
Under review as a conference paper at ICLR 2022

AUTO-ENCODING
INVERSE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) provides a powerful framework for decision-
making, but its application in practice often requires a carefully designed reward
function. Inverse Reinforcement Learning (IRL) has shed light on automatic re-
ward acquisition, but it is still difficult to apply IRL to solve real-world tasks. In
this work, we propose Auto-Encoding Inverse Reinforcement Learning (AEIRL),
a robust and scalable IRL framework, which belongs to the adversarial imitation
learning class. To recover reward functions from expert demonstrations, AEIRL
utilizes the reconstruction error of an auto-encoder as the learning signal, which
provides more information for optimizing policies, compared to the binary logis-
tic loss. Subsequently, we use the derived objective functions to train the reward
function and the RL agent. Experiments show that AEIRL performs superior in
comparison with state-of-the-art methods in the MuJoCo environments. More im-
portantly, in more realistic settings, AEIRL shows much better robustness when
the expert demonstrations are noisy. Specifically, our method achieves 16.1% rel-
ative improvement compared to the best baseline FAIRL on clean expert data and
46.5% relative improvement compared to the best baseline PWIL on noisy expert
data both with the metric overall averaged scaled rewards.

1 INTRODUCTION

Reinforcement learning (RL) provides a powerful framework for automating decision making. How-
ever, RL still requires significantly engineered reward functions for good practical performance. To
make RL more applicable in the real-world, it is important to learn a reward function from expert
demonstrations. Imitation learning offers the instruments to learn policies directly from the data,
without an explicit reward function. Imitation learning enables the agents to learn to solve tasks
from expert demonstrations, such as helicopter control (Abbeel et al., 2006; 2007; Ng et al., 2004;
Coates et al., 2008; Abbeel et al., 2008a; 2010), robot navigation (Ratliff et al., 2006; Abbeel et al.,
2008b; Ziebart et al., 2008; 2010), and building controls (Barrett & Linder, 2015).

The goal of imitation learning is to extract the expert policies from the expert demonstrations with-
out the access to the reward signal from the environment. The algorithms in this field can be divided
into two broad categories: behavioral cloning (BC) and Inverse Reinforcement Learning (IRL). BC
formulates the learning task as a supervised learning problem, which learns a mapping from the
states to the actions, using the expert trajectories. However, BC methods suffer from the problem
of compounding errors, i.e., covariate shift, which only learn the actions of the expert but not rea-
son about what the expert attempts to achieve. In the contrast, IRL directly infers the underlying
reward function from the data, and then teaches the RL agent to learn a policy to achieve the highest
accumulated reward. Empirical results show that IRL methods are more efficient than BC methods
in multi-step decision making tasks. However, how to make IRL stable and efficient to use is still
subject to research.

Current IRL methods, such as adversarial imitation learning approaches, model the reward function
as a discriminator to learn the mapping from the state-action pair to a scalar value, i.e., the reward
(Ho & Ermon, 2016; Fu et al., 2017; Ghasemipour et al., 2020). However, this formulation may
be easily over-confident to focus on the minor differences between the state-action features of the
expert and generated samples. To the best of our knowledge, this is the first instance of formulating
the reward function as an auto-encoder, which has the ability to learn full scale differences between

1

Under review as a conference paper at ICLR 2022

expert and alternative policies. The derived formulation ensures the reward signal is informative,
which is efficient for optimization. Additionally, the encoding-decoding process empowers the de-
noising capability and makes the agent robust to the noisy expert, in more realistic settings. In the
experiments, we show that the proposed method AEIRL achieves the best overall performance on
both clean and noisy expert demonstrations.

Our contributions are three-fold:

• We propose the Auto-Encoding Inverse Reinforcement Learning (AEIRL) architecture,
which models the reward function as a surrogate function using the reconstruction error
of an auto-encoder. The reconstruction error provides more informative learning signals,
compared to the binary logistic loss.

• To show the contributing factors of our method, we conduct ablation studies based on dif-
ferent distribution divergences and alternative auto-encoders. Experiments show that they
achieve comparable results which indicates the encoding-decoding process is the major
contributing factor for our method.

• The experimental results on the MoJoCo tasks show that our method outperforms state-of-
the-art imitation learning methods on both clean and noisy expert demonstrations. Empir-
ical analysis show that our learned reward function can be more informative and robust.
Furthermore, the learning processes of our methods are also more stable in general.

2 RELATED WORK

2.1 INVERSE REINFORCEMENT LEARNING

Adversarial imitation learning such as GAIL, AIRL, DAC, f -GAIL, EAIRL, FAIRL (Ho & Ermon,
2016; Fu et al., 2017; Kostrikov et al., 2019; Zhang et al., 2020; Qureshi et al., 2019; Ghasemipour
et al., 2020) formulates the learned reward function as a discriminator that learns to differentiate
expert transitions from non-expert ones. Among these methods, GAIL (Ho & Ermon, 2016) con-
siders the Jensen-Shannon divergence, while AIRL (Fu et al., 2017) considers the Kullback-Leibler
(KL) divergence. DAC (Kostrikov et al., 2019) extends GAIL to the off-policy setting and signifi-
cantly improves the sample-efficiency of adversarial imitation learning. Furthermore, f -divergence
is utilized in f -GAIL (Zhang et al., 2020), which is considered more sample-efficient. Recently,
FAIRL utilizes the forward KL divergence (Ghasemipour et al., 2020) and achieves better perfor-
mance than AIRL (Fu et al., 2017) comprehensively, but it is still not robust enough. However, these
methods rely heavily on a carefully tuned discriminator, which might easily overfit to the minor
differences between the expert and the generated samples. In comparison, our auto-encoder based
reward function helps to learn the full scale differences between the expert and generated samples,
which provides more informative reward signals.

The robustness of adversarial imitation learning is also questionable with imperfection in observa-
tions (Stadie et al., 2017; Berseth & Pal, 2020), actions, transition models (Gangwani & Peng, 2020;
Christiano et al., 2016), expert demonstrations (Brown et al., 2019; Shiarlis et al., 2016; Jing et al.,
2020) and their combinations (Kim et al., 2020). Previous robust IRL methods require the demon-
strations to be annotated with confidence scores (Wu et al., 2019; Brown et al., 2019; Grollman
& Billard, 2012), when the expert data is noisy. However, these annotations are rather expensive.
Compared to this, our auto-encoder based reward function helps to denoise the expert data through
the encoding-decoding process. Our method AEIRL is relatively succinct and robust to noisy expert
demonstrations and does not require any annotated data.

Another category of IRL uses an offline similarity function to estimate the rewards (Boularias et al.,
2011; Klein et al., 2013; Piot et al., 2016). The idea of these methods is still inducing the expert
policy by minimizing the distance between the state action distributions of the expert and sampled
trajectories. To the best of our knowledge, the most powerful method in this category is Primal
Wasserstein Imitation Learning (PWIL) (Dadashi et al., 2021), which utilizes the upper bound of its
primal form as the optimization objective. The advantage of these methods is that they are relatively
more robust compared to adversarial imitation learning methods, when the expert data is noisy.
However, the performance of these methods heavily depends on the similarity measurement, and

2

Under review as a conference paper at ICLR 2022

therefore, it varies greatly on different tasks. Compared to PWIL, our method achieves superior
performance.

2.2 AUTO-ENCODING BASED GANS

Auto-encoders have been successfully applied to improve the training stability and modes captur-
ing in GANs. Auto-encoding based GANs can be classified into three categories: (1) utilizing an
auto-encoder as the discriminator such as energy-based GANs (Zhao et al., 2016) and boundary-
equilibrium GANs (Berthelot et al., 2017); (2) using a denoising auto-encoder to derive an auxiliary
loss for the generator (Warde-Farley & Bengio, 2017); (3) combining variational auto-encoder and
GANs to generate both vivid and diverse samples by balancing the objective of reconstructing the
training data and confusing the discriminator (Larsen et al., 2016). Our method AEIRL takes in-
spirations from EBGAN (Zhao et al., 2016) and utilizes an auto-encoder as the reward function
and derives the efficient reconstruction error based surrogate reward signal and its corresponding
objective functions.

3 BACKGROUND

A Markov decision process (MDP) is a tuple (S,A, T, γ, P, r). In this tuple, S is a state space; A is
an action space; T is a probability matrix for state transitions; γ ∈ (0, 1] is a discount factor; P is a
initial-state transition distribution; and r : S × A → R is a reward function. Additionally, we also
define a stochastic policy π, which is a mapping from states to probability distributions over actions.

IRL infers the reward function using the expert demonstrations, which are assumed to be the ob-
servations of optimal behaviors (Ng & Russell, 2000). In general, IRL is formulated as a bi-level
optimization process meaning that iteratively training the reward function and optimizing the policy.
Assume that we are given an expert policy πE , IRL (Ziebart et al., 2008; 2010) fits a reward function
from a family of functionsR with the optimization problem:

min
r∈R

(
max
π∈Π

Eπ[r(s, a)]

)
−EπE [r(s, a)] (1)

Moreover, the expert policy πE will only be provided by a set of expert demonstrations, so the
expected reward of πE is estimated by these trajectories.

IRL looks for a reward function r(s, a) that assigns high values to the expert policy and low values
to other policies. Therefore, it allows the expert policy to be found with a certain reinforcement
learning procedure:

RL(r) = argmax
π∈Π

Eπ[r(s, a)] (2)

The RL process will induce the expert policy via maximizing the expected cumulative rewards.
Meanwhile the entropy term can be optionally added to the reinforcement learning objective to
encourage the exploration in policy searching. Typically, IRL models the reward function as a
discriminator which can be easily overfit to the expert data. Also its training stability is questionable
once confronted with even a little noise in the expert data. Therefore, we propose auto-encoding IRL
to utilize an auto-encoder based reward function which achieve strong performance both on clean
and noisy expert demonstrations.

4 AUTO-ENCODING INVERSE REINFORCEMENT LEARNING

4.1 OVERVIEW

The reward function in GAIL is a discriminator, which attempts to assign high values to the regions
near the expert demonstrations and assign low values to the other regions. However, this form of
reward function could be easily overfitting to the expert data. Consider the CartPole balancing task,
the state of the environment is a feature consisting of position, angle, angle’s rate, and cart velocity,
while the action is moving left or right. Here, we assume that all the expert states’ velocity is 2 for
example. When the generated states’ velocity is 1.9 and other dimensions of state action pairs are

3

Under review as a conference paper at ICLR 2022

MSEAXWR-EQcRdeU

E[SeUW SaPSleV

GeQeUaWed SaPSleV

Figure 1: Adversarial training framework of auto-encoding inverse reinforcement learning. The
auto-encoder computes the reconstruction error for these two mini-batches of data examples and
optimize the objectives. The surrogate reward function provides the signal to the agent.

the same as the expert’s, the discriminator of GAIL would still give a low reward on these generated
state action pairs. However it may actually perform very well on the goal of mimicking the expert’s
behaviors. In other words, the reward function in GAIL on this example could easily overfit to the
minor differences between the expert and the sampled data, while missing the underlying goal of the
expert.

In our paper, we propose an auto-encoder based reward function for inverse reinforcement learning.
It utilizes the reconstruction error of the state action pairs to yield an informative reward signal. The
reconstruction error based reward signal significantly retains the information of state action pairs,
rather than focusing on the minor differences. Such a reward signal wouldn’t lead to overconfidence
in distinguishing the expert and the generated samples. Recall the CartPole balancing example, the
mean square error between states’ velocity 1.9 and 2 is very small. And it could still feed a good
reward to the agent under this situation. Thus, the reconstruction error based reward signal focuses
on the full scale differences between the expert and generated state action pairs rather than the minor
parts.

This yields a much more informative reward signal. Figure 5 (See in Section 5.4), shows a more
informative reward signal recovered with our method. Furthermore, the training process of the
policy becomes smoother in general, which is shown in Figure 11 (See in Appendix A.6).

NRiV\ DaWa

CleaQ DaWa

Figure 2: The clean data points lie near
a low dimensional manifold illustrated with
the bold black line. The gray circle shows
the noisy sampling process. And the auto-
encoder learns to denoise the noisy data to
clean points.

The expert demonstrations usually contains noise
bacause we sample these human trajectories with
sensors and other devices in the real world. There-
fore, adversarial imitation learning, such as GAIL,
might be easily affected to learn the noisy expert be-
haviors, which are not the real intentions of the ex-
pert. The reward function under this situation could
overfit to the noisy features. Recall the CartPole bal-
ancing example, we assume that the expert states’
velocity is 2 but it tends to be 2 + δ due to the noisy
sampling process. When the learned policy is good
enough as the sampled states’ velocity, the discrimi-
nator in GAIL still takes it as a bad policy, and there-
fore, it loses its efficacy, when learning from noisy
demonstrations.

Figure 2 depicts the denoising process of an auto-
encoder. When the auto-encoder is trained to mini-
mize the averaged squared errors, the vector points
approximately towards the nearest points on the
manifold, since the auto-encoder estimates the cen-
ter of mass of the clean points (Goodfellow et al., 2016). Therefore, the reconstruction error of
the auto-encoder can eliminate some effects when learning from noisy expert demonstrations and

4

Under review as a conference paper at ICLR 2022

make the reward signal more robust. Recall the CartPole example, the reconstruction error of the
auto-encoder is δ2 which doesn’t play an important role in the rewards for the agent.

4.2 METHOD

Our approach is to minimize the distance between the state action distribution of the policy πθ and
the expert demonstrations DE . The distance we used in our method is the Wasserstein distance
(Arjovsky et al., 2017):

d(πE , πθ) = sup
rw

EπE [rw(s, a)]−Eπθ [rw(s, a)], (3)

where the reward function network’s parameters are denoted as w and the policy network’s parame-
ters are represented as θ. We choose the metric functions in Wasserstein distance as a class of reward
functions from neural network functions for computational convenience. Minimizing this distance
is actually inducing the expert policy from expert demonstrations. Therefore, the optimization of
the policy πθ and recovering period of the reward function rw(s, a) forms a bi-level optimization
problem, which can be formally defined as:

min
πθ

max
rw
E(s,a)∼DE [rw(s, a)]−E(s,a)∼πθ [rw(s, a)]. (4)

This leads to an adversarial formulation for inverse RL. The outer level minimization with respect
to the policy leads to a learned policy which is close to the expert. The inner level maximization
recovers a reward function which attributes higher values to regions close to the expert data, and
penalizes all other regions.

In traditional adversarial imitation learning methods, such as WGAIL (Arjovsky et al., 2017; Ho &
Ermon, 2016) (Details See in Appendix A.2.3), the reward function is defined as

rw(s, a) = Dw(s, a), (5)
where Dw(s, a) is the output of the discriminator.

In our method, we use an auto-encoder based surrogate reward function, which is defined as:
rw(s, a) = 1/(1 + AEw(s, a)), (6)

where AE is the reconstruction error of an auto-encoder:
AE(x) = ‖Dec ◦ Enc(x)− x‖22 (7)

Here, x represents the state-action pairs. It is a mean square error between the sampled state action
pairs and the reconstructed samples. This form of the reward signal uses the reconstruction error
of an auto-encoder to score the state action pairs in trajectories. It is a monotonically decreasing
function over the reconstruction error of the auto-encoder. Low reconstruction errors ensure high
reward values for state action pairs and vice versa. Section 4.1 tells that this form of reward signal
focuses more on the full scale differences between the expert and generated samples and can help to
denoise the expert demonstrations.

Training the auto-encoder is an adversarial process considering the objective 4, which is minimizing
the reconstruction error for the expert samples and meanwhile maximizing this error for generated
samples. So the auto-encoder based reward function training objective is to minimize:

L = E(s,a)∼πθ [rw(s, a)]−E(s,a)∼DE [rw(s, a)]

= E(s,a)∼πθ [1/(1 + AEw(s, a))]−E(s,a)∼DE [1/(1 + AEw(s, a))].
(8)

The auto-encoder learns to maximize the full scale differences between the expert and the generated
samples with the adversarial objective. It leads to a better feedback signal to the agent. Further-
more, the auto-encoder also retains more information and helps to denoise the expert data via the
encoding-decoding process. This can further help us to match the distribution between the expert
and generated behaviors in a latent space.

The variational auto-encoder (Kingma & Welling, 2014) is also an alternative form of reward func-
tion. When we use an variational auto-encoder based reward function, the objective function for
training the variational auto-encoder in our method is:

L =E(s,a)∼DE [rw(s, a) +DKL(p(z|(s, a)), pmodel(z))]

−E(s,a)∼πθ [rw(s, a) +DKL(p(z|(s, a)), pmodel(z))],
(9)

5

Under review as a conference paper at ICLR 2022

where pmodel(z)) is a fixed Gaussian distribution. When minimizing this objective, the latent distri-
bution for the expert samples is widely distributed to induce more diverse expert policies.

Figure 1 depicts the architecture for AEIRL. The auto-encoder based reward function takes either
expert or the generated state action pairs, and estimates the reconstruction error based rewards ac-
cordingly. The auto-encoder and the policy is iteratively optimized under this adversarial training
paradigm. Algorithm 1 in Appendix A.1 depicts the pseudo code for training AEIRL.

Not limited to the utilized Wasserstein distance, other distribution divergences are also applicable to
form the reward functions without loss of generality. Appendix A.5 shows other two forms of objec-
tives and reward functions following Jensen-Shannon divergence. Experiments show that different
forms of objectives achieve comparable results on almost all locomotion tasks. It indicates that an
auto-encoder based reward function is the major contributing factor to improve the performance on
mimicking the expert rather than the different distribution divergences and the corresponding forms
of surrogate reward function.

5 EXPERIMENTS

We conduct the experiments on six locomotion tasks with varying dynamics and difficulty:
Swimmer-v2 (Schulman et al., 2015), Hopper-v2 (Levine & Koltun, 2013), Walker2d-v2 (Schulman
et al., 2015), HalfCheetah-v2 (Heess et al., 2015), Ant-v2 (Schulman et al., 2016), and Humanoid-v2
(Tassa et al., 2012). The goal for all these tasks is to move forward as quickly as possible.

The baselines we choose for comparison includes: behavior cloning (BC) (Dhariwal et al.,
2017), GAIL (Ho & Ermon, 2016), WGAIL (Arjovsky et al., 2017; Ho & Ermon, 2016), FAIRL
(Ghasemipour et al., 2020), and PWIL (Dadashi et al., 2021). For a fair comparison, we use TRPO
(Schulman et al., 2015) as the policy search method for all the algorithms, which is implemented by
OpenAI Baselines (Dhariwal et al., 2017). Experimental details, including the implementation and
more results, are shown in Appendix A.2 to A.7.

5.1 LEARNING FROM EXPERT DEMONSTRATIONS

Task Walker Hopper Swimmer HalfCheetah Ant Humanoid
Random −0.6± 0.3 25.5± 4.2 −5.3± 13.9 −694± 108 −401.4± 233.4 110± 4.1
Expert 4904.2 2719.8 142.2 1969.2 2646.1 5187.9

BC 459.7± 374.8 396.5± 435.7 78.3± 39.6 945.2± 160.7 807.8± 1843.9 237.8± 621.4
GAIL 3023.1± 254.4 2487.3± 80.3 133.2± 10.7 1610.2± 25.3 2262.6± 280.7 2078.9± 433.8

WGAIL 3308.5± 361.4 2570.1± 122.1 133.4± 5.7 1658.4± 42.7 2356.5± 299.2 1669.6± 296.3
FAIRL 3214.0± 290.6 2650.4± 101.8 136.7± 13.7 1563.1± 39.8 2563.0± 284.6 1513.2± 462.7
PWIL 3511.4± 130.3 2809.9± 47.2 47.9± 4.8 1372.5± 71.3 1067.9± 462.3 3157.2± 507.8

Ours 3897.8± 177.8 2706± 219.7 141.5± 3.7141.5± 3.7141.5± 3.7 1674.1± 33.61674.1± 33.61674.1± 33.6 2715.7± 93.12715.7± 93.12715.7± 93.1 3892.3± 522.93892.3± 522.93892.3± 522.9
Ours-VAE 4013.2± 248.74013.2± 248.74013.2± 248.7 2850.5± 150.72850.5± 150.72850.5± 150.7 135.9± 5.5 1643.9± 10.8 2332.5± 938.3 2486.7± 1418.9

Table 1: Learned policy performance for different imitation learning algorithms on non-noisy expert
data, evaluated by using the mode of sampling from the policy distributions. The best results are
marked as red.

To evaluate the performance of our proposed methods and other baselines, we run the experiments
on the clean expert demonstrations. The metric we used is the ground truth rewards for different
learned policies. Higher rewards indicate better mimicking expert behaviors.

Figure 3 depicts the training curves of ground truth rewards for different algorithms. The training
curve shows the imitation performance learning from non-noisy expert data. Table 1 shows the final
learned policy performance on MuJoCo tasks with ground truth episode return.

GAIL, WGAIL and FAIRL have comparable results, while WGAIL and FAIRL are little better than
GAIL comprehensively on these tasks but still not robust enough. PWIL achieves higher perfor-
mance compared with GAIL, WGAIL and FAIRL on Walker2d, Hopper and Humanoid tasks but
performs worse than BC on Swimmer. Thus, the performance of PWIL varies greatly on different
tasks.

6

Under review as a conference paper at ICLR 2022

Figure 3: Mean and standard deviation return of the evaluation policy over 10 rollouts and 5 seeds,
learning from non-noisy expert demonstrations, reported every 100k timesteps. The return is in
term of the environment’s ground truth reward.

Task Walker2d Hopper Swimmer HalfCheetah Ant Humanoid

BC 728.2± 835.3 195.8± 15.7 35.6± 2.3 898.1± 827.9 623.5± 1364.1 186.7± 5243.6

GAIL 1254.1± 231.8 1478.0± 405.9 106.4± 19.7106.4± 19.7106.4± 19.7 862.3± 94.2 1538.3± 842.9 1085.0± 622.8

WGAIL 940.9± 383.8 2570.1± 122.1 95.9± 15.4 696.4± 211.7 1457.7± 359.8 1479.1± 539.8

FAIRL 1302.3± 554.1 1732.3± 328.2 106.2± 12.3 940.1± 98.1 −767.3± 518.2 1668.7± 511.2

PWIL 3052.4± 346.6 2588.9± 159.72588.9± 159.72588.9± 159.7 57.9± 8.1 1056.3± 80.1 −818.2± 832.9 3218.9± 281.4

Ours 3554.6± 275.6 1891.8± 197.0 105.0± 2.7 1501.6± 92.41501.6± 92.41501.6± 92.4 2868.1± 95.32868.1± 95.32868.1± 95.3 3690.2± 374.83690.2± 374.83690.2± 374.8

Ours-VAE 4078.8± 295.14078.8± 295.14078.8± 295.1 2209.7± 108.0 88.4± 9.4 1334.7± 148.9 2400.5± 423.1 2159.4± 1001.0

Table 2: Learned policy performance for different imitation learning algorithms on noisy expert
data, evaluated by using the mode of sampling from the policy distributions. The best results are
marked as red.

The overall averaged scaled rewards for our method is about 0.907 where the best baseline is 0.78
for FAIRL. It is a more than 16.1% relative improvement. Our method outperforms state-of-the-art
baselines on all locomotion tasks except for Hopper where our method doesn’t outperform PWIL.
Moreover, the variational auto-encoder variant of our method gets the best scores on Walker2d
and Hopper. In summary, our methods, including vanilla auto-encoder based and variational auto-
encoder based variants, get better performance than other baselines comprehensively.

5.2 LEARNING FROM NOISY DEMONSTRATIONS

To show the robustness of our proposed AEIRL, we run our method and baselines on noisy expert
demonstrations. The noise added to the expert data is a Gaussian noise (0, 0.3) on every dimension
of state action pairs on all tasks except for Ant and Humanoid. Since the dimension of state action
pairs in Ant and Humanoid is much higher than other tasks, we choose (0, 0.03) and (0, 0.01) Gaus-
sian noises added to the dataset respectively in order to lower the effects of the noise component.
Figure 7 (See in Appendix A.3) depicts training curves for the ground truth rewards for different

7

Under review as a conference paper at ICLR 2022

methods on noisy expert data while Table 2 shows the final learned policy performance on MuJoCo
tasks with ground truth episode return.

These results show that our method outperforms other state-of-the-art algorithms on all tasks except
for Hopper and Swimmer, on which PWIL and GAIL wins respectively. Table 1 and 2 show that the
noise component affects the performance of mimicking the expert behaviors. But our method could
help to denoise the expert demonstrations and provide more robust reward signals for inducing the
expert policies. The overall scaled rewards for our AEIRL is 0.795 where the best baseline is 0.542
for PWIL. Additionally, PWIL also has some capabilities to denoise the expert on part of the tasks.
And other adversarial imitation learning methods, includes GAIL, WGAIL and FAIRL, are very
sensitive to the noisy expert.

5.3 ANALYSIS ON ROBUSTNESS OF OUR METHOD

Figure 4: t-SNE visualization of latent representations of the reward function on Walker2d for differ-
ent methods with hyper-parameter preplexity = 30.0. Top row: on non-noisy expert data, bottom
row: on noisy expert data (Gaussian noise (0, 0.5)).

To compare the robustness of different reward signals of different methods, we use t-SNE visual-
ization technique to visualize the latent space of the reward function network. For the discriminator
based methods, we visualize the output of first hidden (middle) layer for instance. So the latent
representations for both discriminator based and our auto-encoder based methods will show its ro-
bustness, especially to the corrupted expert data.

Since PWIL (Dadashi et al., 2021) considers an offline reward function without neural networks, we
only compare our methods with other three IRL baselines. Figure 4 depicts that two sets of samples
are more indistinguishable than other baselines both on clean and noisy expert data. It shows better
robustness of our auto-encoder based reward function. More details for using t-SNE and results with
varying preplexity are shown in Appendix A.4

5.4 ABLATION STUDIES

Different Objectives To analyze the major contributing factors of our method, we conduct the ab-
lation studies based on different distribution divergences and different formulation of reward func-
tions. Comparable performances would indicate that the major contributing factor is that we utilize
the reconstruction error of an auto-encoder rather than the formulation of reward function and its
corresponding objective. We formulate some other forms of surrogate reward functions based on
Jensen-Shannon divergence (Goodfellow et al., 2014) to justify this hypothesis. Figure 9 (See in
Appendix A.5) shows that three different formulations of surrogate reward signal achieve compara-
ble results on almost all tasks which are all based on the vanilla auto-encoder. This shows the major
contributing factor in our method is the auto-encoder based reward function which provides more
informative learning signals, compared to the discriminator based reward function.

8

Under review as a conference paper at ICLR 2022

Alternative Auto-Encoders Our method is not limited to vanilla auto-encoders and we also take the
variational auto-encoder as an alternative. We run variational auto-encoder based variant on MuJoCo
tasks under the same setting with vanilla auto-encoder. Figure 10 (See in Appendix A.5) shows the
training curves for variational auto-encoder based and vanilla auto-encoder based variants. Overall,
the scaled rewards of variational auto-encoder based variant is 0.845 and 0.727 on clean and noisy
expert respectively, which is comparable to the vanilla auto-encoder based method.

Figure 5: Scaled normalized re-
wards for different levels in the tra-
jectory space on Walker2d.

Auto-Encoder based Reward Signal is Denser A denser re-
ward signal is beneficial for policy searching (Ng et al., 1999;
Hu et al., 2020). Section 4.1 tells that our auto-encoder based
reward function focuses on the full scale differences between
the expert and generated samples. Thus, it provides more in-
formation to the agent compared to the discriminator based
reward function. To justify this hypothesis, we want to il-
lustrate the generated rewards for different trajectories in the
whole trajectory space. Meanwhile more distinct rewards for
different trajectories means the reward signal is denser and
more informative. So we use the final learned reward function
of our method and the baselines to score different trajectories
for analysis.

We collect 50 levels of trajectories with different perfor-
mances from random to the expert performance. This can be
realized by saving trajectories every 100 iterations via a PPO.
Since the trajectories with different performances have dif-
ferent lengths, we normalize the generated rewards with the
length of trajectories. We also scale the generated rewards
considering the expert samples are 1 and random policy sam-
ples are 0. So the scaled normalized rewards for different lev-
els of trajectories reflect the denseness of a reward signal. And higher degree of distinction indicates
it is a denser reward signal.

Figure 5 shows that the final learned scaled and normalized rewards for different levels of the tra-
jectories. The higher level in the abscissa means higher performance of its trajectories. Note that
learned rewards under our formulation are readily distinct at different levels when compared to
learned rewards under WGAIL. Our much steeper curves indicates that the auto-encoder derived
reward function provides a denser and more informative learning signal when compared to the dis-
criminator based reward functions, which are all based on Wasserstein distance (Arjovsky et al.,
2017).

Stability of Our Method The variance of gradients is computed via different mini-batches of train-
ing examples. Lower variance of gradients means smoother updating of the network (Faghri et al.,
2020). Now that our auto-encoder based reward function is more informative and denser than the
discriminator based ones, how about the training stability of our method? The relative variance of
policy gradients to the weights of policy network shows the training stability for different methods.
Figure 11 (See in Appendix A.6) shows that our method gets lower relative variance of gradients
which means that the policy network training process can be much more stable.

6 CONCLUSIONS

This paper presents a succinct and robust adversarial imitation learning method based on Auto-
Encoding (AEIRL). We utilize the reconstruction error of an auto-encoder as the surrogate reward
function for reinforcement learning. The advantages of our method can be summarized into two
aspects: (1) the auto-encoder based reward function focuses on the full scale differences between
the expert and generated samples, which won’t easily overfit to the expert data; (2) the auto-encoder
denoises the expert data through the reconstruction process. Thus, the learned reward signal in our
method is more robust and informative compared with the existing methods. Experimental results
show that our methods achieve strong performances on locomotion tasks on both clean and noisy
expert demonstrations. In the future, we want to further investigate our method in more realistic
scenarios, such as autonomous driving.

9

Under review as a conference paper at ICLR 2022

7 REPRODUCIBILITY STATEMENT

Data and source code are attached in supplementary materials.

Experimental implementation details, including our methods and baselines, see in Appendix A.2.

REFERENCES

Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. A learning vehicular dynamics, with application
to modeling helicopters. In Advances in Neural Information Processing Systems (NeurIPS), 2006.
1

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An application of reinforcement
learning to aerobatic helicopter flight. In Advances in Neural Information Processing Systems
(NeurIPS), 2007. 1

Pieter Abbeel, Adam Coates, Timothy Hunter, and Andrew Y. Ng. Autonomous autorotation of an
rc helicopter. In International Symposium on Robotics, 2008a. 1

Pieter Abbeel, Dmitri Dolov, Andrew Y. Ng, and Sebastian Thrun. Apprenticeship learning for
motion planning with application to parking lot navigation. In IEEE/RSj International Conference
on Intelligent Robots and Systems, 2008b. 1

Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics through ap-
prenticeship learning. The International Journal of Robotics Research, 2010. 1

Martin Arjovsky, Soumith Chintala, and Leon Bottou. Wasserstein gan. In International Conference
on Machine Learning (ICML), 2017. 5, 6, 9, 14

Enda Barrett and Stephen Linder. Autonomous hva control, a reinforcement learning approach.
Machine Learning and Knowledge Discovery in Databases, 2015. 1

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018. 20

Glen Berseth and Christopher Pal. Visual imitation with reinforcement learning using recurrent
siamese networks. 2020. URL https://openreview.net/forum?id=BJgdOh4Ywr. 2

David Berthelot, Thomas Schumm, and Luke Metz. Began: Boundary equilibrium generative ad-
versarial networks. In Advances in Neural Information Processing Systems (NeurIPS), 2017. 3

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pp. 182–189. JMLR Workshop and Conference Proceedings, 2011. 2

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
Conference on Machine Learning (ICML), pp. 783–792. PMLR, 2019. 2

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter
Abbeel, and Wojciech Zaremba. Transfer from simulation to real world through learning deep
inverse dynamics model. 2016. 2

Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control from multiple demonstrations.
In International Conference on Machine Learning (ICML), 2008. 1

Robert Dadashi, Leonard Hussenot, Matthieu Geist, and Olivier Pietquin. Primal wasserstein imi-
tation learning. In International Conference on Learning Representations (ICLR), 2021. 2, 6, 8,
14, 16

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines, 2017. 6, 14

10

https://openreview.net/forum?id=BJgdOh4Ywr

Under review as a conference paper at ICLR 2022

Fartash Faghri, David Duvenaud, David J. Fleet, and Jimmy Ba. A study of gradient variance in
deep learning. 2020. 9, 19

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. International Conference on Learning Representations (ICLR), 2017. 1,
2

Tanmay Gangwani and Jian Peng. State-only imitation with transition dynamics mismatch.
In International Conference on Learning Representations (ICLR), 2020. URL https://
openreview.net/forum?id=HJgLLyrYwB. 2

Seyed Ghasemipour, Kamyar Seyed, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning (CoRL), pp. 1259–
1277. PMLR, 2020. 1, 2, 6, 14

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. 4, 18

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2014. 8, 14, 17

Daniel H Grollman and Aude G Billard. Robot learning from failed demonstrations. International
Journal of Social Robotics, 4(4):331–342, 2012. 2

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 2944–2952, 2015. 6

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2016. 1, 2, 5, 6, 14

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu,
and Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping. In
Advances in Neural Information Processing Systems (NeurIPS), 2020. 9

Mingxuan Jing, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang, Bin Fang, and Huaping
Liu. Reinforcement learning from imperfect demonstrations under soft expert guidance. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 5109–5116, 2020.
2

Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, and Stefano Ermon. Domain adaptive imita-
tion learning. In International Conference on Machine Learning (ICML), pp. 5286–5295. PMLR,
2020. 2

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Advances in Neural
Information Processing Systems (NeurIPS), 2014. 5, 18

Edouard Klein, Bilal Piot, Matthieu Geist, and Olivier Pietquin. A cascaded supervised learning
approach to inverse reinforcement learning. In Joint European conference on machine learning
and knowledge discovery in databases, pp. 1–16. Springer, 2013. 2

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In International Conference on Learning Representations (ICLR), 2019. 2

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. In International Conference on Machine
Learning (ICML), 2016. 3

Sergey Levine and Vladlen Koltun. Guided policy search. In International Conference on Machine
Learning (ICML), pp. 1–9, 2013. 6

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2000. 3

11

https://openreview.net/forum?id=HJgLLyrYwB
https://openreview.net/forum?id=HJgLLyrYwB

Under review as a conference paper at ICLR 2022

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning
(ICML), 1999. 9

Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger,
and Eric Liang. Inverted autonomous helicopter flight via reinforcement learning. In International
Symposium on Experimental Robotics, 2004. 1

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Bridging the gap between imitation learning and
inverse reinforcement learning. IEEE transactions on neural networks and learning systems, 28
(8):1814–1826, 2016. 2

Ahmed H. Qureshi, Byron Boots, and Michael C. Yip. Adversarial imitation via variational inverse
reinforcement learning. In International Conference on Learning Representations (ICLR), 2019.
2

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum margin planning. In
International Conference on Machine Learning (ICML), 2006. 1

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), pp. 1889–1897.
PMLR, 2015. 6

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations (ICLR), 2016. 6

Kyriacos Shiarlis, Joao Messias, and Shimon Whiteson. Inverse reinforcement learning from fail-
ure. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems (AAMAS), pp. 1060–1068, 2016. 2

Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. Third-person imitation learning. In Interna-
tional Conference on Learning Representations (ICLR), 2017. 2

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4906–4913. IEEE, 2012. 6

David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with denoising
feature matching. In International Conference on Learning Representations (ICLR), 2017. 3

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Im-
itation learning from imperfect demonstration. In Proceedings of the 36th International Confer-
ence on Machine Learning (ICML), pp. 6818–6827, 2019. 2

Xin Zhang, Yanhua Li, Ziming Zhang, and Zhi-Li Zhang. f-gail: Learning f-divergence for
generative adversarial imitation learning. Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020. 2

Junbo Zhao, Machael Mathieu, and Yann LeCun. Energy-based generative adversarial network.
International Conference on Learning Representations (ICLR), 2016. 3

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence (AAAI), 2008. 1, 3

Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. Modeling interaction via the principle of
maximum causal entropy. In International Conference on Machine Learning (ICML), 2010. 1, 3

12

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 PSEUDO CODE

Algorithm 1 Auto-Encoding Inverse Reinforcement Learning (AEIRL)
Require: Initial parameters of policy, auto-encoder θ0, w0; Expert trajectories DE .
Ensure:

1: for i = 0 to N do
2: Sample state-action pairs (si, ai) ∼ πθi and (sE , aE) ∼ DE with same batch size.
3: Update wi to wi+1 by decreasing with the gradient:

E(si,ai)[∇wi1/(1 + AEwi(si, ai))]−E(sE ,aE)[∇wi1/(1 + AEwi(s, a))]

4: Take a policy step from θi to θi+1, using the TRPO update rule with the reward function
1/(1 + AEwi(s, a)), and the objective function for TRPO is:

E(s,a)[−1/(1 + AEwi(s, a))].

5: end for

Algorithm 1 depicts the pseudo code for training AEIRL. The first step is to sample the state action
pairs from expert demonstrations DE and the trajectories sampled by current policy with the same
batch size. Then we update the auto-encoder by decreasing with the gradient with loss function
Eq. 8. Finally, we update the policy assuming that the reward function is Eq. 6 which leads to an
adversarial training paradigm. We runs these steps with N iterations until the policy converges.

A.2 IMPLEMENTATION

A.2.1 TASKS

(a) (b) (c) (d) (e) (f)

Figure 6: Illustrations for locomotion tasks we used in our experiments: (a) Swimmer; (b) Hopper;
(c) Walker; (d) HalfCheetah; (e) Ant; (f) Humanoid.

The goal for all these tasks is to move forward as quickly as possible. These tasks are more challeng-
ing than the basic tasks due to high degrees of freedom. In addition, a great amount of exploration
is needed to learn to move forward without getting stuck at local optima. Since we penalize for ex-
cessive controls as well as falling over, during the initial stage of learning, when the robot is not yet
able to move forward for a sufficient distance without falling, apparent local optima exist including
staying at the origin or diving forward slowly. Figure 6 depicts locomotion tasks’ environments.

A.2.2 BASIC SETTINGS

The expert trajectories are sampled with PPO on Walker2d, Hopper, and Swimmer, HalfCheetah
and Ant with 25 trajectories. And we sample 320 trajectories on Humanoid with SAC to get higher
expert performance since PPO is not good enough on Humanoid.

For each task, we normalize the state features and use the normalized features as the input for the
auto-encoder.But we use the raw data input to compute the mean square error.

On Walker2d, Hopper, and Swimmer, we train these algorithms directly, while on HalfCheetah, Ant
and Humanoid we use BC to pre-train the policy with 10k iterations. We test all the algorithms on

13

Under review as a conference paper at ICLR 2022

these six locomotion tasks with environment seed 0, 1, 2, 3, 4, and using 10 rollouts to estimates the
ground truth reward value to plot the training curves.

The maximum length for sampled trajectories is 1024. The discounted factor is 0.995. Each iteration
we update 3 times of policies and 1 time of reward function (discriminator or auto-encoder). While
updating TRPO, we update the critic 5 times with learning rate 2e-4 every iteration.

A.2.3 BASELINES

We use open source code, OpenAI baselines (Dhariwal et al., 2017), to get the performance of BC
and the training iterations is 100k for all tasks.

GAIL (Ho & Ermon, 2016) borrows the GAN (Goodfellow et al., 2014) architecture to realize the
inverse reinforcement learning process and it is applicable in high dimensional dynamic environ-
ments. We implement GAIL using open source code, OpenAI baselines (Dhariwal et al., 2017),
with best tunned hyperparameters. We choose TRPO as the reinforcement learning algorithm.

WGAIL (Arjovsky et al., 2017; Ho & Ermon, 2016) utilizes the Wasserstein distance to train the
policy and the reward function which can be more stable. WGAIL is implemented based on GAIL
with corresponding objective function and reward signals as in (Arjovsky et al., 2017). We also
choose TRPO as the reinforcement learning algorithm.

FAIRL (Ghasemipour et al., 2020) utilizes the forward KL divergence as the objective which shows
competitive performances on MuJoCo tasks. FAIRL is implemented based on GAIL with corre-
sponding objective function and reward signals as in (Ghasemipour et al., 2020). We also choose
TRPO as the reinforcement learning algorithm.

PWIL (Dadashi et al., 2021) is an adversarial imitation learning method based on an offline similarity
reward function. It is quite robust and easy to fine-tune the hyper-parameters of its reward function
(only two hyper-parameters). PWIL is implemented based on open source code (Dadashi et al.,
2021) with TRPO as the reinforcement learning step for fair comparison (original PWIL code uses
D4PG as the RL algorithm).

A.2.4 ARCHITECTURE OF OUR METHODS

Policy Net: the same with baselines, two hidden layers with 64 units, with tanh nonlinearities in
between. The learning rate to update the policy is 0.01.

Auto-Encoder Net: both vanilla auto-encoders and variational auto-encoder, the same number of
layers with the architecture of discriminator in GAIL and WGAIL, 4 layers. The two hideen layers
are with 100 units, with tanh nonlinearities in between, the final output layer is an identity layer. And
we normalize the state feature after the input layer and we use the raw state action input features to
compute the mean square error. Learning rate for the auto-encoder is 3e-4.

A.3 OMITTED EXPERIMENT RESULTS ON NOISY EXPERT DEMONSTRATIONS

To show the robustness of our AEIRL method, we conduct the experiments on noisy expert demon-
strations. The noise component is a Gaussian distribution noise which is (0, 0.3) for Walker2d,
Hopper, Swimmer, HalfCheetah. Since the effects of the noise component performs more heav-
ily on Ant and Humanoid, we choose (0, 0.03) and (0, 0.01) Gaussian distribution noise for Ant
and Humanoid respectively. So under this setting, higher final ground truth rewards indicate better
robustness of its corresponding algorithm.

Figure 7 shows the training curves for different imitation learning algorithms on the noisy expert
demonstrations. On Walker2d, HalfCheetah, Ant, and Humanoid, our AEIRL clearly outperforms
other baseline algorithms. On the other hand, on Swimmer GAIL achieves the best performance
while on Hopper, PWIL achieves the best performance.

We scale the ground truth rewards of final policy performance for different methods which considers
the expert trajectory’s rewards to be 1 and random policy trajectory’s rewards to be 0. And the
averaged scaled ground truth rewards is 0.795 while the best baseline is 0.542 for PWIL. So we
achieve 46.5% relative improvement to PWIL. In summary, our method is more robust than other
baselines.

14

Under review as a conference paper at ICLR 2022

Figure 7: Mean and standard deviation return of the evaluation policy over 10 rollouts and 5 seeds
learning from noisy expert demonstrations, reported every 100k timesteps. The return is in term of
the environment’s ground truth reward.

A.4 DETAILS AND MORE RESULTS ON T-SNE VISUALIZATION

The auto-encoder based reward function learns the mapping from state action space to a scalar value,
i.e., the reward. When the system of our method converges, the generated state action samples
would be indistinguishable with the expert state action samples. For our auto-encoder based reward
function, the latent representations between final policy samples and expert samples would also be
indistinguishable.

To compare the robustness of different reward signals of different methods, we use t-SNE visual-
ization technique to visualize the latent space of the reward function network. For the discriminator
based methods, we visualize the output of first hidden (middle) layer for instance. And for our auto-
encoder based reward function, we also visualize the output of first hidden (middle) layer in the net.
So the latent representations for both discriminator based and our auto-encoder based methods will
show its robustness, especially to the corrupted expert data.

We plot the t-SNE embedding results with SciKit-Learn tools (i.e., sklearn.manifold.TSNE function)
with varying preplexity. The hyper-parameters for t-SNE are (other hyper-parameters are default
with scikit-learn):

n component = 2
early exaggerationfloat = 12.0
learning rate = 200.0
n iterint = 1000
n iter without progressint = 300
min grad normfloat = 1e-7
metric = ’euclidean’
init = ’pca’

15

Under review as a conference paper at ICLR 2022

Figure 8: t-SNE visualization of latent representations of the reward function on Walker2d for dif-
ferent methods. Top row: on non-noisy expert data (preplexity = 5.0); Second row: bottom row:
on non-noisy expert data (preplexity = 50.0); Third row: on noisy expert data (preplexity = 5.0);
Bottom row: on noisy expert data (preplexity = 50.0).

Since PWIL (Dadashi et al., 2021) considers an offline reward function without neural networks, we
only compare our methods with other three IRL baselines. Figure 8 depicts that two sets of samples
are more indistinguishable than other baselines both on clean and noisy expert data. The top row of
Figure 8 shows the embeddings with preplexity = 5.0 in the non-noisy setting. The second row
shows the embeddings with preplexity = 50.0 in the non-noisy setting. The third row of Figure
8 shows the embeddings with preplexity = 5.0 in the noisy setting. The bottom row shows the
embeddings with preplexity = 50.0 in the noisy setting. And the noise component is a Gaussian
distribution (0, 0.5). And in the main text, Figure 4 shows the default preplexity = 30.0 results.

With varying hyper-parameter preplexity, we can see the overlapped areas for policy and expert
samples are greater for our method. In detail, we can observe that the policy samples for GAIL and
WGAIL hardly appear in the outer ring with preplexity = 30.0. And FAIRL is a little better than
GAIL and WGAIL. Our AEIRL gets maximum overlap between two sets of samples compared to
these baselines. And in the noisy settings, the two sets of embeddings of GAIL and WGAIL are
actually isolated with different ”preplexity” while they are gobally clustered (greatly overlapped)
only with preplexity = 30.0 for FAIRL. And the embeddings are greatly overlapped with varing
preplexity for our method. So it reflects that our auto-encoder based reward function is more robust
to both the clean and noisy data.

A.5 ABLATION STUDIES

To illustrate the major contributing factors of our methods, we conduct the ablation studies with
different forms of distribution divergences and other alternative auto-encoders.

16

Under review as a conference paper at ICLR 2022

Figure 9: Mean and standard deviation return of the evaluation policy over 10 rollouts and 5 seeds
learning from non-noisy expert demonstrations, reported every 100k timesteps. The return is in term
of the environment’s ground truth reward.

Settings Walker Hopper Swimmer HalfCheetah Ant Humanoid

3897.8± 177.8 2706± 219.7 141.5± 3.7 1674.1± 33.61674.1± 33.61674.1± 33.6 2715.7± 93.1 3892.3± 522.93892.3± 522.93892.3± 522.9

Non-Noisy 4055.9± 304.04055.9± 304.04055.9± 304.0 2580.3± 186.4 146.1± 2.6146.1± 2.6146.1± 2.6 1660.6± 26.3 2930.4± 236.8 122± 17

3589.1± 427.4 2770.5± 66.82770.5± 66.82770.5± 66.8 143.1± 3 1670.6± 20.4 3062.9± 2823062.9± 2823062.9± 282 2167± 1212.1

3554.6± 275.6 1891.8± 197.01891.8± 197.01891.8± 197.0 105.0± 2.7 1501.6± 92.41501.6± 92.41501.6± 92.4 2868.1± 95.42868.1± 95.42868.1± 95.4 3690.2± 374.83690.2± 374.83690.2± 374.8

Noisy 3364.5± 377.3 1638.3± 308.5 107.8± 9.6107.8± 9.6107.8± 9.6 1444.3± 16.8 2440.3± 184.4 123.2± 23.1

3561.8± 345.73561.8± 345.73561.8± 345.7 1671.7± 126.7 105.7± 4.4 1429.2± 40.1 2674.9± 134.3 2521.1± 860.9

Table 3: Learned policy performance for different imitation learning algorithms on non-noisy and
noisy expert data, evaluated by using the mode of sampling from the policy distributions. The
best results are marked as red respectively. Top: Ours; Middle: Ours-exponential; Bottom: Ours-
sigmoid.

We conduct the experiments with another two forms of reward functions following the
Jensen–Shannon divergence (Goodfellow et al., 2014) for comparison. Typically, JS divergence
is defined as:

JS(Pr,Pg) = Ex∼Pr [log(
Pr(x)

1
2 (Pr(x) + Pg(x))

)] +Ex∼Pg [log(
Pg(x)

1
2 (Pr(x) + Pg(x))

)] (10)

where Pr and Pg represents the real data distribution and the generated data distribution. The adver-
sarial training procedure of auto-encoding inverse reinforcement learning will match the state action
distribution of expert and generated samples.

In the first form of alternative reward functions, we consider the exponential of negative reconstruc-
tion error as: Pr(x)/Pr(x) + Pg(x). The corresponding Jensen-Shannon divergence for updating

17

Under review as a conference paper at ICLR 2022

the auto-encoder based reward function is:

L =−E(s,a)∼DE [log(exp(−AEw(s, a)))]−E(s,a)∼π[log(1− exp(−AEw(s, a)))] (11)

=E(s,a)∼DE [AEw(s, a)]−E(s,a)∼π[log(1− exp(−AEw(s, a)))] (12)

Here, w represents the parameters of the auto-encoder network. So its formulation of surrogate
reward function is:

rw(s, a) = − log(1− exp(−AEw(s, a))). (13)

In this formulation, minimizing the Jensen-Shannon divergence between state action distribution of
the expert and generated trajectories assigns low mean square errors to the expert samples and high
mean square errors to other regions.

In the second formulation of reward functions, we consider the sigmoid output of the negative re-
construction error as: Pr(x)/Pr(x)+Pg(x). So it corresponding objective function for updating the
auto-encoder is:

L = −E(s,a)∼DE [log(sigmoid(−AEw(s, a))] +E(s,a)∼π[log(1− sigmoid(−AEw(s, a)))] (14)

where w also represents the parameters of the auto-encoder network. And its reward function for-
mulation is:

rw(s, a) = log(1− sigmoid(−AEw(s, a))) (15)

In experimental results, we note the first formulation as ”ours-exponential” and the second formu-
lation as ”ours-sigmoid”. Specifically, we don’t add the entropy term to the reinforcement objective
which already achieve competitive results on MuJoCo tasks.

These three forms of reward signals achieve comparable performance on all tasks except for Hu-
manoid shown in Figure 9. This indicates that an auto-encoder based reward function is the major
contributing factor to improve the performance on mimicking the expert rather than the different
distribution divergences or forms of reward signal. However, the performance on Humanoid is quite
different between these different forms of reward signals. It shows that the Wasserstein distance can
be more robust to this task.

Our method is not limited to vanilla auto-encoders but also other alternative auto-encoders. To show
the differences between our method and other alternative auto-encoders, we conduct the experi-
ments with variational auto-encoder based reward function. The variational auto-encoder (Kingma
& Welling, 2014) is a directed model that uses learned approximate inference. The key insight
behind training variational auto-encoder is to maximize the variational lower bound L(q) of the
log-likelihood for the training examples (Goodfellow et al., 2016):

L(q) =Ez∼q(z|x) log pmodel(z, x) +H(q(z|x)) (16)

=Ez∼q(z|x) log pmodel(x|z)−DKL(q(z|x)‖pmodel(z)) (17)

≤ log pmodel(x) (18)

where z is the latent representation for data points x. And pmodel is chosen to be a fixed Gaussian dis-
tribution N (0, I). In Eq. 16, we recognize that the second entropy term encourages the variational
posterior to place high probability mass on z values as many as possible, rather than collapse to a
single most likely value point. When we use an variational auto-encoder based reward function in
our method, the latent representations of the expert samples can be widely distributed on a Gaussian
distribution. Therefore, matching the expert and generated state action distributions in this latent
space leads to more diverse behaviors inducing. Thus, the reward signal would be more informative.

Training the variational auto-encoder is still a adversarial process. We notice that the first term in
Eq. 17 is the reconstruction log-likelihood found in traditional auto-encoders. So the objective for
training the variational auto-encoder is:

L =E(s,a)∼DE [rw(s, a) +DKL(p(z|(s, a)), pmodel(z))]

−E(s,a)∼πθ [rw(s, a) +DKL(p(z|(s, a)), pmodel(z))]
(19)

where the choice for rw(s, a) is the same with Eq. 6 in Section 4.2. Therefore, low mean square
errors of the variational auto-encoder ensure high reward values for state action pairs and vice versa.

18

Under review as a conference paper at ICLR 2022

Figure 10: Mean and standard deviation return of the evaluation policy over 10 rollouts and 5 seeds
learning from non-noisy expert demonstrations, reported every 100k timesteps. The return is in term
of the environment’s ground truth reward.

When minimizing this objective, the variational auto-encoder based reward function can still assign
high values near the expert demonstrations and low values to other regions which is the same as
in typical auto-encoders. On the other hand, optimizing this objective is restricting the latent dis-
tribution for the expert to a fixed Gaussian distribution pmodel(z)) and maximizing the KL distance
between the generated samples and the same fixed Gaussian distribution. With the bi-level opti-
mization process 4, we can induce the expert policy with more diverse behaviors from the expert
demonstrations which addresses the problem of mode collapse in GAIL. And a more informative
reward signal would be yield.

Figure 10 shows the training curves for vanilla auto-encoder based variant and varational auto-
encoder based variant on non-noisy expert demonstrations. The performances for these two variants
are comparable on almost all tasks while vanilla auto-encoder based method is better than varational
auto-encoder based variant on Humanoid. It indicates that the variational auto-encoder can be an
alternative reward function formulation.

A.6 ANALYSIS ON STABILITY OF OUR METHODS

The variance of gradients is computed via different mini-batches of training examples. Lower vari-
ance of gradients means smoother updating of the network (Faghri et al., 2020). Now that our
auto-encoder based reward function is more informative and denser than the discriminator based
ones, how about the training stability of our method? To show the training stability of different
methods, we record the norm of weights of the policy network and the variance of policy gradients.
The relative variance of policy gradients shows the training stability for different methods.

While we utilize Wasserstein distance in our method, we compare our vanilla auto-encoder based
variant and variational auto-encoder based variant with WGAIL. It could depict the training stability
with our newly proposed auto-encoder based reward formulation. Figure 11 shows the training
stability of our method compared to the baseline WGAIL. It depicts that our method can be more
stable and the policy network updating is smoother.

19

Under review as a conference paper at ICLR 2022

Figure 11: More stable training procedure: norm of weights for the policy network and the corre-
sponding variance of policy gradients for non-noisy and noisy expert data. Top: Walker2d; Middle:
Swimmer; Bottom: Hopper.

A.7 ADDITIONAL EXPERIMENTS ON BETTER SYNTHESIS EXPERTS

Task Walker Hopper HalfCheetah Ant

Expert 6121.7 3548.0 8879.1 4177.0

GAIL 2933.4± 392.6 2807.1± 196.1 3107.4± 1138.9 1866.9± 688.8

WGAIL 2692.5± 746.7 2850.3± 198.8 3502.2± 1411.0 1964.6± 575.1

FAIRL 2425.0± 216.2 2630.4± 263.8 1655.9± 591.6 2107.2± 324.7

PWIL 1414.8± 1033.8 2969.5± 86.72969.5± 86.72969.5± 86.7 5608.8± 411.0 1661.2± 397.8

Ours 4036.8± 159.84036.8± 159.84036.8± 159.8 2939.2± 183.4 5775.1± 644.85775.1± 644.85775.1± 644.8 3104.1± 95.43104.1± 95.43104.1± 95.4

Table 4: Learned policy performance for different imitation learning algorithms on non-noisy expert
data, evaluated by using the mode of sampling from the policy distributions. The best results are
marked as red.

To get more convincing results, we run the experiments on better synthesis experts. We collect the
expert demonstration with 16 trajectories each task via D4PG (Barth-Maron et al., 2018).

Figure 12 depicts the training curves of ground truth rewards for different algorithms. The training
curve shows the imitation performance learning from non-noisy expert data. Table 4 shows the final
learned policy performance on MuJoCo tasks with ground truth episode return.

The overall results are similar with what we have done in the main text. On Walker2d, HalfCheetah
and Ant, our method gets the best performance. PWIL gets the best performance and our AEIRL is
on par with PWIL on Hopper.

20

Under review as a conference paper at ICLR 2022

Figure 12: Mean and standard deviation return of the evaluation policy over 10 rollouts and 5 seeds,
learning from non-noisy expert demonstrations, reported every 100k timesteps. The return is in
term of the environment’s ground truth reward.

We take the random and expert trajectory as 0 and 1 respectively to compute the scaled final rewards
for different methods. The overall averaged scaled rewards for our method is about 0.729 where
the best baseline is 0.546 for PWIL. It is a more than 33.7% relative improvement. So our method
outperforms the other state-of-the-art baselines mostly.

21

	Introduction
	Related Work
	Inverse Reinforcement Learning
	Auto-Encoding based GANs

	Background
	Auto-Encoding Inverse Reinforcement Learning
	Overview
	Method

	Experiments
	Learning from Expert Demonstrations
	Learning from Noisy Demonstrations
	Analysis on Robustness of Our Method
	Ablation Studies

	Conclusions
	Reproducibility Statement
	Appendix
	Pseudo Code
	Implementation
	Tasks
	Basic Settings
	Baselines
	Architecture of Our Methods

	Omitted Experiment Results on Noisy Expert Demonstrations
	Details and More Results on t-SNE Visualization
	Ablation Studies
	Analysis on Stability of Our Methods
	Additional Experiments on Better Synthesis Experts

