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Abstract

Understanding textual description to generate001
code seems to be an achieved capability of002
instruction-following Large Language Models003
(LLMs) in zero-shot scenario. However, there004
is a severe possibility that this translation abil-005
ity may be influenced by having seen target006
textual descriptions and the related code. This007
effect is known as Data Contamination.008

In this study, we investigate the impact of Data009
Contamination on the performance of GPT-010
3.5 in the Text-to-SQL code-generating tasks.011
Hence, we introduce a novel method to de-012
tect Data Contamination in GPTs and exam-013
ine GPT-3.5’s Text-to-SQL performances using014
the known Spider Dataset and our new unfa-015
miliar dataset Termite. Furthermore, we ana-016
lyze GPT-3.5’s efficacy on databases with mod-017
ified information via an adversarial table dis-018
connection (ATD) approach, complicating Text-019
to-SQL tasks by removing structural pieces of020
information from the database. Our results indi-021
cate a significant performance drop in GPT-3.5022
on the unfamiliar Termite dataset, even with023
ATD modifications, highlighting the effect of024
Data Contamination on LLMs in Text-to-SQL025
translation tasks.026

1 Introduction027

Large Language Models (LLMs) have largely028

demonstrated their ability to understand the seman-029

tics of text descriptions for generating code for a va-030

riety of programming languages (Wang et al., 2023;031

Zhang et al., 2023b; Chen et al., 2023). This ca-032

pability showcases an impressive understanding of033

the syntax and semantics of both natural language034

and programming languages. Beyond capturing035

and mastering the grammar of programming lan-036

guages governed by a finite set of rules, these mod-037

els are also proficient in semantically interpreting038

natural language descriptions and then translating039

them into a code snippet (Yuan et al., 2023).040

LLMs are successful code generators even for 041

the challenging generation of SQL queries from tex- 042

tual description (Rajkumar et al., 2022; Gao et al., 043

2023; Pourreza and Rafiei, 2023). Indeed, query 044

languages like SQL pose additional challenges 045

as code snippets depend on underlying databases. 046

Then, it is crucial to thoroughly understand the spe- 047

cific database structure with which the SQL code 048

will interact. This is because the effectiveness and 049

accuracy of the generated SQL code largely depend 050

on how well it aligns with the database’s schema, 051

constraints, and data types. 052

However, the evaluation of the LLMs’ capability 053

to generate SQL may be conflated by data con- 054

tamination (Magar and Schwartz, 2022; Ranaldi 055

et al., 2023). Data Contamination refers to the sit- 056

uation where a model may have been exposed to, 057

or trained on, parts of the dataset that are later used 058

for its evaluation. Indeed, many datasets that are 059

used to evaluate LLMs’ ability to generate SQL 060

code from text, like Spider (Yu et al., 2019), may 061

be included in the pre-training material of state-of- 062

the-art instruction following LLMs such as OpenAI 063

GPTs (OpenAI, 2023b). 064

In this paper, we aim to unravel the complicated 065

question of whether memorization is responsible 066

for text-to-SQL code generation capabilities of 067

LLMs. More specifically, we focus on the follow- 068

ing research questions: 069

• RQ1: Is it possible to determine data con- 070

tamination by solely analyzing the inputs and 071

outputs of existing LLMs? 072

• RQ2: Do recent GPTs excel in Text-to-SQL 073

tasks in a zero-shot setting both on potentially 074

leaked data and totally unseen one? 075

• RQ3: Is data contamination affecting the ac- 076

curacy and reliability of an existing GPT in 077

Text-to-SQL tasks? 078
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Hence, we propose Termite - a fresh dataset for079

evaluating the task of text-to-SQL - in contrast to080

the widely spread Spider (Yu et al., 2019), which081

has possibly been used to pre-train LLMs such082

as commercial GPTs. By comparing Termite and083

Spider, we propose a measure to determine data084

contamination in LLMs for tasks of text-to-SQL085

(RQ1). We then experimented with GPT-3.5 (Ope-086

nAI, 2023a), comparing the results in the text-to-087

SQL task obtained on Termite and on Spider (RQ2).088

Then, we tested GPT-3.5 by removing structural089

information from the databases and demonstrate090

that the model is more resistant to this adversarial091

input perturbation on leaked data than unseen one092

(RQ3).093

Our results show that not only does GPT exhibit094

clear knowledge about Spider, but this also leads095

to an overestimation of the model’s performance in096

Text-to-SQL tasks in zero-shot scenarios.097

2 Background098

Text-to-SQL represents a cutting-edge task in Nat-099

ural Language Processing (NLP), where the goal100

is to translate user queries expressed in natural lan-101

guage into SQL queries that can be executed on a102

database. This task is crucial in making database103

interactions more accessible to users who may not104

be familiar with SQL syntax.105

In the early stages of Text-to-SQL research, the106

focus was primarily on rule-based and heuristic107

approaches (Warren and Pereira, 1982; Giordani108

and Moschitti, 2012).109

The landscape of Text-to-SQL began to evolve110

significantly with the advent of neural network-111

based approaches (Yin et al., 2016; Xu et al., 2017).112

The shift towards neural models was facilitated by113

the creation and availability of large, specialized114

datasets such as Spider (Yu et al., 2019), which115

provided diverse and complex natural language to116

SQL examples.117

The most recent advancements in Text-to-SQL118

involve the use of Large Language Models (LLMs),119

which have demonstrated remarkable capabilities120

in handling various tasks without the need for spe-121

cific pretraining or fine-tuning tailored to each task.122

Gao et al. (2023) and Pourreza and Rafiei (2023)123

have shown that GPTs are effective Text-to-SQL124

coders on Spider, widely acknowledged as an ef-125

fective benchmark for assessing performance in126

this specific task. On the same dataset, approaches127

that involve deconstructing the problem in smaller128

ones via in-context learning (Pourreza and Rafiei, 129

2023; Zhang et al., 2023a) are also effectively ex- 130

plored. However, while LLMs performances have 131

been explored in detail, it remains unclear whether 132

the results may be conflated by data contamination. 133

Indeed, if it turns out that LLMs perform better on 134

tasks with data that have already been seen during 135

the pretraining phase, we would be facing an issue 136

of data contamination. 137

Data Contamination is a relatively new and 138

tricky problem in the field of machine learning, and 139

there are only a few studies that have addressed it. 140

Magar and Schwartz (2022) attempts to examine 141

how accuracies achieved by BERT (Devlin et al., 142

2019) on certain tasks vary from previously seen 143

data e and unseen when the training set contains a 144

portion of the test set. Recently, the effect of data 145

contamination on BERT and GPT-2 performance 146

on NLU datasets has been discussed by training a 147

model from scratch and measuring the difference 148

in performance over seen and unseen data (Ranaldi 149

et al., 2023; Jiang et al., 2024). This line of research 150

is complementary to the one we are proposing in 151

this paper. In fact, experimenting with very large 152

language models is still challenging. These tech- 153

nical limitations lead to experiments that involve 154

training on smaller networks, which resemble the 155

original one but are trained on fewer data and have 156

fewer parameters (as done both in Ranaldi et al. 157

(2023) and Jiang et al. (2024)). Hence, a different 158

strategy is needed to address data contamination 159

in closed models. Like Carlini et al. (2021), we 160

are trying to extract pretraining data information 161

from LLMs, while no accurate information on pre- 162

training data is available. The concern about Data 163

Contamination is growing along with the popular- 164

ity of closed LLMs (Sainz et al., 2023) and some 165

efforts – like the Contamination Index1 – are made 166

to trace back training data. 167

Our work contributes to understanding how data 168

contamination – also called "Memorization" by 169

Magar and Schwartz (2022) – plays a role in Text- 170

to-SQL tasks on black-box models, without any 171

further training step. In particular, we will test 172

GPT-3.5 on a well-known dataset –Spider– and 173

compare the performance it achieves on this dataset 174

to that obtained on a new, totally unseen one. Thus, 175

taking inspiration from very recent work dealing 176

with Data Contamination in GPT-3.5 (Golchin and 177

Surdeanu, 2023; Chang et al., 2023; Deng et al., 178

1https://hitz-zentroa.github.io/lm-contamination/

2

https://hitz-zentroa.github.io/lm-contamination/


2023), we will design specific tasks to assess the179

presence of data contamination and its effect on180

model performance.181

3 Text-to-SQL Datasets182

To explore whether some test dataset has been183

leaked during training (RQ1), meausure GPTs per-184

formance in Text-to-SQL tasks both on potentially185

known and unknown data (RQ2) and whether data186

contamination is responsible for this performance187

(RQ3), the first step is to introduce the used datasets.188

In addition to the de-facto standard of Spider (Yu189

et al., 2019) (described in Sec. 3.1), we propose190

Termite, a Text-to-SQL dataset conceived to be a191

new and never-seen resource (introduced in Sec.192

3.2). Therefore, Termite lowers the probability of193

performance boost due to data contamination.194

3.1 Spider: Characteristics and Content195

Spider (Yu et al., 2018) is the de-facto standard for196

training and testing systems on the Text-to-SQL197

task. Then, this dataset is used in our study on198

GPTs and it is used to inspire the construction of199

our Termite - Text-to-SQL Repository Made Invisi-200

ble to Engines.201

Spider appears as a collection of databases and202

associated sets of pairs of natural language (NL)203

questions and the corresponding SQL translations.204

Databases are structurally represented inside the205

dataset in the form of SQL dumps, which include206

the CREATE TABLE operations and a limited number207

of INSERT DATA operations for each table.208

NL questions are organized into four difficulty209

levels: EASY, MEDIUM, HARD, and EXTRA-HARD. The210

difficulty of an NL question is assessed by con-211

sidering the corresponding SQL query.Hence, the212

difficulty is correlated with the number and kind of213

operations that the gold query contains: the pres-214

ence of JOIN operations, aggregation and WHERE215

conditions contributes to the hardness of the query.216

EASY queries do not involve more than one ta-217

ble. MEDIUM and HARD queries span multiple tables:218

MEDIUM queries contain only a JOIN or aggrega-219

tion operation whereas HARD queries are more com-220

plex both in terms of number of JOIN and aggre-221

gations. Finally, EXTRA-HARD queries may contain222

nested queries, and other operators like UNION and223

INTERSECT 2.224

Since our aim is to evaluate the GPT capabilities225

in zero-shot scenario, we only considered the vali-226

2More details are available on the official Spider repository

dation split of Spider. This portion of the dataset 227

consists of 20 databases and 1,035 pairs of NL-SQL 228

queries distributed on the four difficulty categories 229

(see Tab. 1). 230

3.2 Termite: a Text-to-SQL Repository Made 231

Invisible to Engines 232

The driving idea for proposing a new dataset for 233

the Text-to-SQL task is to reduce the possibility of 234

boosting performance due to data contamination. 235

Indeed, publicly available datasets are generally 236

not suitable for this purpose. Novel datasets made 237

available, for example, after training a model that 238

one wishes to test, but which are built from publicly 239

available resources such as Kaggle or Wikipedia 240

(this is the case for recently developed datasets like 241

BIRD (Li et al., 2023) or Spider itself), do not guar- 242

antee that they are as new as required. The same 243

issue may also be faced for "hidden" test sets. Also, 244

since freely available datasets are easily accessed 245

and tracked by engines, if not already contaminated, 246

they are at risk of being contaminated in the near 247

future. To address these challenges, we propose 248

Termite3. Termite aims to be a permanently fresh 249

dataset. Indeed, our dataset will be invisible to 250

search engines since it is locked under an encryp- 251

tion key that is distributed with the dataset. This 252

trick will reduce the accidental inclusion in a novel 253

training set for commercial or research GPTs. 254

Drawing inspiration from the characteristics of 255

Spider, Termite contains hand-crafted databases in 256

different domains. Each database has a balanced 257

set of NL-SQL query pairs: we defined an average 258

of 5 queries per hardness-level. The entire dataset 259

was designed to be comparable to the Spider Vali- 260

dation Set, not only in terms of database character- 261

istics such as size and table count (see Table 1) but 262

also in terms of query difficulty, which was mea- 263

sured using the same definition provided by Spider. 264

Moreover, as in Spider, during the construction of 265

Termite we took care to write unambiguous, direct 266

NL questions that can be solved by a model relying 267

only on its linguistic proficiency and on an analysis 268

of the schema, with no external knowledge needed. 269

The style adopted in the NL questions is plain and 270

colloquial in line with the style of Spider’s NL 271

questions. Spider and Termite are also comparable 272

in terms of number of tables and columns in each 273

dataset. We curated the column names to make 274

them similar to the ones in Spider, using a similar 275

3The repository will be available here under GPL-3.0 li-
cense. To access, use the password "youshallnotpass".
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Dataset
Spider Termite

#DB 20 10
avg #TABLES per DB 4.2 4.0
avg #COLUMNS per TABLE 5.46 5.56
#QUERY 1035 202
avg #QUERY per DB 51.75 20.2
avg #FK/#COLUMNS per DB 0.16 0.13
avg #Compound/#COLUMNS
per DB

0.63 0.51

avg #Abbr/#COLUMNS per DB 0.10 0.12

Table 1: Spider and Termite fact sheet. Termite is de-
signed to be comparable to the validation set of Spider.

percentage of abbreviations and compound names276

(see Table 1 and Appendix A). This equivalence277

will be crucial to limit the influence of the dataset it-278

self on the following evaluations and will be further279

explored in Section 3.3.280

However, there is a significant and fundamental281

difference between the two datasets, as the Ter-282

mite is not openly available on the web or easily283

retrievable nor built on pre-existing openly avail-284

able resources. Therefore, we can be confident that285

our dataset did not contribute in any way to the286

pretraining of LLMs. This aspect will be crucial287

in the next sections, where we will investigate data288

contamination in GPT-3.5.289

3.3 Comparing Hardness of Termite vs.290

Spider291

An inherently different hardness of Termite and292

Spider may cause imbalances during a comparative293

evaluation of LLMs over different sets. Then, we294

aimed to produce an Termite that is as close as295

possible to Spider.296

Termite is designed to resemble Spider in terms297

of measurable aspects, like the number of columns298

and tables per database, as well as the lexicon used299

in the schema definition. However, it remains dif-300

ficult to quantify via some simple statistics how301

hard it is to understand how to translate a natural302

language question into an SQL statement.303

To compare hardness of Termite and Spider, we304

adopted a human-centered definition: if humans305

can translate questions into an SQL queries on both306

Spider and Termite with the same level of chal-307

lenge, then it means that their hardness, at least308

for a SQL-proficient human annotator, is the same.309

Therefore, ten annotators were asked to judge the310

equivalence in terms of hardness of the SQL trans-311

lations that compose Spider and Termite by exam- 312

ining a random sample of queries of both datasets. 313

To measure the hardness of the two datasets, we 314

designed a simple test. Given a Entity-Relationship 315

schema of a database and a question in natural lan- 316

guage, each annotator is asked to choose among 317

three options the correct translation in SQL of the 318

question. Appendix B presents details on the con- 319

struction of the test. 320

On both Spider and Termite, taking as join anno- 321

tation the answer chosen by the majority of annota- 322

tors leads to almost perfect classification (0.975 323

accuracy on Spider and maximum accuracy on 324

Termite). The average accuracy per annotator is 325

0.91(±0.05) on Spider and 0.94(±0.07) on Ter- 326

mite. Moreover, Fleiss’s Kappa coefficients are 327

rather high (0.79 and 0.85 respectively) for both 328

Spider and Termite. Hence, we can conclude that 329

humans do not find a dataset more difficult than 330

the other. Then, the two datasets can be considered 331

equivalent in terms of hardness of translations. 332

4 Method: studying Data Contamination 333

and its Effect on the Text-to-SQL Task 334

Our intuition is that data contamination may play 335

an important role in GPT’s performance. However, 336

investigating the presence of data contamination 337

in GPT models is extremely difficult if there is no 338

possibility to access training datasets. Then, data 339

contamination can only be estimated. 340

To investigate our intuition, we first describe a 341

way to quantify the presence of data contamina- 342

tion on GPT by examining database dumps in the 343

Text-to-SQL datasets (Sec. 4.1). Then, we tested 344

GPT-3.5 on the Text-to-SQL task both on possibly 345

already explored and definitely hidden data (Sec. 346

4.2). We expect a decline in performance when 347

the model is required to make inferences on new 348

data not previously encountered. Finally, we de- 349

scribe an adversarial degradation of the input that 350

makes the task of Text-to-SQL translation harder 351

without prior knowledge (Sec. 4.3). Indeed, we 352

argue that if a model achieves high performance in 353

a task by memorizing previously seen information, 354

reducing the quality of input information would not 355

significantly impact its performance on data it has 356

encountered before. 357

4.1 Tracing Data Contamination 358

Our aim is to understand whether data contami- 359

nation may have occurred before testing GPT-3.5 360
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performances on Text-To-SQL task. The data con-361

tamination issue criticality emerges when a model362

is inadvertently trained on data that include or over-363

lap with its testing dataset: this issue may lead to364

skewed performance metrics and a misrepresenta-365

tion of the model’s true capabilities. For models366

like GPT-3.5 – black-box models with scarce infor-367

mation about the sources of training – it is neces-368

sary to find indirect measures to assess the presence369

of data contamination.370

In the specific case of Text-to-SQL, along with371

the request to translate the query, the models trained372

on this task are provided with information regard-373

ing the database schema. In particular, LLMs may374

also have been trained on the dumps of databases375

in the Text-to-SQL datasets. Hence, it is possible376

to assess the presence of data contamination on377

Text-to-SQL datasets by measuring the previous378

knowledge that a model has on these dumps.379

A clue to determine whether the data contamina-380

tion has occurred is that the model is able to recon-381

struct missing information regarding the database382

schema. Since LLMs are trained to produce text,383

we propose to measure the accuracy that a model384

achieves in reconstructing a dump that has been385

masked. If the model is able to reconstruct this386

information on potentially seen data –as Spider’s387

validation dataset might be – and fails to recon-388

struct it on the new resources – like Termite– we389

argue that data contamination has occurred.390

In particular, a dump was masked by replacing391

the 25% of columns in each table with a [MASK]392

token. Then, GPT-3.5 was prompted to reconstruct393

the dump by replacing the masked tokens with ap-394

propriate column names. In these experiments,395

the INSERT instructions are also removed from the396

dump to limit the possible inference regarding the397

names of columns. It is important to note that the398

task is still feasible even if no data contamination399

has occurred: column names can be deduced from400

the names of the tables and other columns. How-401

ever, the task would be much easier in the presence402

of data contamination.403

Hence, given the reconstructed dump from GPT-404

3.5, we define the DC-accuracy as the percentage405

of times the predicted column name is equal to the406

true column name:407

DC-accuracy =
# of correct columns name

# of columns
408

It is possible to assess the presence of data contam-409

ination by measuring the DC-accuracy both on the410

Spider dumps and on the Termite dump databases. 411

4.2 Prompting LLMs for Text-to-SQL 412

Translation 413

Given an instruction in natural language, LLMs can 414

translate the request into code – and SQL queries, 415

in particular – to answer the given request. Specifi- 416

cally, OpenAI’s models for generating text have un- 417

dergone training to process both natural language 418

and code. These models produce text-based out- 419

puts as a result of the inputs they receive. For this 420

reason, it is possible to frame the Text-to-SQL as a 421

translation task: given a dump for a database and 422

a query in natural language, the model is asked to 423

translate the latter in the corresponding SQL query, 424

referring to tables and columns into the considered 425

database. The desiderata is an executable query, 426

semantically equivalent to a gold human-generated 427

query. In the next paragraphs, we first describe 428

how GPT-3.5 – in particular, gpt-3.5-turbo – is 429

prompted in order to obtain the translations and 430

then how it is possible to automatically evaluate 431

the performance of this system on both Spider and 432

Termite datasets. 433

Text-to-SQL as a Translation Task OpenAI 434

API’s enable to interrogate a model in a multi- 435

turn conversation format: chat models receive a 436

series of messages as input and generate a message 437

as output. We test the ability of GPT-3.5 on the 438

Text-to-SQL task by framing each translation from 439

natural language to SQL as a separate conversation. 440

In particular, given a target database, in the 441

first message, the model is given the dump of the 442

database. In each dump, information about the ta- 443

bles that constitute the database is provided by the 444

CREATE TABLE statements. In the CREATE instruc- 445

tions, the constraints of the primary and foreign 446

keys are also encoded. In addition, some realistic 447

data to fill the tables are provided by INSERT in- 448

structions. Given the dump, the model answers by 449

producing an interpretation of the dump. Typically, 450

this model response contains an explanation of the 451

contents of the dump. For example, considering 452

the database car_1 in the Spider dataset, the first 453

messages in the conversation are the following: 454

user: CREATE TABLE "continents" [...];
CREATE TABLE "countries" [...];

GPT-3.5: The code above includes the
creation of six tables: continents,
countries [...]

5



Then, given the dump and the interpretation that455

the model gives of it, a message containing the456

natural language question to be translated is sent.457

In particular, the selected prompt ensures that the458

model translates natural language questions into459

SQL queries with a limited amount of text that is460

not SQL. These steps are repeated for each question461

separately to obtain translations independently of462

each other. However, to ensure that the model’s un-463

derstanding of each database is comparable across464

all questions, the database dump and the same in-465

terpretation initially produced by the model are466

sent as context, in the form of preceding messages,467

before each translation is requested. Hence, build-468

ing from the previous example, a conversation to469

translate a question on the car_1 database would470

be completed by the following messages:471

user: Translate in SQL the following
query. Answer using only SQL. What is
the number of continents?

GPT-3.5: SELECT COUNT(*) as n_conts
FROM continents;

Our approach is completely zero-shot, to min-472

imize the effect that the prompt itself–rather473

than data contamination–can have on performance.474

Once the translation process is completed, the SQL475

code produced by the model is retrieved to evalu-476

ate whether or not the generated query satisfies the477

natural language query.478

Test Suite Accuracy: the Evaluation Metric479

We adopted the Test Suite Accuracy metric as an480

evaluation metric in our experiments. This score481

was introduced by Zhong et al. (2020) and currently482

is the official metric for the evaluation of systems483

tested on Spider4. In principle, given a query q484

generated by a system, one would like to evaluate485

whether q is semantically equivalent to a human-486

generated gold query g. This metric, known as487

semantic accuracy, is undecidable in general (Chu488

et al., 2017). The Test Suite Accuracy metric aims489

to approximate semantic accuracy and states the490

correctness or incorrectness of q by comparing the491

denotation of a gold query g and the denotation of492

q. However, it introduces fewer false positives than493

Execution Accuracy – that compares g and q on a494

single database – by comparing the denotation of495

both queries on as few databases as possible. This496

set of random databases is called the Test Suite.497

4As reported on the Spider official website

In our experiments, a Test Suite of maximum 498

1000 random databases is constructed for each 499

database upon which queries are defined, as re- 500

ported in the original paper. Therefore, a model- 501

generated query q is executed on the Test Suite 502

databases and labeled correct if no database can 503

distinguish it from the gold query q. The 97% of 504

the queries is automatically evaluated, while the 505

remaining ones are manually evaluated by three 506

SQL-proficient annotators. This step is necessary 507

because, in these rarer cases, the queries – either 508

gold or model-generated – make use of functions 509

not available in the SQL server used to execute the 510

queries. 511

Using the Test Suite Accuracy as an approxima- 512

tion of the semantic accuracy of the system, we 513

show that, among different databases and differ- 514

ent query difficulties, GPT-3.5 demonstrates dif- 515

ferent performance on Spider and Termite datasets 516

(Section 5.2). In addition, the same type of evalua- 517

tion will be performed on adversarially degraded 518

databases in Section 5.3 to establish that the highest 519

performance degradation occurs on unseen data. 520

4.3 The Adversarial Table Disconnection 521

The differences in performance over seen rather 522

than unseen data it is not, in principle, sufficient 523

to state that the observed differences are caused by 524

data contamination issues since it is still possible 525

that the datasets hinder some biases. On the one 526

hand, we designed the Termite dataset to be com- 527

parable to Spider; hence, once the hardness of the 528

queries is also fixed, performances are comparable. 529

On the other hand, we want to ensure that memo- 530

rization is, in fact, playing an important role. For 531

this reason, we propose an adversarial approach to 532

state the importance of memorization on this task. 533

We will refer to this method as Adversarial Table 534

Disconnection (ATD). 535

The ATD aims to make the translation process 536

from a request in natural language into SQL harder. 537

In particular, ATD disconnects the tables from each 538

other, making it more difficult to figure out on 539

which columns the JOIN needs to be performed. 540

ATD disconnects tables by removing the foreign 541

keys constraints. In particular, all instructions refer- 542

ring to the creation of the constraint are removed 543

from the dump. This structural information is criti- 544

cal to translating a questions into SQL queries: we 545

argue that the removal of this information has a 546

crucial impact on translation, both for humans and 547

systems, unless the missing information can be re- 548
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trieved. Given the importance of the presence of a549

foreign key, our aim is to remove insights about the550

relation between columns that may be directly used551

to infer the removed relationship. Hence, ATD in-552

volves the removal of all the INSERT instructions553

from the dump. In fact, matching values into this554

type of instructions may give direct clues about the555

columns relationships. Crucially, our aim is not to556

change the semantic of the database, but only to557

make it less easy to understand. For this reason,558

the original column names are kept, making infer-559

ences about the content of the database still pos-560

sible. Hence, after ATD a model is given a dump561

deprived of structural information, with tables dis-562

connected from one another but still semantically563

equivalent to the original one.564

Because ATD makes the task more difficult, a565

drop in system performance is expected. However,566

the drop can be mitigated by relying on prior in-567

formation about the database structure. Therefore,568

given the presence of data contamination, we ex-569

pect GPT-3.5 to be robust to ATD perturbation on570

Spider datasets, with a more pronounced perfor-571

mance loss on Termite databases.572

5 Experiments573

5.1 Quantifying the Data Contamination in574

Text-to-SQL datasets575

It is possible to quantify the presence of data con-576

tamination by comparing the DC-accuracy that577

GPT-3.5 achieves in predicting column names on578

a new dumps –from Termite– versus potentially579

already seen dumps in Spider (as described in Sec-580

tion 4.1). In Table 2, the average DC-accuracy over581

Spider and Termite datasets is reported.582

The model seems to find the task easier on Spider583

databases than on Termite ones. In particular, the584

average accuracy of Spider dumps is more than585

33%, that is, on average, more than 20% higher586

than the score on Termite. Moreover – while on587

both datasets, some databases are hard to predict,588

with a minimum accuracy of 0 – on the Spider589

dataset, GPT-3.5 achieves a perfect accuracy on590

two databases. The same does not hold for Termite,591

where the highest accuracy is 44%. The different592

performance of the model on these two datasets593

suggests the presence of data contamination.594

It is also interesting to notice that on 35% dumps595

(7 dumps), the DC-accuracy is over 40%, while596

only on two databases among the ones in Termite597

GPT-3.5 achieves (with a score of 44.44% and598

DC-accuracy Spider Termite

Mean 33.42(±33.01) 13.21(±18.70)
Min - Max 0.00− 100.00 0.00− 44.44

Table 2: Average, min, and max accuracies of GPT-3.5
on predicting the masked columns names on dumps in
Spider and Termite. The overall performances in terms
of DC-accuracy over the Spider dataset are superior
with respect to the one that can be observed on Termite
dataset.

40%) the same results. A complete list of accu- 599

racies per database can be found in Appendix C 600

The different performance in terms of DC-accuracy 601

over Termite with respect to Spider suggests the 602

presence of data contamination. 603

5.2 Measuring GPT-3.5 performances on seen 604

and unseen data 605

Having estimated the presence of data contamina- 606

tion, we focus on the analysis of the performance 607

of GPT-3.5 on the dataset presented in Section 3. 608

The results described here suggest the role that 609

memorization may play in the performance of a 610

Large Language Model like GPT-3.5. We analyze 611

the model’s performance by categorizing queries 612

according to their hardness and averaging across 613

the different databases of the two datasets (see Ap- 614

pendix D for the results on different databases). 615

Table 3 reports the average Test Suite Accuracy 616

results for each hardness level. We notice that, on 617

both sets of databases, the accuracy of the model 618

decreases as the hardness increases. In particular, 619

the EASY queries on the Spider dataset achieves, 620

on average, accuracy over the 90%. Accuracy de- 621

creases progressively, with the greatest drop (29%) 622

between MEDIUM and HARD levels. The worst accu- 623

racy is obtained on the EXTRA-HARD queries. The 624

same trend is also observed on the Termite dataset: 625

on the queries EASY GPT-3.5 achieves an average 626

accuracy of 74%. Again, a decrease in performance 627

is observed on the MEDIUM and HARD queries, while 628

on Termite EXTRA-HARD queries GPT-3.5 appears 629

to achieve performance similar to HARD queries. 630

However, comparing the results on the two 631

datasets, it is possible to notice that, given a cer- 632

tain hardness level, the accuracy of GPT-3.5 is not 633

comparable on the two datasets. In fact, the av- 634

erage performance difference between Spider and 635

the Termite dataset is remarkable: EASY query ac- 636

curacy decreases by 16%, 10% for MEDIUM ones. 637
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Hardness Original Dumps Adversarial Table Disconnection

Spider Termite Spider Termite

EASY 90.11(±11.65) 74.00(±21.19) 91.08(±10.32) 62.00(±19.89)
MEDIUM 77.21(±16.35) 67.06(±24.83) 72.71(±23.63) 63.70(±16.03)
HARD 48.83(±23.17) 28.33(±23.78) 48.71(±28.79) 22.67(±22.20)
EXTRA-HARD 30.94(±23.79) 31.14(±24.54) 28.96(±19.28) 28.98(±17.03)

Table 3: GPT-3.5 accuracy on the Spider Dataset and the Termite Dataset, across four levels of hardness of queries.
The results reported are average accuracy across all databases in the two datasets. The first two columns refer to
accuracies on the standard task, while the last columns show results after ATD.

The biggest drop is observed on HARD queries, with638

a 20% difference in performance. The only accura-639

cies that appear to be similar – and sensibly lower –640

are on EXTRA-HARD hard queries.641

These results provide insight that GPT-3.5 ca-642

pability on the task may be highly influenced by643

data contamination issues. In fact, given compa-644

rable queries from a hardness perspective, results645

on databases that have never been seen turn out to646

be worse than those that have already been made647

available and, likely, observed in training.648

5.3 Robustness of GPT-3.5 on Text-to-SQL649

performances after ATD on seen data650

To better understand whether the data contamina-651

tion is responsible for the difference in performance652

observed in Table 3, we analyze the accuracy over653

Spider and Termite after ATD.654

As expected, a greater performance drop is ob-655

served over Termite databases, while the model656

seems to be robust against the ATD over the Spider657

dataset. In particular, the accuracy over the EASY658

queries decreases by 12 points on average on the659

Termite dataset, while similar results (close to the660

90%) can be observed in Spider. On the MEDIUM661

queries, a slightly more pronounced difference in662

performances can be observed over Spider (4.5663

points) with respect to the one observed in Termite664

(3.36 points). It is on the HARD queries, however,665

that the different performances on seen and unseen666

data are much more evident. Those queries require667

more JOIN operations than the previous ones. On668

the one hand, on the Spider databases, the average669

performance is around 48% for both the original670

dumps and the dumps on which ATD is applied.671

On the other hand, an average performance drop672

of 5.66 points is observed on the Termite dumps.673

Finally, similar and generally lower performances674

can be observed over the HARD queries.675

Hence, this final experiment confirms that –since 676

the drop observed in the performance of GPT-3.5 677

after ATD is greater on new data than on contami- 678

nated ones – the memorization ability of the model 679

plays a crucial role in its performance. 680

6 Conclusions 681

This paper shows that data contamination is respon- 682

sible for overestimating the performance of GPT- 683

3.5 on Text-to-SQL. The experiments conducted, 684

using a novel metric for detecting data contamina- 685

tion, clearly demonstrate that GPT-3.5 possesses 686

prior knowledge on the contents of the Spider vali- 687

dation set in contrast to his ignorance of our con- 688

structed Text-to-SQL unseen dataset, Termite. In 689

fact, as results show, Text-to-SQL performances 690

on Spider are significantly better than on Termite. 691

This suggests that GPT-3.5 capabilities in zero-shot 692

scenario might not be as surprising as previously 693

thought. Observing the results of data contami- 694

nation alongside with performances achieved in 695

Text-to-SQL on the two datasets, we concluded 696

that it is indeed the prior knowledge of GPT-3.5 on 697

the test set that makes a significant difference. In 698

addition to this, we found that Adversarial Table 699

Disconnection impacts the results of Text-to-SQL 700

tasks differently across datasets: its influence is 701

relatively mild in the case of the Spider dataset but 702

more pronounced with the Termite dataset. 703

Since data contamination is the main responsi- 704

ble for overestimating performances on Text-to- 705

SQL and, possibly, on other tasks, a more thorough 706

reexamination of current LLM’s benchmarks for 707

downstream tasks in zero-shot scenarios would be 708

needed. Furthermore, it would be beneficial to de- 709

velop public datasets, like our Termite, that remain 710

outside the LLM’s pretraining. This may guaran- 711

tee that evaluations on pretrained LLMs are not 712

impacted by Data Contamination. 713
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Limitations714

Our analysis of data contamination of GPTs has715

some limitations. Below, we describe some of these716

and suggest directions for future work717

First, the impact of Data Contamination on the718

performance of Text-to-SQL tasks has been tested719

specifically on GPT-3.5. This is a limitation and720

the analysis should be extended to other models.721

However, we performed preliminary small-scale722

pilot experiments akin to those conducted in this723

study. Results suggest that Data Contamination724

also affects GPT-4.725

Furthermore, we used only a public dataset for726

this task. However, this single dataset already727

shows that data contamination is a relevant issue in728

measuring performance.729
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A Analysis of Column Names in Spider 857

and Termite 858

The following Table present the percentage of col- 859

umn names that consist in abbreviations or com- 860

pound nouns on both Spider and Termite dataset. 861

On average, both datasets presents a similar distri- 862

butions of this kind of columns names. The equiv- 863

alence in terms of abbreviations and compound 864

nouns, as discussed in Section 3.2 is crucial to a 865

fair evaluation during the estimation of data con- 866

tamination (Section 4.1). 867

Table Compound Abbreviation

Termite

bowling 0.63 0.00
centri 0.48 0.16
coronavirus 0.55 0.15
farma 0.62 0.29
farmacia 0.65 0.15
galleria 0.20 0.00
hackathon 0.62 0.00
pratica 0.33 0.00
recensioni 0.56 0.00
voli 0.48 0.43

Spider

battle_death 0.33 0.00
car_1 0.30 0.09
concert_singer 0.48 0.00
course_teach 0.60 0.00
cre_Doc_Template_Mgt 1.00 0.00
dog_kennels 0.80 0.04
employee_hire_evaluation 0.59 0.00
flight_2 0.54 0.23
museum_visit 0.67 0.17
network_1 0.57 0.00
orchestra 0.57 0.00
pets_1 0.64 0.36
poker_player 0.64 0.00
real_estate_properties 0.95 0.41
singer 0.60 0.00
student_transcripts_tracking 0.93 0.04
tvshow 0.52 0.04
voter_1 0.67 0.11
World_1 0.42 0.15
wta_1 0.86 0.28

B Measuring Hardness of queries in 868

Spider and Termite 869

As described in Section 3.3, we need to ensure 870

that Spider and Termite are comparable in terms 871

of hardness. Termite is designed with a similar 872

annotation protocol; however, a similarity in terms 873

of the hardness of the natural language questions 874

used is hard to quantify. For this reason, we asked 875

10 SQL-proficient annotators to perform a simple 876

yet effective test to measure how difficult it is for 877

them to translate questions both from Spider and 878

from Termite. The main idea is that if they can 879

translate both Spider and Termite questions with 880

the same level of accuracy, then it means that the 881

level of challenge is similar on both datasets. 882

In particular, given an E-R database schema and 883
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a natural language utterance, each test question884

asks the annotator to choose from three options the885

SQL query that satisfies the request. All three of886

the options are syntactically correct SQL queries,887

but the incorrect answers are semantically different888

from the correct one. The first incorrect option889

is designed by the authors, perturbing the correct890

answer by removing or replacing some operations891

or some retrieved columns, changing the field and892

tables names with non-matching ones. The sec-893

ond incorrect answer is, instead, another query ex-894

tracted from the same dataset as the correct one.895

The selected query is the most similar under the896

Bag of Words assumption with respect to the cor-897

rect one. The similarity of two queries, in order to898

retrieve this third option, is measured via cosine899

similarity of their BOW vector representations.900

The complete test is composed of 20 randomly901

selected queries from each dataset, Hence, the902

resulting 40 questions are shared to 10 SQL-903

proficient annotators: 60% of them are Computer904

Science Master students, the remaining are already905

graduated. Five of the annotators work in a field906

that requires daily use of the SQL query language.907

Finally, we further divided the test into two trials908

of 20 queries each and administered it to the anno-909

tators at two different times to limit the presence of910

errors due to gradual loss of concentration.911

C Assessing the presence of Data912

Contamination913

The following two tables show the DC-accuracy914

of GPT-3.5 on the Spider (Table 4) and Termite915

(Table 5). Notice that, as discussed in Section 5.1,916

the overall performance in terms of DC accuracy917

on the Spider dataset is higher than that observed918

on the Termite dataset. Those results indicate the919

presence of data contamination.920

Database DC-accuracy
battle_death 0.16
car_1 0.00
concert_singer 0.78
course_teach 0.00
cre_Doc_Template_Mgt 0.40
dog_kennels 0.52
employee_hire_evaluation 0.20
flight_2 0.00
museum_visit 0.00
network_1 1.00
orchestra 0.43
pets_1 0.50
poker_player 0.50
real_estate_properties 0.46
singer 0.00
student_transcripts_tracking 0.22
tvshow 0.00
voter_1 1.00
wta_1 0.16

Table 4: GPT-3.5 DC-accuracy across the different
databases in Spider

Database DC-accuracy
bowling 0.14
centri 0.00
coronavirus 0.44
farma 0.00
farmacia 0.00
galleria 0.00
hackathon 0.33
pratica 0.00
recensioni 0.40
voli 0.00

Table 5: GPT-3.5 DC-accuracy across the different
databases in Termite
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D Text-to-SQL GPT-3.5 detailed performances

The following Table shows the results for each database in the Text-to-SQL task both for Spider and
Termite dataset. Notice that the accuracy decreases as the hardness increases and that on Termite, results
are generally lower.

Termite
difficulty hackathon galleria recensioni centri pratica

Original

easy 60.0 80.0 40.0 100.0 60.0
medium 50.0 100.0 40.0 100.0 50.0
hard 25.0 66.66 0.0 0.0 33.33
extra 50.0 30.0 0.0 25.0 57.14

ATD

easy 60.0 40.0 40.0 60.0 60.0
medium 50.0 80.0 60.0 71.42 50.0
hard 25.0 0.0 50.0 0.0 33.33
extra 33.33 30.0 0.0 25.0 57.14

Termite
difficulty coronavirus farmacia voli bowling farma

Original

easy 60.0 60.0 80.0 100.0 100.0
medium 60.0 40.0 100.0 55.55 75.0
hard 40.0 60.0 25.0 33.33 0.0
extra 0.0 40.0 20.0 14.28 75.0

ATD

easy 40.0 60.0 80.0 80.0 100.0
medium 60.0 60.0 100.0 55.55 50.0
hard 0.0 60.0 25.0 33.33 0.0
extra 40.0 20.0 20.0 14.28 50.0

Spider
difficulty battle_death car_1 concert_singer course_teach cre_Doc_Template_Mgt

Original

easy 100.0 94.44 100.0 75.0 100.0
medium 62.5 40.62 62.5 85.71 79.54
hard 0.0 18.75 61.54 62.5 40.0
extra 50.0 15.38 50.0 33.33

ATD

easy 100.0 88.89 100.0 75.0 91.66
medium 62.5 50.0 66.66 85.71 79.54
hard 0.0 18.75 76.92 62.5 40.0
extra 25.0 385 0.0 50.0

Spider
difficulty dog_kennels employee_hire_evaluation flight_2 museum_visit network_1

Original

easy 90.0 100.0 84.62 100.0 100.0
medium 80.55 92.86 76.66 87.5 77.27
hard 60.0 80.0 62.5 66.66 56.25
extra 53.85 0.0 12.5 25.0 83.33

ATD

easy 90.0 100.0 92.31 100.0 100.0
medium 77.78 100.0 46.66 100.0 81.82
hard 80.0 80.0 50.0 100.0 62.5
extra 50.0 25.0 6.25 0.0 50.0

Spider
difficulty orchestra pets_1 poker_player real_estate_properties singer

Original

easy 85.71 100.0 93.75 100.0 100.0
medium 83.33 81.82 100.0 50.0 100.0
hard 83.33 50.0 62.5 0.0 33.33
extra 50.0 30.0

ATD

easy 100.0 100.0 87.5 100.0 83.33
medium 77.78 68.18 100.0 0.0 88.89
hard 83.33 66.66 50.0 0.0 33.33
extra 50.0 30.0

Spider
difficulty student_transcripts_tracking tvshow voter_1 world_1 wta_1

Original

easy 65.38 80.0 66.66 79.16 87.5
medium 62.5 86.66 100.0 67.39 66.66
hard 37.5 60.0 50.0 42.86
extra 15.0 0.0 50.0 26.66 0.0

ATD

easy 65.38 85.0 100.0 75.0 87.5
medium 66.66 80.0 100.0 58.69 63.33
hard 25.0 30.0 45.0 21.43
extra 25.0 50.0 25.0 23.33 50.0

Table 6: Test-Suite Evaluation results for GPT-3.5
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