
Under review as a conference paper at ICLR 2021

ADDRESSING EXTRAPOLATION ERROR IN DEEP
OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) encompasses both online and offline regimes. Unlike
its online counterpart, offline RL agents are trained using logged-data only, without
interaction with the environment. Therefore, offline RL is a promising direction
for real-world applications, such as healthcare, where repeated interaction with
environments is prohibitive. However, since offline RL losses often involve evalu-
ating state-action pairs not well-covered by training data, they can suffer due to
the errors introduced when the function approximator attempts to extrapolate those
pairs’ value. These errors can be compounded by bootstrapping when the function
approximator overestimates, leading the value function to grow unbounded, thereby
crippling learning. In this paper, we introduce a three-part solution to combat ex-
trapolation errors: (i) behavior value estimation, (ii) ranking regularization, and
(iii) reparametrization of the value function. We provide ample empirical evidence
on the effectiveness of our method, showing state of the art performance on the
RL Unplugged (RLU) ATARI dataset. Furthermore, we introduce new datasets for
bsuite as well as partially observable DeepMind Lab environments, on which our
method outperforms state of the art offline RL algorithms.

1 INTRODUCTION

Agents are, fundamentally, entities which map observations to actions and can be trained with
reinforcement learning (RL) in either an online or offline fashion. When trained online, an agent
learns through trial and error by interacting with its environment. Online RL has had considerable
success recently: on Atari (Mnih et al., 2015), the game of GO (Silver et al., 2017), video games like
StarCraft II, and Dota 2, (Vinyals et al., 2019; Berner et al., 2019), and robotics (Andrychowicz et al.,
2020). However, the requirement of extensive environmental interaction combined with a need for
exploratory behavior makes these algorithms unsuitable and potentially unsafe for many real world
applications. In contrast, in the offline setting (Fu et al., 2020; Fujimoto et al., 2018; Gulcehre et al.,
2020; Levine et al., 2020), also known as batch RL (Ernst et al., 2005; Lange et al., 2012), agents
learn from a fixed dataset which is assumed to have been logged by other (possibly unknown) agents.
See also Fig. 1 for an illustration of these two settings. Learning purely from logged data allows these
algorithms to be more widely applicable, including in problems such as healthcare and self-driving
cars, where repeated interaction with the environment is costly and potentially unsafe or unethical,
and where logged historical data is abundant. However these algorithms tend to behave considerably
worse than their online counterpart.

Although similar in principle, there are some important differences between the two regimes. While
it is useful for online agents to explore unknown regions of the state space so as to gain knowledge
about the environment and better their chances of finding a good policy (Schmidhuber, 1991), this
is not the case for the offline setting. Choosing actions not well-represented in the dataset for

Figure 1: In online RL (left), the agent must interact with the environment to gather data to learn from. In offline
RL (right), the agent must learn from a logged dataset.

1

Under review as a conference paper at ICLR 2021

offline methods would force the agent to rely on function approximators’ extrapolation ability. This
can lead to substantial errors during training, as well as during deployment of the agent. During
training, the extrapolation errors are exacerbated by bootstrapping and the use of max operators
(e.g. in Q-learning) where evaluating the loss entails taking the maximum over noisy and possibly
overestimated values of the different possible actions. This can result in a propagation of the erroneous
values, leading to extreme over-estimation of the value function and potentially unbounded error;
see (Fujimoto et al., 2019b) and our remark in Appendix A. As we empirically show in Section 4.2,
extrapolation errors are a different source of overestimation compared to those considered by standard
methods such as Double DQN (Hasselt, 2010), and hence cannot be addressed by those approaches.
In addition to extrapolation errors during training, a further degradation in performance can result
from the use of greedy policies at test time which maximize over value estimates extrapolated to
under-represented actions. We propose a coherent set of techniques that work well together to combat
extrapolation error and overestimation:

Behavior value estimation. First, we address extrapolation errors during training time. Instead of
Qπ
∗
, we estimate the value of the behavioral policy QπB , thereby avoid the max-operator during

training. To improve upon the behavioral policy, we conduct what amounts to a single step of policy
improvement by employing a greedy policy at test time. Surprisingly, this technique with only one
round of improvement allows us to perform significantly better than the behavioral policies and often
outperform existing offline RL algorithms.

Ranking regularization. We introduce a max-margin based regularizer that encourages the value
function, represented as a deep neural network, to rank actions present in the observed rewarding
episodes higher than any other actions. Intuitively, this regularizer pushes down the value of all
unobserved state-action pairs, thereby minimizing the chance of a greedy policy selecting actions
under-represented in the dataset. Employing the regularizer during training will minimize the impact
of the max-operator used by the greedy policy at test time, i.e. this approach addresses extrapolation
errors both at training and (indirectly) at test time.

Reparametrization of Q-values. While behavior value estimation typically performs well, par-
ticularly when combined with ranking regularization, it only allows for one iteration of policy
improvement. When more data is available, and hence we can trust our function approximator to
capture more of the structure of the state space and as a result generalize better, we can rely on
Q-learning which permits multiple policy improvement iterations. However this exacerbates the
overestimation issue. We propose, in addition to the ranking loss, a simple reparametrization of the
value function to disentangle the scale from the relative ranks of the actions. This reparametrization
allows us to introduce a regularization term on the scale of the value function alone, which reduces
over-estimation.

To evaluate our proposed method, we introduce new datasets based on bsuite environments
(Osband et al., 2019), as well as the partially observable DeepMind Lab environments (Beattie
et al., 2016). We further evaluate our method as well as baselines on the RL Unplugged (RLU) Atari
dataset (Gulcehre et al., 2020). We achieve a new state of the art (SOTA) performance on the RLU
Atari dataset as well as outperform existing SOTA offline RL methods on our newly introduced
datasets. Last but not least, we provide careful ablations and analyses that provide insights into our
proposed method as well as other existing offline RL algorithms.

Related work. Early examples of offline/batch RL include least-squares temporal difference meth-
ods (Bradtke & Barto, 1996; Lagoudakis & Parr, 2003) and fitted Q iteration (Ernst et al., 2005;
Riedmiller, 2005). Recently, Agarwal et al. (2019a), Fujimoto et al. (2019b), Kumar et al. (2019),
Siegel et al. (2020) , Wang et al. (2020) and Ghasemipour et al. (2020) have proposed offline-RL
algorithms and shown that they outperform off-the-shelf off-policy RL methods. There also exist
methods explicitly addressing the issues stemming from extrapolation error (Fujimoto et al., 2019b).

2 BACKGROUND AND PROBLEM STATEMENT

We consider, in this work, Markov Decision Processes (MDPs) defined by (S,A, P,R, ρ0, γ) where
S is the set of all possible states and A all possible actions. An agent starts in some state s0 ∼ ρ0(·)
where ρ0(·) is a distribution over S and takes actions according to its policy a ∼ π(·|s), a ∈ A,
when in state s. Then it observes a new state s′ and reward r according to the transition distribution
P (s′|s, a) and reward function r(s, a). The state action value function Qπ describes the expected

2

Under review as a conference paper at ICLR 2021

Figure 2: Two types of extrapolation error. Type A is most dangerous for offline RL, due to the max operation.
Type B is difficult to address without additional interactions with the environment. Here, we aim to address Type
A extrapolation errors.

discounted return starting from state s and action a and following π afterwards:

Qπ(s, a) = E

[∑
t=0

γtr(st, at)

]
, s0 = s, a0 = a, st ∼ P (·|st−1, at−1), at ∼ π(·|st), (1)

and V π(s) = Ea∼π(·|s)Qπ(s, a) is the state value function. The optimal policy π∗, which we aim to
discover through RL, is one that maximizes the expected cumulative discounted rewards, or expected
returns such that Qπ

∗
(s, a) ≥ Qπ(s, a) ∀s, a, π. For notational simplicity, we denote the policy used

to generate an offline dataset as πB1. In the same vein, for a state s in an offline dataset, we write
GB(s) to denote an empirical estimate of V πB(s), computed by summing future discounted rewards
over the trajectory that s is part of.

Approaches to RL can be broadly categorized as either on-policy or off-policy algorithms. Whereas
on-policy algorithms update their current policy based on data generated by that same policy, off-
policy approaches can take advantage of data generated by other policies. Algorithms in the mold of
fitted Q-iteration make up many of the most popular approaches to deep off-policy RL (Mnih et al.,
2015; Lillicrap et al., 2015; Haarnoja et al., 2018). This class of algorithms learns a Q function by
minimizing the Temporal Difference (TD) error. To increase stability and sample efficiency, the use
of experience replay is also typically employed. For example, DQN (Mnih et al., 2015) minimizes
the following loss function:

Lθ′(θ) = E(s,a,r,s′)∼D

(
Qθ(s, a)−

(
r + γmax

a′
Qθ′(s

′, a′)
))2

, (2)

where D represents experience replay, i.e. a dataset generated by some behavior policy. Typically,
for off-policy algorithms the behavior policy is periodically updated to remain close to the policy
being optimized. A deterministic policy can be derived by being greedy with respect to Q̂, i.e. by
defining π(s) = arg maxaQ(s, a). In cases where maximization is nontrivial (e.g. continuous
action spaces), we typically adopt a separate policy π and optimize losses similar to: Lθ′(θ) =

E(s,a,r,s′)∼D

(
Qθ(s, a)−

(
r+ γEa′∼π(·|s′)[Qθ′(s′, a′)]

))2
. In this case, π is optimized separately in

order to maximize Ea∼π(·|s)[Q(s, a)], sometimes subject to other constraints (Lillicrap et al., 2015;
Haarnoja et al., 2018). Various extensions have been proposed for this class of algorithms, including
but not limited to: distributional critics (Bellemare et al., 2017), prioritized replays (Schaul et al.,
2015), and n-step returns (Kapturowski et al., 2019; Barth-Maron et al., 2018; Hessel et al., 2017).

In the offline RL setting (see Figure 1, right), agents learn from fixed datasets generated via other
processes, thus rendering off-policy RL algorithms particularly pertinent. Many existing offline RL
algorithms adopt variants of Equation (2) to learn value functions; e.g. Agarwal et al. (2019b). Offline
RL, however, is different from off-policy learning in the online setting. The dataset used is finite
and fixed, and does not track the policy being learned. When a policy moves towards a part of the
state space not covered by the behavior policy(s), for example, one cannot effectively learn the value
function. We will explore this in more detail in the next subsection.

2.1 EXTRAPOLATION AND OVERESTIMATION IN OFFLINE RL

In the offline setting, when considering all possible actions for a next state in Equation (2), some of
the actions will be out-of-distribution (OOD), i.e. these actions were never picked in that particular
state by the behavior policy used to construct the training set (hence not present in the data). In such

1Our proposed approach does not depend on πB being a coherent policy.

3

Under review as a conference paper at ICLR 2021

circumstances, we have to rely on the current Q-network’s ability to extrapolate beyond the training
data, resulting in extrapolation errors when evaluating the loss. Moreover, the need for extrapolation
can lead to value overestimation, as explained below.

Value overestimation (see Fig. 2) happens when the function approximator predicts a larger value
than the ground truth. In short, taking the max over actions of several Q-network predictions, as
in Equation (2), leads to overconfident estimates of the true value of the state. We will expand on
this point shortly. Before doing so, it is worth pointing out that this phenomenon of overestimation
was well-studied in the online setting (Van Hasselt et al., 2015; 2018) and some prior works sought
to address this problem (Van Hasselt et al., 2015; Fujimoto et al., 2018). However, in offline RL
overestimation manifests itself in more problematic ways, which cannot be addressed by the solutions
proposed in online RL (Kumar et al., 2019). To see this, let us consider Equation (2) again. The
max operator is used to evaluate Qθ′ for all actions in a given state, including actions absent in
the dataset (OOD actions). For OOD actions, we depend on extrapolated values provided by Q̂θ′ .
While being an extremely powerful family of models, neural networks will produce erroneous
predictions on unobserved state-action pairs, and sometimes, these will be artificially high. These
errors will be propagated in the value of other states via bootstrapping. Due to the smoothness
of neural networks, by increasing the value of actions in the OOD action-state’s neighborhood,
the overestimated value itself might increase, creating a vicious loop. Mainly we remark that, in
such a scenario, typical gradient descent optimization can diverge and escape towards infinity. See
Appendix A for a formal statement, and proof on this statement, though similar observations had
been made before by Fujimoto et al. (2019b) and Achiam et al. (2019). In the online setting, when
the agent overestimates some state-action pairs, they will be chosen more often due to optimistic
estimates of values, even in the off-policy setting where the behavior policy trails the learned one.
The online agent would then act, collect data, thereby correcting extrapolation errors. This form of
self-correction is absent in the offline setting, and due to the overestimation from extrapolation, this
absence can be catastrophic.

3 SOLUTIONS TO ADDRESS EXTRAPOLATION ERROR

We build towards a solution to the extrapolation errors by i) using behavior value estimation to reduce
training time extrapolation error, ii) ranking regularization of the Q-networks to better handle test time
extrapolation error, iii) reparameterizing the Q-function to prevent divergence of these predictions to
infinity.

3.1 BEHAVIOR VALUE ESTIMATION

One potential answer to the overestimation problem is to remove the max-operator in the policy
evaluation step by optimizing the alternative loss:

Lθ′(θ) = E(s,a,r,s′,a′)∼D

(
Qθ(s, a)−

(
r + γQθ′(s

′, a′)
))2

. (3)

This update rule relies on transitions (s, a, r, s′, a′) collected by the behavior policy πβ and resembles
the policy evaluation step of SARSA (Rummery & Niranjan, 1994; Van Seijen et al., 2009). Since
the update contains no max-operator, and Qθ are evaluated only on state-action pairs that are part
of the dataset, the learning process is not affected by overestimation. However, the removal of the
max-operator means the update simply tries to evaluate the value of the behavioral policy. The
astute reader may question our ability to improve upon the behavioral policy when using this update
rule. We note, that when acting using the greedy policy π(s) = arg maxaQθ(s, a) we are in fact
performing a single policy improvement step. Fortunately, this one step is typically sufficient for
dramatic gains as we show in our experiments (see for example Fig. 9). This finding matches our
understanding that policy iteration algorithms typically do not require more than a few steps to
converge to the optimal policy (Lagoudakis & Parr, 2003; Sutton & Barto, 2018, Chapter 4.3).

3.2 RANKING REGULARIZATION

Policy evaluation with Eq. (3) effectively reduces overestimation during training. But it also avoids
learning the Q values of OOD actions. Due to the lack of learning, these values are likely erroneous,
and many will err on the side of overestimation, thus harming the greedy policy. This is in contrast
with the tabular case, where all OOD actions will have a default value of 0.

4

Under review as a conference paper at ICLR 2021

To robustify the policy improvement step, a natural choice is to regularize the function approximator
such that it behaves more predictable on unseen inputs. Forcing the neural network to output 0 for
OOD actions might require very non-smooth behavior of the network—hence we choose a less harsh
regularizer that asks the model only to assign lower values to state-action pairs that have not been
observed during learning. We formulate this as a ranking loss which follows a typical hinge-loss
approximation (Chen et al., 2009; Burges et al., 2005) for ranking problems. Given a transition from
the dataset (st, at) this can be formulated as

C(θ) =

|A|∑
i=0,i6=t

max (Qθ(st, ai)−Qθ(st, at) + ν, 0)
2
. (4)

While equation (4) does, in expectation, encourage lower ranks for OOD action, it can also have the
adverse effect of promoting suboptimal behavior that is frequent in the dataset. This is because for
any transition, proportional to its frequency in the dataset, the regularizer pushes the value of all but
the selected action down, promoting a policy that picks the selected action regardless of its value. To
minimize this effect, we weigh the regularization based on the value of the trajectory:

C(θ) = exp

((
GB(s)− Es∼D[GB(s)]

)
/β

) |A|∑
i=0,i6=t

max (Qθ(s, ai)−Qθ(s, at) + ν, 0)
2
, (5)

where Es∼D[GB(s)] is estimated by average over GB(s) in mini-batches. In all our experiments,
we fix ν to be 5e − 2 and β to be 2. The new formulation of the loss ensures that particularly on
trajectories performed well in the dataset, trajectories that are likely for policy learned using behavior
evaluation, the OOD action rank lower than observed actions. We note that our rank loss, when
viewed through the lens of on-policy online RL, can be related to ranking policy gradients (Lin &
Zhou, 2020) or to (Su et al., 2020; Pohlen et al., 2018) who also used a hinge loss as a regularizer but
with different goals from ours.

3.3 REPARAMETRIZATION OF Q-VALUES

The overestimation of state-action values can be severe in offline RL, and can escape towards
infinity (see for example appendix A). While behavior value estimation can be an effective way
for suppressing this overestimation, when one iteration of policy improvement is insufficient, one
may want to bring back the max-operator and therefore the implicit policy improvement step of
Q-learning. To better handle this scenario, we introduce a complimentary method to prevent severe
over-estimation by bounding the values predicted by the critic via reparameterization. Specifically,
we reparameterize the critic as Qθ(s, a) = αQ̂θ(s, a) given a state- and action-independent scale
parameter α. This, in effect, disentangles the scale from the relative magnitude of values predicted,
but also enables us to impose constraints on the scale parameter. To further stabilize the learning and
reduce the variance of the estimations, we update α by stochastic gradient descent, but with larger
minibatches and a smaller learning rate.

In our formulation, the “standardized” value Q̂θ(s, a) ∈ [−1, 1] is attained by using a tanh activation
function. Note that the tanh activation has the side effect of reducing numerical resolution for
representing extreme values (as the tanh will be in its saturated regime), minimizing the ability of the
learning process to keep growing these values by bootstrapping on each other. We let α = exp(ρ)
such that α > 0. Our parameterization thus ensures that Q-values are always bounded in absolute
value by α, i.e. n Q(s, a) ∈ [−α, α]. The equations below show how critic scaling can be adapted
into the Q-learning objective:

Lθ′,α′(θ, α) = E(s,a,r,s′)∼D

(
αQ̂θ(s, a)−

(
r + γα′max

a′
Q̂θ′(s

′, a′)
))2

. (6)

The introduction of α allows us to conveniently regularize the scale of Q values without disturbing
the ranking between actions. More precisely, we introduce a regularization term on α

C(α) = E[softplus(αQ̂θ(s, a)−GB(s))2], (7)

where C(α) represents a soft-constraint requiring Q values to stay close to the performance of the
behavioral policy, and thereby prevent gross overestimation. In Eq. (7), we rely on the softplus
function to constrain α only when Qθ(s, a) > GB(s).

5

Under review as a conference paper at ICLR 2021

4 EXPERIMENTS

We investigate the performance of discrete offline RL algorithms on the three aforementioned open-
source domains: Atari, DeepMind Lab, and bsuite. A question we are particularly interested
in answering is: how does the lack of coverage of the state-action pairs affect the performance of
each algorithm? In that context, we study each algorithms’ robustness to dataset size (see Fig. 6),
noise (see Fig. 3 and 7), and reward distribution (Fig. 9 in Appendix), as they all affect the datasets’
coverage of the state and action space.

Because we explore various ablations of our proposed approach, discussed in Section 3, we used
a specific acronym for each potential combination. According to our naming convention, Q is for
Q-learning and B is for behavior value estimation as the underlying RL loss, R indicates the use of
the ranking regularization and r the use of reparametrization. In that vein, QRr refers to Q-learning
with ranking regularization and reparametrization and BR stands for behavior value estimation with
ranking regularization (see Appendix B.1.) We note that, both our DQN and R2D2 experiments used
Double Q-learning (Van Hasselt et al., 2015), but for our approach (and ablations of it) that rely
on Q-learning, we used the vanilla Q-learning algorithm. More details for each experimental setup
appear in Appendix D. We also provide more analysis and additional results in Appendix B.

We used an open-source Atari offline RL dataset, which is a part of RL Unplugged (Gulcehre et al.,
2020) benchmark suite. We have created two new offline RL datasets for bsuite and DeepMind
Lab, which we are going to opensource. The details of those datasets are provided in Appendix C.

4.1 BSUITE EXPERIMENTS

0

50

100

cartpole

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0

50

100
catch

DDQN
BCQ

REM
CQL

BRr
QRr

Epsilon Noise (x 0.1)

%
 P

er
fo

rm
an

ce

Figure 3: Bsuite Experiments: bsuite experi-
mental results on two environments with respect
to different levels of noise injected into the ac-
tions in the dataset. The proposed method, BRr,
outperforms all the baselines on cartpole. Meth-
ods implementing a form of behavior constraining
(BCQ, CQL and our methods BRr and QRr) excel
on catch, stressing its importance.

bsuite (Osband et al., 2019) is a proposed bench-
mark designed to highlight key aspects of agent scal-
ability such as exploration, memory, credit assign-
ment, etc. We have generated low-coverage offline
RL datasets for catch and cartpole as described by
Agarwal et al. (2019a) (see Appendix C.1 for details).

In Fig. 3, we compare the performance of BRr and
QRr with four baselines: DDQN (Hasselt, 2010),
CQL (Kumar et al., 2020), REM (Agarwal et al.,
2019a) and BCQ (Fujimoto et al., 2018). We con-
sider two tasks, each in five versions defined by the
amount of injected noise. The noise is injected into
transitions by replacing the actions from an agent
with a random action with probability ε.

On the harder dataset (cartpole), BRr, the proposed
method, outperforms all other approaches showing
the efficiency of our approach and its robustness to
noise. Two other methods, QRr (proposed by us as
an ablation to BRr) and CQL, also perform relatively
well. The results for catch are similar, with the ex-
ception that BCQ also improves performance which
re-emphasises the importance of restricting behavior
to stay close to the observed data. We have additional
results on mountain car, where most algorithms be-
have well except DDQN (see Appendix D.4).

4.2 ATARI EXPERIMENTS

Atari is an established online RL benchmark (Bellemare et al., 2013), which has recently attracted
the attention of the offline RL community (Agarwal et al., 2019a; Fujimoto et al., 2019a) arguably
because the diversity of games presents a challenge for offline RL methods. Here, we used the
experimental protocol and datasets from the RL Unplugged Atari benchmark (Gulcehre et al., 2020).
We report the median normalized score across the Atari games, and the error bars show a bootstrapped
estimate of the [25, 75] percentile interval for the median estimate computed across different games.

6

Under review as a conference paper at ICLR 2021

CQL BCQ REM IQN QRr
96

98

100

102

104

106

108

110

112

 %
 P

er
fo

rm
an

ce

98.9

102.6

104.7 104.8

108.2

Figure 4: Atari results: We compare our proposed
QRr results against other recent State of Art offline
RL methods on the Atari offline policy selection
games from RL Unplugged benchmark.

In Fig. 4, we show that QRr outperforms all baselines
reported in the RL Unplugged benchmark as well
as CQL (Kumar et al., 2020). While BRr performs
well, this experiment highlights the potential limita-
tion of doing a single policy improvement iteration in
rich data regimes. Because in the considered setting
there is enough data for the neural networks to learn
reasonable approximations of the Q-value (exploit-
ing the structure of the state space to extrapolate for
unobserved state-action pairs), one can gain more
by reverting to Q-learning in order to do multiple
policy improvement steps. However this amplifies
the role of the regularization and in particular the
reparametrization. Therefore, in this setting, QRr,
which we proposed as an ablation to BRr outperforms
other techniques. Fig. 4 also shows the robustness of
QRr’s hyperparameters to different tasks.

MC Learning B DDQN QRr0

20

40

60

80

100

120

53.7

88.2 90.8

113.4

Qr BR QR BRr

102.5 105.2 108.9 110.7

Models

%
 P

e
rf

o
rm

a
n

ce
Figure 5: Ablations (online policy selection
games): [LEFT] We compare behavior value esti-
mation (B), DDQN and Monte Carlo approaches
in offline RL Atari dataset. B and DDQN achieve
similar median episodic returns, but learning with
Monte Carlo returns performs poorly. [RIGHT]
We show various ablation studies (in terms of us-
ing regularization, reparametrization and behavior
value estimation). We found the most significant
improvement from the ranking regularization term.
Although the combination of ranking regulariza-
tion and the reparameterization performs the best.

Ablation Experiments on Atari We ablate three
different aspects of our algorithm on online policy
selection games: i) the choice of TD backup up-
dates (Q-learning or behavior value estimation), ii)
the effect of ranking regularization, iii) the reparame-
terization on the critic. We show the ablation of those
three components in Fig. 5. We observed the largest
improvement when using ranking regularization. In
general, we found that estimating the Monte-Carlo
returns directly from the value function (we refer this
in our plot as ”MC Learning”) does not work on Atari.
However, behavior value estimation and Q-learning
both have similar performance on the full dataset,
however in low data regimes, the behavior value pol-
icy considerably outperforms Q-learning (see Fig. 9
in Appendix B).

100 10 1
 % of Dataset

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 M
ed

ia
n

O
ve

r-e
st

im
at

io
n

DDQN
B
Qr

Figure 6: Overestimation of Q-values with sub-
sampled Atari datasets (% of Dataset). DDQN
over-estimates the value of states severely whereas
Qr and B reduce over-estimation greatly. We report
median over-estimation error over online policy
selection games on Atari.

Overestimation Experiments Q-learning can
over-estimate due to the maximization bias, which
happens due to the max-operator in the backups
(Hasselt, 2010). In the offline setting another
source of overestimation, as discussed in Section 2,
are OOD actions due to the dataset’s limited
coverage. Double DQN (DDQN by Hasselt (2010))
is supposed to address the first problem, but it
is unclear whether it can address the second. In
Fig. 6, we show that in the offline setting DDQN
still over-estimates severely when we evaluate the
critic’s predictions in the environment. We believe
this is because the second factor is the main reason
of overestimation, which is not explicitly addressed
by DDQN. However, Qr (vanilla Q-learning with
reparametrization) and B are not effected from the
reduced dataset size and coverage as much. In the figure, we compute the over-estimation error
as 1

100

∑100
i=0(max(Qπ(s, a) − Gπ(s), 0))2 over 100 episodes, where Gπ(s) corresponds to the

discounted sum of rewards from state s till the end of episode by following the policy π.

Robustness Experiments In Appendix B.3 (see Figure 9), we investigate the robustness of B and
DDQN with respect to the reward distribution and dataset sizes. We found that the performance of B
is more robust than DDQN to the variations on the reward distribution and the dataset size.

7

Under review as a conference paper at ICLR 2021

BC R2D2 CQL B BR0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

2.9

8.5
9.3

7.6

13.4

explore_object_rewards_many

BC R2D2 CQL B BR0

5

10

15

20

25

30

1.8

19.8

23.8 23.7

28.6
explore_object_rewards_few

BC R2D2 CQL B BR0

2

4

6

8

10

12

14

0.1

2.6

4.0

9.9

11.2

rooms_watermaze

BC R2D2 CQL B BR0

2

4

6

8

10

12

14

1.1

5.4

3.4

9.4
10.4

rooms_select_nonmatching_object

Models

Ep
iso

de
 R

et
ur

n

Figure 7: DeepMind Lab Results: We compare the performance of different baselines on challenging DeepMind
Lab datasets coming from four different DeepMind Lab levels. Our method, BR, consistently performs the best.

4.3 DEEPMIND LAB EXPERIMENTS

Offline RL research mainly focused on fully observable environments such as Atari. However, in a
complex partially observable environment such as Deepmind Lab, it is very difficult to obtain good
coverage in the dataset even after collecting billions of transitions. To highlight this, we have generated
datasets by training an online R2D2 agent on DeepMind Lab levels. Specifically, we have generated
datasets for four of the levels: explore object rewards many, explore object rewards few,
rooms watermaze, and rooms select nonmatching object. The details of the datasets are
provided in the Appendix C.2.

We compare offline R2D2, CQL, BC, B and BR on our DeepMind Lab datasets. In contrast to Atari,
BR performed better than QR according to our preliminary results. Thus, here, we decided to only
focus on BR. We use the same network architecture and hence, the models vary only is the loss
function. We want to compare our baselines’ performance on our Deepmind Lab datasets when
there is a large amount of data stored during online training with online R2D2. In Figure 7, we
show the performance of each algorithm on different levels. Our proposed modifications, BR and B
outperform other offline RL approaches on all DeepMind Lab levels. We argue that poor performance
of R2D2 in the offline setting is due to the low coverage of the dataset. Despite having on the order
300M transitions, since the environment is partially observable and diverse, it is still not enough to
cover enough of all possible state-action pairs. We present further results about dataset coverage on
Deepmind Lab seekavoid arena 01 level with dataset generated by a fixed policy in Appendix B.2
where we showed that BR is more robust to the dataset coverage than other offline RL methods.

5 DISCUSSION

In this work, we first highlight how, in the offline deep RL setting, overestimation errors may cause
Q-learning to diverge, with weights and Q-value escaping towards infinity. We discuss using behavior
value estimation to address this problem, which efficiently regresses to the Q-value of the behavior
policy and then takes a policy improvement step at test time by acting greedily with respect to
the learnt Q-value. The behavior value estimation oversteps the overestimation issue by avoiding
the max-operator during training. We note that a single policy improvement step seems sufficient,
especially in the low data regime, to improve over the behavior policy and the policy discovered
by double DQN. However, the max-operator used to construct the test time policy re-introduces
overestimation errors that were avoided during training. We can address this issue by regularizing
the function approximator with a ranking loss that encourages OOD actions to rank lower than the
observed actions. This reduces overestimation at test time and improves performance. Nevertheless,
we observe that behavior value estimation can be too conservative in rich data settings. In such
scenarios, the function approximator can exploit more of the state and action space’s underlying
structure, leading to more reliable extrapolation. Therefore, it can be more lucrative to rely on
Q-learning in such scenarios, which can do multiple policy improvement steps, further constraining
the function approximator. The resulting algorithm QRr, that is Q-learning with the ranking loss and
reparametrization, outperforms all other approaches on the RL Unplugged Atari benchmark.

Overall behavior value estimation coupled with the ranking loss, is an effective algorithm for
low data regimes. For larger data regimes, where the coverage is better, it is possible to achieve
better performance by switching to Q-learning and using reparametrization. The proposed methods
outperform existing offline RL approaches on the considered benchmarks. As future work, we plan
to extend our observations to the continuous control setup and towards more real-world applications.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep
Q-learning. arXiv preprint arXiv:1903.08894, 2019.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. 2019a.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in off-policy
deep reinforcement learning. Preprint arXiv:1907.04543, 2019b.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. In International Conference on Learning Representations, 2018.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458, 2017.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. DotA 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Steven Bradtke and Andrew Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22:33–57, 03 1996.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pp. 89–96, 2005.

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Ranking measures and loss
functions in learning to rank. In Advances in Neural Information Processing Systems, pp. 315–323,
2009.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

Scott Fujimoto, Edoardo Conti, Mohammad Ghavamzadeh, and Joelle Pineau. Benchmarking batch
deep reinforcement learning algorithms. Preprint arXiv:1910.01708, 2019a.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019b.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. EMaQ: Expected-
Max Q-Learning operator for simple yet effective offline and online RL. arXiv preprint
arXiv:2007.11091, 2020.

9

Under review as a conference paper at ICLR 2021

Albert Gu, Caglar Gulcehre, Tom Le Paine, Matt Hoffman, and Razvan Pascanu. Improving the
gating mechanism of recurrent neural networks. arXiv preprint arXiv:1910.09890, 2019.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad
Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. RL unplugged:
Benchmarks for offline reinforcement learning. arXiv preprint arXiv:2006.13888, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Hado V Hasselt. Double Q-learning. In Advances in neural information processing systems, pp.
2613–2621, 2010.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex
Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew
Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed
reinforcement learning. arXiv preprint arXiv:2006.00979, 2020. URL https://arxiv.org/
abs/2006.00979.

Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent
experience replay in distributed reinforcement learning. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=r1lyTjAqYX.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2014.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
Q-learning via bootstrapping error reduction. In Conference on Neural Information Processing
Systems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of Machine Learning
Research, 4:1107–1149, 2003.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Marco
Wiering and Martijn van Otterlo (eds.), Reinforcement Learning: State-of-the-Art, pp. 45–73.
Springer Berlin Heidelberg, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Preprint
arXiv:1509.02971, 2015.

Kaixiang Lin and Jiayu Zhou. Ranking policy gradient. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=rJld3hEYvS.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

10

https://arxiv.org/abs/2006.00979
https://arxiv.org/abs/2006.00979
https://openreview.net/forum?id=r1lyTjAqYX
https://openreview.net/forum?id=rJld3hEYvS

Under review as a conference paper at ICLR 2021

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepezvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden,
Gabriel Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerı́k, et al. Observe and look further:
Achieving consistent performance on Atari. arXiv preprint arXiv:1805.11593, 2018.

Martin Riedmiller. Neural fitted Q iteration – first experiences with a data efficient neural reinforce-
ment learning method. In João Gama, Rui Camacho, Pavel B. Brazdil, Alı́pio Mário Jorge, and
Luı́s Torgo (eds.), European Conference on Machine Learning, pp. 317–328, 2005.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:
Behavior modelling priors for offline reinforcement learning. In International Conference on
Learning Representations, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Andy Su, Jayden Ooi, Tyler Lu, Dale Schuurmans, and Craig Boutilier. Conqur: Mitigating delusional
bias in deep q-learning. arXiv preprint arXiv:2002.12399, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. arXiv preprint arXiv:1509.06461, 2015.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical and
empirical analysis of expected SARSA. In 2009 ieee symposium on adaptive dynamic programming
and reinforcement learning, pp. 177–184. IEEE, 2009.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Ziyu Wang, Alexander Novikov, Konrad Żołna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

11

Under review as a conference paper at ICLR 2021

A Q-LEARNING CAN ESCAPE TO INFINITY IN THE OFFLINE CASE

Remark 1. Q-learning, using neural networks as a function approximator, can diverge in the offline
RL setting given that the collected dataset does not include all possible state-actions pairs, even if it
contains all transitions along optimal paths. Furthermore, the parameters (and hence the Q-values
themselves) can espace towards infinity under gradient descent dynamics.

Proof. The proof relies on providing a particular instance where Q-learning diverges towards infinity.
This is sufficient to show that divergence can happen. Note that the remark does not make any
statement of how likely is for this to happen, nor is providing sufficient conditions under which such
divergence has to happen.

Let us consider a simple deterministic MDP depicted in the figure below (left).

u3u2

h2 h3

1 -1

a2, r=
0

a1, r =0
s2

s1 s3

s4

a0,
 r=
1

a
2, r=0

S a[0] a[1] a[2]

1

w u1

Depiction of the MDP

-2-2-2

Depiction of the MLP

h1

1

h4
a2, r=0

a0 or a1, r=0 a0 or a1,
 r=0

S = {s1, s2, s3, s4} is the set of all states, where S1 is deterministically the starting state and S4

is the terminal state of the MDP. Let A = {a0, a1, a2} be the set of all possible actions. Let the
reward function r(s, a) be 0 for all action-state pair except r(s1, a0) which is 1. Let the transition
probabilities P (s′|s, a) be deterministic as defined by the depicted arrows. I.e. for any state action
pair only transitioning to one state has probability 1, while the rest has probability 0. For example,
only P (s4|s1, a0) = 1, while P (s3|s1, a0) = 0, P (s2|s1, a0) = 0.P (s2|s1, a0) = 0. For s1, a1 only
P (s2|s1, a1) = 1 and so on and so forth.

First observation is that the optimal behavior is to pick action a0 (as it is the only rewarding transition
in the entire MDP).

The features describing each state are given by a single real number, where s1 = 0, s2 = 1, s3 = β,
with β > 1

γ > 0, where γ is the discount factor. Assume actions are provided to the neural network
as one-hot vectors, i.e. a0 = [0, 0, 1]T , a1 = [0, 1, 0]T , a2 = [1, 0, 0]T 2, where we will refer to a[i]
as the i-th element of the vector that represents the action a. For example a0[2] = 1 and a0[0] = 0.

Let us consider the Q-function parametrized as a simple MLP (depicted in the figure above left). The
MLP uses rectifier activations, and gets as input both the state and action, returning a single scalar
value which is the Q-value for that particular state action combination. Rewriting the diagram in
analytical form we have that for s ∈ R and a ∈ R3:

Qθ(s, a) = w · relu(s) + u1relu(a[0]− 2s) + u2relu(a[1]− 2s) + u3relu(−2s− a[2]) (8)

A note on initialization. The weights of the first layer are given as constants. The process would
work if we leave them to be learnable as well, but the analysis would become considerably harder.
The exact value used, −2, 1,−1, are not important. In principle we care for the negative weights
connecting s to h2, h3, h4 be larger in magnitude than those from a[i] to hi, and we care for the
weight between a[2] and h2 to be negative. They can be scaled arbitrarily small and do not need to be
identical.

2one-hot representation is the typical representation for action in discrete spaces

12

Under review as a conference paper at ICLR 2021

What we will rely in the rest of the analysis is that the preactivation of h2, h3, h4 to be negative for
state s2 and s3. This will be in the zero region of the rectifier, meaning no gradient will flow through
those units. Since s3 > s2 ≥ 1 and a[i] ∈ {0, 1}, it is sufficient for the weight from s to h2, h3, h4
to be larger in magnitude than the weight from a[i] to h2, h3, h4. This ensures that for s > 1, the
Q-function is not a function of ui as ui will get multiplied by 0.3 Also we want the function to never
depend on u3 to simplify our analysis, which is easily achievable if the weight going from a[2] to h4
is negative.

Given the observations above, if we plug in the formula the different values of si and ai we get that:

Qθ(s1, a0) = u1
Qθ(s, 1, a1) = u2
Qθ(s1, a2) = 0

∀a ∈ A, Qθ(s2, a) = w
∀a ∈ A, Qθ(s3, a) = βw

(9)

Note that this implies that
maxaQθ(s2, a) = w
maxaQθ(s3, a) = βw

(10)

Assume w > 0. And let the dataset collected by the behavior policy to contain the following 3
transitions:

D = {(s1, a0, 1, s4), (s1, a1, 0, s2), (s2, a2, 0, s3)}

We can now construct the Q-learning loss that we will use to learn the function Q in the offline case
which will be

L =
∑

(s,a,r,s′)∈D (Qθ(s, a)− r − γmaxaQ′θ(s′, a))
2

= (Qθ(s1, s0)− 1)2 + (Qθ(s1, a1)− γmaxaQ
′
θ(s2, a))2 + (Qθ(s2, a2)− γmaxaQ

′
θ(s3, a))2

= (u1 − 1)2 + (u2 − γw′)2 + (w − γβw′)2
(11)

Note that we relied on Eq. (10) to evaluate the max operator and θ′ is a copy of θ, that is used for
bootstrapping. This is the standard definition of Q-learning see Eq. (2). In particular in this toy
example θ′ is numerically always identical to θ (in general it can be a trailing copy of θ from k steps
back) and is used more to indicate that when we take a derivative of the loss with respect to θ we
do not differentiate through Q′θ. From Eq. (11) we notice that only the first transition in dataset
contributes to the gradient of u1, only the second transition contributes to the gradient of u2 and only
the third transition contributes to the gradient of w. We can not evaluate the gradient with respect to θ
of the loss L over the entire dataset:

∇u1 = u1 − 1
∇u2 = u2 − (0 + γw)
∇u3 = w − (0 + γβw) = (1− γβ)w
∇w = w − (0 + γβw) = (1− γβ)w

(12)

Note that we assumed w > 0 and for simplicity we exploited that w′ = w numerically, to be able
to better understand the dynamics of the update. Given that β > 1

γ ,∇w will always be negative as
long as w (and implicitly w′) stays positive. Given that wt = wt−1 − α∇w for some learning rate
α > 0, the update creates a vicious loop that will increase the norm of w at every iterations, such that
limt→∞ wt =∞. Given that the gradient on u2 tracks w, it means that the path that takes action a2
in the initial state s1 will have +∞ as value. Note that all transitions along the optimal path of this
deterministic MDP are part of the dataset.

3The fact that no gradient gets propagated in the first layer is only important if we attempt to consider the
case when the first layer weights are learnable.

13

Under review as a conference paper at ICLR 2021

Also that given our example, the same will happen if we rely on SGD rather than batch GD (as
the different examples affect different parameters of the model independently and there is no effect
from averaging). Preconditioning the updates (as for e.g. is done by Adam or rmsprop) will also not
change the result as they will not affect the sign of the gradient (the preconditioning matrix needs
to be positive definite). Neither momentum will not affect the divergence of learning, as it will not
affect the sign of the update.

This means that the provided MDP will diverge towards infinity under the updates on most commonly
used gradient based algorithms.

B ADDITIONAL RESULTS AND ABLATIONS

B.1 ACRONYMS

In Table 1, we provided the acronyms for our models and their corresponding meanings.

Table 1: Acronyms for our models and their expansions

Acronym Meaning
B Behavior Value Estimation
BR Behavior Value Estimation with Ranking Regularization
BRr Behavior Value Estimation with Ranking Regularization and reparameterization
Q Standard Q-learning
QR Standard Q-learning with Ranking Regularization
QRr Standard Q-learning with Ranking Regularization and reparameterization

B.2 DEEPMIND LAB: THE EFFECT OF COVERAGE ON OFFLINE LEARNING

As mentioned in Section 4.3 we investigate the effect of coverage on the DeepMind Lab
seekavoid arena 01 level. To do so, we have created another set of datasets which is gener-
ated by using a fixed R2D2 snapshot with different noise levels when evaluating the trained snapshot
in the environment for seekavoid arena 01 level. We have used different εs in the ε-greedy
algorithm to create datasets with different noise levels. The ε also effects the coverage of the dataset.

We compare R2D2, CQL, BC, B and BR on these DeepMind Lab datasets by using the same network
architecture—the only change among the models is the loss function.

0.0 0.01 0.1 0.25
 Noise Level

0

5

10

15

20

25

30

35

 E
pi

so
di

c
R

et
ur

n

R2D2
B
CQL
BC
BR

Figure 8: Effect of coverage in the dataset: We
compare offline RL models with varying the noise
level in the environment. Increasing the noise level
increases the coverage as well. BC performs well
with low noise, however, BR performs significantly
better as the noise increases. Let us note that, in all
our experiments, R2D2 uses double Q-learning.

We investigate the effect of coverage in the Deep-
Mind Lab seekavoid arena 01 level, by evaluating
the policy with different ε’s for the epsilon-greedy
in the environment and storing each episode in the
dataset. Increasing the ε will increase the coverage
of the dataset but also it will increase the noise in the
dataset as well. In Figure 8, we show the effect ε on
the simple DeepMind Lab level. When ε = 0, BC
works outperforms offline RL approaches, however
increasing the level of noise deteriorates the perfor-
mance of BC, and BR starts to performs better. Since
the environment is deterministic, if the policy is deter-
ministic as well, this corresponds to only having one
single unique episode in the dataset. As we increase
the epsilon the coverage in the dataset and diversity
of the trajectories will increase as well. We trained all
models by unrolling on the whole episode and trained
using back-propagation through time.

14

Under review as a conference paper at ICLR 2021

B.3 ATARI: ROBUSTNESS TO DATA

The robustness of the reward distribution in the dataset is an important feature required to deploy
offline RL algorithms in the real-world. We would like to understand the robustness of behavior
value estimation in the offline RL setting. Thus, we first investigate the robustness of B in contrast
to Q-learning with respect to the datasets’ size and the reward distribution. In Fig. 9, we split out
the dataset into two smaller datasets: i) transitions coming from only highly rewarding ii) transitions
from only poorly performing episodes. We show that B outperforms Q-learning in both settings.

Episodic Reward < Mean Episodic Return > Mean
 Filtering

40

50

60

70

80

90

100

110

 %
 P

er
fo

rm
an

ce

75.7 74.8

85.2

99.1
DDQN
B

100 10 1
 % of Dataset

0

20

40

60

80

100

 %
 P

er
fo

rm
an

ce

94.1

14.0

1.9

88.2

58.6

13.5

DDQN
B

Figure 9: Robustness Experiments: (left) We compare DQN and B in terms of their robustness to the reward
distribution on Atari online policy selection games. We split the datasets in two bins: the dataset that only
contains transitions that are coming from episodes that have episodic return less than the mean episodic return in
the dataset (”Episodic Reward < Mean”), transitions coming from episodes with return higher than the mean
return in the dataset (”Episodic Reward>Mean”). B performs better than DQN in both cases. (right) Normalized
scores of DQN and B on subsets of data from online policy selection games. B performs comparatively better
than DQN . The Q-learning suffers more since the coverage of the dataset reduces with the subsampling which
causes more severe extrapolation error.

B.4 ON THE EFFECT OF REGULARIZATION

In this Section we study the effect of the regularization on the action gap and the overestimation error.
In Figure 10, we show that increasing the regularization co-efficient for the ranking regularization
increases the action gap across the Atari online policy selection games which can result to lower
estimation error and better optimization.

In Figure 11, we show the effect of increasing the regularization on the overestimation of the Q-
network when evaluated in the environment. We show the mean over-estimation across the games.

B.5 ONLINE POLICY SELECTION GAMES RESULTS

In Figure 12, we show the performance of different models with respect to the rewards they achieve
over the training.

15

Under review as a conference paper at ICLR 2021

0.010

0.015

0.020

0.025

0.030
M

ea
n

Ac
tio

n
Ga

p

level_name: BeamRider

factor(regularization)
0.005
0.01
0.05
0.1
1

0.02

0.04

0.06
level_name: DemonAttack

0.005

0.010

0.015

0.020

level_name: DoubleDunk

0.01

0.02

level_name: IceHockey

0.02

0.04

0.06

0.08

level_name: MsPacman

0.025

0.050

0.075

0.100

level_name: Pooyan

0.0e+00 5.0e+05 1.0e+06 1.5e+06

0.05

0.10

0.15

0.20
level_name: RoadRunner

0.0e+00 5.0e+05 1.0e+06 1.5e+06
0.0050

0.0075

0.0100

0.0125

0.0150

level_name: Robotank

0.0e+00 5.0e+05 1.0e+06 1.5e+06
Learner Steps

0

0.0025

0.0050

0.0075

level_name: Zaxxon

Action Gap

Figure 10: The Effect of increasing the ranking regularization on the action gap.

0.0e+00 5.0e+05 1.0e+06 1.5e+06
Learner Steps

0

0.25

0.50

0.75

1

M
ea

n
Ov

er
es

tim
at

ion
 E

rro
r

factor(lambda_reg)
0.005
0.01
0.05
0.1
1

Figure 11: The Effect of increasing the ranking regularization on the overestimation.

16

Under review as a conference paper at ICLR 2021

500

1000

1500

2000

Re
tur

ns

level_name: BeamRider

factor(model)
BRr
B
QRr
DQN
MC Learning

0

5000

10000

15000

level_name: DemonAttack

25

20

15

10

level_name: DoubleDunk

15

10

5

0 level_name: IceHockey

1000

2000

3000

level_name: MsPacman

0

1000

2000

3000

4000

level_name: Pooyan

0.0e+00 5.0e+05 1.0e+06 1.5e+06

0

20000

40000

level_name: RoadRunner

0.0e+00 5.0e+05 1.0e+06 1.5e+06

20

40

60

level_name: Robotank

0.0e+00 5.0e+05 1.0e+06 1.5e+06
Learner Steps

0

2500

5000

7500

level_name: Zaxxon

Returns

Figure 12: The Raw Returns obtained by each baseline on Atari online Policy Selection Games.

B.6 OVERESTIMATION ON ONLINE POLICY SELECTION GAMES

In Figure 13 and 14, we report the value error of B, BRr and DQN’s value error and squared value
error respectively.

1

0.5

0

0.5

1

Me
an

 Va
lue

 Er
ror

BeamRider

model
BRr
B
DQN

3

2

1

0

1

DemonAttack

0

0.5

1

1.5

DoubleDunk

0

0.25

0.50

0.75
IceHockey

12

8

4

0

MsPacman

7.5

5

2.5

0

2.5

Pooyan

0.0e+00 5.0e+05 1.0e+06 1.5e+06

10

5

0

5

RoadRunner

0.0e+00 5.0e+05 1.0e+06 1.5e+06
0.4

0.2

0

0.2

0.4

0.6
Robotank

0.0e+00 5.0e+05 1.0e+06 1.5e+06
Learner Steps

0

0.4

0.8

1.2
Zaxxon

Value Error

Figure 13: The value error computed in the environment by evaluating the agent and computed with respect to
the ground truth discounted returns. The negative values indicate under-estimation and positive values are for
over-estimation.

17

Under review as a conference paper at ICLR 2021

1

0.5

0

0.5

1

Sq
r V

alu
e E

rro
r

BeamRider

model
BRr
B
DQN

3

2

1

0

1

DemonAttack

0

0.5

1

1.5

DoubleDunk

0

0.25

0.50

0.75
IceHockey

12

8

4

0

MsPacman

7.5

5

2.5

0

2.5

Pooyan

0.0e+00 5.0e+05 1.0e+06 1.5e+06

10

5

0

5

RoadRunner

0.0e+00 5.0e+05 1.0e+06 1.5e+06
0.4

0.2

0

0.2

0.4

0.6
Robotank

0.0e+00 5.0e+05 1.0e+06 1.5e+06
Learner Steps

0

0.4

0.8

1.2
Zaxxon

Squared Value Error

Figure 14: The squared value error computed in the environment by evaluating the agent and computed with
respect to the ground truth discounted returns and reporting the mean squared values of the values.

C DETAILS OF DATASETS

C.1 BSUITE DATASET

BSuite (Osband et al., 2019) data was collected by training DQN agents (Mnih et al., 2015) with
the default setting in Acme (Hoffman et al., 2020) from scratch in each of the three tasks: cartpole,
catch, and mountain car. We convert the originally deterministic environments into stochastic ones
by randomly replacing the agent action with a uniformly sampled action with a probability of
ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} (ie. ε = 0 corresponds to the original environment). We train agents
(separately for each randomness level and 5 seeds, i.e. 25 agents per game) for 1000, 2000, 500
episodes in cartpole, catch and mountain car respectively. The number of episodes is chosen so that
agents in all levels can reach their best performance. We record all the experience generated through
the training process. Then to reduce the coverage of the datasets and make them more challenging
we only used 10% of the data by subsampling it. More details of the dataset are provided in Table 2.
The results presented in the paper are averaged over the 5 random seeds.

C.2 DEEPMIND LAB DATASET

DeepMind Lab (Beattie et al., 2016) data was collected by training distributed R2D2 (Kapturowski
et al., 2019) agents from scratch on individual tasks. First, we tuned the hyperparameters of a
distributed version of the Acme (Hoffman et al., 2020) R2D2 agent independently for every task
to achieve fast learning in terms of actor steps. Then, we recorded the experience across all actors
during entire training runs a few times for every task. Training was stopped after there was no further
progress in learning across all runs, with a resulting number of steps for each run between 50 million
for the easiest task (seekavoid arena 01) and 200 million for some of the hard tasks. Finally we
built a separate offline RL dataset for every run and every task. See more details about these datasets
in Table 3.

Additionally, for the seekavoid arena 01 task we ran two fully trained snapshots of our R2D2
agents on the environment with different levels of noise (ε = 0, 0.01, 0.1, 0.25 for ε-greedy action
selection). We recorded all interactions with the environment and generated a different offline RL
dataset containing 10 million actor steps for every agent and every value of ε.

18

Under review as a conference paper at ICLR 2021

Environments Number of episodes Number of transitions Average episode length
cartpole (ε = 0.0) 1000 710K 710
cartpole (ε = 0.1) 1000 773K 773
cartpole (ε = 0.2) 1000 649K 649
cartpole (ε = 0.3) 1000 607K 607
cartpole (ε = 0.4) 1000 672K 672
cartpole (ε = 0.5) 1000 643K 643

catch (ε = 0.0) 200 1.8K 9
catch (ε = 0.1) 200 1.8K 9
catch (ε = 0.2) 200 1.8K 9
catch (ε = 0.3) 200 1.8K 9
catch (ε = 0.4) 200 1.8K 9
catch (ε = 0.5) 200 1.8K 9

mountain car (ε = 0.0) 50 10K 205
mountain car (ε = 0.1) 50 10K 210
mountain car (ε = 0.2) 50 22K 447
mountain car (ε = 0.3) 50 13K 277
mountain car (ε = 0.4) 50 12K 250
mountain car (ε = 0.5) 50 24K 494

Table 2: BSuite dataset details.

0 20 40 60 80 100
0

5000

10000

15000

20000

25000

30000

explore_object_rewards_few

0 20 40 60 80 100 120
0

10000

20000

30000

40000

50000

explore_object_rewards_many

60 40 20 0 20 40 60
0

50000

100000

150000

200000

250000

300000

350000

400000

rooms_select_nonmatching_object

0 10 20 30 40 50 60 70
0

5000

10000

15000

20000

25000
rooms_watermaze

0 10 20 30 40 50
0

2500

5000

7500

10000

12500

15000

17500

20000
snapshot/seekavoid_arena_01-eps=0.01

0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

snapshot/seekavoid_arena_01-eps=0.25

Figure 15: DeepMind Lab Reward Distribution: We show the reward distributions for the DeepMind Lab
datasets. The vertical red line indicates the average episodic return in the datasets.

19

Under review as a conference paper at ICLR 2021

Table 3: DeepMind Lab dataset details. For training data, reward is measured as the maximum over training
of the average reward over runs for the same task. For snapshot data, reward is just an average over all episodes
recorded using the same level of noise.

Task Episode Length Datasets Episodes (K) Steps (M) Reward

seekavoid arena 01 300 5 667.1 200.1 39.0
seekavoid arena 01 snapshot (ε = 0) 300 2 66.7 20 40.4
seekavoid arena 01 snapshot (ε = 0.01 300 2 66.7 20 40.1
seekavoid arena 01 snapshot (ε = 0.1) 300 2 66.7 20 36.9
seekavoid arena 01 snapshot (ε = 0.25) 300 2 66.7 20 29.7
explore object rewards few 1350 3 178.3 240.7 51.5
explore object rewards many 1800 3 334.1 601.4 64.5
rooms select nonmatching object 180 3 2001.1 360.2 32.5
rooms watermaze 1800 3 201.8 363.3 48.8

D EXPERIMENT DETAILS

We used the Adam optimizer (Kingma & Ba, 2014) for all our experiments. For details on the used
hyperparameters, refer to the Table 4 for bsuite, Table 5 for Atari, and Table 6 for DeepMind
Lab. Our evaluation protocol is described below, in Section D.1. On Atari experiments, we have
normalized the agents’ scores as described in (Gulcehre et al., 2020).

On Atari, in all our experiments we report the median normalized score along with the bootstraps
estimates of 75th and 25th percentiles for the interquantile range estimates of the errors in the error
bars as done by (Gulcehre et al., 2020).

Atari Hyperparameters: On Atari we directly used the baselines and the hyperparameters reported
in (Gulcehre et al., 2020), to get the detailed Atari results on test set we communicated with the authors.
We have run additional CQL and our own models with ranking regularization and reparameterization.
For CQL we have finetuned both the learning rate from the grid [8e− 5, 1e− 4, 3e− 4] and the
regularization hyperparameter α ∈ [0.005, 0.05, 0.01, 0.1, 1]. For our own proposed models we have
only tuned the learning rate from the grid [8e− 5, 1e− 4, 3e− 4] and the ranking regularization
hyperparameter from the grid [0.005, 0.05, 0.01, 0.1, 1]. We have fixed the rest of the hyperparameters.
As mentioned earlier, we have only used the online policy selection games for finetuning the
hyperparameters. As a result of our grid search, we have used learning rate of 1e− 4 for CQL and
our models. We have used 0.01 for the α hyperparameter of CQL. 0.05 seems to be the optimal
hyperparameter choice for the ranking regularization hyperparameter.

DeepMind Lab Hyperparameters: On DeepMind Lab experiments, we tuned the hyperparam-
eters of each model individually on each level separately. We have tuned the learning rate and the
regularization hyperparameters for each model from the same grid that we have used for Atari. All
our algorithms are n-step in DeepMind Lab experiments, where n is fixed to 5 in all our experiments.
Thus both behavior value estimation and Q-learning experiments use 5 steps of unrolls for learning.

D.1 EVALUATION PROTOCOL

To evaluate the performance of the various methods, we use the following protocol:

1. We sweep over a small (5-10) sets of hyperparameter values for each of the methods.

2. We independently train each of the models on 5 datasets generated by running the behavior
policy with 5 different seeds (ie. producing 25-50 runs per problem setting and method).

3. We evaluate the produced models in the original environments (without the noise).

4. We average the results over seeds and report the results of the best hyperparameter for each
method.

20

Under review as a conference paper at ICLR 2021

D.1.1 EVALUATION METHOD

To evaluate models (step 3. above), in the case of bsuite and DeepMind Lab we ran an evaluation
job in parallel to the training one. It repeatedly read the learner’s checkpoint and produced evaluation
results during training. We report the average of the evaluation scores over the last 100 learning steps.

In the case of the Atari environments, instead of averaging performance during the final steps of
learning, we take the final snapshot produced by a given method and evaluate it on a ‘100‘ environment
steps after the training finished.

Table 4: bsuite experiments’ hyperparameters. The top section of the table corresponds to the shared
hyperparameters of the offline RL methods and the bottom section of the table contrasts the hyperparameters of
Online vs Offline DQN.

Hyperparameter setting (for both variations)

Discount factor 0.99
Mini-batch size 128
Target network update period every 2500 updates
Evaluation ε 0.48

Q-network: an MLP
Q-network: hidden units 56, 56, num actions
Training Steps 2M learning steps
Hardware Tesla V100 GPU
Replay Scheme Uniform

Hyperparameter Online Offline

Min replay size for sampling 20,000 -
Training ε (for ε-greedy exploration) 0.01 -
ε-decay schedule 250K steps -
Fixed Replay Memory No Yes
Replay Memory size 1M steps 2M steps
Double DQN No Yes

Table 5: Atari experiments’ hyperparameters. The top section of the table corresponds to the shared hyperpa-
rameters of the offline RL methods and the bottom section of the table contrasts the hyperparameters of Online
vs Offline DQN.

Hyperparameter setting (for both variations)

Discount factor 0.99
Mini-batch size 256
Target network update period every 2500 updates
Evaluation ε 0.48

Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Training Steps 2M learning steps
Hardware Tesla V100 GPU
Replay Scheme Uniform

Hyperparameter Online Offline

Min replay size for sampling 20,000 -
Training ε (for ε-greedy exploration) 0.01 -
ε-decay schedule 250K steps -
Fixed Replay Memory No Yes
Replay Memory size 1M steps 2M steps
Double DQN No Yes

21

Under review as a conference paper at ICLR 2021

Table 6: Deepmind Lab experiments’ hyperparameters. The top section of the table corresponds to the shared
hyperparameters of the offline RL methods and the bottom section of the table contrasts the hyperparameters of
Online vs Offline DQN.

Hyperparameter setting (for both variations)

Discount factor 0.997
Target network update period every 400 updates
Evaluation ε 0.48

Importance sampling exponent 0.6
Architecture Canonical R2D2 (Kapturowski et al., 2019)

Hyperparameter Online Offline

Hardware 4x TPUv2 4x Tesla V100 GPU
Training Steps 50-200M actor steps 50K learning steps
Sequence Length 120 (40 burn-in) Full episode
Mini-batch size 32 8
Training ε (for ε-greedy exploration) 0.4, ..., 0.48 -
Replay Scheme Prioritized (exponent 0.9) -
Min replay size for sampling 600K steps -
Replay Memory size 12M steps 50-200M steps

D.2 ATARI OFFLINE POLICY SELECTION RESULTS

In Table 7, we show the performance of our baselines on different Atari Offline Policy selection
games. We show that QRr outperforms other approaches significantly.

Table 7: Atari Offline Policy Selection Results: In this table, we list the median normalized performance of
different baselines.

Name Normalized Score

BC 50.8

DDQN 83.1

CQL 98.9

BCQ 102.6

IQN 104.8

REM 104.7

QRr 108.2

D.3 DEEPMIND LAB DETAILED RESULTS

In Table 8, we have shown the results on the Deepmind Lab datasets. It is possible see from these
numerica results that BR outperforms other approaches and B is still very competitive.

D.4 BSUITE DETAILED RESULTS

We generated datasets and performed experiments analogous to these in Section 4.1 for mountain car
environment. We present results for all three environments in Table 9. BRr outperforms all the
baselines.

E REPARAMETRIZING THE Q-NETWORK

In all reparameterized critic experiments we have used the tanh(·) activation function with refine
gates to help with optimization (Gu et al., 2019). We have not tuned the hyperparameters of the

22

Under review as a conference paper at ICLR 2021

Table 8: Detailed Results on the DeepMind Lab: We provide the detailed results for each DeepMind levels
along with the standard deviations.

BC R2D2 CQL B BR

explore object rewards few 1.8 ± 1.0 19.8 ± 4.0 23.8 ± 5.1 23.7 ± 3.8 28.6 ± 1.7

explore object rewards many 2.9 ± 1.4 8.5 ± 3.4 9.3 ± 2.5 7.6 ± 3.1 13.4 ± 11.8

rooms watermaze 0.1 ± 0.1 2.7 ± 1.4 4.0 ± 3.7 9.9 ± 2.7 11.2 ± 4.2

rooms select nonmatching object 1.1 ± 4.6 5.4 ± 2.3 3.4 ± 2.4 9.4 ± 6.3 10.4 ± 9.6

seekavoid arena 01, ε = 0 28.02 ± 7.6 4.7 ± 3.0 12.8 ± 10.7 4.4 ± 0.9 17.07 ± 10.1

seekavoid arena 01, ε = 0.01 33.0 ± 1.3 5.5 ± 1.6 12.7 ± 5.4 4.1 ± 1.8 19.8 ± 4.9

seekavoid arena 01, ε = 0.1 18.9 ± 14.4 8.6 ± 3.0 16.3 ± 7.7 11.775 ± 4.5 31.8 ± 4.7

seekavoid arena 01, ε = 0.25 17.46 ± 7.5 13.5 ± 5.1 13.5 ± 5.06 9.0 ± 0.25 25.57 ± 7.0

Environments DDQN BCQ REM CQL BRr QRr
cartpole (ε = 0.0) 203.5 244.3 383.7 354.6 933.8 358.3
cartpole (ε = 0.1) 240.5 244.6 218.0 673.7 886.8 732.7
cartpole (ε = 0.2) 134.5 215.7 295.6 528.3 786.1 566.0
cartpole (ε = 0.3) 265.9 432.8 248.2 594.6 937.3 642.0
cartpole (ε = 0.4) 278.9 418.4 263.8 791.3 814.5 745.2
catch (ε = 0.0) -0.04 0.96 0.3 1.0 1.0 1.0
catch (ε = 0.1) -0.19 0.85 0.18 1.0 1.0 1.0
catch (ε = 0.2) 0.08 0.91 0.34 1.0 1.0 0.99
catch (ε = 0.3) -0.08 0.92 -0.05 1.0 0.99 1.0
catch (ε = 0.4) -0.13 0.85 0.14 1.0 1.0 0.99
mountain car (ε = 0.0) -196.5 -142.0 -116.3 -129.3 -130.3 -128.7
mountain car (ε = 0.1) -231.5 -145.2 -167.0 -135.6 -127.1 -141.5
mountain car (ε = 0.2) -158.3 -161.1 -118.6 -120.0 -116.7 -140.3
mountain car (ε = 0.3) -316.6 -180.9 -128.3 -154.8 -125.0 -137.4
mountain car (ε = 0.4) -125.1 -133.7 -127.6 -128.9 -127.1 -163.6

Table 9: BSuite mean results.

reparameterization in our experiments, we have used four times larger minibatches to update the scale,
since it is cheap to update a single scalar and as shown in Algorithm 1, we have used twice smaller
learning rate to update the scale than the rest of the parameters of the network. This is a heuristic, but
we found this simple heuristic to work well across all the tasks that we have tried. Potentially it is
possible to get better results by tuning the hyperparameters for reparameterization more carefully.

Algorithm 1 Algorithm of Reparametrized Q-Network
Inputs: Dataset of trajectories D, batch size to update θ: B1, batch size to update γ: B2, and number of
actors A.
Initialize Q̂ weights θ.
Initialize α to 1.
Initialize target policy weights θ′ ← θ.
for nsteps do

Sample transition sequences (st:t+m, at:t+m, rt:t+m) from datasetD to construct a mini-batch of size B.
Calculate loss L(st, at, rt, st+1; θ, α) using target network.
Update θ with GD: θ ← θ − η1∇θL(θ)
Update α with GD: α← α− η1

√
B1/B2∇γL(γ)

If t mod ttarget = 0, update the target weights and α, θ′ ← θ, α′ ← α.
end for

As seen in Algorithm 1, there is a two stage of optimization to update the parameters of Q-network θ
and the scale of the Q values α. They both use different learning rates, it is important to make sure
that we update the α with a smaller learning rate: η2 ≤ η1.

23

Under review as a conference paper at ICLR 2021

F RANKING REGULARIZER

We propose a family of methods that prevent the extrapolation error by suppressing the values of the
actions that are not in the dataset. We achieve that by ranking the actions in the training set higher
than the ones that are not in the training set. For the learned Q-function the absolute values of actions
do not matter, we are rather interested in relative ranking of the actions. Given at is the action from
the dataset. For all j 6= t and illustration purposes, the value iteration can be written as:

E[max
a

Q(s, a)] ≈ E [P (Q(s, at) > Q(s, aj))Q(s, at)|t ∈Max] + E [P (Q(s, at) ≯ Q(s, aj))Q(s, aj)|j ∈Max]

= E [P (Q(s, at) > Q(s, aj))Q(s, at)|t ∈Max] + E [(1− P (Q(s, at) > Q(s, aj)))Q(s, aj)|j ∈Max]

= αE
[
P (Q̂(s, at) > Q̂(s, aj))Q̂(s, at)|t ∈Max

]
+ αE

[
(1− P (Q̂(s, at) > Q̂(s, aj)))Q̂(s, aj)|j ∈Max

]
= α

(
E
[
P (Q̂(s, at) > Q̂(s, aj))Q̂(s, at)|t ∈Max

]
+ E

[
(1− P (Q̂(s, at) > Q̂(s, aj)))

])
ξ

where ξ is an irreducible noise, because we can not gather additional data on (st, aj), and we
don’t know the corresponding reward for it. This causes extrapolation error which accumulates
through the bootstrapping in the backups as noted by Kumar et al. (2019). We implicitly pull
down the P (Q(s, at) ≯ Q(s, at)) by ranking the actions in the dataset higher which pushes up
P (Q(s, at) > Q(s, aj)). As a result, the extrapolation error in Q-learning would also reduce.

F.1 PAIRWISE RANKING LOSS FOR Q-LEARNING

In this section, we discus the relationship between the pairwise ranking loss for Q-learning and the
list-wise pairwise ranking losses.

ptj = sigm(Q̂)θ(s, at)− Q̂θ(s, aj))

π(at|s) ≈
|A|∏

i=0,i6=t

pti/Z

Z =

|A|∑
i=0

|A|∏
j=0,j 6=i

pij

R(θ) = −
|A|∑
i=0

log(pti)

= −
|A|∑
i=0

log(sigm(Q̂θ(s, at)− Q̂θ(s, aj)))

=

|A|∑
i=0

softplus(Q̂θ(s, aj)− Q̂θ(s, at))

We use a common approximation (Chen et al., 2009; Burges et al., 2005) to the softplus-based
log-likelihood is to use a hinge-loss which can be seen as an approximation:

C(θ) =

|A|∑
i=0,i6=t

max
(
Q̂θ(s, a)− Q̂θ(s, at) + ν, 0

)2
(13)

Imposing the constraint in Equation (13) can be harmful if the dataset has lots of suboptimal
trajectories. Because this constraint will try to maximize the values of suboptimal actions in the

24

Under review as a conference paper at ICLR 2021

dataset. As a result, similar to Wang et al. (2020), we propose a filtering function to impose that
constraints only on rewarding transitions:

C(θ) = exp(GB(s)− Es∼D[GB(s)])

|A|∑
i=0,i6=t

max
(
Q̂θ(s, ai)− Q̂θ(s, at) + ν, 0

)2
(14)

F.2 RELATIONSHIP TO THE POLICY GRADIENTS

It is possible to drive the foirmulation that we use for the ranking regularizer from the policy gradient
theorem to show the relationship. The Ranking Policy Gradient Theorem formulates the optimization
of long-term reward using a ranking objective as done in Lin & Zhou (2020). The proof below
illustrates the formulation process. Let us note that we apply the ranking regularization on the offline
and off-policy data, such that thee formalism below only works when the behavior policy and target
policy are equivalent, when the transitions are coming from on-policy data. If the ranking regularizer
is used on the on-policy data it approximates the policy gradients, but it will not on the off-policy
data.

Our construction is based on direct policy differentiation (Peters & Schaal, 2008; Williams, 1992)
where the objective function is to θ∗ = arg maxθ J(θ).

∇θJ(θ) =∇θ
∑

τ
pθ(τ)GB(s) (15)

=
∑

τ
pθ(τ)∇θ log pθ(τ)GB(s)

=
∑

τ
pθ(τ)∇θ log

(
p(s0)ΠT

t=1πθ(at|st)p(st+1|st, at)
)
GB(s)

=
∑

τ
pθ(τ)

∑T

t=1
∇θ log πθ(at|st)GB(s)

=Eτ∼πθ

[∑T

t=1
∇θ log πθ(at|st)GB(s)

]
=Eτ∼πθ

[∑T

t=1
∇θ log

(∏m

j=1,j 6=i
pij

)
GB(s)

]
=Eτ∼πθ

[∑T

t=1
∇θ
∑m

j=1,j 6=i
log (sigm(pij))G

B(s)

]
(16)

=− Eτ∼πθ

[∑T

t=1
∇θ
∑m

j=1,j 6=i
softplus(pji)G

B(s)

]
≈− Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
rectifier (Q(s, ai)−Q(s, aj))

)
GB(s)

]
, (17)

with baseline Es∼D[GB(s)] it will be,

≈− Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
rectifier (Q(s, ai)−Q(s, aj))

) (
GB(s)− Es∼D[GB(s)]

)]
(18)

Then we apply the exp(·) transformation on (GB(s)− Es∼D[GB(s)] to impose this loss loss mostly
on the rewarding trajectories, and we can turn the maximization problem to a minimization one with
a flip of sign:

=Eτ∼πθ

[∑T

t=1
∇θ
(∑m

j=1,j 6=i
rectifier (Q(s, ai)−Q(s, aj))

)
exp

(
GB(s)− Es∼D[GB(s)]

)]
(19)

where the trajectory is a series of state-action pairs from t = 1, ..., T , i.e. τ = (s1, a1, s2, a2, ..., sT).
The gradients in (19) is exactly the gradients of the ranking regularizer.

25

	Introduction
	Background and Problem Statement
	Extrapolation and overestimation in offline RL

	Solutions to Address Extrapolation Error
	Behavior Value Estimation
	Ranking regularization
	Reparametrization of Q-values

	Experiments
	bsuite Experiments
	Atari Experiments
	DeepMind Lab Experiments

	Discussion
	Q-learning can escape to infinity in the offline case
	Additional Results and Ablations
	Acronyms
	DeepMind Lab: The Effect of Coverage on Offline Learning
	Atari: Robustness to Data
	On the effect of Regularization
	Online Policy Selection Games Results
	Overestimation on Online Policy Selection Games

	Details of Datasets
	BSuite Dataset
	DeepMind Lab Dataset

	Experiment Details
	Evaluation protocol
	Evaluation method

	Atari Offline Policy Selection Results
	DeepMind Lab Detailed Results
	bsuite Detailed Results

	Reparametrizing the Q-network
	Ranking Regularizer
	Pairwise Ranking Loss for Q-learning
	Relationship to the Policy Gradients

