texts. The early stage generation results are
shown in figure 14. Interestingly, we observe very similar pattern as in modern large scale diffusion
models like StableDiffusion and Midjourney in our synthetic experiment. We probe denoising model
at stage when it has hallucination, and finds that they all have very high LDR, indicating they generate
letter or radicals independently and combine them.

A.8 VALIDATION OF THEORETICAL FINDINGS

In this section, we corroborate our theoretical findings by experiments. We set d = 8, 16 and learn
just the first dimension of score function for parity points using a two-layer ReLU-activated MLP.
The model has 2000 hidden neurons and we set initialization scheme σinit = 1e− 3, bi(0) = 0, ai =
∥wi∥2. We train with small learning rate η = 1e− 6 and discover following interesting phenomena.

• The loss curves exhibit a stair-like shape, meaning it has three phases.

• These three phases correspond to best linear interpolation, best univariate interpolation, and
optimal approximator.

• At initial stage, the network’s weight wi aligns well with e1, and stick with this state through
the first and second stage.
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Figure 22: Diffusion generated results when trained on English common words’ image (first row) and
Chinese characters (second row). We find similar misspelling phenomenon for English generation
and glyph by randomly assembling radicals in Chinese characters.

As shown in figure 17. While the ground truth score function is not a univariate function of x(1) as in
left. The shaded area near the origin means the score function has also dependency on other input
dimensions x(j), j > 1. However,The MLP is biased towards learning a univariate function. Even
though MLP has access to value from all input dimensions. This results in a local generation bias and
let the model independently sample each dimension. Therefore this model essentially samples on all
vertices on hypercube rather than parity points.
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Figure 23: The LDR analysis for model at 20k steps (first row) and 200k steps (second row) learning
on common English words dataset.

√
ᾱt = 0.1 and the reference region is the first and second letter.

We can see that when model hallucinates, it only attends to local region, therefore randomly spelling
the letters. It will account globally when overfitting to reproduce words within the training dataset.
From left to right columns are xt, x0 and LDR heatmap.

(a) Three stairs shape loss. Each stage represents a
saddle point.

(b) The average norm for the first dimension and the
rest of weight parameter among hidden neurons. In
the first stage, the model only extracts the input’s
first dimension’s information, resulting in a local and
sparse input dependency.

(c) Phase 1: optimal linear interpo-
lation.

(d) Phase 2: optimal univariate in-
terpolation.

(e) Phase 3: global optimal multi-
variate approximation.

Figure 24: Three-phase functionality of learned MLP score network. The x-axis is x(1). The MLP
performs local generation, if its output against x(i) is nearly a function curve with no ambiguity in
mapping.
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Figure 25: The local generation bias in MLP.
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