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ABSTRACT

Transformers have been successfully applied to sequential, auto-regressive tasks de-
spite being feedforward networks. Unlike recurrent neural networks, Transformers
use attention to capture temporal relations while processing input tokens in parallel.
While this parallelization makes them computationally efficient, it restricts the
model from fully exploiting the sequential nature of the input. The representation
at a given layer can only access representations from lower layers, rather than
the higher level representations already available. In this work, we propose the
Feedback Transformer architecture that exposes all previous representations to all
future representations, meaning the lowest representation of the current timestep
is formed from the highest-level abstract representation of the past. We demon-
strate on a variety of benchmarks in language modeling, machine translation, and
reinforcement learning that the increased representation capacity can create small,
shallow models with much stronger performance than comparable Transformers.

1 INTRODUCTION

In recent years, the Transformer architecture (Vaswani et al., 2017) has brought large improvements
to a wide range of Natural Language Processing tasks such as machine translation, sentence rep-
resentation (Devlin et al., 2019), and summarization (Edunov et al., 2019). Transformers are also
successfully used as an autoregressive model on sequential tasks such as language modeling (Dai et al.,
2019; Rae et al., 2020) and reinforcement learning (Parisotto et al., 2019). Unlike more traditional
recurrent architectures such as RNNs and LSTMs, the Transformer architecture processes a sequence
in parallel in an order-invariant way. Techniques such as position embeddings (Sukhbaatar et al.,
2015; Shaw et al., 2018) and attention masking are required to capture input order information. In
this work, we focus on several limitations of the Transformer architecture as an autoregressive model
and present a straightforward solution — Feedback memory. These limitations and our proposed
solution target sequential token prediction tasks, such as language modeling or other auto-regressive
generative tasks.

The feedforward nature of Transformers makes them efficient on modern hardware, but restricts the
Transformer from taking full advantage of the input’s sequential property. In particular, the current
hidden representation of a Transformer only accesses the past representations of lower layers, even
though higher level representations of the past have already been computed as an autoregressive
model. At generation, the Transformer generates only one token at a time, so it could access these
representations for better performance, but does not exploit these at training time due to parallelization.
However, if these past higher level representations could be used at training time, they would enrich
future lower level representations, enabling shallower models to have the same representation power.

Another inherent limitation of Transformers on sequential tasks is the lack of recursive computa-
tion (Dehghani et al., 2018), and the number of transformations possible on the input is bounded by
the model depth. Such disadvantages have impact on tasks that require careful tracking of a world
state or modeling hierarchical structures (Tran et al., 2018; Hahn, 2020). On the other hand, while
RNNs can maintain an internal state for an unbounded time while accumulating more computations
upon it, the size of this internal state is limited by the dimension of the hidden state.

In this work, we propose a novel autoregressive model, the Feedback Transformer, that makes all
previous hidden representations accessible to the computation of a representation at any depth —
the model feeds back previous computations to itself. The feedback allows the model to perform
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recursive computation, building stronger representations iteratively upon previous states. To achieve
this, we modify self-attention to attend to higher level representations rather than lower ones.

As shown in Figure 1, the Feedback Transformer merges the hidden states from all layers into a single
vector for every time step and stores them in a memory. Instead of self-attention, all subsequent
layers attend to this memory, which means every previously computed representation is accessible
by all future layers, mediated by the memory. This allows Feedback Transformers to recursively
compute and transform an input as many times as the input length, which is something Transformers
cannot achieve. While RNNs can perform recursive computation, the amount of information that
Feedback Transformers can maintain is not limited by the number of layers.

There are computational benefits to this straightforward modification. First, it uses less memory
because all the layers share a single Feedback memory, thus reducing the memory size by L times,
where L is the number of layers. There is also less computation because we share the key and
value projections during attention computation, which increases the speed of the attention over the
Feedback Memory. Further, the GPU memory usage is reduced due to the memory sharing — the
overall model is 2x smaller — allowing the batch size to be increased for computational efficiency.
During inference, the increased batch size contributes to substantially faster decoding speeds.

In summary, our main contributions are: (1) The Feedback Transformer architecture, which com-
pletely changes the way a Transformer works to access available higher level representations im-
mediately. (2) We show the Feedback Transformer can achieve state of the art results with smaller,
shallower models that have faster decoding speed and smaller memory footprint. (3) The Feedback
Transformer uses substantially less memory during training and inference time.

2 RELATED WORK

Several previous works have analyzed the limitations of Transformer architectures, such as the
inability to process input sequentially (Dehghani et al., 2018) or represent hierarchical structure (Tran
et al., 2018). Hahn (2020) demonstrate that Transformers cannot model structures involving bounded
recursion, such as closing parentheses. Pérez et al. (2019) study Transformers in the context of Turing
machines, where they must produce unbounded numbers of decoding steps. Various work in probing
Transformers identified several limitations where Transformers may not have the computational
capacity of recurrent architecture like an LSTM (Hahn, 2020).

From the architectural perspective, our work shares similarities with recurrent networks augmented
with external shared memories (Graves et al., 2014; Joulin & Mikolov, 2015; Sukhbaatar et al., 2015).
For example, the stack augmented RNN of Joulin & Mikolov (2015) adds an external memory to a
recurrent network to keep long term dependencies. Closer to our work, the Neural Turing Machine
of Graves et al. (2014) models an unconstrained memory that resembles the self-attention layer of a
Transformer. Further improvements to recurrent networks, such as the Gated Feedback RNN (Chung
et al., 2015), are based on better controlling signal from different layers and extended to feedback
through multiple pathways (Jin et al., 2017). These works are built on recurrent networks with
additional components to store long term dependencies.

Other works have studied modifications to the Transformer architecture by enriching its structure
with components inspired by recurrent networks. For example, Wang et al. (2019) propose adding a
local recurrent sublayer to the Transformer layer to remove the need for position embeddings in the
multi-head self-attention layers. Universal Transformer (Dehghani et al., 2018) share the parameters
between the layers of a Transformer, leading a recurrent network in depth. Hao et al. (2019) and
Chen et al. (2018) augment Transformers with a second, recurrent encoder. As opposed to our
work, these prior investigations do not change the computational path in a Transformer to reduce the
discrepancy between the training and inference time. Closer to our work, Merity (2019) proposes
adding a self-attention layer on top of the past outputs from an LSTM cell. However, this approach
keeps the recurrent and the self-attention mechanisms decoupled, as opposed to ours which makes
the attention mechanism recurrent. In particular, the LSTM layer of Merity (2019) still intrinsically
has a bottleneck corresponding to the dimension of the hidden layer.
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Figure 1: The Feedback Transformer merges
past hidden representations from all layers into
a single vector and stores it in memory.

Figure 2: Difference between Feedback and
Transformer. t indicates the timestep and l
indicates the layer.

3 METHOD

In this section, we propose the Feedback Transformer, which provides capacity to build richer
representations of each timestep t of a sequential modeling task.

3.1 TRANSFORMER ARCHITECTURES

We briefly describe the Transformer (Vaswani et al., 2017). Each layer is composed of a multi-
head self-attention sublayer (Attn) followed by a feedforward sublayer (FF), and each sublayer
is followed by an add-norm operation that combines a skip-connection (He et al., 2016) and layer
normalization (Lei Ba et al., 2016). The l-th layer of a Transformer processes an input sequence of
vectors Xl = (xl1, . . . ,x

l
t) into a sequence of vectors of the same length. First, the self-attention

sublayer computes a representation for each time step t by taking its related input vector xt along
with its past context, {xlt−τ , ...,xlt−1}:

zlt = Attn(xlt, {xlt−τ , . . . ,xlt−1}).
Within the self-attention sublayer, xlt is used to form query vectors while its context is used to compute
key and value vectors, forming a memory of the past information. Then the feedforward sublayer
processes each vector zlt independently, i.e., xl+1

t = FF(zlt). The Transformer layer transforms its
input sequence into an output sequence Xl+1 = FF(Attn(Xl)).

In practice, a block of steps {xlt−M+1, . . . , x
l
t} is computed in parallel during training, where M

can be seen as the backpropagation through time (BPTT) length. This makes training Transformers
efficient on hardware such as GPUs. However, to operate on sequences of unbounded length,
Transformers require modifications such as caching and relative position embeddings (Dai et al.,
2019; Sukhbaatar et al., 2019).

3.2 LIMITATIONS OF TRANSFORMERS

Previous work has analyzed the impact of several limitations of the Transformer architecture, such as
the inability to track long sequences and process hierarchical inputs (Hahn, 2020). In this work, we
focus on two major limitations of Transformer architectures.

Limited Access to Higher Level Representations. Layer by layer, Transformers build more
abstract, high level representations of the input sequence. At each layer, the representations for the
input sequence are treated in parallel. As a consequence, a Transformer does not leverage the highest
level representations from the past to compute the current representation, even though these highest
level representations have already been computed for autoregressive models.

Maintaining a Belief State. Many sequential tasks require models to maintain an internal state for
two main purposes. First, internal states act as memory for recalling past inputs, where Transformers
excel because their internal state xlt is directly accessible to future steps through self-attention.
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The second role of an internal state is to act as a belief state that tracks the world state that is not
directly observable in inputs. For example, when inputs are actions taken on a Markov Decision
Process, an internal state can apply those changes to the current belief state and correctly predict
the outcome. As a feedforward model, Transformer have inherent limitations in this area — only
a fixed number of transformations can be applied to its internal states. Since both Attn and FF
sublayers contain a fixed number of transformations and there are L layers of them, the total number
of transformations between the input and output is limited by the depth. This means Transformers
cannot maintain an internal state for long time if it has to be frequently updated.

3.3 FEEDBACK TRANSFORMER

We propose to change the Transformer architecture by using the most abstract representations from
the past directly as inputs for the current timestep. This means that the model does not form its
representation in parallel, but sequentially token by token. More precisely, we replace the context
inputs to attention modules with memory vectors that are computed over the past, i.e.,

zlt = Attn(xlt, {mt−τ , . . . ,mt−1}),
where memory vectors mt are computed by summing the representations of all layers at time step t:

mt =

L∑
l=0

Softmax(wl)xlt, (1)

where wl are learnable scalar parameters. Note these scalars are the only new parameters introduced
by our change, with all else the same as the standard Transformer. Here l = 0 corresponds to token
embeddings. The weighting of different layers by a softmax output gives the model more flexibility
as it can average them or select one of them.

This modification of the self-attention input adapts the computation of the Transformer from parallel
to sequential, summarized in Figure 2. Indeed, it provides the ability to formulate the representation
xlt+1 based on past representations from any layer l′, while in a standard Transformer this is only true
for l′ < l. This change can be viewed as exposing all previous computations to all future computations,
providing better representations of the input. Such capacity would allow much shallower models to
capture the same level of abstraction as a deeper architecture. This has several practical advantages,
as more shallow models have reduced memory footprint and increased decoding speed.

An alternative view of such an architecture modification is providing the capacity for recursive
computation — outputs from a sublayer can feed back to the same sublayer through the memory.
The model can then maintain an internal state for unbounded time. This is a clear advantage over
Transformers, in which a submodule never looks at its own output. While an RNN can also repeat its
computation on its internal state, its internal state has a limited capacity determined by the number of
layers and their hidden dimension. In contrast, the internal state of a Feedback Transformer is its
whole memory, which can grow with the input length. This allows the model to keep track of a large
number of things within its internal state.

While our modification requires sequential computation, we significantly improve training speed by
sharing the key and value projections W l

k and W l
v across all layers. This sharing reduces computation

because we need to compute key and value vectors only once instead of computing them per layer

klt = kt = Wkmt vlt = vt = Wvmt.

For the same reason, the memory footprint is smaller than a standard Transformer because only one
set of kt, vt needs to be stored. To be more precise, the memory requirement for processing a single
token is reduced from O(L× T ) to O(T ), where L is the number of layers and T is the context size.
Further, the reduced memory usage allows the batch size to be increased to recover some of the lost
parallelism, which improves training speed. Thus, the Feedback Transformer is not much slower
compared to the standard Transformer. Note that the same sharing of projections will not make the
standard Transformer efficient because those projections are applied to different representations at
each layer (the key and value vectors will not the same for all layers).

Lastly, we note that the sequential nature of the Feedback Transformer does not affect the performance
during generation where one needs to compute one step at a time anyway. The same is true for online
reinforcement learning where the input must be processed sequentially even during training.

4



Under review as a conference paper at ICLR 2021

Task / Model Accuracy (%)
Copy Char Seq
Transformer 59.1 6.2
Feedback Transformer 76.2 23.6

Reverse Char Seq
Transformer 50.2 5.9
Feedback Transformer 74.8 29.2

Counting Len 50 Len 1K
Transformer 99.6 82.4
Feedback Transformer 99.7 95.3

Random Walk
Transformer 68
Feedback Transformer 100

Algorithmic Task 3 vars 5 vars
Transformer 4L 33.7 37.5
Transformer 8L 47.4 29.1
LSTM 82.8 32.1
Feedback Trans. 4L 99.1 92.6

Table 1: Results on toy tasks. Char is char-
acter accuracy, Seq is sequence accuracy.
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Figure 3: Results on the Corridor task. The
Transformer degrades as the memory size de-
creases, but the Feedback Transformer main-
tains performance.

4 EXPERIMENTS

We explore different sequential input tasks in natural language processing and reinforcement learning.
First, we demonstrate the downsides of the standard Transformer architecture on tasks where the
Transformer performs poorly. We show that the Feedback Transformer is able to overcome challenges
and retain long memory. Next, we highlight the strength of the Feedback architecture in building
complex, high level representations even with shallow models. We demonstrate that the Feedback
model can achieve significantly stronger results than Transformer models, an effect that is exaggerated
as models get smaller. Finally, we compare the Feedback architecture to the Transformer architecture
with other work on standard long-context language modeling tasks. In experiments on large datasets,
we use the shared key-value projections to improve training time. Additional experimental details
and results can be found in the appendix.

4.1 LIMITATIONS OF TRANSFORMER: ILLUSTRATIVE TASKS

4.1.1 LIMITED ACCESS TO LONG MEMORY

First, we examine the Transformer’s limited access to long memory on several simple, straightforward
tasks that illustrate this. Unlike the standard Transformer, the Feedback architecture is able to
remember information over many timesteps.

Walking down a Corridor. In this reinforcement learning task, each agent is placed at the start of
a long corridor with either a blue or green object. The agent must look at the object’s color, walk
down the corridor, and go through the corresponding colored door at the end. The only task is to
remember the color and not become distracted by walking down the very long hallway. Results are
shown in Figure 3 and show that the performance of the Transformer degrades quickly as the memory
size shrinks, but the Feedback Transformer maintains strong performance at all memory sizes.

Copy and Reverse. We experiment next on two algorithmic tasks, copy and reverse (Kaiser &
Sutskever, 2015). We train on sequences of length 40 consisting of integers 0 through 9, and test
on sequences of length 400. Models read the input and then either copy or reverse, which requires
memory over the sequence and the ability to track position, as well as generalization capability as
the train and test settings are different lengths. We consider two variations of copying and reversing:
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either at the character level or at the sequence level. Results are shown in Table 1. The Feedback
architecture has large improvements in accuracy, indicating improved memory and positional tracking.

Counting. Finally, we experiment on a counting task, where models have a sequence of A’s in a
row, and must output the corresponding quantity of the letter B. The model must count the number of
the A’s to output the correct number of B’s. We consider two settings: training on short sequences of
lengths up to 50 and training on long sequences of lengths up to 1000. We show results in Table 1,
where we demonstrate the Feedback model is much better at counting over long sequences.

4.1.2 LIMITED STATE UPDATES

The complexity of the representations the Transformer is able to formulate is strictly dependent on
the depth, as each layer of the Transformer allows for additional nonlinearity. The Transformer, then,
can only update its state the same number of times as it has layers. We demonstrate that the Feedback
Transformer does not have this limitation — in tasks where the model must carefully track and update
its state, the Feedback architecture is able to update its state at each timestep.

Random Walk. We consider a random walk in a small grid where actions are: go forward 1 step,
left turn, and right turn. Given a history of actions and the agent’s initial position, it is strictly possible
to calculate the current position. The task is trivial because a human could write down the current
location and direction and keep updating with each action. However, Transformers cannot do this
because they lack a storage that can be updated with each input. Its hidden state can store this
information, but with each update, that information has to go up one layer.

An alternative approach to this task is to solve it all at once given a sequence of actions, which
is feasible for Transformers since they can access all inputs with their attention. However, this
approach is challenging because the effect of each action depends on the direction at that point and
whether the agent is on the edges, which itself is not known yet. This can be seen in Table 1, where
the Transformer struggles and only reaches 68% accuracy. In contrast, the Feedback Transformer
achieves 100% accuracy, which indicates the ability to track state for a long period of time. Both
models are trained on 10K sequences, each containing 100 random actions and positions.

Algorithmic task. A more complex setting where tracking and updating of a state is crucial is
code executions. A model needs keep track of all variable values and update them if necessary. To
demonstrate this, we create a simple algorithmic task that consists of the following simple statements:
assignments (e.g. x=5), increments and decrements (e.g. y--), conditionals (e.g. if x==4: y++),
and print commands (e.g. print(x)). Each task consists of 100 randomly selected statements. We
consider two settings with 3 and 5 different variables.

Processing of each statement in parallel will not work because conditional statements cannot be
executed without knowing the current variable value, which itself can depend on another conditional.
As shown Table 1, Transformers cannot solve this task because every time a variable increment
or decrement, its value can only be found one layer up in the model, and eventually will be lost.
Doubling their layers does help little, but their accuracy is far from perfect. A recurrent model like
LSTM is capable of storing a variable value while updating it, thus perform well on the 3 variables
version. However, its performance drop when there are more variables because it has to store all their
values in a single vector. The Feedback Transformer does not have this bottleneck, and can access
updated variable values from the lowest layer, so it gives strong performance on this task.

4.2 ADVANTAGES OF FEEDBACK ARCHITECTURE

We examined two limitations of standard Transformers that we improve upon: limited memory span
and limited ability to update state. In the Feedback model, we improve on these limitations and now
analyze performance on practical tasks including translation and reinforcement learning.

4.2.1 STRONG PERFORMANCE WITH SMALL, SHALLOW MODELS

The Feedback Transformer is able to create higher level, more abstract representations with fewer
layers and less capacity, as a layer can use all of the most recently created representations of previous
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Figure 4: (left) Machine Translation on WMT14 En-De, test set BLEU and decoding speed in
words-per-second for varying decoder depths. (right) Maze Navigation in Gridworld. We display
average reward comparing Feedback Transformer to standard Transformers.

timesteps. We demonstrate on neural machine translation that the Feedback model performs much
better than Transformers at small, shallow sizes. Note that for sequence to sequence, we use Feedback
Transformers only in the decoder because the encoder inputs are available simultaneously.

We evaluate the performance of the Feedback Transformer on the WMT14 En-De machine trans-
lation benchmark of 4.5 million pairs. We follow Vaswani et al. (2017) and train on WMT16 using
newstest2013 as dev and newstest2014 as test. We learn 32K joint byte pair encodings
(Sennrich et al., 2016), generate with beam size 5, tuning a length penalty on the dev set. We average
the last 10 checkpoints and apply compound splitting and compute tokenized BLEU.

In Figure 4 (left), we display results when making the model shallower only — layers are removed
from a Feedback Transformer decoder compared to Transformers. As the decoder becomes shallow,
the gap in performance between the two architectures widens. While the 1-layer Transformer model
can only reach 27.3, the Feedback Transformer has 28.3 BLEU. Shallow decoders are critical to
fast inference — reducing to 1-layer improves decoding speed by 4.2x, while only losing 1 BLEU
with the Feedback architecture. Such results are useful for practical applications, where the speed of
producing a translation is very important. We report decoding speed in tokens per second on 1 GPU.

We further experiment with large encoder but shallow decoders. The Feedback Transformer achieves
29.0 BLEU with 12 layer encoder and 2 layer decoder. As the encoder is parallelized even during
inference, the increased size of the encoder has negligible impact on decoding speed. To stabilize the
training of deeper models, we use LayerDrop (Fan et al., 2019).

4.2.2 LONG MEMORY TRACKS STATE

We apply Feedback to a reinforcement learning maze task that requires long memory to optimally
solve because agents have limited vision. Note that in such reinforcement learning tasks, the models
are trained online using A2C, so the input must be processed sequentially even during training
time. Thus, the non-parallelized nature of the Feedback Transformer is not a drawback, and training
Feedback Transformers is as fast as Transformers.

The goal is to navigate a procedurally generated random maze where colored objects are placed. One
of the colors will be randomly selected as a target, and the agent has to reach it for a reward and a new
target. For optimal performance, the agent must remember the maze and object locations. In addition,
the agent has turn actions like the Random Walk task, which makes it necessary to keep track of its
location and orientation. As shown in Figure 4 (right), the Feedback Transformer converges to reach
higher average reward, compared to Transformers. Results are shown averaged over 10 trials.

4.3 COMPARISON TO OTHER ARCHITECTURES

In this section, we first, we compare Feedback to recurrent architectures such as LSTM, as well as
hybrid RNN-Transformer architectures, and show that the Feedback is more powerful than recurrence
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Model Test

Recurrent Architectures
DenseNMT Shen et al. (2018) 25.5
RNMT+ (Chen et al., 2018) 28.5

Hybrid Architectures
BiARN (Hao et al., 2019) 28.9
SRU (Lei et al., 2017) 28.4

Transformer Architectures
Transformer (Vaswani et al., 2017)28.4
Transformer (Ott et al., 2018) 29.3
Feedback Transformer 29.5

Table 2: Results on WMT En-De compar-
ing the Feedback Transformer to Recurrent
architectures, hybrid Recurrent-Transformer
models, and standard Transformers.
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Figure 5: Comparison of different memory com-
position strategies on char-PTB. The recurrent
connection alone is not as effective as feedback
connections from a higher layer.

alone. Next, we compare our construction of the Feedback Memory with other possible compositions.
Lastly, we compare to other Transformer architectures on competitive benchmarks.

4.3.1 COMPARISON TO RECURRENT ARCHITECTURES

We compare the Feedback Transformer architecture to recurrent architectures like LSTMs as well
as hybrid RNN-Transformer architectures. In Table 2, we display that the Feedback Transformer
has stronger performance than the Transformer, RNN, and RNN-Transformer hybrid model. We
note that recurrent models address some limitations of Transformer architectures, but the Feedback
mechanism goes beyond that. By allowing all past representations to be immediately available for
the computation of future representations, Feedback is stronger than Recurrence alone — Recurrent
models can only see representations from the previous layer (as depicted in Table 2).

4.3.2 MEMORY COMPOSITION

We next investigate the importance of the specific memory mechanism of the Feedback architecture
on char-PTB. The Feedback architecture uses all layers when creating the memory, motivated by
providing access to the entire past of all computations, but other ways of creating the memory as
possible. For example, Recurrent architectures have a different memory structure. In multi-layer
RNNs, each layer has recurrent connections to the same layer, but not to higher layers. This is an
advantage of Feedback architectures — even the highest level abstractions are immediately available.

In Figure 5, we examine the construction of the Feedback memory, comparing our choice of making
all computation accessible with recurrent memory that can access all previous layers plus the same
layer, and top-only memory that can attend only to the topmost layer. The Feedback Transformer has
the best performance, closely matched by top-only memory. This indicates the importance of high
level representations (see Appendix 6.4 for further analysis on this). Note that recurrence alone is
not enough for good performance, and thus the Feedback memory provides richer representations
beyond the capacity of recurrent networks.

4.3.3 COMPARISON TO OTHER TRANSFORMER ARCHITECTURES

Finally, we examine the performance of Feedback Transformer on long context language modeling
benchmarks. We use caching (Dai et al., 2019) and relative position embeddings. Mechanisms
applied at inference time (Khandelwal et al., 2019; Krause et al., 2019) can further improve all
models, so we do not focus on these.

Wikitext-103. We evaluate on word-level language modeling on Wikitext-103 (Merity et al.,
2017). Our Feedback architecture takes 3.5 days to train, compared to the Transformer which
takes 1.2 days. We train a small Feedback model, about half the size of Transformer-XL, and find
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Model Params Test

Best Existing (Roy et al., 2020) — 15.8
Trans-XL (Dai et al., 2019) 257M 18.3

Our Transformer 140M 19.9
Feedback Transformer 126M 18.3

Table 3: Results on WikiText-103. We re-
port perplexity on test.

Model Params Test

Best Existing (Rae et al., 2020) 277M 0.97
Trans-XL (Dai et al., 2019) 277M 0.99

Feedback Transformer 77M 0.96

Table 4: Results on Enwiki8. We report bit-
per-byte on test.

that it can match the performance of Transformer-XL, as shown in Table 3. This indicates the
additional representational capacity of Feedback memory. If we train a standard Transformer that
is approximately the same size as our Feedback Transformer, we find it has worse performance
(19.9 PPL rather than 18.3). Further, mechanisms like the Routing Transformer can be added to the
Feedback Transformer as well. We focus on starting with Transformer-XL as a baseline and showing
we can match the performance with a much smaller model.

Enwiki8. Finally, we test our model on character-level language modeling in Enwiki8 (Mahoney,
2011), containing 100M unprocessed bytes from Wikipedia. We train a relatively small 12-layer
model, that is one third of the size of the Transformer-XL baseline. Since the task requires very long
context, we use adaptive attention span (Sukhbaatar et al., 2019). As shown in Table 4, the Feedback
Transformer model achieves a new SOTA performance of 0.96 bit-per-byte despite its small size.

5 CONCLUSION

We propose a novel reformulation of the Transformer that fully exploits sequential input — the
increased representation power and recursive computation of the Feedback Transformer allows
shallow and small models to have much stronger performance compared to a Transformer of the same
size. This architecture addresses two fundamental limitations of Transformers as an autoregressive
model — limited access to long memory and limited ability to update state. We demonstrate on a
variety of tasks the advantages of the Feedback architecture to illustrate the strong performance of
this straightforward modification.
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6 ADDITIONAL RESULTS

6.1 REINFORCEMENT LEARNING

Maze Navigation Easy. We experiment with a slightly different version of the Maze Navigation
task. Instead of an agent with forward, turn-left and turn-right actions, the agent has no orientation
and there are only 4 movement actions corresponding to 4 cardinal directions. This makes navigation
easier because the agent do not need to keep track of its orientation. Further, it is much easier to
compute relative locations given a history of actions. This might explain why standard Transformers
are not far behind Feedback Transformers in performance as shown in Figure 6 (left). We also
compare to LSTMs, which performs much worse. See Section 7.2 for more implementation details.

Water Maze. We modify the Morris Water Maze task (Morris, 1981) to make it more challenging.
The maze is defined by a goal position and a mapping of cell to ID — these remain fixed within an
episode but change between episodes. The agent receives as an observation the cell IDs of its current
location and the target cell. When the agent finds the target, it receives +1 reward and is randomly
teleported. During the same episode, if the agent reaches a previously seen cell, it needs to remember
how it reached the target from there to go back. Results are shown averaged over 10 trials (the reward
is reported averaged over the last 500 episodes for each trial). As shown in Figure 6 (right), the
Feedback Transformer converges to higher average reward.

0.0 0.5 1.0 1.5 2.0

Training steps ×109

0

5

10

15

20

R
ew

ar
d Transformer

Feedback Transformer

LSTM

0 1 2 3 4 5

Training steps ×108

0

1

2

3

4

5

6

R
ew

ar
d

Transformer

Feedback Transformer

LSTM

Figure 6: Averaged cumulative reward during training on (left) Maze Navigation Easy and (right)
Water Maze tasks.

6.2 IWSLT DE-EN

We additionally evaluate the Feedback Transformer on IWSLT De-En, a small machine translation
dataset. We train a small Transformer model with 6 layers. For generation, we use beam size
5 without checkpoint averaging. Model quality is evaluated using tokenized BLEU. Results are
shown in Figure 7 (left) and show that for shallower models, the Feedback Transformer has better
performance than the standard Transformer.

6.3 SUMMARIZATION ON CNN-DAILYMAIL

We evaluate on the CNN-Dailymail multi-sentence summarization benchmark of 280K news articles
Hermann et al. (2015), modeling the first 400 words of the article See et al. (2017). We evaluate
using ROUGE Lin (2004). and use 3-gram blocking and tune length Fan et al. (2017). Figure 7
(right) displays the performance of the Feedback Transformer as the decoder layers are reduced,
making the model shallower only. For all model depths, the Feedback architecture maintains a
consistent improvement in ROUGE compared to the standard Transformer. Compared to sentence-
level tasks such as translation, this summarization benchmark requires multi-sentence generation,
and the increased capacity of the Feedback architecture is beneficial.
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Figure 7: Results on (left) the IWSLT De-En dataset, and (right) Summarization on
CNN-Dailymail, test set ROUGE-L for varying decoder depths.
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6.4 ABLATION STUDIES ON LANGUAGE MODELS

We investigate which layer of a model has the best representation to be used as a Feedback memory.
In Feedback Transformers, a weighted sum of all layers is used as the memory, and feeds to all
layers. An alternative approach is to manually select one of the layers as the memory and let all
layers attend to it. In Figure 8, we explore this approach, using the same 6-layer char-PTB models
as Section 4.3.2 (top-only memory there corresponds to using the last 6th layer as memory). We can
see that representations from higher layers work better as memory, confirming our assumption of the
importance of higher level representations. Simply averaging all layers together works reasonably
well as well. Interestingly, when all layer attend to the first layer output, it works as good as the
standard Transformer. The weighted sum approach matches the best performance because it can
adopt to select any of the layers.

Here we study how different techniques affect the model performance on WikiText-103. The
results shown in Table 5 indicate:

• Pre-normalization combined with higher learning rates helps the performance, particularly
for the standard Transformer.
• Increasing the context size with adaptive span further improves the performance for both

models.
• The technique of increasing the BPTT length during training for efficiency does not affect

the final performance.
• The gap between two model is consistent along those variations.

Next, we examine the effect of the model depth on performance on char-PTB and WikiText-103
This time, we keep the total number of parameters constant and only vary the number of layers to
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Model Pre-norm + Adapt. Increase dev
higher LR span BPTT ppl

Transformer no no no 22.9
Transformer no no yes 22.9
Transformer yes no yes 21.0
Transformer yes yes no 20.6
Feedback no no no 19.7
Feedback no no yes 19.9
Feedback yes no yes 19.6
Feedback yes yes yes 19.0

Table 5: Ablation on WikiText-103 of various modeing choices. Results are shown without
finetuning.
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Figure 9: The performance on (left) char-PTB and (right) Wikitext-103 as a function of the
model depth. The number of parameters is kept constant by increasing the width.

isolate the effect of depth. This is achieved by proportionally increasing the head dimension and the
ReLU layer size when we decrease the number of layers. The results in Figure 9 demonstrate that
for the standard Transformer improves as the depth increase. In contrast, the Feedback architecture
is much robust reduced depth, even achieving the best performance on char-PTB with only two
layers.

7 ADDITIONAL IMPLEMENTATION DETAILS

7.1 RANDOM WALK TASK DETAILS

We provide additional details for the random walk toy task we explore. The agent starts at a fixed
position of a 8× 8 grid. Available actions are 1) move one step forward, 2) turn left and 3) turn right.
At every time step, the agent randomly picks on of the three actions and executes it. An action would
be ignored if it can’t be executed like going out of the grid. After 100 actions, the agent is reset back
to the initial position.

The input to the model is a sequence of actions taken by the agent, and a special symbol if there was
a reset. The output is a sequence of location symbols corresponding to the agent’s location after each
action. We generate 10k training episodes, totalling 1M tokens.

We use the same setup as our language modeling experiments, except now the model predicts separate
output tokens rather than a next token. We concatenate all the episodes and feed them to the model
as a single sequence. The training is done with the negative-log-likelihood loss. See Table 8 for the
hyperparameters used in the experiment. The attention span is set to 100, so that the models can
attend to all the information they needs to solve the task.
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vision range

Figure 10: (left) Maze Navigation task and (right) Water Maze task.

x = 1 ; print x ; x ++ ; print x ; z = 8 ; print z ; print z ; x -- ; if x > z : z -- ; z ++ ;
print z ; print x ; print x ; if z < x : z ++ ; x ++ ; z -- ; x -- ; if z > x : z -- ; z ++ ;
if x > z : z ++ ; if z < 5 : y = 7 ; print x ; if x > z : z ++ ; x ++ ; y = 7 ; if x > 10 : x
-- ; y -- ; x ++ ; z ++ ; print z ; y -- ; print x ; print x ; z ++ ; y ++ ; y ++ ; if z < 3 :
y ++ ; if x > 4 : x ++ ; z -- ; x -- ; x -- ; print x ; y ++ ; z ++ ; y -- ; if x > z : z -- ;
x ++ ; z -- ; print x ; z ++ ; print y ; y ++ ; y -- ; x -- ; print x ; y ++ ; print y ; y --
; if z < x : x ++ ; if z > 4 : y -- ; z -- ; x ++ ; if y < x : y ++ ; print y ; print z ; z --
; y -- ; x ++ ; y -- ; y ++ ; if y > 3 : z -- ; y ++ ; if z < 10 : z ++ ; z ++ ; y -- ; z ++ ;
print z ; x -- ; y -- ; x -- ; x ++ ; if x < 4 : y -- ; print y ; print z ; if z > x : y -- ;
print z ; if y < x : x -- ; print x ; print z ; if x < 4 : z -- ; if z < y : z ++ ; z -- ; x --
; print x ; if z < x : y ++ ; print x ; print z ; y -- ; if z < 6 : x ++ ; z -- ; END

Table 6: An example program from the algorithmic task with 3 variables.

7.2 MAZE NAVIGATION DETAILS

We generate random 9× 9 mazes using Kruskal’s algorithm. Dead ends are eliminated by randomly
removing one of the blocks surrounding them. We randomly place 8 target objects with different
colors as shown in Figure 10 (left). The agent is given a randomly selected color as a target. If the
agent manages to reach the correct target, it gets a reward of +1 and a new target color is sampled.
An episode ends after 200 steps. The observation includes the 3× 3 area around the agent and target
color.

We train 2-layer Transformers with a hidden size 256 and 4 heads. We set the BPTT to 100 and the
batch size to 1024. The reward discount rate is 0.99. The attention span is 200 so the agent can keep
an entire episode in memory. All agents were trained using A2C with Adam with a learning rate of
0.0003 and a entropy cost of 0.0005. For the easy version of the task, we use RMSprop with a batch
size of 128 and a learning rate of 0.0003. The RMSProp epsilon regularization parameter is set to
0.01 The LSTM model is a 3-layer LSTM with a hidden size of 256.

7.3 WATER MAZE DETAILS

The water maze task we designed is depicted visually in Figure 10 (right). The grid size is 15× 15.
To help exploration, the agent can see if the goal is within a 3× 3 area around it. An episode ends
after 200 steps. We train for 500M steps (2.5M episodes). We use 2-layer Transformers with hidden
size of 64 and 1 head. The attention span is 200 so the agent can put an entire episode in memory.

All agents where trained using A2C with RMSprop with entropy cost of 0.0001, RMSProp epsilon
regularisation parameter of 0.01, batch size of 64, and BPTT 200. Feedback Transformer and
Transformer baseline were trained with a learning rate of 0.0003. LSTM model is a 2-layer LSTM
with hidden size of 64. For LSTM model we used a learning rate of 0.0004.

7.4 ALGORITHMIC TASK DETAILS

In this task, each program consists of 100 simple statements that should be sequentially executed.
The available statement types are:

1. Initialization. Assign an initial value to a variable like x=3. A variable can only be
initialized once in each program.
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Hyperparameter Summarization WMT En-De IWSLT De-En

Encoder Layers 6 6 6
Decoder Layers 6 6 6
FFN Size 2048 4096 1024
Attention Heads 8 16 4
Dropout 0.3 0.3 0.3
Hidden Size 512 1024 512
Learning Rate 0.0005 0.001 0.0005

Table 7: Hyperparamers for sequence to sequence experiments.

Hyperparameter Random Walk char-PTB Enwik8 WikiText-103 WikiText-103
Algorithmic small large

Layers 4 6 12 4 8
Hidden size (d) 256 384 512 512 1024
FF size 4d 4d 8d 8d 4d
Head count (h) 4 4 8 8 8
Head dim d/h d/h 2d/h 2d/h d/h
Attention span 100 512 8192* 512 512, 2048*
Dropout rate 0.2 0.5 0.5 0.1 0.3
Embed. dropout - - - 0.1 0.2
BPTT len (M ) 64 128 128 256 256
Batch size (B) 512 2048 1024 512 512
Learning rate 0.0001 0.0015 0.0015 0.0007 0.0007
Gradient clip 0.1 1.0 0.1 0.1 0.1
LR warm-up steps 1k 1k 8k 8k 8k

Parameters 3.2M 10.7M 77M 44M 139M

Table 8: Hyperparamers for language modeling experiments. Here * indicates the adaptive span.

2. Increment and decrement. Increment or decrement a variable value by 1, like x++ or
y--.

3. Print. Output the value of a certain variable like print(y). Only this statement requires
model to make a prediction.

4. Conditional. Execute the nested statement only if a variable has a certain value, e.g.,
if x==4: y--. Note that conditional and print statements cannot be nested.

A program is generated by randomly choosing a statement one after another, but with the following
conditions: a variable must be initialized before being used, and a variable value have to between 1
and 10. The training data contains 10k such programs concatenated with a special separator keyword.
We generate two version the data with 3 and 5 different variables in them. An example program is
shown in Table 6. We used the same hyperparameters as the random walk task as show in Table 8.

7.5 MACHINE TRANSLATION AND SUMMARIZATION

We detail the hyperparameters in Table 7. Summarization experiments are done with the Transformer
base architecture size and WMT En-De experiments are done with the Transformer big architecture
size. As IWSLT De-En is a smaller dataset, we use a smaller model. For all sequence to sequence
experiments, only the decoder is modified to have the Feedback Transformer architecture.

7.6 LANGUAGE MODELING

In the language modeling experiments, we added several improvements on top of the original
Transformer Vaswani et al. (2017) to better adapt to unbounded sequences:
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• Hidden representation caching Dai et al. (2019): Since the input to the model is an un-
bounded sequence and the model needs to process it in small blocks, hidden representations
from previous blocks are kept in cache so that any token in the current block will the same
context length regardless of its position in the block.
• Relative position embedding Shaw et al. (2018): Relative position embeddings allow

each token in a block to be processed in the same way regardless of its absolute position
in the block. We found that adding shared embeddings to key vectors at every layer to be
effective.
• Adaptive attention span Sukhbaatar et al. (2019) Language modeling requires a model

to have a very long attention span, which is computationally expensive. The adaptive span
mechanism allows each attention head to learn different attention spans for efficiency.
• Pre-normalization Child et al. (2019): We observed that pre-normalization makes train-

ing more stable for Transformers, which allowed us to use larger batch sizes for better
parallelization.

Dropouts are applied to attention and ReLU activations. In WikiText-103 models, additional
dropouts are added to the embedding layer output and the last sublayer output.

In Table 8, we present the hyperparameter values used for our experiments. We use the same
hyperparameters for both Transformers and Feedback Transformers, and optimize them with Adam.
The final performances are obtained by finetuning the models with a 10x smaller learning rate.

Details on the char-PTB experiments We trained the models for 15k updates (or earlier if the
validation loss stops decreasing), and funetined them for 1k steps. We varied the depth of the models
while keeping the number of parameters constant. This is achieved by changing the FF size and the
head dimension inverse proportionally to the depth.

Details on the enwik8 experiments We used an adaptive span limited to 8192 tokens with a loss
of 0.0000005. The training is done for 100k updates and another 10k steps is used for finetuning. The
warming up BPTT length is used for speeding up the training, where the BPTT length is decreased to
64 for the first half of the training.

Details for Training on WikiText-103 We employed the adaptive input Baevski & Auli (2019)
and the adaptive softmax Grave et al. (2017) techniques for reducing the number of parameters within
word embeddings. The models are trained for 200k steps and the finetuned for additional 10k steps.

While most of the models have a fixed attention span of 512, the best performance is achieved by
extending the attention span to 2048 with adaptive span loss 0.00001.

After training our models, we noticed that our tokenization method differed from others by omitting
end-of-line (EOL) symbols. Since our dictionary already contained the EOL token, we were able
finetune our trained models on the data with EOL tokens, rather than training them from scratch. This
change alone brought about 1ppl improvement.
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