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Abstract

An effective hydraulic parameter identification underpins process simulation for
pipeline optimization. However, current studies often overlook the hydraulic spa-
tiotemporal dynamics and multi-frequency variations of simulation parameters,
limiting accuracy and interpretability. Here, by exploring the opportunity of bridg-
ing industrial process simulation relying on theoretical research paradigms in
scientific discovery, we propose a knowledge discovery and embedded framework
to identify optimal friction coefficient and capture multi-frequency online variations
of friction. The proposed framework identifies the optimal friction coefficient by
discovering hydraulic spatiotemporal dynamics based on partial derivative differ-
ences within pipeline hydraulic state matrices. By embedding explicit hydraulic
physical theory into forward propagation, a physics-constrained autoregressive
neural network is developed as an efficient, interpretable surrogate model. Then, a
self-coordination framework is designed for synchronous friction updating. The
proposed framework can achieve precise online hydraulic simulation by performing
knowledge-discovery identification and knowledge-embedded modeling. Results
confirm accuracy and robustness of the proposed framework across varying pipeline
and fluid properties. By integrating bottom-up knowledge discovery with top-down
embedding, this approach forms a self-improving loop, offering strong potential
for industrial pipeline digital twins and efficient decision-making.

1 Introduction

Pipeline transportation systems, fundamental to various industrial sectors, have emerged as the most
economical and energy-efficient solution for liquid media distribution, including urban water supply
[1, 2] and petroleum product delivery [3, 4]. However, with infrastructure aging and replacement often
delayed, frequent switching of operation conditions [5] can induce extreme pressure surges. These
transient processes heighten the risk of structural failure and potential explosions [6], particularly
in hydrocarbon pipelines due to their flammable and explosive nature [7]. Therefore, effective
monitoring of pressure and flowrate is critical to maintaining system safety and reliability.
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High-precision sensors are commonly employed to monitor hydraulic states such as pressure and
flowrate within pipelines. However, their widespread deployment is limited by substantial installation
and maintenance costs, restricting sensor placement to locations such as pipeline inlets and outlets
[8]. This sparse arrangement creates extensive non-detection zones within the pipeline system [9].
As a result, the development of efficient simulation tools capable of accurately estimating transient
hydraulic states (pressure and flowrate) becomes essential for pipeline risk assessment [10, 11],
system planning [12], and operational optimization [13, 14].

Hydraulic transients are governed by one-dimensional water hammer PDEs [15], which lack analyt-
ical solutions [16], prompting decades of research into numerical methods such as the Method of
Characteristics (MOC) [17] and Finite Difference Method (FDM) [18]. In practice, wave propagation
characteristic is influenced by uncertainties in PDE coefficients, including friction, wave speed, and
pipe-wall viscoelasticity, which significantly impact simulation accuracy [19]. While most coeffi-
cients remain relatively constant and can be estimated empirically, the friction coefficient exhibits
strong time dependence and is tightly coupled with transient dynamics. Accurate identification of
friction coefficient play a pivotal role in reliable hydraulic simulation.

The optimization theory-based method, a prevalent framework for pipeline parameter identifica-
tion, which identifies unknown parameters by aligning observed signals with associated numerical
model outputs, was first introduced by Liggett and Chen in 1994 [20]. Optimization theory-based
method primarily fall into two categories: mathematical statistical-based [21, 22] and evolutionary
optimization-based [23, 24, 25], with the latter increasingly recognized as a leading technique due
to its adaptability and robustness. However, conventional evolutionary strategies typically identify
simulation parameters based solely on squared errors (SE) between measured and simulated responses.
The essence that variations in parameters are often manifestations of deeper spatiotemporal hydraulic
dynamics (nonlinear time-delay characteristics and wave-propagation characteristics) are neglected
by conventional evolutionary strategies. This disconnect limits both the physical interpretability and
the precision of hydraulic simulation under transient conditions. Additionally, the inherently iterative
nature of evolutionary algorithms requires repeated PDE evaluation and population regeneration. This
results in significant computational overhead, resulting in the incapability of parameter dynamics
synchronous extraction [26].

Recently, time-series data-driven methods [27], such as the Nonlinear AutoRegressive neural network
with eXogenous inputs (NARX) [25] and long short-term memory (LSTM) [28], have attracted
significant interest in pipeline hydraulic simulation. These models can predict hydraulic parameters
at pipeline inlets and outlets efficiently but struggle to infer states in non-detection zones. Moreover,
the absence of hydraulic principles in their training leads to reduced accuracy and limited physical
interpretability [29]. Physics-informed neural networks (PINNs) offer a promising solution by incor-
porating physical laws for more accurate and interpretable simulations [4]. However, their training
is computationally intensive, which often requires several hours, thus limiting their practicality for
real-time applications [30]. Meanwhile, although efficient hydraulic simulation can be achieved by
data-driven methods, the high time cost of evolutionary iterations in parameter identification have not
been fundamentally overcome.

The essence of identifying parameter is discovering the spatiotemporal hydraulic dynamics from
pipeline system states. Motivated by the intrinsic spatiotemporal dynamics of hydraulic transient,
this study explores the opportunity of bridging industrial process simulation relying on theoretical
research paradigms in scientific discovery. We propose a novel knowledge discovery and embedded
framework for interpretable parameter identification and precise hydraulic simulation. The key
contributions of this work are as follows:

• To the best of our knowledge, we present the first spatiotemporal dynamic discovery-based
parameter identification (STDD) algorithm (Sec 2.2.1) by designing a spatiotemporal partial
derivatives to represent pipeline hydraulic dynamics. The proposed algorithm can identify
friction coefficient effectively and overcome key limitations of existing techniques, including
limited interpretability and degraded fidelity under transient conditions.

• We propose a physics-guided autoregressive neural network (PG-ARNN, Sec 2.2.2) that
incorporates hydraulic transient theory to function as an efficient surrogate for parameter
identification. Surrogate models can avoid the high iterative search costs of traditional param-
eter identification methods. This hybrid approach addresses the generalization limitations of
purely data-driven models when exposed to previously unseen operating conditions.
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• We develop a multi-frequency self-coordination simulation framework (Sec 2.2.3) by or-
ganically integrating knowledge discovery-driven identification with knowledge-informed
modeling. This approach can capture multi-frequency synchronous variations in the friction
coefficient. Then, the intrinsic asynchrony arising from fixed-interval parameter identifica-
tion under both pseudo-steady and transient conditions can be better addressed.

2 Methodology

2.1 Problem description

As shown in Eqs. (1) and (2), the one-dimensional governing equations describe the transient
hydraulic behavior in liquid pipelines as functions of both time (t) and space (x):
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where H is the head (pressure is the product of density, gravitational acceleration, and head), Q is
the flowrate. A is the cross-sectional area of the pipeline, g is gravitational acceleration, f is the
Darcy–Weisbach friction factor. The coefficient m is assigned as 0.25 for the hydraulically smooth
zone and 0.125 for the mixed friction zone. a =

√
K/ρ

1+K
E

D
δ C1

is the wave speed. For the other letters
in the formula, see Reference [4].

Given the superior stability of pressure transmitters over ultrasonic flow meters, measured pressures
are employed as inputs and boundary control conditions to drive the hydraulic simulation through
MOC (Appendix A.1). The hydraulic simulation can be mathematically represented as Xt+1 =
F (Xt, Ut+1). Where Xt = [H0,t, H1,t, ...,HM,t, Q0,t, Q1,t, ..., QM,t] denotes the system state
matrix at t, Ut+1 = [H0,t+1, HM,t+1] is the boundary control conditions at t+1, F (x) is the state
update function. In practical applications, ∆t is typically set to 1 second for real-time simulation,
while ∆x is derived from the wave speed and ∆t.

As discussed in Discussion of conventional parameter identification methods in Appendix A.1, to
tackle the identification asynchronism in real-time simulation and inherent overlook of spatiotemporal
hydraulic dynamics of conventional methods, this study proposes an interpretable objective function
and a multi-frequency self-coordination simulation framework.

2.2 Data-driven knowledge discovery and embedded framework

2.2.1 Spatiotemporal Dynamic Discovery-Based Parameter Identification Algorithm

The friction coefficient is closely linked to the Reynolds number, which depends on fluid properties
and flowrate [18]. Under transient conditions, rapid fluctuations in pressure and flowrate cause
corresponding changes in friction. Accurately identifying the optimal friction coefficient in real time
is therefore crucial for precise hydraulic simulation.
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Figure 1: Spatiotemporal Dynamic Discovery-Based Parameter Identification Framework

As depicted in Figure 1, to identify the friction coefficient, the initial condition is treated as pseudo-
steady, with hydraulic states H(x, t) and Q(x, t), x ∈ [0, L], t ∈ [−m, 0], where L is the pipeline
length and m denotes the duration of pseudo-steady flow along the pipeline derived using Darcy’s
law. Let T represent the parameter identification interval. Given boundary conditions H(x, t) in the
ith interval, with x ∈ {0, L} and t ∈ [(i− 1)T + 1, iT ] as well as initial states H(x, t) and Q(x, t)
with x ∈ [0, L] and t = (i− 1)T , the state matrices can be estimated via the hydraulic simulation
described in Sec 2.1, as shown in Eqs. (3) and (4).

Ĥ =


H (0, iT ) H (1, T ) · · · H (L, T )

H (0, iT − 1) H (1, iT − 1) · · · H (L, iT − 1)
...

...
. . .

...
H (0, (i− 1)T + 1) H (1, (i− 1)T + 1) · · · H (L, (i− 1)T + 1)

 (3)

Q̂ =


Q(0, iT ) Q(1, T ) · · · Q(L, T )

Q(0, iT − 1) Q(1, iT − 1) · · · Q(L, iT − 1)
...

...
. . .

...
Q (0, (i− 1)T + 1) Q (1, (i− 1)T + 1) · · · Q (L, (i− 1)T + 1)

 (4)

Observed flowrates are acquired from calibrated ultrasonic flow meters. Substituting the boundary
flowrates in the estimated flowrate matrices (Eq. (4)) with observed values yields the reference
flowrate matrix, as shown in Eq. (5).

Q̃ =


Q̃ (0, iT ) Q (1, T ) · · · Q̃ (L, T )

Q̃ (0, iT − 1) Q (1, iT − 1) · · · Q̃ (L, iT − 1)
...

...
. . .

...
Q̃ (0, (i− 1)T + 1) Q (1, (i− 1)T + 1) · · · Q̃ (L, (i− 1)T + 1)

 (5)

Notably, the reference head matrix is the same as the estimated head matrix. When the friction
coefficient used in hydraulic simulation aligns well with actual hydraulic dynamics, the estimated and
reference flowrate matrices should closely coincide. To evaluate hydraulic dynamic differences, the
partial derivatives of elements in both estimated (Ĥ and Q̂) and reference (Ĥ and Q̃) matrices over
time and space are discretized using finite difference schemes, yielding the residuals of the water
hammer PDEs, as shown in Eqs. (6)–(9).

F1 = Φest
1 • ξest1 =

[
∇tQ̂, Q̂ • ∇xQ̂,∇xĤ, Q̂

∣∣∣Q̂∣∣∣0.75] [1, 1
A
, gA, gAf

]T
(6)
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F2 = Φest
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Here, ∇ denotes the gradient operator for head and flowrate, while Φest and Φref form libraries of
partial derivative and constant terms for the estimated and reference matrices, respectively. F1 ∈
RN×4 and F2 ∈ RN×3, with N = L × T being the number of collocation points, represent
the momentum and continuity residuals for the estimated matrices; likewise, G1 ∈ RN×4 and
G2 ∈ RN×3 are the corresponding residuals for the reference matrices. When the friction coefficient
reflects the true hydraulic behavior, the spatiotemporal derivatives of both matrices coincide, resulting
in equal residuals. Accordingly, an objective function (Eq. (10)) is proposed to quantify the residual
differences.

{f∗, H∗(x, t), Q∗(x, t)} = argminf

(
α ∥F1 −G1∥22 + β ∥F2 −G2∥22

)
(10)

Here, a and β are tunable hyper-parameters used to enhance convergence effect. Solving the
optimization yields the optimal friction coefficient f∗, along with the corresponding hydraulic
states H∗(x, t) and Q∗(x, t) in non-detectable pipeline zones. Finally, the STDD algorithm is
executed periodically to update the friction coefficient in different time intervals, ensuring the
hydraulic simulation remains aligned with pipeline dynamics. In essence, STDD advances parameter
identification method by quantifying hydraulic spatiotemporal dynamics (time-delay and wave-
propagation characteristics), thereby enhancing physical interpretability. By replacing the objective
function (Eqs. (3)-(10)) in Figure 1 as squared error (SE, Eq. (17)), conventional parameter
identification methods can be acquired.

2.2.2 Physics-Guided Autoregressive Neural Network

While Sec 2.2.1 introduces a interpretable parameter identification algorithm, the real-time applicabil-
ity of STDD is hindered by its high computational cost (on the order of minutes). To address this, we
propose a computationally efficient surrogate model that replicates STDD’s functionality. Based on
the Reynolds Transport Theorem, liquid properties and present flowrate are primary determinants of
the friction coefficient. However, as present flowrates are not boundary control conditions, they must
be inferred from previous hydraulic states and present pressure data. To this end, a dual-layer neural
network framework is constructed (Figure A.1), employing autoregressive neural networks in each
layer to capture time-delay characteristics in hydraulic parameters. The first-level network takes the
estimated boundary flowrate from (i–1)T to iT and the observed boundary pressure from (i–1)T to
(i+1)T as inputs to predict flowrate in the interval iT to (i+1)T .

Then, the estimated present flowrate of the first-level network is concatenated with previous flowrate
as input features. This composite input, along with the friction coefficient at the ith interval, are
fed into the second-level network. Additionally, fluid density and viscosity are processed via a fully
connected (FC) layer to infer the friction coefficient at the (i+1)th interval. The forward propagation
of the dual-lay neural network is detailed in Appendix A.2.

2.2.3 Multi-Frequency Self-Coordination Simulation Framework

The temporal variability of the friction coefficient, a key determinant of hydraulic simulation accuracy,
differs markedly between pseudo-steady and transient conditions. In pseudo-steady states, friction
changes minimally over minutes to hours, whereas transient conditions induce second-scale fluc-
tuations. Optimization-based parameter identification approaches, including STDD, which require
minutes for parameter identification, suffer from significant phase lag during transients. To address
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this, we propose an multi-frequency self-coordination simulation framework, detailed in Framework
1.

Initially, optimal friction coefficients and estimated states obtained via STDD at two different time
intervals are used to train separate PG-ARNNs. Among these, STDD with time interval being
10 seconds for transient and 5 minutes for pseudo-steady conditions. Operation conditions are
identified by comparing pressure fluctuation amplitudes against predefined thresholds, triggering the
corresponding PG-ARNN. When the cumulative sampling time surpasses the designated interval,
observed pressure and estimated states are used to identify the friction coefficient. Otherwise,
the previous friction is retained. This updated coefficient is then applied for real-time hydraulic
simulation, enabling an online rolling simulation.

Framework 1 Online hydraulic simulation by using a multi-frequency self-coordination framework

Offline Training:
1. For time intervals of 10-second or 5-minutes:

1.1 Extract the observed boundary pressure and previous hydraulic states along pipeline
1.2 Identify the optimal friction and simulate the hydraulic states
1.3 Form friction databases (D1 for 10-second interval, D2 for 5-minute interval)

2. Train different PG-ARNNs using databases (D1→PG-ARNN1, D2→PG-ARNN2)
Online Simulation:
1. Gather real-time pressure and previous estimated hydraulic states
2. If the pressure fluctuation exceeds predefined threshold

2.1 Recognized as transient condition and a 10-second interval is applied
2.2 If cumulative sampling time surpasses the designated interval

2.2.1 Identify friction coefficient using PG-ARNN1
2.3 Else, using the historical friction coefficient
2.4 Hydraulic simulation

3. Else
3.1 Recognized as pseudo-steady condition and a 5-minute interval is applied
3.2 If cumulative sampling time surpasses the designated interval

3.2.1 Identify friction coefficient using PG-ARNN2
3.3 Else, using the historical friction coefficient
3.4 Hydraulic simulation

4. Begin hydraulic simulation in next time step

3 Case studies with experiments

3.1 Experiment setting

To evaluate the effectiveness and generalizability of the proposed framework, four real-world liquid
pipelines with varying characteristics were selected, as detailed in Table B.1. All pipelines share a
common elasticity modulus of 2.07×10¹¹ Pa. As illustrated in Figure B.1, pressure signals recorded at
the pipeline inlet and outlet by high-precision sensors were used as input to the hydraulic simulation
model, enabling estimation of pressure and flowrate at ∆x km intervals at 1-second resolution.
Flowrate data from calibrated ultrasonic flowmeters at both ends were employed for STDD execu-
tion and validation of flowrate simulations. Pressure measurements from three intermediate valve
chambers between pipeline inlet and outlet supported pressure simulation verification.

The optimal network parameters of PG-ARNN were determined via trial and error, as shown in Table
B.2. The model was implemented using the PyTorch framework. To optimize the balance between
performance and computational efficiency of STDD, 50 iterations were performed with 50 candidate
coefficients evaluated per iteration. PG-ARNN was trained over 2000 epochs with an initial learning
rate of 0.0001. The experiments were conducted on a workstation equipped with a single NVIDIA
GeForce RTX 3090 GPU.

3.2 Evaluation and analysis of the proposed STDD algorithm

Optimization-based parameter identification methods primarily differ in their iterative strategies
and evolutionary mechanisms, as their underlying objective functions are essentially the same. In
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this study, we mainly focus on proposing a novel objective function for evolution iteration process.
Consequently, this subsection only analyzes identification results derived from different objective
functions. The SE-based method, which replaces the objective function in STDD as SE are selected
as benchmark. To demonstrate the significance of parameter identification, the hydraulic simulation
model based on MOC without parameter identification is used as comparative model.

The hydraulic simulations on Case 1 are illustrated in Figure 2. and 3. STDD delivers the most accu-
rate hydraulic simulation, closely aligning with observed profiles and outperforming all comparative
methods. In contrast, the MOC approach exhibits the largest discrepancies. While SE-based and
STDD methods show similar accuracy during pseudo-steady states, STDD demonstrates markedly
superior performance under transient conditions. Flowrate and pressure simultion on other three
cases are shown in Figure B.2 and B.4. Figure B.3, B.5, Table 1, and 2 further support this, with
STDD achieving the lowest pressure residuals, with average errors being 0.0013 MPa, 0.0011 MPa,
0.0034 MPa, and 0.0042 MPa across four cases. By exploiting hydraulic dynamics characteristics of
spatiotemporal derivatives, STDD reduces residuals by 81.9%, 60.7%, 87.5%, and 40.0% compared
to SE-based method.

(a): Outlet flowrate estimation (b): Inlet flowrate estimation

Figure 2: Comparison of flowrate estimation between SE-based method and STDD on Case 1

Table 1: MAPE comparisons of flowrate estimation between SE-based method and STDD

Methods Inlet flowrate estimation (%) Outlet flowrate estimation (%)
Whole
flow

process

Transient
condition

Pseudo-steady
condition

Whole
flow

process

Transient
condition

Pseudo-steady
condition

STDD 0.085 0.299 0.082 0.079 0.193 0.070
MOC 0.415 1.084 0.344 0.700 2.417 0.603

SE-based 0.108 0.795 0.098 0.121 0.463 0.109

(a): 9.6 km (b): 19.6 km (c): 29.6 km

Figure 3: Comparison of flowrate estimation between SE-based method and STDD on Case 1

Table 2: Average absolute residuals of pressure simulation between SE-methods and STDD

Cases Average absolute residuals (MPa)

MOC SE-based STDD

Case 1 0.0135 0.0072 0.0013
Case 2 0.0043 0.0028 0.0011
Case 3 0.0338 0.0272 0.0034
Case 4 0.0090 0.0070 0.0042
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Table 3: Flowrate estimation errors of different frameworks
Flowrate

estimation Frameworks Inlet flowrate estimation (%) Outlet flowrate estimation (%)
Whole
flow

process

Transient
condition

Pseudo-steady
condition

Whole
flow

process

Transient
condition

Pseudo-steady
condition

Outlet
flowrate

Proposed
Framework (PG-ARNN) 0.283 1.204 0.296 0.097 0.291 0.169

Proposed
Framework (NARX) 0.402 1.683 0.530 0.391 0.875 0.624

Conventional
Framework 0.609 3.803 0.708 0.639 1.017 0.727

Inlet
flowrate

Proposed
Framework (PG-ARNN) 0.395 0.693 0.422 0.112 0.351 0.151

Proposed
Framework (NARX) 0.443 0.837 0.533 0.176 0.465 0.195

Conventional
Framework 0.565 1.447 0.589 0.455 1.956 0.620

Table 4: Average absolute residuals of pressure simulation between various frameworks

Cases Average absolute residuals (MPa)

Conventional Framework Proposed Framework
(NARX)

Proposed Framework
(PG-ARNN)

Case 3 0.0277 0.0114 0.0025
Case 4 0.0194 0.0124 0.0024

To provide a comprehensive interpretability analysis of the spatiotemporal dynamics identification
algorithm, the identification results and the trend of hydraulic parameters over time are discussed in
the appendix C.1.

3.3 Evaluation of PG-ARNN and multi-frequency simulation framework

To demonstrate the importance of multi-frequency parameter identification for online simulation,
we compare the proposed frameworks (with either PG-ARNN or the benchmark NARX model) to a
conventional fixed-interval (5 min) parameter identification approach. Neural networks are trained on
Cases 1–2 and tested on Cases 3–4, ensuring a balanced dataset split.

As shown in Figure B.6 and B.8, the simulation results of conventional framework on Case 3 exhibits
the largest deviations from observed values. These errors stem from phase delays in fixed-interval
parameter identification, which fail to capture rapid friction coefficient fluctuations during transients.
In contrast, the proposed multi-frequency approach enables high-frequency updates during transients,
enhancing estimation accuracy. Residual error comparisons in Figure B.7 and B.9 further support this.
Quantitative results in Table 3 and 4 confirm that PG-ARNN achieves the lowest errors, reducing
inlet flowrate MAPE by 68.4% and 71.4% compared to the conventional framework. For the pressure
simulation, PG-ARNN-based framework suggests a residual reduction of 91.0% and 87.7% compared
to the conventional framework, and 78.0% and 80.7% compared to NARX-based framework.

4 Discussion and Conclusion

In this study, we propose a innovative data-driven knowledge discovery and embedded framework
for interpretable parameter identification and accurate pipeline hydraulic simulation. The primary
advantages and innovations are summarized as follows:

• Our approach constructs partial derivative residuals across spatial and temporal domains
of system state matrices for discovering hydraulic spatiotemporal dynamics. These form
the basis of the parameter identification algorithm with an interpretable objective function.
The proposed algorithm tackles the limitations that estimate hydraulic states inaccurately,
especially under transient conditions. Real-world cases show that pipeline transients exhibit
substantial hydraulic spatiotemporal dynamic variability. Across four benchmark cases,

8



our algorithm reduces MAPE in transient inlet and outlet flowrate by 53.1% and 63.5%,
respectively, and improves pressure prediction by 81.9%, 60.7%, 87.5%, and 40.0%.

• We develop a physics-constrained neural network by embedding discovered hydraulic laws
into forward propagation, serving as an efficient surrogate for parameter identification.
Building on this, a multi-frequency online simulation framework is introduced to enable
synchronous parameter updates. Dynamic adjustment of identification intervals effectively
eliminates the phase delay issues inherent in fixed-interval-based methods. Compared
to conventional frameworks, the proposed method reduces MAPE by 68.35% (inlet) and
52.15% (outlet) in Case 3, further improving to 71.37% and 82.08% in Case 4. For pressure
prediction, residuals drop by 91.0% and 87.7%, respectively.

This approach offers a novel pathway for digital twin development in process simulation of pipeline
operation by uncovering hidden physics and reintegrating it to enhance model fidelity. Future
efforts will aim to develop efficient multi-dimensional hydrodynamic interaction tensors and advance
high-accuracy, low-cost simulation algorithms.
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[27] Jianqin Zheng, Jian Du, Bohong Wang, Jiří Jaromír Klemeš, Qi Liao, and Yongtu Liang. A hybrid
framework for forecasting power generation of multiple renewable energy sources. Renewable and
Sustainable Energy Reviews, 172:113046, 2023.

[28] Jian Du, Jianqin Zheng, Yongtu Liang, Xinyi Lu, Jiří Jaromír Klemeš, Petar Sabev Varbanov, Khurram
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A Supplementary Material of Proposed Method

A.1 Hydraulic simulation of liquid pipeline based on MOC

Hydraulic simulation process Using the MOC method, the transient hydraulic characteristic
equations are derived through simplification and linear combination, as presented in Eqs. (11) and
(12).

C+

{
dx
dt = a
a
gA

dQ
dt + dH

dt + fQ |Q|1−m
a = 0

(11)

C−

{
dx
dt = −a
a
gA

dQ
dt − dH

dt + fQ |Q|1−m
a = 0

(12)

Due to the non-differentiability of the friction terms in the characteristic equations, finite difference
schemes are employed to approximate the spatial derivatives in Eqs. (11) and (12), as shown in Eqs.
(13) and (14). The pipeline is discretized into segments (∆x = L/M ), and the flow is computed over
time steps (∆t = ∆x/a).

C+ :
a

gA
(Qi,t+1 −Qi−1,t) + (Hi,t+1 −Hi−1,t) + fQi,t+1|Qi−1,t|1−ma∆t = 0 (13)

C− :
a

gA
(Qi,t+1 −Qi+1,t)− (Hi,t+1 −Hi+1,t) + fQi,t+1|Qi+1,t|1−ma∆t = 0 (14)

Simultaneously solving Eqs. 13 and 14 establishes the relationship between variables at time t+1 and
t, as expressed in Eqs. 15 and 16.

Qi,t+1 =
R+ −R−

S+ + S− (15)

Hi,t+1 = R+ − S+Qi,t+1 (16)

where R+ = Hi−1,t + CWQi−1,t,
· R− = Hi+1,t − CWQi+1,t,

· S+ = CW +

f |Qi−1,t|1−m
a∆t,· S− = CW + f |Qi+1,t|1−m

a∆t, CW =
a
gA

. Thus, by specifying any

two of the flowrate and pressure values at the pipeline inlet and outlet boundaries at time t+1, the
hydraulic state along the pipeline at that moment can be determined.

Discussion of conventional parameter identification methods To estimate the friction coeffi-
cient and optimal states, existing parameter identification methods address the inverse problem by
minimizing the squared error (SE) between estimated and observed flowrates over a time interval T:

f̂ = argmin
f

(
T∑

t=1

(
Qest

0,t −Qobs
0,t

)2
+

T∑
t=1

(
Qest

M,t −Qobs
M,t

)2)
(17)

Conventional objective function (Eq. (17)) overlook the central role of the friction factor in governing
spatiotemporal hydraulic dynamics. Existing parameter identification methods typically identify
parameters using data from a fixed interval (e.g., 20 minutes) and apply them to the subsequent
interval, leading to estimation deviations, especially in real-time transients where hydraulic conditions
evolve within seconds. This study thus proposes an interpretable evaluation criterion (Eq. (17)) to
enable synchronous parameter identification for real-time simulation.
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A.2 Forward and backward propagation in PG-ARNN

Figure A.1: Schematic diagram of PG-ARNN

As depicted in Figure A.1, the first-level network takes the estimated boundary flowrate from (i–1)T
to iT and the observed boundary pressure from (i–1)T to (i+1)T as inputs to predict flowrate in the
interval iT to (i+1)T , as defined in Eq. (18).

(
Q0,iT+1, · · · ,Q0,(i+1)T ,QL,iT+1, · · · ,QL,(i+1)T

)
=

MAN1

(
Q0,(i−1)T , · · · ,Q0,iT ,QL,(i−1)T , · · · ,QL,iT ,

P 0,(i−1)T , · · · ,P 0,(i+1)T ,PL,(i−1)T , · · · ,PL,(i+1)T ; θ1

)
(18)

where MAN1 is the multilayer autoregressive neural network in the first layer, and θ1 is the trainable
parameters in the neural network of the first layer. Q0,t and QL,t represent the flowrate in the pipeline
inlet and outlet. P0,t and Pl,t represent the pressure in the pipeline inlet and outlet.

The estimated present flowrate of the first-level network is concatenated with previous flowrate as
input features. This composite input, along with the friction coefficient at the ith interval, is fed into
the second-level network. Additionally, fluid density and viscosity are processed via a fully connected
(FC) layer to infer the friction coefficient at the (i+1)th interval. The forward propagation of this
second-level network is detailed from Eqs. (19)–(21).

Z1 = MAN2

(
Q0,(i−1)T , · · · ,Q0,(i+1)T ,QL,(i−1)T , · · · ,QL,(i+1)T ,f i; θ2

)
(19)

Z2 = WfcX + bfc (20)

f̂i+1 = Wo(Z1 ⊕ Z2) + bo (21)

where X represents the input matrix consisting of liquid properties elements. θ2 is the trainable
parameters in the neural network of the second layer. (Wfc, bfc) and (W0, b0) are the weights and
biases in the FC layer and output layer. ⊕ represents the feature-wise concatenation. where f̂i+1 is
the observed friction coefficient.

The mean squared errors (MSE) between predicted and observed results of first and second-level
networks can be represented as:
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Lfirst =
1

N

(
∥FLNQL

−QL∥22 + ∥FLNQ0
−Q0∥22

)
(22)

Lseond =
1

N
∥SLNf − f∥22 (23)

To end with, the coupling loss function L = Lseond + Lfirst can be used to train the dual-layer
neural network.
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B Supplementary Figures and Tables

Table B.1: The properties of example pipelines and transported liquids

Cases Pipeline properties Liquid properties

Outer diameter
(mm)

Length
(km)

Wall thickness
(mm)

Density
(kg·m-3)

Viscosity
(mmPa·s)

Volume
elasticity

modulus(Pa)

Case 1 406.4 39.9 7.1 742 0.72 9.2×108

Case 2 323.9 55.1 6.4 753 1.12 4.2×108

Case 3 219.1 32.1 5.6 825 5.33 1.5×109

Case 4 219.1 45.7 5.6 821 5.27 1.3×109

Table B.2: The hyper-parameter setting of PG-ARNN

Network section Hyper-parameters Range Time interval

10 seconds 5 minutes

First-level network

Number of layers 1-10 3 5
Neural units 10-3000 [100, 50] [2000, 500, 10]
Batch size 16-512 256 512

Activation function [Relu, Tanh, Sigmoid] Relu Relu
Dropout 0-0.5 0.1 0.1

Second-level network

Number of layers 1-10 2 2
Neural units 8-128 [60, 20] [700, 100]
Batch size 10-1000 256 512

Activation function [Relu, Tanh, Sigmoid] Relu Relu
Dropout 0-0.5 0.1 0.1

Figure B.1: Schematic diagram of liquid pipeline (SCADA: Supervisory Control and Data Acquisition
system)
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(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(a) Case2

(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(b) Case 3

(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(c) Case4

Figure B.2: Visualization comparison of flowrate estimation between SE-based method and STDD
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(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(a) Case1

(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(b) Case2
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(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(c) Case 3

(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(d) Case4

Figure B.3: Visualization comparison of absolute residual errors between SE-based method and
STDD
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Table B.3: MAPE comparisons of flowrate estimation between SE-based method and STDD

Cases Methods Inlet flowrate estimation (%) Outlet flowrate estimation (%)

Whole
flow

process

Transient
condition

Pseudo-steady
condition

Whole
flow

process

Transient
condition

Pseudo-steady
condition

Case 2
STDD 0.073 0.149 0.056 0.069 0.134 0.054
MOC 0.452 1.358 0.247 1.441 2.062 1.531

SE-based 0.104 0.283 0.064 0.125 0.319 0.081

Case 3
STDD 0.201 0.720 0.129 0.174 0.334 0.152
MOC 2.210 3.932 1.997 0.930 1.905 0.753

SE-based 0.357 1.375 0.222 0.268 0.797 0.198

Case 4
STDD 0.110 0.321 0.091 0.094 0.188 0.076
MOC 3.366 3.559 1.805 2.281 2.505 2.237

SE-based 0.158 0.714 0.115 0.292 0.913 0.172

(i) 14.4 km (ii) 28.7 km (iii) 42.6 km

(b) Case2

(i) 5.5 km (ii) 15.6 km (iii) 25.6 km

(c) Case 3

(i) 11.5 km (ii) 23.6 km (iii) 33.8 km

(d) Case4

Figure B.4: Results comparison of simulated pressure at different locations between SE-based
methods and STDD
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(i) 9.6 km (ii) 19.6 km (iii) 29.6 km

(a) Case1

(i) 14.4 km (ii) 28.7 km (iii) 42.6 km

(b) Case2

(i) 5.5 km (ii) 15.6 km (iii) 25.6 km

(c) Case 3

(i) 11.5 km (ii) 23.6 km (iii) 33.8 km

(d) Case4

Figure B.5: Residuals comparison of simulated pressure at different locations between SE-based
method and STDD
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(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(c) Case 3

(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(d) Case4

Figure B.6: Results comparison of different online real-time simulation frameworks
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(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(c) Case 3

(i) Inlet flowrate estimation (ii) Outlet flowrate estimation

(d) Case4

Figure B.7: Absolute residual errors of different online real-time simulation frameworks
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(i) 5.5 km (ii) 15.6 km (iii) 25.6 km

(a) Case3

(i) 11.5 km (ii) 23.6 km (iii) 33.8 km

(b) Case4

Figure B.8: Results comparison of simulated pressure at different locations between various frame-
works

(i) 5.5 km (ii) 15.6 km (iii) 25.6 km

(a) Case3

(i) 11.5 km (ii) 23.6 km (iii) 33.8 km

(b) Case4

Figure B.9: Residual errors of simulated pressure at different locations between various frameworks
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C Additional Experimental Results

C.1 Interpretability analysis of hydraulic spatiotemporal dynamics identification

As illustrated in Figure C.1, STDD is conducted at 10-second interval to identify friction coefficients
across various cases. The results reveal a strong correlation between the friction coefficient and
hydraulic parameters, with clear phase synchronization to flowrate dynamics. Notably, under pro-
nounced flowrate fluctuations, the friction coefficient exhibits rapid transient changes. This highlights
the physical interpretability of the proposed STDD, which captures variations in transient hydraulic
behavior induced by friction changes through spatiotemporal derivative residuals. Furthermore, the
larger objective values can be found during fast-transient process, which demonstrates the significant
challenge in precisely reconstructing abrupt hydraulic dynamic features.

(a): Case 1 (b): Case 2

(c): Case 3 (d): Case 4

Figure C.1: Optimization results of friction coefficient with time interval being 10 seconds
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Data and code will be available if request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: Paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [TODO]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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