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ABSTRACT

Transformer-based models have recently become wildly successful across a diverse
set of domains. At the same time, recent work has shown that Transformers are
inherently low-pass filters that can oversmooth the input, reducing the expressivity
of their representations. A natural question is: How can Transformers achieve
success given this shortcoming? In this work we show that in fact Transformers are
not inherently low-pass filters. Instead, whether Transformers oversmooth or not
depends on the eigenspectrum of their update equations. Our analysis extends prior
work in oversmoothing and in the closely-related phenomenon of rank collapse. We
show that many successful Transformer models have attention and weights which
satisfy conditions that avoid oversmoothing. Finally, we validate our observations
with a simple way to parameterize the weights of the Transformer update equations
that allows for control over its spectrum, ensuring that oversmoothing does not
occur. Compared to other solutions for oversmoothing, our approach does not
require a new architecture, or any additional hyperparameters.

1 INTRODUCTION

In recent years, Transformer models Vaswani et al. (2023) have achieved astounding success across
vastly different domains: e.g., vision Dosovitskiy et al. (2021); Touvron et al. (2021a), NLP Touvron
et al. (2023); Wei et al. (2023); Kaddour et al. (2023), chemistry Schwaller et al. (2019). However,
without massive training datasets, their performance can quickly saturate as model depth increases
Kaplan et al. (2020); Wang et al. (2022)

This appears to be caused by a fundamental property of Transformer models: a recent line of work
argues that they are inherently low-pass filters Wang et al. (2022); Park & Kim (2022); Guo et al.
(2023); Ali et al. (2023). This causes them to oversmooth as the number of layers increases, eventually
causing the representation of all features to converge to the same vector.

In practice, this has led to a search for replacements for self-attention layers, including completely
new attention blocks Wang et al. (2022); Ali et al. (2023) and normalization layers Guo et al. (2023),
convolutional layers Park & Kim (2022), fully-connected layers Liu et al. (2021a); Kocsis et al.
(2022); Yu et al. (2022a), and even average pooling layers Yu et al. (2022b).

In this work we show that in fact, Transformer models are not inherently low-pass filters. Specifically,
by analyzing the spectrum of the Transformer update equations, it is possible to place conditions on
the eigenvalues of attention and weight matrices such that oversmoothing does not occur. We make
the following contributions:

• We give a new characterization of how the eigenspectrum of attention and weight matrices
in the Transformer update affects oversmoothing as depth increases. This generalizes prior
work which analyzed the spectrum of attention matrices alone Wang et al. (2022); Ali et al.
(2023).

• We show that a majority of the attention and weights of successful pre-trained Transformer
models Dosovitskiy et al. (2021); Touvron et al. (2021a) have eigenvalues that satisfy
conditions that avoid oversmoothing.

• We detail how the closely-related phenomenon of ‘rank-collapse’ Dong et al. (2021); Noci
et al. (2022) will occur except in extremely rare cases. This extends prior analyses on
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Figure 1: Transformers can oversmooth, or not. Evolution of the system Xℓ = Xℓ−1 +
AXℓ−1WV Wproj. When A has its most positive eigenvalue dominate λA

1 we get oversmooth-
ing. If instead its smallest eigenvalue dominates λA

n , we get sharpening.

rank collapse Dong et al. (2021), answering an open question about the role of the residual
connection on rank-collapse.

• We describe a simple way to reparameterize the weights of the Transformer update to ensure
that oversmoothing does not occur. Compared to other solutions to oversmoothing, our
approach does not require a new architecture, or any additional hyperparameters.

2 BACKGROUND

The Transformer Update. At their core, Transformers are a linear combination of a set of ‘heads’.
Each head applies its own self-attention function on the input X ∈ Rn×d as follows

A := Softmax
( 1√

k
XWQW

⊤
KX⊤

)
, (1)

where the Softmax(·) function is applied to each row individually. Further, WQ,WK ∈ Rd×k are
learned query and key weight matrices. This ‘attention map’ A then transforms the input to produce
the output of a single head

AXWV Wproj,

where WV ,Wproj ∈ Rd×d are learned value and projection weights. A residual connection is added
to produce the output Xℓ of any layer ℓ:

Xℓ := Xℓ−1 +AℓXℓ−1WV,ℓWproj,ℓ, (2)

It is possible to introduce further complexity by learning additional heads (i.e., additional A,WV ) and
summing all head outputs. For simplicity we will describe properties of the single-head Transformer.

Oversmoothing via Low-Pass Filtering. There are many ways to measure oversmoothing, we
opt here for the definition described in Wang et al. (2022) based on filtering, which we found the
most intuitive. The overall idea is that we can view the layers of a deep learning model as a filtering
operation that is applied repeatedly to X. If the filtering operation is low-pass, it amplifies only the
lowest frequency of X, smoothing X. On the other hand, a high-pass filter will amplify all other
frequencies.

Specifically, let F : Rn×d → Cn×d be the Discrete Fourier Transform (DFT). The DFT of
X can be computed via matrix multiplication: F(X) := FX, where F ∈ Cn×n is equal to
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Fk,l := e2πi(k−1)(l−1) for all k, l ∈ {2, . . . , n} (where i :=
√
−1), and is 1 otherwise (i.e., in the first

row and column). Define the Low Frequency Component (LFC), also called the Direct Current, of X
as LFC[X] := F−1diag([1, 0, . . . , 0])FX = (1/n)11⊤X. Further, define the High Frequency Com-
ponent (HFC), also called the Alternating Current, of X as HFC[X] := F−1diag([0, 1, . . . , 1])FX =
(I− (1/n)11⊤)X.
Definition 1 (Wang et al. (2022)). Given an endomorphism f : Rn → Rn where fL denotes applying
f repeatedly L times, f is a low-pass filter if and only if for all X ∈ Rn×d

lim
L→∞

∥HFC[fL(X)]∥2
∥LFC[fL(X)]∥2

= 0.

3 DO TRANSFORMERS ALWAYS OVERSMOOTH?

This is the main question we are trying to answer: are Transformers inherently low-pass filters,
oversmoothing as depth increases? We will first introduce preliminary notation and assumptions. We
then analyze how the eigenvalues of the Transformer update equations converge as depth increases.
This allows us to derive convergence results for the features as well. Finally, using Definition 1, we
derive the conditions under which Transformers are and are not low-pass filters.

PRELIMINARIES

We start by rewriting eq. (2) to simplify the analysis. First note that Definition 1 applies for a fixed
function f , applied L times. Because of this, we will analyze applying same attention and weights at
each layer1. Define the vec(M) operator as converting any matrix M to a vector m by stacking its
columns. We can rewrite eq. (2) vectorized as follows

vec(Xℓ) = (I+W⊤
projW

⊤
V︸ ︷︷ ︸

:=H

⊗A)vec(Xℓ−1). (3)

This formulation is especially useful because vec(XL) = (I+H⊗A)Lvec(X). We now introduce
an assumption on A that is also used in Wang et al. (2022).
Assumption 1 (Wang et al. (2022)). The attention matrix is positive, i.e., A > 0, and invertible.

This assumption nearly always holds unless A numerically underflows. Initialization for WQ,WK

and normalization for X are often designed to avoid this scenario. In our experiments we never
encountered aij = 0 for any element (i, j) ∈ Rn×Rn or A that was not invertible, in any architecture.

Note A is also right-stochastic, i.e.,
∑

j ai,j = 1, by definition in eq. (1). This combined with
Assumption 1 immediately implies the following proposition.
Proposition 1 (Meyer & Stewart (2023)). Given Assumption 1, all eigenvalues of A lie within
(−1, 1]. There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector 1.
No eigenvectors of A are equal to 0.

We leave the proof to the Appendix. We can now analyze the eigenvalues of the Transformer update
equations.

THE EIGENVALUES

As the number of layers L in the Transformer update eq. (3) increases, one eigenvalue of (I+H⊗A)L

will dominate the rest (except in cases of ties, which is rare as H and A are learned). We define this
formally below.
Definition 2. At least one of the eigenvalues of (I+H⊗A), i.e., (1+λH

j λA
i ) has a larger magnitude

than all others, i.e., there exists j∗, i∗ (which may be a set of indices if there are ties) such that
|1 + λH

j∗λ
A
i∗ | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗. These eigenvalues

are called dominating.
1It is straightforward to extend the analysis to changing attention and weight matrices with additional notation

and conditions. We opted against doing this to make the results simpler and clearer. We plan to analyze this in
future work.
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Which eigenvalue(s) dominate will control the smoothing behavior of the Transformer.
Theorem 1. Consider the Transformer update with fixed A > 0,H := W⊤

projW
⊤
V , as described

in eq. (3). Let {λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }dj=1 be the eigenvalue and eigenvectors of A and H.

Let the eigenvalues (and associated eigenvectors) be sorted as follows, λA
1 ≤ · · · ≤ λA

n and
|1 + λH

1 | ≤ · · · ≤ |1 + λH
d |. Let φH

1 , . . . , φH
d be the phases of λH

1 , . . . , λH
d . As the number of layers

L → ∞, one eigenvalue dominates the rest (multiple dominate if there are ties):

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

1 λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 > 0

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
k λA

1 |
(1 + λH

k λA
1 ) if |1 + λH

d λA
n | < |1 + λH

k λA
1 |

}
if λA

1 < 0, φH
d ∈ [−π

2 ,
π
2 ]

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

d λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 < 0, φH
d ∈ (π2 , π] ∪ [−π,−π

2 )

where λH
k is the eigenvalue with the largest index k such that φH

k ∈ (π/2, π] ∪ [−π,−π/2).

The proof of Theorem 1 is in the Appendix. This Theorem says that depending on the phases (also
called the ‘arguments’ or ‘angles’) of the eigenvalues of H and whether the eigenvalues of A are all
positive (i.e., λA

1 > 0) or some are negative (i.e., λA
1 < 0, recall that by Proposition 1, A has no 0

eigenvalues), the dominating eigenvalue changes, and always contains either λA
n or λA

1 .

If the eigenvalues of H are all real, we can simplify Theorem 1, we detail this in Appendix B. Given a
characterization of the eigenvalues as depth increases, we can identify how the features XL converge.

THE FEATURES

Theorem 2. As the number of total layers L → ∞, the feature representation XL converges. Which
representation it converges to depends on the dominating eigenvalue, as given in Theorem 1. If a
single eigenvalue dominates, there are two cases: (1) If (1 + λH

j λA
n ) dominates then,

XL → (1 + λH
j λA

n )
Lsj,n1v

H
j

⊤
, (4)

(2) If (1 + λH
j λA

1 ) dominates then,

XL → (1 + λH
j λA

1 )
Lsj,1v

A
1 v

H
j

⊤
(5)

where sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the matrix Q−1 (here Q is the matrix of
eigenvectors of (I+H⊗A)). If multiple eigenvalues have the same dominating magnitude, the final
representation XL converges to the sum of the dominating terms.

See the Appendix for a proof. Theorem 2 tells us that whenever a single eigenvalue (1 + λH
j λA

n )

dominates, every input in XL converges to the same feature vector. This is because vA
n = 1 and so

xL,i ∼ vH
j , for all i as L → ∞. On the other hand, whenever (1 + λH

j λA
1 ) singularly dominates,

each feature is not guaranteed to be identical. However, in both cases the final representation XL is
rank one. If instead there are multiple eigenvalue pairs λH

j λA
i that equal the value of the dominating

eigenvalue, then the rank of XL depends on the number of completely unique pairs.
Corollary 1. Let E be the set of pairs of indices (j, i) such that |1+λH

j λA
i | is equal to the dominating

eigenvalue magnitude. Define a unique pair set U ⊆ E , for which the following holds: (j, i) ∈ U
iff (j, i) ∈ E and (j, i′), (j′, i) /∈ U , for all i′ ∈ {1, . . . , n} \ i and j′ ∈ {1, . . . , d} \ j. Define a
maximal unique pair set U∗ as |U∗| ≥ |U| for all unique pair sets U . As L → ∞, the rank of XL

converges to |U∗|.

The proof is left to the Appendix. Dong et al. (2021) proved that there exist infinitely many
parameterizations of A and H such that the rank of XL does not collapse to 1. For instance, they
point out that if A = H = I rank collapse does not occur. Corollary 1 describes exactly which
parameterizations do not have rank collapse: only when multiple eigenvalues of A and H are perfectly
balanced such that multiple eigenvalues simultaneously have equivalent dominant magnitudes, which
occurs for A = H = I. However, this is a rare case: because A and H are learned, it is unlikely the
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magnitude of any two eigenvalues |1 + λH
j λA

i | will be identical. In these cases, the rank of XL will
converge to 1, even with the residual connection.

This result on feature convergence allows us to analyze when the Transformer update in eq. (3) is a
low-pass filter, and when it is not.

FILTERING

Theorem 3. For all X ∈ Rn×d, as the number of total layers L → ∞, if (1) (1 + λH
j λA

n ) dominates,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= 0, (6)

and so (I+H⊗A) acts as a low-pass filter, as in Definition 1. If (2) (1 + λH
j λA

1 ) dominates,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

̸= 0, (7)

and so (I + H ⊗ A) does not act as a low-pass filter. If (3) multiple eigenvalues have the same
dominating magnitude, and there is at least one dominating eigenvalue (1 + λH

j λA
i ) where λA

i ̸= λA
n ,

then eq. 13 holds and (I+H⊗A) does not act as a low-pass filter.

The proof is left to the Appendix. Wang et al. (2022) showed that if we just apply the self-attention
matrix A alone to produce XL, i.e., XL = ALX, then this model is always a low-pass filter, as
defined in Definition 1. Theorem 3 shows that the residual connection and weights H can counteract
this, so long as condition (2) or (3) holds.

How can we use these results to improve Transformer models? In the next section we derive a
Corollary of Theorem 1 that, along with another observation about the properties H in trained models,
allows us to design a simple reparameterization of H that guarantees the Transformer update does
not oversmooth.

4 A REPARAMETERIZATION THAT AVOIDS OVERSMOOTHING
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Figure 2: Asymmetry of the matrix
H := W⊤

projW
⊤
V .

We know from Theorem 2 and 3 that if we can ensure
an eigenvalue (1 + λH

j λA
1 ) dominates we avoid over-

smoothing. To find A and H that are guaranteed to have
(1 + λH

j λA
1 ) dominate, we can use Theorem 1. While

our results apply to settings where A and H are fixed, in
practice, both change every layer, and A changes even
every batch X. Because of this, we would like to find
a solution that involves only controlling the eigenvalues
of H. Luckily, Theorem 1 implies the following much
simpler condition.
Corollary 2. If the eigenvalues of H fall within [−1, 0),
then at least one of {(1+λH

d λA
1 ), (1+λH

1 λA
1 )} dominates.

If the eigenvalues of H fall within (0,∞), then (1+λH
d λA

n )
dominates.

See the Appendix for a proof. Corollary 2 states that so long as we can ensure the eigenvalues of
H lie in [−1, 0) we avoid oversmoothing. To ensure that the eigenvalues of H fall in this range, we
propose to directly parameterize its eigendecomposition.

Before doing so, we would like to better understand what H looks like in a trained model. We
made the following observation: as training progresses, H becomes more symmetric. Specifically,
we can measure the asymmetry of any matrix M as ∥(M−M⊤)/2∥

∥(M+M⊤)/2∥ , where the numerator measures
the asymmetric component of M and the denominator measures the symmetric component. When
we compute this measure for a ViT-Ti on CIFAR100 for all layers, we find that training increases
symmetry, as shown in Figure 2. This observation aligns with Trockman & Kolter (2023), who
observe that for vision Transformers trained on ImageNet, H ∝ ϵ− I.
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Random Init. ImageNet CIFAR100

Model ViT-B/16 ViT-Ti∗ ViT-B/16 DeiT-B/16 ViT-Ti ViT-Ti+ ViT-Ti− ViT-Ti∗

(1 + λH
j λA

n ) 100% 50% 70.27% 57.82% 98.92% 100% 0% 50%
(1 + λH

j λA
1 ) 0% 50% 29.73% 42.18% 1.08% 0% 100% 50%

Table 1: Distribution of dominating eigenvalues. We compare different models trained (or not)
on ImageNet and CIFAR100 and count the percentage of cases where the dominating eigenvalue is
(1 + λH

j λA
n ) or (1 + λH

j λA
1 ).
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(b) CIFAR100 (trained)
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Figure 3: Filtering. ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
for different models on CIFAR100 and ImageNet.

Given this we propose two different parameterizations of H. The first as a symmetric eigendecompo-
sition H = VHΛHV⊤

H . A benefit of this is we avoid an expensive and potentially unstable matrix
inversion of V⊤

H , required for eigendecomposition of a generic matrix. Instead, VH must be an
orthogonal matrix. Naively, we could encourage this by adding a term to the loss function of the form
∥V⊤

HVH − I∥. However, to guarantee orthogonality we leverage the fact that the QR-decomposition
is known to be a differentiable operator Seeger et al. (2017). Therefore we can introduce a parameter
matrix Θ and compute its QR-decomposition to produce VH , i.e., [VH ,R] := QR(Θ). We then
take gradients back to Θ to learn VH .

The symmetric parameterization however may restrict the expressiveness of H. Therefore we also
test out a non-symmetric eigendecomposition H = VHΛHV−1

H . In this case, we take gradients to
VH in the backwards pass, and compute H using the above equation in the forwards pass.

To ensure diag(ΛH) ∈ [−1, 0) given a parameter vector ψ we could naively define it as diag(ΛH) =
clip(ψ, [−1,−ϵ])V−1

H , where clip(a, [b, c]) := min(max(a, b), c) forces all of ψ to lie in [−1,−ϵ],
for arbitrarily small ϵ. However, we noticed that so long as we initialized ψ to fall in [−1, 0),
diag(ΛH) stayed within this range throughout training if we instead just constrained the sign of ψ,
i.e., diag(ΛH) := −(ψ2). For this reason we will refer to our parameterization in the following
section using the superscript −. To show a case where oversmoothing is guaranteed, we also define a
model diag(ΛH) := (ψ2), which we refer to using the superscript +. We also tested a third variant
where the first L/2 layers sharpen (using the above − parameterization) and the remaining L/2 layers
are left normal (i.e., H is reverted back to W⊤

projW
⊤
V ), which we denote using ∗. Finally, we label

models that use the non-symmetric parameterization of H with the suffix ‘-NS’.

5 RESULTS

We can now characterize the oversmoothing behavior of different Transformer models. We start
by investigating the distribution of dominating eigenvalues and the filtering properties of existing
Transformer models and our proposed parameterization. We show that our parameterization, which
can be applied to any Transformer model, improves upon the standard parameterization when training
data is sparse or corrupted. Crucially, even though our theoretical analysis applies for fixed attention
A and weights H we will learn different attention and weight matrices for every layer, as is standard
practice (further, if a model has multiple heads we will define WV = VH and Wproj = ΛHV⊤

H ).
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Training and Architecture Details. For all non-toy experiments we either (a) train variants of the
ViT-Ti model Touvron et al. (2021a), or (b) evaluate pretrained Vit-B/16 and DeiT-B/16 Touvron et al.
(2021a;a). For (a) we train on CIFAR100 for 300 epochs using the cross-entropy loss and the AdamW
optimizer Loshchilov & Hutter (2019). Our setup is the one used in Park & Kim (2022) which itself
follows the DeiT training recipe Touvron et al. (2021a). We use a cosine annealing schedule with an
initial learning rate of 1.25× 10−4 and weight decay of 5× 10−2. We use a batch size of 96. We use
data augmentation including RandAugment Cubuk et al. (2019), CutMix Yun et al. (2019), Mixup
Zhang et al. (2018), and label smoothing Touvron et al. (2021a). The models were trained on two
Nvidia RTX 2080 Ti GPUs. For (b), ViT-B/16 was pretrained on JFT-300M Sun et al. (2017) before
finetuning on ImageNet while DeiT-B/16 was trained only on ImageNet, as its original motivation
was to improve data efficiency Touvron et al. (2021a). Importantly, these models do not follow the
precise update equation we analyze in our theoretical results: they include layer normalization (LN),
arranged in the pre-LN format Xiong et al. (2020). Our goal is to see whether we can still use our
theory to control the smoothing/sharpening behavior of such models.

In popular Transformer models, some H,A do not oversmooth. We would like to understand
to what extent the H,A matrices in current models oversmooth. We start by investigating which
eigenvalues dominate the Transformer updates of randomly initialized, pre-trained, and newly trained
models in Table 1. We obtain H from the weights WV and Wproj of the pretrained models ViT-B/16
and DeiT-B/16. To compute A data is needed, on CIFAR100 trained models we use all of the data
and on ImageNet trained models we use 50 batches of 8 images making it a total of 400 images. We
average over all heads and all layers for H and A. We notice that the randomly initialized ViT-B/16
has no eigenvalues where (1 + λH

j λA
1 ) is largest, which indicates that all H,A will oversmooth.

However, once ViT-B/16 is trained (on ImageNet) the percentage of matrices where (1 + λH
j λA

1 )
dominates increases, indicating that there are matrices H,A that avoid oversmoothing. It is even
larger for the more data efficient DeiT-B/16, but much lower for ViT-Ti on CiFAR100.

It is possible to guarantee H,A do not oversmooth. We also compare our reparameterized
version of ViT-Ti, which we call ViT-Ti−. Table 1 shows that all of the eigenvalues of H,A are of
the form (1 + λH

j λA
1 ), confirming Corollary 2. We also compare ViT-Ti+ which is parameterized to

have eigenvalues λH
j that are always positive. As predicted by the first condition in Theorem 1, all

eigenvalues are of the form (1 + λH
j λA

n ).

Existing models do not converge to low-pass filters. While the eigenvalue distribution helps us
understand the extremes of the eigenvalue distribution, it does not guarantee that a model with a
finite depth will cause oversmoothing, by acting as a low-pass filter. To measure how much a model
acts as a low-pass filter we compute the quantity described in Definition 1, i.e., ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
for each

layer ℓ in existing Transformer models, in Figure 3. We repeat the process done for table 1. For
CIFAR100 we measure the quantity using the whole dataset, for ImageNet we randomly sample 50
batches of 8 images making a total of 400 images. We see in that on CIFAR100, the average value
of ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
actually increases for ViT-Ti, indicating that it is in fact suppressing low frequencies

instead of amplifying them. Curiously, on ImageNet, both ViT-B/16 and DeiT-B/16 initially suppress
low frequencies, but then suppress high frequencies around the 7th layer and deeper: both models
dropping ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
by roughly half the value where each model started. In this case the models

begin to smooth the input, which may in fact be useful for classifying certain images (e.g., pooling
operations that smooth feature representations can improve classification performance).

Reparameterization allows one to control Transformer filtering behavior. Figure 3 also shows
the filtering behavior of our reparameterized models ViT-Ti− and ViT-Ti+. Even though all layers
have different H,A we see that ViT-Ti− amplifies higher frequencies, while ViT-Ti+ suppresses
them.

Reparameterization improves robustness to data corruption and data efficiency. What are
the benefits of amplifying higher frequencies using reparameterization? We hypothesize that such
a model (ViT-Ti−) will have better performance when (a) training data is limited or (b) test data is
corrupted. The intuition for (a) is that amplifying higher frequencies may help the network more
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Training data 100% 50% 10%

ViT-Ti 66.78±0.1 56.38±0.5 32.47±0.9

ViT-Ti + FeatScale 66.57±0.5 57.08±0.3 32.50±0.4

ViT-Ti+ 64.34±0.3 55.21±0.5 28.67±0.5

ViT-Ti− 66.62±0.3 56.58±0.3 33.99±0.4

ViT-Ti∗ 67.84±0.6 57.78±0.4 33.64±0.5

ViT-Ti-NS− 67.80±0.2 57.54±0.1 33.78±0.3

ViT-Ti-NS∗ 68.53±0.6 57.67±0.3 33.75±0.2

Table 2: Data Efficiency. Test accuracy when training
on different amounts of the CIFAR100 training set.

Depth 12 24

ViT-Ti 66.78±0.1 67.22±0.1

ViT-Ti + FeatScale 66.57±0.5 67.71±0.5

ViT-Ti+ 64.34±0.3 65.65±0.3

ViT-Ti− 66.62±0.3 66.76±0.3

ViT-Ti∗ 67.84±0.6 69.05±0.1

ViT-Ti-NS− 67.80±0.2 67.09±0.1

ViT-Ti-NS∗ 68.53±0.6 69.64±0.3

Table 3: Increased Depth. Test accuracy
for different model depths on CIFAR100.

Corruption Intensity 0 1 2 3 4 5

ViT-Ti 66.78±0.1 61.59±0.2 57.75±0.2 53.12±0.1 49.32±0.1 39.17±0.2

ViT-Ti + Featscale 66.57±0.5 61.25±0.5 57.36±0.6 52.64±0.6 48.87±0.5 38.77±0.4

ViT-Ti+ 64.34±0.3 58.36±0.4 53.83±0.5 49.03±0.6 45.15±0.6 35.86±0.6

ViT-Ti− 66.62±0.3 61.62±0.2 58.00±0.3 53.56±0.2 49.70±0.3 40.07±0.2

ViT-Ti∗ 67.84±0.6 62.49±0.5 58.82±0.7 54.32±0.7 50.40±0.6 40.38±0.7

ViT-Ti-NS− 67.80±0.2 63.03±0.2 59.65±0.1 55.05±0.3 51.30±0.1 41.33±0.1

ViT-Ti-NS∗ 68.53±0.6 63.01±0.1 59.44±0.3 54.90±0.4 51.12±0.4 40.90±0.4

Table 4: Corruption Robustness. Test accuracy for different corruption intensities on CIFAR100.

easily identify key features that distinguish different classes, while smoothing may make this more
difficult. For (b), amplifying higher frequencies may help to preserve information that is useful for
classification, even if some that information is removed by corruption. Whereas, a low-pass filter
may remove any identifying information that is left.

To test these hypotheses, we run two sets of experiments: 1. Data efficiency: we train ViT-Ti, ViT-
Ti−, ViT-Ti+ on fractions of CIFAR100 including {10%, 50%, 100%}; 2. Corruption robustness:
we take ViT-Ti, ViT-Ti−, ViT-Ti+ trained on all of CIFAR100 and we test it with 15 types of
corruptions as described in Hendrycks & Dietterich (2019), at 5 different levels of intensity.
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Figure 4: Evolution of the last layer ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2

The ratio for different models on CIFAR100 during
training.

Table 2 reports the results of the data efficiency
experiment. We find that ViT-Ti− performs
best in lower data settings while ViT-Ti+ per-
forms worst, confirming our intuition. On the
original CIFAR100 ViT-Ti performs best, we
suspect this is because it has been designed to
perform well on this dataset. Table 4 shows
the results of the corruption robustness exper-
iment. ViT-Ti− outperforms ViT and ViT-Ti+
on all corruption intensities, and ViT-Ti+ al-
ways performs worst. Again on the original
clean data ViT-Ti is best.

Pushing performance further by avoiding
oversharpening While the parameterization
used for ViT-Ti− helps guarantee that we
avoid oversmoothing, it loses the flexible abil-
ity unconstrained layers have to learn both high-pass and low-pass filters. The model only having
sharpening layers can lead to an oversharpening of the features which also affects performance. The
accuracy of the ViT-TI− model barely improves after we double the depth. ViT-Ti∗ avoids this issue
due to having unconstrained layers. It significantly outperforms all other models not just for larger
depths in Table 3, but also in corruption robustness (Table 4), and data efficiency (Table 2). This
suggests that both oversmoothing and oversharpening are detrimental to performance, and that a
careful balance is key to an accurate model. We can see from Fig. 4 that ViT-Ti− has a much higher
last layer low-pass filtering ratio ∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
while ViT-Ti∗ follows ViT-Ti. Fig. 3 however shows

8
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that ViT-Ti∗ initially sharpens the features before smoothing them, while ViT-Ti slightly sharpens
throughout the network.

6 RELATED WORK

Oversmoothing is a concept that has been widely discussed in the graph neural network literature
Rusch et al. (2023). Giovanni et al. (2023) prove that graph convolutions can enhance high frequencies
and have an oversharpening asymptotic behaviour. Their analysis inspires our work. For transformers,
Zhou et al. (2021) noticed that as depth was increased, the cosine similarity between self-attention
matrices A also increased. Similarly, Gong et al. (2021) and Raghu et al. (2021) found that feature
similarity in vision Transformers increased with depth. Many works around this time found that it
was possible to improve vision Transformers by replacing self-attention layers with convolutional
layers (Han et al., 2021; Liu et al., 2021b; Jiang et al., 2021; Touvron et al., 2021b; Yuan et al.,
2021; Park & Kim, 2022). Other works introduced new layers to avoid oversmoothing (Wang et al.,
2022; Guo et al., 2023; Ali et al., 2023). Oversmoothing has also found to occur in Transformer
architectures for NLP Shi et al. (2022). We focus our experimental analysis on vision Transformers as
the problem has received greater attention in computer vision, but our analysis applies to any model
that uses Transformer blocks.

The first works to develop a theory around Transformer oversmoothing were Dong et al. (2021);
Wang et al. (2022). Initially, Dong et al. (2021) showed that, without skip-connections, repeated
self-attention layers converge doubly exponentially to a rank 1 matrix. They show that there exist
models where skip-connections counteract this convergence. We extend this result to show that this
only occurs when multiple unique pairs of eigenvalues all have the same dominating magnitude
(Corollary 1). Wang et al. (2022) analyzed oversmoothing from the lens of signal processing. They
showed that as the number of self-attention operations tended to infinity, all inputs converge to the
same feature vector, producing a low-pass filter. They also analyzed the convergence rate when the
residual connection, weights, multiple heads, and a linear layer is added, and found that convergence
is not guaranteed. However, they still argued that even with these additions: ‘it is inevitable that
high-frequency components are continuously diluted as ViT goes deeper’. Our analysis shows that
this is not necessarily the case: the addition of the residual connection and weights H, can actually
cause high-frequency components to increase as layers are added, as is shown in Figure 2 (a) and (b).

7 DISCUSSION

In this paper, we presented a new analysis detailing how the eigenspectrum of attention and weight
matrices impacts the final representation produced by the Transformer update, as depth is increased.
Contrary to prior work, this analysis revealed that Transformers are not inherently low-pass filters.
Unexpectedly however, it also shows that whenever a single eigenvalue of the update equations
dominates (which is most likely) the final representation will have rank 1, even with the residual
connection. Empirically we show that existing Transformer models already have properties that
partially prevent oversmoothing. Finally we introduce a new parameterization for the Transformer
weights that is guaranteed to avoid oversmoothing. This parameterization can be used with any
Transformer architecture, and it improves ViT-Tiny performance when training data is limited or
corrupted, and when the model is made deeper.

Limitations and Future Work. One limitation of the current theoretical analysis is that the results
are asymptotic, applying in the limit as L → ∞. However, we did find that adapting the eigenspectrum
of the model to agree with the analysis empirically improved data efficiency, corruption, and training
deeper layers, for a finite number of layers. This said, it would be useful to understand the rates
of convergence of each of the quantities in Theorems 2 and 3. Another is the missing analyses of
multi-head attention as well as the linear layer that usually follows the residual connection. We
suspect a similar analysis for multi-head attention to be difficult as it would require relating the
eigenvalues of each individual head h, i.e., (Hh ⊗Ah) to the eigenvalues of the sum of head outputs∑

h(Hh ⊗Ah). Special conditions would need to be placed on Hh,Ah (e.g., that all (Hh ⊗Ah)
have the same set of eigenvectors). On the other hand including a linear layer after the residual
connection in the analysis would likely be straightforward: it could be absorbed into H and would
form a Kronecker product with the I term in eq. 3. We leave these extensions for future work.
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APPENDIX

A PROOFS

Proposition 1 (Meyer & Stewart (2023)). Given Assumption 1, all eigenvalues of A lie within
(−1, 1]. There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector 1.
No eigenvectors of A are equal to 0.

Proof. First, because A is positive, by the Perron-Frobenius Theorem Meyer & Stewart (2023) all
eigenvalues of A are in R (and so there exist associated eigenvectors that are also in R). Next, recall
the definition of an eigenvalue λ and eigenvector v: Av = λv. Let us write the equation for any row
i ∈ {1, . . . , n} explicitly:

ai1v1 + · · ·+ ainvn = λvi.

Further let,

vmax := max{|v1|, . . . , |vn|} (8)

Note that vmax > 0, otherwise it is not a valid eigenvector. Further let kmax be the index of v
corresponding to vmax. Then we have,

|λ|vmax = |akmax1v1 + · · ·+ akmaxnvn|
≤ akmax1|v1|+ · · ·+ akmaxn|vn|
≤ akmax1|vkmax

|+ · · ·+ akmaxn|vkmax
|

= (akmax1 + · · ·+ akmaxn)|vkmax | = |vmax|

The first inequality is given by the triangle inequality and because aij > 0. The second is given by
the definition of vmax as the maximal element in v. The final inequality is given by the definition
of A in eq. (1) as right stochastic (i.e., all rows of A sum to 1) and because |vkmax

| = |vmax|. Next,
note that because vmax > 0, it must be that λ ≤ 1. Finally, to show that the one largest eigenvalue
is equal to 1, recall by the definition of A in eq. (1) that A1 = 1, where 1 is the vector of all ones.
So 1 is an eigenvector of A, with eigenvalue λ∗ = 1. Because aij > 0, and we showed above that
all eigenvalues must lie in in [−1, 1], by the Perron-Frobenius theorem Meyer & Stewart (2023)
λ∗ = 1 is the Perron root. This means that all other eigenvalues λi satisfy the following inequality
|λi| < λ∗. Further 1 is the Perron eigenvector, and all other eigenvectors have at least one negative
component, making 1 unique. Finally, because A is invertible, it cannot have any 0 eigenvalues
Brualdi & Mellendorf (1994).

Theorem 1. Consider the Transformer update with fixed A > 0,H := W⊤
projW

⊤
V , as described

in eq. (3). Let {λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }dj=1 be the eigenvalue and eigenvectors of A and H.

Let the eigenvalues (and associated eigenvectors) be sorted as follows, λA
1 ≤ · · · ≤ λA

n and
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|1 + λH
1 | ≤ · · · ≤ |1 + λH

d |. Let φH
1 , . . . , φH

d be the phases of λH
1 , . . . , λH

d . As the number of layers
L → ∞, one eigenvalue dominates the rest (multiple dominate if there are ties):

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

1 λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 > 0

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
k λA

1 |
(1 + λH

k λA
1 ) if |1 + λH

d λA
n | < |1 + λH

k λA
1 |

}
if λA

1 < 0, φH
d ∈ [−π

2 ,
π
2 ]

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

d λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 < 0, φH
d ∈ (π2 , π] ∪ [−π,−π

2 )

where λH
k is the eigenvalue with the largest index k such that φH

k ∈ (π/2, π] ∪ [−π,−π/2).

Proof. First, note that given the eigendecompositions of H := W⊤
projW

⊤
V and A > 0, as

{λA
i ,v

A
i }ni=1 and {λH

j ,vH
j }dj=1, the eigenvalues and eigenvectors of (I + H ⊗ A) are equal to

(1 + λH
j λA

i ) and vH
j ⊗ vA

i for all j ∈ {1, ..., d} and i ∈ {1, . . . , n} (Schacke, 2004, Theorem 2.3).
Recall that eigenvalues (and associated eigenvectors) are sorted in the following order λA

1 ≤ · · · ≤ λA
n

and |1+λH
1 | ≤ · · · ≤ |1+λH

d |. Now at least one of the eigenvalues of (I+H⊗A), i.e., (1+λH
j λA

i )
has a larger magnitude than all others, i.e., there exists j∗, i∗ (which may be a set of indices if there
are ties) such that |1 + λH

j∗λ
A
i∗ | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗.

As L → ∞ the expression (1 + λH
j∗λ

A
i∗)

L will dominate all eigenvalue expressions (1 + λH
j′λ

A
i′ )

L

(again multiple will if there are ties). Our goal is to understand the identity of λH
j∗λ

A
i∗ for all possible

values of λH , λA. For simplicity we will assume there are no ties, i.e., j∗, i∗ each denote a single
index. In this case we only need to consider strict inequalities of λH , λA (as equalities indicate that
multiple eigenvalues dominate).

First recall that λA
i ∈ (−1, 1] and λA

n = 1. A useful way to view selecting λH
j λA

i to maximize
|1 + λH

j λA
i | is as maximizing distance to −1. If (i), λA

1 > 0 then λA
1 always shrinks λH

j to
the origin. If φH

j ∈ [−π/2, π/2] then this shrinking will always bring λH
j closer to −1. If instead

φH
j ∈ (π/2, π]∪ [−π,−π/2) then this shrinking can bring λH

j farther from −1. The eigenvalue it can
bring farthest from −1 is λH

1 (as λH
1 is already farthest from −1 given that |1+λH

1 | ≤ · · · ≤ |1+λH
d |).

If this point is farther from −1 than λH
d λA

n , i.e., if |1 + λH
1 λA

1 | > |1 + λH
d λA

n | then (1 + λH
1 λA

1 )
dominates. Otherwise, (1 + λH

d λA
n ) dominates. If instead (ii), λA

1 < 0 then it is possible to
‘flip’ λH

j across the origin, and so the maximizer depends on φH
d . If a) φH

d ∈ [−π/2, π/2] then
let λH

k be the eigenvalue with the largest index k such that φH
k ∈ (π/2, π] ∪ [−π,−π/2). It

is possible that ‘flipping’ this eigenvalue across the origin makes it farther away than λH
d , i.e.,

|1 + λH
k λA

1 | > |1 + λH
d λA

n |. In this case (1 + λH
k λA

1 ) dominates, otherwise (1 + λH
d λA

n ) dominates.
If instead b) φH

d ∈ (π/2, π] ∪ [−π,−π/2) then either |1 + λH
d λA

n | > |1 + λH
j′λ

A
i′ | for all j′ ̸= d

and i′ ̸= n, and so (1 + λH
d λA

n ) dominates, or ‘flipping’ λH
d increases its distance from −1, and so

|1 + λH
d λA

1 | > |1 + λH
j′λ

A
i′ | for all j′ ̸= d and i′ ̸= n, and so (1 + λH

d λA
1 ) dominates.

Theorem 2. As the number of total layers L → ∞, the feature representation XL converges. Which
representation it converges to depends on the dominating eigenvalue, as given in Theorem 1. If a
single eigenvalue dominates, there are two cases: (1) If (1 + λH

j λA
n ) dominates then,

XL → (1 + λH
j λA

n )
Lsj,n1v

H
j

⊤
, (9)

(2) If (1 + λH
j λA

1 ) dominates then,

XL → (1 + λH
j λA

1 )
Lsj,1v

A
1 v

H
j

⊤
(10)

where sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the matrix Q−1 (here Q is the matrix of
eigenvectors of (I+H⊗A)). If multiple eigenvalues have the same dominating magnitude, the final
representation XL converges to the sum of the dominating terms.
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Proof. Recall that the eigenvalues and eigenvectors of (I+H⊗A) are equal to (1 + λH
j λA

i ) and
vH
j ⊗ vA

i for all j ∈ {1, ..., d} and i ∈ {1, . . . , n}. This means,

vec(XL) =
∑
i,j

(1 + λH
j λA

i )
L⟨vQ−1

j,i , vec(X)⟩(vH
j ⊗ vA

i ). (11)

Recall that vQ−1
j,i is row ji in the matrix Q−1, where Q is the matrix of eigenvectors vH

j ⊗ vA
i .

Further recall that vA
i = 1. As described in Theorem 1, as L → ∞ at least one of the eigenvalues

pairs λH
j λA

i will dominate the expression (1 + λH
j λA

i )
L, which causes vec(XL) to converge to the

dominating term. Finally, we can rewrite, v1 ⊗ v2 as vec(v2v
⊤
1 ). Now all non-scalar terms have

vec(·) applied, so we can remove this function everywhere to give the matrix form given in eq. (9)
and eq. (10).

Corollary 1. Let E be the set of pairs of indices (j, i) such that |1+λH
j λA

i | is equal to the dominating
eigenvalue magnitude. Define a unique pair set U ⊆ E , for which the following holds: (j, i) ∈ U
iff (j, i) ∈ E and (j, i′), (j′, i) /∈ U , for all i′ ∈ {1, . . . , n} \ i and j′ ∈ {1, . . . , d} \ j. Define a
maximal unique pair set U∗ as |U∗| ≥ |U| for all unique pair sets U . As L → ∞, the rank of XL

converges to |U∗|.

Proof. First recall that the rank of a matrix M is the smallest number k such that M can be written
as a sum of k rank-1 matrices. Next note that if we have E = {(j, i), (j′, i)} for j ̸= j′ then we have

XL → aj,iv
A
i v

H
j

⊤
+ aj′,iv

A
i v

H
j′

⊤
= aj,iv

A
i (v

H
j

⊤
+

aj′,i
aj,i

vH
j′

⊤
),

where aj,i := (1 + λH
j λA

i )
Lsj,i. This shows that XL is rank 1, which agrees in this example with

|U∗| = 1 (the same holds for E = {(j, i), (j, i′)}). In general, whenever the same index appears
in different pairs in E , we can group all associated terms in the expression for XL into a single
rank-1 term. Therefore, an element in a unique pair set U corresponds to a grouped rank-1 term in
the expression for XL. Every element in a maximal unique pair set U∗ corresponds 1-to-1 to every
grouped rank-1 term in the expression for XL. So we can write XL as,

XL →
∑

(j,i)∈U∗

aj,ig
A
i g

H
j

⊤
, (12)

where each gA
i ,g

H
j are potentially grouped terms (i.e., linear combinations of vA

i ,v
H
j ). Further, none

of the elements of the above sum can be grouped to yield a sum with fewer rank-1 terms. Therefore,
the rank of XL approaches |U∗|, and we are done.

Corollary 2. If the eigenvalues of H fall within [−1, 0), then at least one of {(1 + λH
d λA

1 ), (1 +
λH
1 λA

1 )} dominates. If the eigenvalues of H fall within (0,∞), then (1 + λH
d λA

n ) dominates.

Proof. Let λH
1 ≤ · · · ≤ λH

d . Again we can think of selecting λH
j λA

i that maximizes |1 + λH
j λA

i |
as maximizing the distance of λH

j λA
i to −1. Consider the first case where λH

1 , · · · , λH
d ∈ [−1, 0),

and so λH
1 is the closest eigenvalue to −1 and λH

d is the farthest. If λA
1 > 0 then all λA can do is

shrink λH to the origin, where λA
1 shrinks λH the most. The closest eigenvalue to the origin is λH

d ,
and so (1 + λH

d λA
1 ) dominates. If instead λA

1 < 0, then we can ‘flip’ λH
j over the origin, making it

farther from −1 than all other λH
j′ . The eigenvalue that we can ‘flip’ the farthest from −1 is λH

1 , and
so (1+ λH

1 λA
1 ) dominates. If all eigenvalues of H are equal, then both (1+ λH

d λA
1 ) and (1+ λH

1 λA
1 )

dominate. For the second case where λH
1 , · · · , λH

d ∈ (0,∞) the result follows directly from the first
case in Theorem 4, and so we are done.

Corollary 3. If the phases of λH
1 , . . . , λH

d all fall within specific ranges, the dominating eigenvalue
conditions can be simplified as follows:

(1 + λH
d λA

n ) if φH
j ∈ [−π

2 ,
π
2 ], ∀j

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
1 λA

1 |
(1 + λH

1 λA
1 ) if |1 + λH

d λA
n | < |1 + λH

1 λA
1 |

}
if λA

1 > 0

(1 + λH
d λA

n ) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

d λA
1 ) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 < 0

 if φH
j ∈ (π2 , π] ∪ [−π,−π

2 ), ∀j
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Proof. The proof is similar to that of Theorem 1 except here we consider special cases.

if φH
j ∈ [−π/2, π/2] for all j ∈ {1, . . . , d}. First recall that λA

i ∈ (−1, 1] and λA
n = 1. As

φH
j ∈ [−π/2, π/2], we have that |1 + λH

d λA
n | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d − 1} and

i′ ∈ {1, . . . , n − 1}. This is because, if (i), λA
1 > 0, (and so λA

i > 0 for all i) then arg(λH
j′λ

A
i′ ) ∈

[−π/2, π/2], where arg(a) is the argument or ‘phase’ or a ∈ C. This combined with the fact
that |λH

j′λ
A
i′ | < |λH

d λA
n | means that |1 + λH

j′λ
A
i′ | < |1 + λH

d λA
n |. This because for any two points

a, a′ where we have that arg(a), arg(a′) ∈ [−π/2, π/2] and |a′| < |a|, then it also holds that
|1 + a′| < |1 + a|. Therefore (1 + λH

d λA
n ) dominates. If instead (ii), λA

1 < 0 then for any negative
eigenvalues λA

i− < 0 we have that arg(λH
j λA

i−) ∈ (π/2, π] ∪ [−π,−π/2) for all j. However, for
each of these points we have that |1 + λH

j λA
i− | < |1 + λH

j λA
n |. This is because for any r ∈ (−1, 0)

and point b where arg(b) ∈ [−π/2, π/2] we have that |1 + r ∗ b| < |1 + b|. Further note that
|1 + λH

j λA
n | < |1 + λH

d λA
n | from our definitions: λA

n = 1 and |1 + λH
1 | < · · · < |1 + λH

d |. And so
(1 + λH

d λA
n ) dominates. For the remaining positive eigenvalues λA

i+ ≥ 0 we are in the same situation
as (i), and so we are done.

if φH
j ∈ (π/2, π] ∪ [−π,−π/2) for all j ∈ {1, . . . , d}. If (a), λA

1 > 0 then either |1 + λH
d λA

n | >
|1 + λH

j′λ
A
i′ | for all j′ ̸= d and i′ ̸= n, and so (1 + λH

d λA
n ) dominates, or shrinking λH

1 to the origin
makes it the farthest from −1, i.e, |1 + λH

1 λA
1 | > |1 + λH

j′λ
A
i′ |, and so (1 + λH

1 λA
1 ) dominates. If

(b) λA
1 < 0 then either |1 + λH

d λA
n | > |1 + λH

j′λ
A
i′ |, and so (1 + λH

d λA
n ) dominates, or ‘flipping’ λH

d

across the origin makes it farthest from −1, i.e., |1 + λH
d λA

1 | > |1 + λH
j′λ

A
i′ |, and so (1 + λH

d λA
1 )

dominates.

Theorem 3. For all X ∈ Rn×d, as the number of total layers L → ∞, if (1) (1 + λH
j λA

n ) dominates,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= 0, (13)

and so (I+H⊗A) acts as a low-pass filter, as in Definition 1. If (2) (1 + λH
j λA

1 ) dominates,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

̸= 0, (14)

and so (I + H ⊗ A) does not act as a low-pass filter. If (3) multiple eigenvalues have the same
dominating magnitude, and there is at least one dominating eigenvalue (1 + λH

j λA
i ) where λA

i ̸= λA
n ,

then eq. (14) holds and (I+H⊗A) does not act as a low-pass filter.

Proof. If (1), as L → ∞ we have from Theorem 2 that,

lim
L→∞

XL = (1 + λH
j λA

n )
Lsj,n1v

H
j

⊤
. (15)

If we plug this into the expression in Definition 1 of a low-pass filter we get,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= lim
L→∞

√
∥HFC[XL]∥22

∥XL −HFC[XL]∥22

= lim
L→∞

√
∥(I− 1

n11
⊤)XL∥22

∥XL − (I− 1
n11

⊤)XL∥22

= lim
L→∞

√√√√ ∥(I− 1
n11

⊤)(1 + λH
j λA

n )
Lsj,n1vH

j
⊤∥22

∥XL − (I− 1
n11

⊤)(1 + λH
j λA

n )
Lsj,n1vH

j
⊤∥22

= lim
L→∞

√√√√ ∥(1 + λH
j λA

n )
Lsj,n(1vH

j
⊤ − 1vH

j
⊤
)∥22

∥XL − (1 + λH
j λA

n )
Lsj,n(1vH

j
⊤ − 1vH

j
⊤
)∥22

= 0,
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where (17) is due to the fact that (1/n)11⊤M averages the columns of any matrix M ∈ Rn×r. This
means that (1/n)11⊤1vH

j
⊤
= 1vH

j
⊤ as 1vH

j
⊤ has identical values in each column.

If (2) we have from Theorem 2 that,

lim
L→∞

XL = (1 + λH
j λA

1 )
Lsj,1v

A
1 v

H
j

⊤
. (16)

Plugging this into Definition 1 we get,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= lim
L→∞

√
∥HFC[XL]∥22

∥XL −HFC[XL]∥22

= lim
L→∞

√
∥(I− 1

n11
⊤)XL∥22

∥XL − (I− 1
n11

⊤)XL∥22

= lim
L→∞

√√√√ ∥(I− 1
n11

⊤)(1 + λH
j λA

1 )
Lsj,1vA

1 v
H
j

⊤∥22
∥XL − (I− 1

n11
⊤)(1 + λH

j λA
1 )

Lsj,1vA
1 v

H
j

⊤∥22

= lim
L→∞

√√√√ ∥(1 + λH
j λA

1 )
Lsj,1(vA

1 v
H
j

⊤ − 1
n11

⊤vA
1 v

H
j

⊤
)∥22

∥XL − (1 + λH
j λA

1 )
Lsj,1(vA

1 v
H
j

⊤ − 1
n11

⊤vA
1 v

H
j

⊤
)∥22

̸= 0.

The final line holds because in general (1/n)11⊤vA
1 v

H
j

⊤ ̸= vA
1 v

H
j

⊤, unless vA
1 = c1 for some

c ∈ R. However, this is impossible given Assumption 1, as the Perron-Frobenius Theorem states that
there is only one eigenvector of A that has all positive real entries. As we know vA

n = 1, there is no
other eigenvector of A such that vA

i = c1. Therefore, limL→∞
∥HFC[XL]∥2

∥LFC[XL]∥2
> 0.

If instead, (3), then by the definition of E in Corollary 1 we have that,

lim
L→∞

XL =
∑

(j,i)∈E

(1 + λH
j λA

i )
Lsj,iv

A
i v

H
j

⊤
. (17)

Therefore,

lim
L→∞

∥HFC[XL]∥2
∥LFC[XL]∥2

= lim
L→∞

√√√√ ∥
∑

(j,i)∈E(1 + λH
j λA

j )
Lsj,1(vA

i v
H
j

⊤ − 1
n11

⊤vA
i v

H
j

⊤
)∥22

∥XL −
∑

(j,i)∈E(1 + λH
j λA

j )
Lsj,1(vA

i v
H
j

⊤ − 1
n11

⊤vA
i v

H
j

⊤
)∥22

̸= 0.

The final line follows so long as vA
i v

H
j

⊤ ̸= 1vH
j

⊤ for at least one (j, i) ∈ E . If this is true then we

have one term in the sums above for which (1/n)11⊤vA
i v

H
j

⊤ ̸= vA
i v

H
j

⊤. This is because vA
i ̸= c1

(by Assumption 1 and the Perron-Frobenius Theorem, as described in the proof of condition (2)). As
we know that there is at least one dominating eigenvalue (1 + λH

j λA
i ) where λA

i ̸= λA
n (this is given

in the Theorem statement), then vA
i v

H
j

⊤ ̸= 1vH
j

⊤, and so we are done.

B ADDITIONAL THEOREMS

If λH ∈ R. The following is a special case of Theorem 1 where all eigenvalues of H are real.

Theorem 4 (eigenvalues λH ∈ R). Consider the Transformer update with fixed A > 0,H :=
W⊤

projW
⊤
V , as described in eq. (3). Let {λA

i ,v
A
i }ni=1 and {λH

j ,vH
j }dj=1 be the eigenvalue and

eigenvectors of A and H. Let the eigenvalues (and associated eigenvectors) be sorted in ascending
order i.e., λA

1 ≤ · · · ≤ λA
n and λH

1 ≤ · · · ≤ λH
d . Let the eigendecomposition of (I+W⊤

projW
⊤
V ⊗A)

be QΛQ−1, where Λji = (1 + λH
j λA

i ). As the number of total layers L → ∞, one of four possible

16
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eigenvalues dominate the rest (multiple dominate if there are ties):

(1 + λH
d λA

n ) if λH
j > 0, ∀j ∈ {1, . . . , d}

(1 + λH
d λA

n ) if λH
d + 2 > |λH

1 |
(1 + λH

1 λA
1 ) if |1 + λH

1 λA
1 | > |1 + λH

1 λA
n |

(1 + λH
1 λA

n ) if |1 + λH
1 λA

1 | < |1 + λH
1 λA

n |

}
if λH

d + 2 < |λH
1 |

 if λH
1 < 0, λH

d > 0

(1 + λH
d λA

1 ) if |1 + λH
d λA

1 | > |1 + λH
1 λA

n |
(1 + λH

1 λA
n ) if |1 + λH

d λA
1 | < |1 + λH

1 λA
n |

}
if λA

1 > 0, λH
1 > −2

(1 + λH
1 λA

n ) if λA
1 > 0, λH

1 < −2

(1 + λH
1 λA

1 ) if λA
1 < 0, λH

1 > −2

(1 + λH
1 λA

1 ) if |1 + λH
1 λA

1 | > |1 + λH
1 λA

n |
(1 + λH

1 λA
n ) if |1 + λH

1 λA
1 | < |1 + λH

1 λA
n |

}
if λA

1 < 0, λH
1 < −2


if λH

j < 0, ∀j ∈ {1, . . . , d}

Proof. Our goal is again to characterize the identity of λH
j∗λ

A
i∗ where |1 + λH

j∗λ
A
i∗ | > |1 + λH

j′λ
A
i′ |

for all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗, for all ranges of λH , λA. This is because
(1 + λH

j∗λ
A
i∗)

L will dominate as L → ∞. We will again assume there are no ties i.e., j∗, i∗ each
denote a single index. Given this, we detail each case described in the theorem statement.

if λH
j > 0 for all j ∈ {1, . . . , d}. First recall that λA

i ∈ (−1, 1] and λA
n = 1. As λH

j > 0, we have
that |1 + λH

d λA
n | > |1 + λH

j′λ
A
i′ | for all j′ ∈ {1, . . . , d− 1} and i′ ∈ {1, . . . , n− 1}. This is because,

by definition λH
d λA

n > λH
j′λ

A
i′ . Further, 1 + λH

d λA
n > |1 + λH

j′λ
A
i′ | as the largest |1 + λH

j′λ
A
i′ | can be

is either (i) |1− ϵλH
d | for 0 < ϵ < 1 or (ii) |1 + λH

d−1λ
A
n | (i.e., in (i) λH

d is negated by λA
1 and in (ii)

λH
d−1 is the next largest value of λH ). For (i), it must be that 1 + λH

d λA
n > |1− ϵλH

d | as λH
d > 0. For

(ii) λH
d > λH

d−1 > 0 (as we assume there are no ties), and so |1+λH
d λA

n | > |1+λH
d−1λ

A
n |. Therefore

(1 + λH
d λA

n ) dominates.

if λH
1 < 0, λH

d > 0. Recall we can view selecting λH
j λA

i to maximize |1 + λH
j λA

i | as maximizing
distance to −1. In this condition the maximal λH

j∗λ
A
i∗ depends on whether λH

1 or λH
d is farther away

from −1. If λH
d is farther from −1, i.e., |1 + λH

d λA
n | > |1 + λH

1 λA
n | (which can be simplified to

λH
d + 2 > |λH

1 |) , then |1 + λH
d λA

n | is maximal because (a) any other λA
i′ will move λH

d closer to
−1, and (b) any other λH

j′ is closer to −1. So (1 + λH
d λA

n ) dominates. If λH
1 is farther from −1, i.e.,

|1+ λH
d λA

n | < |1+ λH
1 λA

n | (which can be simplified to λH
d +2 < |λH

1 |) , then it depends on whether
λA
1 can push λH

1 farther away from −1 than λH
1 is itself (sidenote: this will only happen for λA

1 < 0,
when it can ‘flip’ λH

1 across the origin, because by definition it has to beat λH
d > 0). If it can, i.e.,

|1+λH
1 λA

1 | > |1+λH
1 λA

n | then (1+λH
1 λA

1 ) dominates. Otherwise, |1+λH
1 λA

1 | < |1+λH
1 λA

n | and
(1 + λH

1 λA
n ) dominates.

if λH
j < 0 for all j ∈ {1, . . . , d}. In this case we need to know if (a) λA

1 > 0 or (b) λA
1 < 0. If

(a) then all λA
j > 0 and so we cannot ‘flip’ λH across the origin. Because of this, if λH

1 > −2 then
we have that λH

j λA
i ∈ (−2, 0) for all j. Note that |1 + λH

j λA
i | is symmetric in this interval around

−1 so whichever λH
j λA

i is closest to the ends of the interval will maximize |1 + λH
j λA

i |. Note that
λH
1 λA

n will be closest to −2 and λH
d λA

1 will be closest to 0. Therefore if |1 + λH
d λA

1 | > |1 + λH
1 λA

n |
then (1 + λH

d λA
1 ) will dominate. If the opposite is true then (1 + λH

1 λA
n ) will dominate. If instead

λH
1 < −2 then λH

1 λA
n is farthest from −1 as λH

j λA
i < 0, so (1 + λH

1 λA
n ) dominates. If case (b) and

we have that λA
1 < 0 and λH

1 > −2 then λH
1 λA

1 > 0. This means that |1 + λH
1 λA

1 | > |1 + λH
j λA

i |
because any ’flip’ of λH

j across the origin by λA
i < 0 makes λH

j λA
i > λH

j λA
i′ where λA

i′ > 0. The
flip that is largest is λH

1 λA
1 > λH

j λA
i , by definition of λH

1 , λA
1 . So (1 + λH

1 λA
1 ) dominates. If instead

λA
1 < 0 and λH

1 < −2 Then it depends on whether λA
1 can ‘flip’ λH

1 farther from −1 than λH
1 is

itself. If it can, then (1 + λH
1 λA

1 ) dominates, otherwise (1 + λH
1 λA

n ) dominates. (For completeness,
note that max{|1 + λH

1 λA
1 |, |1 + λH

1 λA
n |} > |1 + λH

d λA
n | because either λH

d λA
n < −2 in which case

17
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|1+λH
1 λA

n | > |1+λH
d λA

n | or λH
d λA

n ∈ (−2, 0) in which case |1+λH
1 λA

1 | > |1+λH
d λA

n |. Also note
that |1 + λH

1 λA
1 | > |1 + λH

d λA
1 | as λH

d is closer to the origin than λH
1 ).

As these cases define a partition of λH and λA, we are done.

C ADDITIONAL RESULTS

Here we show the evolution of the average condition number of all H throughout training of ViT-Ti
on CIFAR100.
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Figure 5: The average condition number of all H for ViT-Ti throughout training on CIFAR100.
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