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Abstract—This paper aims at robust and discriminative feature
learning for target re-identification (Re-ID). In addition to paying
attention to the individual appearance information as in most
Re-ID methods, we further utilize the abundant contextual
information as additional clues to guide the feature learning.
Graph as a format of structured data is used to represent
the target sample with its context. It describes the first-order
appearance information of the samples and the second-order
topological relationship information among samples, based on
which we compute the feature representation by learning a graph
feature embedding. We provide a detailed analysis of graph
convolutional network mechanism applied in target Re-ID and
propose a novel progressive context-aware graph feature learning
method, in which the message passing is dominated by a pre-
defined adjacency relationship followed by a learned relationship
in a self-adaptive way. The proposed method fully exploits and
utilizes contextual information at a low cost for Re-ID. Extensive
experiments on five Re-ID benchmarks demonstrate the state-of-
the-art performance of the proposed method.

Index Terms—Target re-identification, graph convolutional
network, feature learning, contextual information, graph feature
learning.

I. INTRODUCTION

Target Re-ID is a task of retrieving the same identity images
across different camera views [1], [2]. Common target Re-
ID task typically includes person Re-ID [3] and vehicle Re-
ID [4], both of which have extensive application value in the
intelligent surveillance system. Despite the promising progress
made in recent years, target Re-ID remains a challenging
task, mainly in the complex within-class variations caused
by different views and the subtle between-class discrepancy
caused by similar appearance.

Taking person Re-ID as an example, there are usually
two basic steps to solve this task: feature learning [5], [6],
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Fig. 1. Illustration of different kinds of Re-ID methods. The filled rectangle
represents the sample’s feature representation. (a): The features of three
images are extracted independently based on the individual appearance
information by the convolutional neural network (CNN); (b): The features of
three images are extracted together with the consideration of the appearance
information of other samples by the graph convolutional network (GCN) and
the node feature is used as the image feature; (c): The features of three
images are extracted independently with the consideration of the appearance
information of other samples and the topological relationship information
among samples by the proposed graph feature network (GFN) and the graph
feature is used as the image feature.

[7], [8] and metric learning [5], [9], [10],[11]. A variety of
methods are proposed to focus on some of these steps to
improve Re-ID performance [12], [8], [13],[14]. The mainline
of works concentrates on exploring individual appearance
features [8], [15], [16] for Re-ID, as shown in Fig. 1 (a).
These works seek to obtain the salient feature representation
of the image and address misalignment of the image across
views by the traditional algorithm [17], [12] or the deep
learning technology [18], [19]. However, due to large within-
class variance and small between-class variance in Re-ID, the
individual appearance information is not powerful enough to
distinguish different identities for Re-ID.

In this context, another line of analysis is towards exploring
richer contextual information as additional valuable clues to
achieve Re-ID. The spatiotemporal information as a kind
of contextual information is leveraged to complement the
individual appearance information in target Re-ID [20], [21].
However, the video data needs to be processed in advance
to obtain the spatiotemporal information. Alternatively, the
contextual information associated with other samples in the
dataset can be exploited relatively cheaply and easily by setting
specific assumptions. The re-ranking Re-ID methods [22],
[12] are proposed to refine the ranking list by utilizing such
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contextual information in an unsupervised way. For example,
the method in [22] refines the ranking results by encoding
and comparing k-reciprocal nearest neighbors between the
samples. Without training under the supervision of the labeled
samples, these methods do not take full advantage of contex-
tual information. Correspondingly, some researchers propose
to learn the sample’s feature representation by the aid of its
contextual information from other samples in the dataset in a
supervised manner [2], [23], [24], [25].

Graph as a kind of non-Euclidean structured data encodes a
set of samples (i.e., nodes) and their relationships (i.e., edges)
and naturally conveys the contextual information. The graph
convolutional networks (GCNs) are correspondingly designed
to solve the problem on the graph data and can also be adopted
to learn the context-aware feature representation for Re-ID [2],
[23], [20]. These methods focus on the graph’s construction
by proposing the complicated custom-built strategies from
different perspectives. The node’s feature representation is
computed by GCNs and is used as the sample’s representation,
as shown in Fig. 1 (b). Although various attempts along this
direction have led to great performance advances, there are still
some shortcomings and limitations in these methods. Firstly,
the sample is usually modeled as the node in the graph and,
its context-aware feature representation is obtained by learning
the node feature. They do not take full advantage of the
high-order topological information in the graph for Re-ID.
Secondly, these methods simply apply the GCN technology to
learn the node feature for Re-ID, and the essential mechanism
of GCNs is not discussed in depth. In fact, it is proved that
the message passing among nodes is a critical component for
the performance benefit in GCNs [26], [27], which however
is not paid sufficient attention on these GCNs-based Re-ID
methods [2], [23], [20]. Specifically, the sample’s context
and the adjacency relationships between samples dominate
the message passing process. However in these methods, the
context is usually obtained based on a subset of samples
with relatively weak semantic associations and in a local
contextual level (i.e., a mini-batch under random shuffle), and
the adjacency relationships between samples are obtained by
measuring their similarities only based on a single dimension.
All of these result in insufficient exploitation of the context
and the relationship, which has a direct impact on the message
passing and leads to a suboptimal solution. In addition, the
over-smoothing due to multiple message passing processes is
a common problem in GCNs and may affect the expressive
power of GCNs to some extent [27], nevertheless, most of
GCNs-based Re-ID methods ignore the problem.

In this paper, we aim to learn the target sample’s context-
aware feature representation with a high-level exploration and
utilization of contextual information and low model complex-
ity. To overcome the above-mentioned problems, we capture
the sample’s global context by searching its nearest neighbors
in the whole dataset, and represent the sample with its global
context by a graph data and compute the graph feature
representation as the sample representation, as shown in Fig. 1
(c). At this point, the target Re-ID problem is transformed
into a graph matching problem. In this manner, we strengthen
the utilizations of the first-order appearance information of
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samples and the second-order topological relationship among
them. For graph feature learning, considering that the majority
of the benefit derives from the message passing process in
GCNs, we revise the classical GCN framework by highlighting
the message passing process and simplifying the non-linear
mapping process. For this, we propose a progressive context-
aware graph feature learning method by deriving a progressive
message passing process and removing the non-linear mapping
processes between layers in GCNs. By doing so, the over-
smoothing problem is also mitigated.

The contributions of this paper are summarized as follows:

1) To obtain the discriminative feature representation, we
abstract the sample with its global context as a structured data
in the form of graph, and the sample’s feature representation is
extracted by learning the graph representation. We transform
the target Re-ID problem into a graph matching problem.

2) For graph feature learning, we explore the GCN mecha-
nism applied in target Re-ID in detail, and propose a progres-
sive context-aware graph feature learning method to mine and
utilize the contextual information thoroughly.

3) The proposed method can be readily applied to most
existing offline Re-ID baselines to boost performance with
its straightforward and simple framework. The extensive ex-
periments on five Re-ID datasets verify the effectiveness and
efficiency of the proposed method.

II. RELATED WORK

We propose a novel graph feature learning method to extract
the sample’s context-aware feature representation for Re-ID.
In this section, we introduce the related works on the feature
learning-based Re-ID methods and the GCN-based Re-ID
methods, respectively.

A. Feature Learning for Target Re-ID

Feature learning plays a significant role in the targe Re-ID
task. The existing feature learning-based methods mainly aim
at extracting three types of features: global features extracted
from the whole target image [28], [16], [29], local features
generated from the local image regions [30], [15], [7], [31],
[32],[33], and a fusion of global and local features [8], [34],
[35], [36], [37],[38]. For example, Li et al. [16] focused on the
joint learning of soft pixel attention and hard regional attention
to obtaining the sample’s global feature for person Re-ID; Guo
et al. [6] applied a human parsing model and a self-attention
mechanism to exploit both the accurate human parts and the
coarse non-human parts for extracting the local features in
person Re-ID. Meng et al. [39] proposed to align the view-
aware feature representations by learning a fine-grained feature
representation for vehicle Re-ID. These methods fully exploit
the individual appearance information for feature learning
and the abundant contextual information at different semantic
levels is ignored, hindering the performance enhancement.

To overcome the limitation and further improve perfor-
mance, researchers propose to explore the contextual infor-
mation for extracting better feature representation [34], [40],
[41], [24], [42], [43], [23]. In these methods, the contextual
information is explored from three different semantic levels:
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the information of the physical neighbors in the time-space
dimension [44], [20], [21], the information of the k-nearest
neighbors in the feature space [12], [24], [43], [23], [45] and
the appearance information of other local image regions [46],
[47]. For example, Yang et al. [21] proposed a novel spatial-
temporal graph convolutional network to model the temporal
relations of different frames and the spatial relations within a
frame for video-based person Re-ID; Liu et al. [45] utilized the
sample’s contextual information from its high-order k£ nearest
neighbors for computing the similarity between samples; Liu
et al. [46] explored the vehicle parsing to learn discriminative
part-level features and model the correlation among vehicle
parts via graph convolutional networks, thus achieving precise
part alignment for vehicle Re-ID. In this paper, we aim at
mining the contextual information on the second semantic
level, i.e., exploring the information of the k-nearest neighbors
in the feature space.

B. GCNs and its Application in Target Re-1D

Graph as a kind of non-Euclidean structured data models
a set of objects and their relationships, and many real-world
irregular data can be represented by the graph. Inspired by
convolutional neural networks (CNNs) for processing regular
structured data, GCNs [48], [49] are emerged to operate on
the graph data with the node-focused application [50], [51]
and the graph-focused application [52], [53].

Recent studies are proposed to solve Re-ID task by means
of GCNs. For person Re-ID methods, according to the appli-
cation scenario, we divide them into three categories: video-
based person Re-ID, occluded person Re-ID and image-based
person Re-ID. In video-based person Re-ID, the dependencies
of time-space dimension among samples are exploited by
constructing the graph and applying GCNs on the graph [34],
[21], [40]. In occluded person Re-ID, researchers aim to align
a set of local features across images by viewing it as a
graph matching problem with the application of GCNs [41]. In
image-based person Re-ID, the graph is constructed with nodes
modeling image samples and edges modeling relationships
among them, and the node features are learned by GCNs [24],
[20], [42], [43], [23], [54], [2]. For vehicle Re-ID methods,
researchers usually model the vehicle’s appearance structure
as a graph, its feature representation is learned by GCNs [46],
[47].

As most related works with the proposed method, the image-
based Re-ID methods focus on constructing graph data with
a simple application of GCNs. These methods developed
the complicated custom-built strategies for constructing the
graph, with inadequate exploration of contextual information
and the over-smoothing problem. They result in a suboptimal
solution with high model complexity. By contrast, we focus
on the analysis of the GCN mechanism in target Re-ID and
propose a novel simple but powerful progressive context-aware
graph learning method for Re-ID, in which the contextual
information is fully exploited at a low cost and the over-
smoothing problem is also effectively mitigated. We present
a more detailed comparison with these related methods in
Section III-C.
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III. METHODOLOGY

Given a training set with labeled samples, we aim to
learn a discriminative feature embedding function under the
guidance of these samples and their context samples. In the
testing phase, given a probe sample and a test set of gallery
samples, we extract the context-aware feature representations
of samples based on the learned feature embedding function.
Target Re-ID task is achieved by computing the distance values
between feature representations and then ranking the gallery
samples based on these values.

We express the sample as a graph data, which is con-
structed by the sample and its context. The graph contains
the appearance information of the sample and its context
(i.e., nodes) and also encodes the relationship information
between them (i.e., edges). At this point, we compute the
sample’s feature representation by learning the graph’s feature
embedding based on the GCN technology.

In the following sections, we first give a brief preliminary
introduction on GCNs in Section III-A. We then elaborate on
the proposed method in Section III-B. In Section III-C, we
take a step further by discussing the differences with other
related methods in detail.

A. Preliminary Introduction on GCNs

We denote a graph as G = (V, E') with the node feature ma-
trix X and the adjacency matrix A, where V = {vy, -+ ,v,}
is a set of nodes, E = {e;j|v;,v; € V} is a set of edges,
the node feature matrix X € R™*? collects the nodes’ initial
feature representations and the adjacency matrix A € R"*"
digitizes the relations between nodes.

The GCNs-based methods usually involve two kinds of
applications: node-focused application and graph-focused ap-
plication.

In the node-focused application, it concentrates on com-
puting a new node feature matrix. There is thus only a node
embedding stage in which each node of a graph iteratively ag-
gregates the feature representations of itself and its connected
nodes (i.e., its neighbors) in the graph to compute its new
feature representation. This stage can be formatted as:

XET+1) = VYo (sz’ F@(xgr)|eij € E)) , r=1,--- R,
ey
5 denote the feature vectors of nodes v;
and v; at the r-th layer with xgl) and x\V being the initial
feature vectors in X, Y and ['g are the non-linear functions
with the learnable parameters ® and ©. The final output
of the node feature at the R-th layer encodes the node’s
appearance information and structural properties within its R-
hop neighbors, and can be used for the node classification, the
link prediction and the node recommendation and so on.

The aggregation process in the node embedding stage allows
the node to absorb the neighbors’ information and then obtain
its feature representation. Due to the information integration
within the same cluster, the node’s representation becomes
more discriminative, which is beneficial to the subsequent
classification task. However, the multi-layer aggregation (i.e.,
the value R is set too high) may mix the features of all

where x(") and x;r)
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Fig. 2. The pipeline of the proposed progressive context-aware graph feature learning method. ‘CNN’, ‘Self-attention’ and ‘Pooling’ denote the convolutional
neural network, the multi-head self-attention mechanism and the pooling operation, respectively. ‘AX’ represents the multiplication of the feature matrix X
and the adjacency matrix A. ‘Smooth;’, ‘Smoothy’ and ‘NL-learn’ denote the first-order smoothing computation, the second-order smoothing computation
and the non-linear mapping, respectively. The circle and rectangle represent the sample and its feature vector, respectively.

nodes in the graph and makes these features similar and
indistinguishable, which is called the over-smoothing problem
and possibly produces a negative effect on performance [27].

To make a further in-depth exploration for the GCN mech-
anism, we instantiates the node embedding stage in Eq. 1 by
a classic update scheme [55]:

XET+1) =0 (ZjENi A(Z7]>X§T’)W(r)> y I'= 17 e aRa

o . (2)
where A = D72(A + I)D~ 2 denotes the normalized adja-
cency matrix with T as an identity matrix and D = ;A7)
N is a set of the nodes connecting to the node 4, W () is the
learnable transformation weight at the r-th layer, o(+) is a non-
linear activation function, such as ReLU. The node embedding

in Eq. 2 can be re-written in matrix form:

Xt =g (AXOW®), r=1,--- R (3)

In each layer, the node feature’s update is actually com-
prised of two sub-updates: firstly updating the node feature
with the aid of contextual information by passing message
from interconnected nodes (X’ ) AX(), then further
updating the node feature by learning a non-linear feature
mapping (XD « o (X’Z(,T)W(T))). Essentially it is an al-
ternating iterative process. The context-aware message passing
process and the further feature non-linear mapping process
alternate with each other to update the node feature represen-
tations.

In the graph-focused application, it concentrates on com-
puting a graph feature representation, thus there is a graph
embedding stage besides the node embedding stage. In the
graph embedding stage, the graph-level feature representation
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is obtained by a pooling operation, and can be formatted as:

Xg =7 ({XER)‘UZ' € g}) , 4)

where -y is a pooling function, such as the global sum pooling
that sums the feature vectors over all nodes in the graph. The
final graph feature representation xg summarizes all nodes’
feature representations in the graph and encodes the graph
topological structure, and can be used for representing the
chemical structure of molecule compounds, classifying the
graph, and so on.

Most GCN-based Re-ID methods [20], [42], [43], [23]
can be categorized into the node-focused application and the
resulting node feature representation is adopted as the final
representation for Re-ID. By contrast, we construct a graph
data to represent the sample and compute the graph feature
representation as the sample representation, which belongs to
the graph-focused GCN application.

B. Proposed Graph Feature Learning

Graph construction. Starting from the initial individual
feature representations of all samples in the dataset, which can
be readily obtained by most existing offline Re-ID baselines,
we construct the graph G, for a target sample p.

The graph is denoted as G, = (V},, E,,) with the node feature
matrix X and the adjacency matrix Ay, where V), is a set of
sample nodes and E, is a set of edges.

To be specific, V), is composed of the anchor sample p and
its context samples in C,,

Vo ={p} UGy, o)

where C,, is a set of the global context samples of the sample
p by searching its k-nearest neighbors (k-nn) in the whole
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dataset in the initial feature space. Formally,
Cp:N(paK>:{plvp2a ‘N(paK)|:K7 (6)

where S(p,p1) > S(p,p2) > -+ > S(p,px) and S denotes
the similarity between samples’ initial representations and is
same as the similarity measure in the Re-ID baseline.

The set FE, stores the connection relations between nodes
in V), and is made up of the anchor-related edge set and the
context-related edge set,

E,=E(p+ C,) UE(C, <> Cp), (7

. apK}a

where

E(pHCp) :{eijli € {p}aj € CP}7
E(Cy <> Cp) ={e4jl(i,5 € Cp) N (S(i,5) = 0p)}

and e;; represents that the nodes 7 and j are connected
to each other, 0, = maxic(p} jec,} S(7,j) denotes tl.le
threshold value for valid connection. The node feature matrix
X, = [x1,%2,-++,%,,] € R"*? stores the samples’ d-
dimensional initial individual feature vectors with n, = K+1.
The adjacency matrix A, € R™ *"» digitizes the relations
between nodes in E), by:

A — S(Z,j) €ij S Ep
p 0 otherwise.

®)

€))

In general, based on a Re-ID baseline from which we obtain
the initial individual feature representations and the similarity
between them, the graph data for all samples in the dataset
can be constructed offline.

For the feature learning of the graph G,, we propose a
progressive context-aware graph feature learning method, in
which there is a node embedding stage followed by a graph
embedding stage. The network is illustrated in Fig.2.

Node embedding stage. From section III-A, GCNs is
essentially a two-step alternating iterative process. Applying
the classical GCN [55] in Eq. 2 to Re-ID can be interpreted
as following: the message passing process makes the sample
p’s node representation absorb its contextual information in C,
and obtains its context-aware feature representation, and the
non-linear mapping process updates the context-aware feature
representation by a learnable non-linear transformation.

The message passing process plays a more important role
than the non-linear mapping process in assembling contextual
information into the sample p. From this, we deem that the
message passing process is crucial for improving performance
compared to the non-linear mapping process. We therefore
propose a novel node embedding model by emphasizing
the message passing process and simplifying the non-linear
mapping process to achieve robust performance at a low cost.

Inspird by the method [26], we first remove the non-linear
learning functions between each layers and only keep the final
non-linear function in Eq. 3, and then derive the simplified
node embedding model. The R-layer node feature matrix for
the graph G, is computed by:

XM = o (AFX, W), (10)

where Ag is Ap to the power of R and W =
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WOWER) ... W) is reparameterized into a single learnable
transformation matrix. The simplified model in Eq. 10 can be
interpreted that the message passing process (X; — AEX,,)
and the non-linear mapping process (X « o (X, W)) are
performed successively as two completely separated steps.

However, we know from section III-A that the repeated
passing too many times could lead to the situation that the
feature representations of nodes in the graph tend to be
the same and the original information of nodes fades away
gradually over the repeated passing. It could cause the over-
smoothing problem and a further performance penalty. We
therefore further optimize the message passing process.

We propose a progressive message passing process with the
help of a fixed adjacency relationship among nodes followed
by a learnable adjacency relationship. The fixed relationship
is obtained based on the initial individual feature similarity
measure from the Re-ID baseline, by which we compute the
new feature representation of the node with the aid of infor-
mation of the 1-hop neighbors. The learnable relationship is
obtained based on a multi-head self-attention mechanism [56]
in the updated feature space, by which we further compute the
new representation with the help of information of the 2-hop
neighbors.

Specifically, we first compute the node features by a first-
order smoothing computation:

X, = concat(X,, ApX,), (11)

which concat denotes the concatenation operation. We adopt
the concatenated features as the node features for obtaining
the feature representation with better expressive power. The
first-order smoothing computation can be performed offline.

Then we apply the multi-head self-attention mechanism to
further optimize the node features by a second-order smooth-
ing computation:

. X, W) (X,WE)T\ /.
X(h)p:softmaw<( pWi)(XpWi) >(XPW,‘{),

(12)
(13)

Xp = COnCat(X(l)p7 T 7X(H)p)w7

where W2, WX and W) are the 2d x 2d-dimensional
learnable transformations at the h-th head (h = 1,--- , H),
and W € R2"4x24 j5 3 Jearnable dimensionality reduced trans-
formation. The H sub-adjacency relationships are implicitly
learned by H heads from different perspectives and obtains H
node feature matrices by Eq. 12. Then the H feature matrices
are summarized to obtain the updated node features Xp in
Eq. 13.

It can be seen that the proposed progressive message pass-
ing process is a dynamically self-adaptive process, in which
we adopt different message passing modes in two different
neighbor scales.

In the end, we add a two-layer non-linear mapping process

and obtain the resulting node features:
Xp =0 (J (Xpwl> Wz) ) (14

where W, € R?4Xd jg a learnable dimensionality reduced
transformation and Wy € R%¥? is a learnable linear trans-
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Fig. 3. Tllustration of four categories of existing GCN-based target Re-ID methods in (a)-(d) and the proposed method in (e). The circle represents the sample
and the solid circles with the same color denote the same sample. The rectangle represents the node feature representation.

formation, and we adopt ReLU as the non-linear activation
function o.

Graph embedding stage. The node feature representation
X, in Xp already contains the contextual information and can
be used as the final feature representation of the sample p for
target Re-ID. However, we hypothesize that the graph feature
representation strengthens the graph’s topological and struc-
tural information compared to the node representation. Thus
the feature representation of the sample p is further explored
by aggregating the feature representations of all nodes in the
graph and computing the graph feature representation.

The final graph feature representation is given by:

Xg, = Z wiXi, w; = softmar(wx;), (15)

i€V,
where w € R'*? is a learnable vector.
We obtain the final feature representation of the sample p
as:

f, = concat(x,, xg, ). (16)

C. Discussion with Other Related Methods

We discuss the differences between the proposed method
and other related GCN-based target Re-ID methods [24], [43],
[54], [23], [20], [42], [2] in detail in this section. The related
methods can be divided into four categories according to their
design logic, which are shown in Fig. 3. We analyze the
difference in the aspects of the graph construction and the
method architecture.

For the first category [24], [43], [54] in Fig. 3 (a), the
graph is constructed straightforwardly by using all samples in a
mini-batch as the nodes, and the node features are iteratively
updated and optimized by combining the individual feature
extraction network with classic node-feature update network.
The context samples are explored only in a random subspace
(i.e., a mini-batch), resulting in learning a suboptimal feature
representation.

For the second category [23] in Fig. 3 (b), the context
samples are updated in real-time by introducing an episodic
memory module in the training process, in which the samples’
feature representations are stored and updated in real-time.
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A tree graph is iteratively constructed by setting the anchor
sample as the root node and its context as the leaf nodes,
and the root node’s feature representation is computed by
continuously absorbing the information of the leaf nodes.
It can be seen that the global reliable context samples are
explored at the cost of high model complexity.

For the third category [20] in Fig. 3 (c), the sample’s
neighboring co-travelers in the time-space domain are explored
as its context and the graph is constructed with a probe-gallery
node pair and the context pairs. The relation representation of
the probe-gallery pair is learned by the classic GCN for Re-ID.

For the fourth category [42], [2] in Fig. 3 (d), a probe sample
and its k-nn gallery samples are used to construct the graph
with node modeling the relation feature of the probe-gallery
pair and edge modeling the similarity between gallery samples.
The relation feature is optimized by means of the classic GCN
for Re-ID. The motivation behind this graph relies on the
similarity relation transitivity, i.e., when a is similar with b
and b is similar with ¢, a high similarity between a and ¢ can
be derived.

In contrast, the proposed method in Fig. 3 (e) represents
the target sample by a graph structured data, which encodes
the first-order appearance information of the sample with
its global context and the second-order relationship infor-
mation among them. The context samples are obtained by
searching the neighbors in the whole data space at a low
cost. We propose a novel progressive context-aware graph
feature learning method based on an in-depth look at the
GCN mechanism and its relation to the Re-ID problem rather
than the simple application. The proposed method is a high-
level exploration and utilization of contextual information,
and can achieve performance enhancement with its compact
and flexible architecture based on most existing offline Re-ID
baselines.

IV. EXPERIMENTS
A. Experimental Setup

Datasets. We evaluate the proposed method on four
person Re-ID datasets CUHKO3 [57], Market1501 [17],
DukeMTMC [58], MSMT17 [59], and a vehicle Re-ID
dataset VeRi-776 [60].
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TABLE I
STATISTICS OF TARGET RE-ID DATASETS. #T-IDS DENOTES THE NUMBER
OF TARGET IDENTITY FOR TRAINING, #P-IDS/G-IDS DENOTE THE
NUMBERS OF PROBE/GALLERY IDENTITIES FOR TESTING.

Dataset #TIDs | #PIDs | #GIDs| #images| #cams
MSMT17 1041 | 3060 | 3060 | 126441 15
DukeMTMC|| 702 702 1110 | 36411 8
Market1501 751 750 751 32668 6
CUHKO03 767 700 700 | 28192 2
VeRi-776 576 200 200 | 51035 20

MSMT17 contains 126,441 images which belong to 4,101
identities from 15 cameras. These images are divided into
the training set including 32,621 images of 1,041 identities,
and the test set including 93,820 images of 3,060 identities.
Compared with other Re-ID datasets, it is a larger and more
challenging dataset.

DukeMTMC is composed of 36,411 images of 1,404 identi-
ties and is collected by eight high-resolution cameras. Accord-
ing to the database setting, the training set consists of 16,522
images of 702 identities and the test set includes 2,228 query
images and 17,661 gallery images of 702 identities.

Market-1501 is collected by six disjoint cameras at the
Tsinghua University campus, and it consists of 32,668 images
of 1,501 identities. According to the database setting, 12,936
images from 751 identities are utilized as the training set,
while 3,368 probe images and 19,732 gallery images from
the remaining 750 identities are used as the test set.

CUHKO3 includes 14,097 images of 1,467 identities cap-
tured by six cameras, of which 7,365 images of 767 identities
are used as the training set and 6,732 images of 700 identities
are used as the test set. There are 1,400 query images and
5,332 gallery images in the test set. CUHKO3 provides both
hand-labeled and DPM-detected bounding boxes [61]. We
present results on both ‘labeled’ and ‘detected’ settings in the
experiments.

VeRi-776 is a large-scale urban surveillance vehicle dataset
for vehicle Re-ID. It contains over 50,000 images of 776
vehicles labeled with rich attributes, e.g. types, colors, brands,
license plate annotation and spatiotemporal relation annota-
tion. In this dataset, 37,781 images of 576 vehicles are applied
as a training set and 11,579 images of 200 vehicles are
employed as a test set. The query set is composed of 1678
images from the test set.

The statistic details of the five datasets are summarized in
Table 1.

Implementation and Evaluation. The experiments are
conducted on a TITANV GPU with 12 GB of memory. During
training, there are only 50 epochs for CUHKO3 dataset and
20 epochs for the rest of datasets. The batch size is 128
with each identity containing 4 image samples. We adopt the
Adam optimizer [62] with a warmup strategy for the learning
rate and the objective function is the weighted summation of
triplet loss, cross entropy loss and center loss, similar to the
settings in the method [63]. During testing, the batch size is
32 and the target Re-ID ranking is computed by sorting the
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7

similarity values between the samples’ feature representations.
There are two parameters in the proposed method: the number
of neighbors K for constructing the graph in Eq.6 and the
number of heads H in the multi-head self-attention mechanism
for learning the adjacency relationship in Eq.13. We set K = 4
and H = 1 in the experiments. The proposed method is
evaluted based on several state-of-the-art CNN-based Re-ID
models as the baseline: StrongB [63], FastReID [64] and
AGW [19]. Two conventional evaluation metrics are reported:
cumulated matching characteristics (CMC) and mean average
precision (mAP).

B. Performance Analysis

1) Parameter analysis: Fig. 4 shows the results of the
proposed method with the change of two parameters K and
H on DukeMTMC and Market1501 datasets. We adopt the
StrongB method [63] as the baseline in follow-up experiments
unless otherwise stated.

With the increase of K, the Rank-1 and mAP results present
an earlier increasing trend and then tend to be stable on
two datasets. On the one hand, a larger K means that more
context samples are introduced for constructing the graph and
more contextual information can be explored for computing
the graph feature representation. The increasing trend of the
results indicates that the contextual information is utilized
efficiently by the proposed method to improve performance.
On the other hand, the disturbance is introduced with too
large value of K. The proposed method however shows its
strong robustness against the introduction of disturbance when
sequentially increasing K. It might be due to our second-
order smoothing computation in which a reliable adjacency
relationship among samples is learned by the self-attention
mechanism and indicates the weak connections between the
anchor sample and the disturbance samples.

With the increase of H, there is a relatively stable per-
formance on two datasets. The multi-head mechanism allows
that the adjacency relationship among nodes is learned from
H different perspectives. However, the context-filtering rule of
k-nn leads to a relatively simple relationship among nodes at
the semantic level. As a result, the sub-adjacency relationships
learned from different heads are essentially similar, contribut-
ing to the proposed method’s robustness against the change of
H.

2) Ablation study: There are three key stages in the pro-
posed method: the node embedding stage and the graph
embedding stage for learning the sample’s graph feature
representation, the concatenation stage for obtaining its final
feautre representation.

We assess the contributions of these stages to the perfor-
mance on DukeMTMC and Market1501 datasets. As shown in
Table II, the introduction of the node embedding stage brings
a remarkable positive impact on results (StrongB (baseline) vs.
Ours (w/ N)), indicating the effectiveness of the node embed-
ding stage; the further introduction of the graph embedding
stage also leads to better results (Ours (w/ N) vs. Ours (w/
N+G)), showing the superiority of the graph representation
compared to the node representation for Re-ID; in addition,
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Fig. 4. The influence of the number of neighbors K for the graph construction and the number of heads H for the second-order smoothing computation on
performance.

TABLE 11
ABLATION STUDY OF THE PROPOSED METHOD. ‘SMOOTH1’, ‘SMOOTH2’, ‘NL-LEARN’, ‘POOLING’ AND ‘CONCAT’ ARE THE ABBREVIATIONS OF THE
FIRST-ORDER SMOOTHING COMPUTATION IN EQ.11, THE SECOND-ORDER SMOOTHING COMPUTATION IN EQ.13, THE NON-LINEAR MAPPING PROCESS IN
EQ.14, THE POOLING OPERATION IN EQ.15 AND THE CONCATENATION OF THE FEATURES IN EQ.16, RESPECTIVELY.

Settings DukeMTMC Market1501
Models Node embedding stage Graph embeqding stage | Nl Rank.l mMAP Rank.l mAP
Smooth; Smooth, NL-learn Pooling
StrongB (baseline) [63] X X X X X 864 764 945 859
Ours_N (w/o Sy) X v v v v 88.1 863 946 923
Ours_N (w/o Ss) v X v v v 883 86.6 943 926
Ours_N (w/o NL) v v X v v 88.7 860 950 924
Ours (w/ N) v v v X X 889 858 955 917
Ours (w/ N+G) v v v v X 89.3 869 954 925
Ours v v v v v 89.5 86.6 954 925
TABLE 1II

COMPARISON WITH CLASSICAL GCN METHODS ON DUKEMTMC AND MARKET1501 DATASETS.

DukeMTMC Market1501
Models

Rank-1 mAP Rank-1 mAP
StrongB (baseline) [63] 86.4 76.4 94.5 85.9
GCN-O [55] 883 8.6 951 88.7
. GIN [65] 88.3 81.8 950  88.I
Node embedding stage | - hSAGE [66] 87.8 817 948  87.8
Ours (w/ N) 889 858 955 917
GCN-0+G 882 824 952 887
. GIN+G 880 819 952 883
Graph embedding stage | 5 HSAGE+G 879 819 951 880
Ours 89.5 866 954 925
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TABLE IV
INFLUENCE OF NUMBERS OF THE SMOOTHING COMPUTATION ON PERFORMANCE.
DukeMTMC Market1501
Iterations Smooth; Smoothsy Smooth; Smoothsy
Rank-1 mAP | Rank-1 mAP | Rank-1 mAP | Rank-1 mAP
1 89.5 86.6 89.5 86.6 954 92.5 95.4 92.5
2 89.1 84.2 89.4 86.1 95.3 92.2 95.4 92.5
3 89.2 85.2 89.7 86.1 95.2 92.4 95.3 92.4
4 89.1 85.9 89.5 86.1 94.9 92.1 954 924
TABLE V 1o "
THE RUNNING TIME OF THE PROPOSED METHOD. THE OFFLINE TIME ° e Merkeriat . ——CUHKO3(detected)
INCLUDES THE GRAPH CONSTRUCTION’S TIME AND THE FIRST-ORDER j
SMOOTHING COMPUTATION’S TIME. g, g
. Time (s) . g°
Dataset Number of images Offiine  Online : .
DukeMTMC 36,411 124.68 160.33 ! 1
Market1501 32,668 11049 130.26 ’ ° Eposhs * ° * Pepachs “ *
CUHKO3(detected) 14,096 27.57 166.78

there is a similar performance for the proposed method with
the graph representation and that with the concatenated repre-
sentation (Ours (w/ N+G) vs. Ours). It may because the graph
feature representation already carries the individual appearance
information in the concatenated representation. To improve
the proposed method’s robustness, we adopt the concatenated
feature for Re-ID.

We analyze the effectiveness of the successive operations in
the node embedding stage. As shown in Table II, the higher
Rank-1 accuracy is obtained by Ours than that by Ours_N
(w/lo S1) or Ours_N (w/o S»), indicating that both of the
proposed first-order smoothing computation and the second-
order smoothing computation bring the positive effects on per-
formance, specifically, the first-order computation has a slight
advantage over the second-order computation (Ours_N (w/o
S1) vs. Ours_N (w/o S»)); in addition, the comparison between
Ours_N (w/o NL) and Ours illustrates the effectiveness of the
non-linear mapping process.

3) Comparison with classical GCN methods: The effective-
ness of the proposed method has been proved in Section IV-B2.
In this section, we verify that the effectiveness is mainly owing
to the full exploitation and utilization of the contextual infor-
mation by the proposed method. We adopt several classical
GCN methods [55], [65], [66] instead of our graph feature
learning method for Re-ID and report the comparison results
in Table III'.

Firstly, the performance is improved by applying either
the proposed method or these GCN methods on the StrongB
baseline both in the node embedding stage and in the further
graph embedding stage, which provides a powerful support for
the usefulness of the contextual information and the superiority

I'We set the number of GCN layers to 1 for GCN-O [55] and GIN [65],
and 2 for GraphSAGE [66] via 2-fold cross validation in DukeMTMC.
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Fig. 5. Illustration for the convergence of the proposed method.

of the graph representation for Re-ID. Secondly, it can be seen
that the proposed method has an overwhelming advantage over
these GCN methods in the node embedding stage, for example,
Ours (w/ N) achieves 3.2% and 3.0% mAP gains compared to
the state-of-the-art GCN-O [55] on two datasets, respectively.
It indicates that our node embedding scheme fits better for
the Re-ID task. Finally, based on the performance advantages
in the node embedding stage, the proposed method shows the
most significant performance improvement and also achieves
the best results by further adding graph embedding stage
compared to these GCN methods with our graph embedding
stage?, for instance on DukeMTMC dataset, 0.6% and 0.8%
gains in the proposed method but 0.1% and 0.2% gains in the
best GraphSAGE method at Rank-1 and mAP. It indicates the
advancement of the overall framework in the proposed method.

4) The message passing vs. the non-linear mapping: Since
the contextual information interaction occurs in the message
passing process rather than the non-linear mapping process in
GCNs, we assume that the message passing is more important
than the non-linear mapping in improving Re-ID performance
and derive the proposed method by strengthening the message
passing and weakening the non-linear mapping. We verify the
assumption by the experimental comparisons in this section.
GCN-0O+G in Table III can be viewed as the proposed method
with the classic node embedding scheme by Eq. 2. Starting
from this, we simplify the non-linear mapping and derive the
proposed method with the node embedding scheme by Eq. 10,
of which the results are presented by Ours_N (w/o S2) in
Table II and are better by a large margin than that of GCN-
0O+G at mAP. Based on Ours_N (w/o S>), we enhance the

>These GCN methods are proposed with a focus on the node embedding
stage for the node-focused application, thus there is no graph embedding stage
in these methods.
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TABLE VI
COMPARISON ON PERSON RE-ID DATASETS. WE RERUN THE PUBLISHED CODE OF THE METHOD MARKED WITH ‘*’ ACCORDING TO THE AUTHORS’
DEFAULT SETTING AND REPORT THE RESULTS. THE BEST RESULTS (EXCEPT FOR THE RE-RANKING RESULTS) ARE SHOWN IN RED.
CUHKO3
Methods MSMT17 DukeMTMC Market1501 labeled detected
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP
BAT-net [67] ICCV19 79.5 56.8 87.7 77.3 95.1 87.4 78.6 76.1 76.2 73.2
ABD-Net [68] ICCV19 82.3 60.8 89.0 78.6 95.6 88.3 - - - -
Pyramid-reid [5] CVPRI19 - - 89.0 79.0 95.7 88.2 78.9 76.9 78.9 74.8
StrongB [63] TMMI19 72.5 48.3 86.4 76.4 94.5 85.9 63.8 61.2 58.3 58.0
StrongB(IBNa)* [63] TMM19 77.4 54.2 89.0 78.8 95.0 87.5 65.6 63.8 62.3 60.6
CSPR-Net [33] TMM19 75.3 50.8 83.5 71.9 94.2 84.8 64.7 62.8 - -
FastReID* [64] arXiv20 84.9 62.8 91.9 83.5 95.9 90.4 81.1 78.7 77.6 74.4
VA-reID [69] AAAI20 - - 91.6 84.5 96.2 91.7 - - - -
CBN [70] ECCV20 - - 84.8 70.1 94.3 83.6 - - - -
RGA-SC [8] CVPR20 80.3 57.5 - - 96.1 88.4 81.1 77.4 79.6 74.5
DF-HMC [38] TMM20 74.3 43.6 83.3 68.2 93.8 81.8 - - - -
3D-SF [71] CVPR21 - - 88.2 76.1 95.0 87.3 - - - -
CDNet [72] CVPR21 78.9 54.7 88.6 76.8 95.1 86.0 - - - -
StrongB+FIDI [11] TMM21 - - 88.1 77.5 94.5 86.8 75.0 73.2 72.1 69.1
FA-Net [73] TIP21 76.8 51.0 88.7 77.0 95.0 84.6 - - - -
AGW* [19] TPAMI21 74.4 49.0 88.5 79.3 95.2 88.5 73.3 72.5 70.6 70.0
SGGNN [42] ECCV18 - - 81.1 68.2 92.3 82.8 - - - -
DFL-SGLE [18] PR18 - - - - 83.6 63.4 - - - -
AFF-GNN [43] ACMMMI19 - - 87.6 85.3 95.6 92.7 - - 68.2 71.6
SFT [24] ICCV19 73.6 47.6 86.9 73.2 934 82.7 68.2 62.4 - -
MNE [23] ICCVI19 - - 90.4 87.5 - - 77.4 77.7 - -
CAGCN [2] AAAI21] - - 91.3 85.9 95.9 91.7 - - - -
Ours+StrongB 78.1 63.8 89.5 86.6 954 92.5 73.0 76.9 70.7 74.9
Ours+StrongB(IBNa)* 82.3 69.0 914 87.2 95.7 93.1 75.6 79.3 72.1 75.6
Ours+AGW* 80.2 60.5 90.2 84.3 96.3 91.9 79.4 80.1 77.6 77.8
Ours+FastReID* 87.2 70.5 92.8 87.4 96.4 93.2 84.9 85.2 83.1 82.3
Ours+FastRelD*+rerank [12] - - 93.6 90.1 96.7 94.6 88.6 90.2 86.6 87.7

message passing by adding a trainable message passing and
derive the proposed method (Ours), which achieves a further
improvement at Rank-1 compared to the Ours_N (w/o S3) in
Table II. Overall, the performance is continuously improved
when strengthening the message passing and weakening the
non-linear mapping.

5) Analysis of over-smoothing: The multiple message pass-
ing processes could lead to the over-smoothing problem. We
conduct the experiments by increasingly iterating the first-
order smoothing computation or the second-order smoothing
computation in our proposed progressive message passing
process, and verify its effectiveness for mitigating the over-
smoothing problem.

As shown in Table IV, the over-smoothing problem caused
by the multiple first-order smoothing computations can be
observed with a declining trend in performance with increased
of iteration times. By contrast, there is no over-smoothing
problem in the second-order smoothing computation, and al-

Authorized licensed use limited to: Soochow University.

most stable performances are obtained with different iterations
of the second-order computation. The adjacency relationship
among nodes is learned self-adaptively in the second-order
computation, and such relationship dominates a self-motivated
message passing process which is then immune to the over-
smoothing problem. Our progressive message passing pro-
cess in which Iterations=1 is set for both of Smooth; and
Smoothy obtains the best performance in Table IV. It shows
the availability of our proposed process for mitigating the over-
smoothing problem.

6) Efficiency analysis: Fig. 5 and Table V show the iterative
convergence process in the training phase and the running
time of the proposed method on DukeMTMC, Market1501
and CUHKO3(detected) datasets, respectively. It can be seen
that the proposed method converges rapidly and takes a short
time for the online training accordingly. The time of the offline
process is also acceptable.
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TABLE VII
COMPARISON ON A VEHICLE RE-ID DATASET. WE RERUN THE PUBLISHED
CODE OF THE METHOD MARKED WITH ‘*’ ACCORDING TO THE AUTHORS’
DEFAULT SETTING AND REPORT THE RESULTS. THE BEST RESULTS
(EXCEPT FOR THE RE-RANKING RESULTS) ARE SHOWN IN RED.

VeRi-776

Methods rank-1 mAP
VANet [74] ICCV19 89.8 66.3
PrNd [75] CVPRI19 94.3 74.3
StrongB* [63] TMM19 96.4 79.8
FastRelID* [64] arXiv20 96.9 81.3
CFVMNet [76] ACMMM20 | 95.3 77.1
SPAN+CPDM [77] ECCV20 94.0 68.9
SAVER [78] ECCV20 96.4 79.6
PVEN [79] CVPR20 95.6 79.5
StrongB+FIDI [11] TMM21 95.7 77.6
AGW* [19] TPAMI21 94.5 75.2
PCRNet [46] ACMMM20 | 954 78.6
SGAT [80] ACMMM20 | 89.7 65.7
CAGCN [2] AAAI21 95.8 79.6
Ours+StrongB* 96.7 82.9
Ours+AGW* 94.6 75.6
Ours+FastRelD* 97.0 82.8
Ours+FastRelD*+rerank [12] 97.3 85.3

C. Comparison with State-of-the-arts

In this section, we compare the proposed method with the
state-of-the-art individual-based and context-based methods on
four person Re-ID datasets and a vehicle Re-ID dataset. The
results are reported in Table VI and Table VII.

In comparison with the individual-based methods, the pro-
posed method with different baselines achieves competitive
performance on all datasets. Specifically, the proposed method
with the FastRelD as baseline [64] performs the best results
with all comparisons. It is worth noting that the proposed
method could adopt any individual-based methods as the
baseline for further enhancement and then can readily remain
the state-of-the-art performance with the robust baseline.

In comparison with the context-based methods, the proposed
method surpasses all of them on all datasets. The architectures
of these context-based methods are designed with sophisti-
cated network structures and based on the joint optimization of
individual-based feature representation and context-based fea-
ture representation. However, the architecture of the proposed
method allows flexible selection of the individual-based base-
line for the context-based feature representation optimization.
We also report the re-ranking results of the proposed method
by utilizing the PBCM post-processing method [12] and the
performance boosting is obtained on all dataset?.

In addition, Fig. 6 visualizes the distance relations between
the samples’ feature vectors across views from the StrongB
baseline [63] and the proposed method. We randomly select

3Due to limited computer memory, the PBCM post-processing method [12]
can not be performed on MSMT17.
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(a) Baseline (b) Ours

Fig. 6. Visualization of the distance matrix from the StrongB baseline [63]
and the proposed method on DukeMTMC. We randomly select seven identities
with their images and show the distance matrix between the features of images
across views by arranging their identities in turn.

seven identities with their images for computing the distance
matrix. Seven small rectangles in a diagonal of the distance
matrix represent the distance submatrices within each identity,
respectively. The remaining region of the distance matrix
describes the distance relations between different identities. It
can be seen from Fig. 6 that for the distance matrix from the
proposed method, the values of distance submatrices are closer
to zero and others tend to be larger than the baseline, indicating
that the proposed method effectively facilitates intra-class
compactness and inter-class separability.

V. CONCLUSION

In this paper, we propose to learn a discriminative feature
embedding with the aid of graph-based contextual information
for target Re-ID. We adopt an individual feature extractor
as the baseline, the global context of each sample is firstly
explored in the whole dataset to construct the graph. For
graph feature learning, we analyze the nature of the GCN
mechanism applied in target Re-ID, and propose a progressive
context-aware graph feature learning method. The learned
graph feature representation conveys the first-order appearance
information of the sample and its context and the second-order
topological relationship among them, and is concatenated into
the final representation of the sample. The proposed method
enjoys simplicity and effectiveness, which are fully verified by
extensive ablations and compared experiments on four widely-
used person Re-ID datasets and one vehicle Re-ID dataset.
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