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Abstract

Accurately recognizing crop growth stages is vital in preci-
sion agriculture, particularly for predicting yield and deter-
mining harvesting times. However, this task is challenging
due to the significant morphological variations across dif-
ferent growth stages, often impacting model performance.
This study addresses the five-class growth stage recog-
nition task for paddy crops, using high-resolution drone-
based RGB imagery captured by a DJI Inspire-1 Pro drone
equipped with a Zenmuse X5 camera. We propose Pad-
dyFormer, an enhanced version of RT-DETRvV2, integrated
with a weighted dataloader and asymmetric loss to handle
class imbalance and field-level variability effectively. Our
experimental results show that the proposed approach, Pad-
dyFormer, demonstrates strong performance, achieving the
highest mAP®@[0.5] of 84.5%, with a precision of 75.6%
and a recall of 82.5%, highlighting its effectiveness and ro-
bustness under complex agricultural conditions. Overall, this
emphasizes the importance of drone-based image acquisition,
transformer-based in developing scalable, real-time solutions
for crop monitoring.

Introduction

More than 50% of the world’s population rely on paddy
(Oryza sativa L.) as a staple food. With a global produc-
tion of 756 million tonnes, it is the third most widely cul-
tivated crop (Food and Organisation/2019). Accurate infor-
mation about the growth stages, such as the timing of flow-
ering and harvest, is essential to implement timely, tailored
strategies for effective crop management. Crops undergo
continuous morphological changes throughout their growth
cycle, enabling the use of advanced technologies to auto-
matically detect various growth stages. Developing robust
plant recognition systems that handle this morphological
variation is essential to advance high-throughput plant phe-
notyping and precision agriculture technologies (Danilevicz
et al.|2021). Computer vision, integrated with remote sens-
ing technologies such as drones/UAVs (Unmanned Aerial
Vehicles), enables large-scale, high-resolution crop monitor-
ing across seasons.

Deep Learning (DL) has revolutionized machine learn-
ing by eliminating the need for manual feature engineer-
ing and enabling automatic feature extraction. DL-based
object detection models are typically categorized into one-
stage and two-stage approaches. Two-stage models, such as

Faster R-CNN (Ren et al.|2015)), often achieve high accu-
racy but suffer from slower inference speeds due to sequen-
tial processing. In contrast, one-stage models like YOLO
(You Only Look Once) (Redmon|2016) offer a better bal-
ance between accuracy and speed, although they encounter
challenges with Non-Maximum Suppression (NMS). While
DETR models address the NMS limitations inherent with
YOLO, their high computational demands hinder their abil-
ity to perform real-time detection, offsetting the advantages
of an NMS-free design (Carion et al.|2020). To bridge this
gap, the authors in (Zhao et al.|2024) introduced RT-DETR
(Real-Time DEtection TRansformer). RT-DETR is built on
DETR with an efficient hybrid encoder and allows flexible
speed-accuracy trade-offs without retraining. RT-DETRv2
(Lv et al.|2024) is further improved with improvements such
as scale-specific sampling in deformable attention for en-
hanced multiscale feature extraction, replacing grid sam-
pling with discrete operators for easier deployment, and em-
ploying dynamic augmentation along with adjustable hyper-
parameters to boost efficiency while maintaining real-time
capabilities.

Various studies have developed DL-based techniques to
monitor the growth stages of paddy. The authors in (Tan
et al.|2022) found that EfficientnetB4 achieved the best
performance on UAV-captured data to detect rice seedling
growth stages. Zhou et al. (Zhou et al.[2023) designed a
multitask pipeline of YOLOVS, ResNet50, and DeepSORT
to detect and track flowering panicles collected by a static
pole-mounted camera system and found that YOLOVS is
more robust to background noise than the R-CNN models.
Chen et al. (Chen et al.|2023)) used UAV imagery to evaluate
object detection models to count rice panicles, identifying
YOLOV8-X as the most effective for monitoring early and
late heading stages.

Despite significant advancements, existing DL-based
models face notable challenges regarding agricultural tasks.
These models often struggle with complex visual scenarios,
such as occlusion, background clutter, dense crop scenes,
varying lighting conditions, and detecting small objects like
weeds in the field. While prior studies have contributed
to the detection of specific paddy growth stages such as
seedling, flowering, or 50% heading, they essentially fall
short in addressing the full spectrum of growth stages in
paddy crop. Furthermore, as the crop progresses from veg-



etative to ripening, class imbalance becomes increasingly
prominent. To address the issues mentioned above, this
study presents PaddyFormer, an enhanced version of RT-
DETRv2 for accurate paddy growth detection across mul-
tiple stages. The proposed model effectively tackled various
challenges encountered in real-field scenarios. The contribu-
tions of this study are as follows:

* We curate a new drone-captured image dataset for paddy
growth stage recognition, comprising 798 images of
paddy crop, with 6,445 manually annotated plots. The
dataset spans the entire paddy growth cycle from the veg-
etative to the ripening phase. All images were captured
under natural lighting in real-field conditions. It will be
made publicly available.

* We employ a weighted dataloader and various data aug-
mentations to tackle the class imbalance and visual vari-
ations present in the dataset.

* We integrate asymmetric loss into the RT-DETRv2
framework to improve model learning by modulating the
gradients of positive and negative samples, thereby en-
hancing its robustness in complex and imbalanced sce-
narios.

Materials and Methods
Field Preparation

The experimental study was carried out during the Kharif
season in 2019, from July to November, in a semi-arid re-
gion of Hyderabad, Telangana, India. The agricultural site
was managed by the Institute of Biotechnology of Professor
Jayashankar Telangana State Agriculture University, located
in Hyderabad, India. The study area spans 15.3 m x 34.8 m
and includes two repetitions of 203 plots, each correspond-
ing to a unique variety of aerobic paddy, resulting in 406
aerobic paddy plots. Each plot covers an area of 1.26 m?
and contains 42 crop strands.

Image Data Collection

DJI Inspire-1 Pro drone coupled with the Zenmuse X5
camera was used to collect data. This camera features a
16-megapixel CMOS sensor with an ISO range of 100 to
25,600. To ensure high-quality and consistent imagery for
downstream detection, flight trajectories were optimized us-
ing Mission Planner v4.3.1 (ArduPilot Dev Team), with mis-
sions conducted at a height of 7 meters and a speed of 4
km/h. These settings, combined with sensor calibration and
environmental controls, resulted in an effective ground sam-
pling distance of 3.2 to 4 centimeters. To ensure compre-
hensive coverage, consecutive images were captured with a
horizontal overlap of 50-70% and a vertical overlap of 70-
80%. Weekly data acquisition was conducted in consulta-
tion with agricultural scientists to align with distinct paddy
crop growth phases, whose durations are summarized in Ta-
ble [T} The weed class was also included to improve early-
stage discrimination, especially against seedlings. The final
dataset consists of six classes—five crop growth stages and
one weed class as visualized in Figure [T}

Image Annotation

To minimize redundancy, an image was selected from every
four to five successive UAV-captured raw images, resulting
in a total of 793 images. These images were annotated using
the open-source tool Label Studio (Tkachenko et al.[2020-
in the standard YOLO format, producing 6,445 anno-
tated instances of paddy plots across all growth stages. Each
image was examined and corrected by an expert annotator
under the guidance of a professional specialized in genetics
and plant breeding. The number of instances for each cate-
gory is presented in Table[T]

Weed
Booting Flowering Harvesting

Figure 1: Example sample from each class of the dataset -
Weed, Seedling, Tillering, Booting, Flowering, and Harvest-
ing.

PaddyFormer: Our Proposed Method

Our proposed method, PaddyFormer, is an enhanced ver-
sion of RT-DETRv2 (Lv et al|[2024), designed to address
the class imbalance and improve detection performance in
complex real-field scenarios. While RT-DETRv2 itself ad-
vances over RI-DETR by introducing a
query instantiator for instance-level feature interaction, re-
ducing decoder depth without sacrificing accuracy, and im-
proving training stability for real-time applications, it does
not explicitly tackle class imbalance issues. To overcome
this, PaddyFormer, shown in Figure[2] integrates a weighted
dataloader to ensure balanced learning across underrepre-
sented classes. Additionally, we incorporate an asymmet-
ric loss function into the RT-DETRv2 framework, further
strengthening the model’s ability to focus on hard and mi-
nority samples, thereby enhancing robustness and accuracy
in challenging field conditions.

Weighted Dataloader Technique The dataset used in this
study shows a class imbalance, with certain classes being
underrepresented. Various strategies have been explored to
address the class imbalance in object detection tasks, in-
cluding sampling methods, loss weighting, and data aug-
mentation 2024). Unlike techniques that rely on
undersampling majority classes or applying class-specific
loss weights, we adopt a weighted dataloader approach that



Table 1: Overview of growth phases and growth stages in paddy.

Growth Phase ~ Growth Stage  Time Period (days)

Class ID  Instances Bounding Box Area (pizel®)

Weed Weed - Unwanted plants in the field Weed 1180 7.35£21.61
Vegetative Seedling 10-15 Leafnode with <6leaves ) 367 114.28+85.25
per each sapling
Tillering 4575 Nhultiple leaf nodes, VE-s2 1049 146.832£69.51
ush green canopy
Reproductive Booting 90 Beginning of flag leaves RE-st] 967 117.28+57.54
. Presence of panicles
Flowering 90-120 throughout the section RE-st2 823 157.87+85.76
Ripening  Harvesting 120-150 Fully ripened heavy panicles gy (59 186.64106.63

leaning towards the ground

=

4 Efficient Hybrid Encoder
B>

]
)

~

Decoder & Head

(0 o o o o o o
'
ToU-aware Query Selection

[
[

Weighted 00000000000

S DDDDD?DDDDD

$ /7
S4
S3 ’
ResNet50 o
Backbone
[

PaddyFormer

( RT-DETRV2 + Weighted Dataloader +

Asymmetric Loss (ASL) )

_ [Li =1 —p) log(p) B
k - {L’ = (pw)" log(1— pyy) P =max(p—m,0)

Figure 2: Overview of Proposed Method - PaddyFormer, built of RT-DETRv2 (Lv et al.|2024) integrated with a weighted

dataloader and asymmetric loss(Ridnik et al.[202T).

maintains the integrity of the dataset while promoting bal-
anced learning. This method computes sampling probabil-
ities based on the inverse frequency of each class, ensuring
that images containing underrepresented classes are selected
more frequently during training. A reduction of 45% in the
variance of class representation was observed after incorpo-
rating the weighted dataloader technique into the training
pipeline, indicating a significant improvement in class bal-
ance (shown in Figure [3). Notably, the weighted dataloader
achieves this without discarding any samples or introducing
overfitting risks, thereby preserving data diversity and en-
hancing the robustness of the trained model.

Count

Figure 3: Class Distribution in Original vs Weighted distri-
butions on Training data

Asymmetric Loss Function In paddy growth stage detec-
tion, predictions can be both accurate and inaccurate. Pos-
itive samples refer to correctly detected instances, while
negative samples represent incorrect detections. In complex
field environments, the model tends to generate more nega-
tive and complex samples, which can overwhelm the learn-
ing process and hinder the model’s ability to focus on pos-
itive samples, thereby reducing overall detection accuracy.
To mitigate this, we propose using Asymmetric Loss, intro-

duced by Ridnik et al. (Ridnik et al|202T])), for imbalanced
multi-label classification tasks, instead of traditional cross-
entropy loss given in equation ?? for the confidence branch.
The Asymmetric Loss function in equation [2| applies differ-
ent weights to positive and negative samples to better bal-
ance their influence. It calculates the loss using the logarith-
mic function for both positive and negative predictions based
on the predicted probability. The loss formulation includes
two focusing parameters, v, and y_ control the weighting
of positive and negative samples, respectively. Additionally,
a hard threshold, m (also referred to as the clip value), is
used to suppress easy negatives by clipping the predicted
probabilities of negative samples to a minimum value of m.
In our implementation, the Asymmetric Loss function is de-
fined with v_ = 4 and v, = 1, which allows the model to
focus more on the negative samples and less on the easy pos-
itive samples and m, is set to 0.05, which helps to suppress
easy negatives.

_ L4 =log(p)
F= {,L = log(1 - p), %

Ly =(1-p)+log(p),
ASL = {L_ — (o) log(1 - p,y)

2)
Model Training

The dataset for each growth stage was divided into train-
ing and validation sets in an 8:2 ratio. We applied various
data augmentation techniques to training data to account for
inherent variations in the dataset, such as differences in tex-
ture, illumination, and visual characteristics across growth

p,, = max(p—m,0)



stages. These included random brightness, random con-
trast, CLAHE (Contrast Limited Adaptive Histogram Equal-
ization), gaussian blur, mosaic, and shear transformations.
These augmentations enhanced the models’ generalizabil-
ity by providing diverse data perspectives without altering
the ground truth counts. To address class imbalance, we em-
ployed a weighted dataloader technique, as described in[sec
We fine-tuned the models using the default hyperpa-
rameters specified in the RT-DETRv2 repositoryﬂ The train-
ing process was stopped when validation loss consistently
increased, indicating the onset of overfitting. The training
process was conducted on a system equipped with a 32-core
Intel(R) Xeon(R) Silver 4110 CPU and an NVIDIA Tesla
V100 SXM3 GPU with 32 GB of RAM, running Ubuntu
20.04 and PyTorch framework. All data, model configura-
tions, and best weights for all trained variants will be made
available.

Evaluation Metrics

In this study, the performance of object detection models
was evaluated using three metrics such as precision, re-
call, and mAP@[0.5](mean Average Precision at threshold
of 0.5) defined by equations [3} 4] and [5] Precision, which
assesses the model’s ability to predict correct positive out-
comes, while recall assesses the model’s ability to capture
all positive cases in the dataset. F')N denotes False Nega-
tives, T'P denotes True Positives, and F'P indicates False
Positives with respect to the actual and predicted classes.

TP
Precision = m 3
TP
Sensitivity/Recall = m (4)
mAP =+ Zn: AP, (5)
B n i=1 '

Results and Discussions
Model Performance Results

The results of the proposed method PaddyFormer are com-
pared with various state-of-the-art object detection mod-
els and presented in Table [2] PaddyFormer achieves the
best overall performance, with a precision of 0.756, recall
of 0.825, and mAP@Q]0.5] of 84.5%. This superior perfor-
mance can be attributed to its RI-DETRv2-based architec-
ture, which is customized to address class imbalance present
in the dataset and enhance the model learning by integrat-
ing asymmetric loss. Notably, PaddyFormer outperforms
the vanilla RT-DETRv2 and RT-DETR models, demonstrat-
ing the effectiveness of its design. Although PaddyFormer
has the largest parameter size of 76 million, its perfor-
mance justifies the complexity. In contrast, YOLO variants
such as YOLOv10-X and YOLOV8-L achieve competitive
performance, with an mAP@Q[0.5] of around 82%, using

!(https://github.com/lyuwenyu/RT-DETR /tree/main/
rtdetrv2_pytorch)

fewer parameters when compared with RT-DETRvV2 vari-
ants. Two-stage detectors, including Faster RCNN and Reti-
naNet, struggle to capture the dataset’s complexities, result-
ing in poor performance.

Understanding the relationship between growth
stage and model performance

The performance of the proposed method and various state-
of-the-art object detection models across all the growth
stages are reported in Table[3] It can be observed that the pro-
posed method PaddyFormer consistently achieves notable
performance on seedling with 89.8%, tillering with 92.3%,
and booting with 91.4%, outperforming other state-of-the-
art models. While YOLOv10-X and YOLOv5-X show com-
petitive results in some stages, such as booting with 91.1%
and tillering with 92.6%, they fall short in small object weed
detection, whereas PaddyFormer excels in the weed cate-
gory with a score of 69.54%, which is the highest among all
models. Traditional detectors like Faster R-CNN and Reti-
naNet lag significantly, particularly in later stages and under
challenging conditions. The qualitative results of the pro-
posed method in various scenes are presented in Figure ]

Weed detection Sparse data

Low light conditions Aerial Perspective

Dense Field Scenarios

Figure 4: Illustration of growth stage detection in paddy
fields using PaddyFormer under five different conditions.
Green boxes represent model predictions, while yellow
boxes indicate missed detections.

Conclusion

This study presents PaddyFormer, an enhanced version of
RT-DETRv2, designed to tackle the challenges of class im-
balance and complex scenes in agricultural field conditions.
By incorporating a weighted dataloader and asymmetric


(https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetrv2_pytorch)
(https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetrv2_pytorch)

Table 2: Comparison of growth stage recognition performance with different models, Results bolded indicate the overall top

performing model.

Version Precision (1) Recall (T) mAP@0.5(1) mAP@[0.5:0.95] (1) Time [hrs](}) GFLOPS (l) Params (million) ()
Faster-RCNN (Ren et al. 2015) 0.63 0.79 63.01 33.41 0.5 85.58 413
RetinaNet(Lin et al.[2017) 0.75 0.48 41.03 23.65 0.5 60.18 36.32
YOLOv5-XJocher|2020) 0.737 0.794 81.7 47.2 1.007 246 97.15
YOLOv8-L(Jocher, Chaurasia, and Qiu|2023) 0.725 0.808 82.2 47.2 0.625 164.8 43.61
YOLOv10-X(Wang et al.[2024) 0.739 0.811 82.3 48 1.029 206.1 31.59
RT-DETR-L(Zhao et al.[2024) 0.737 0.77 76.3 44.6 0.985 103.5 31.99
RT-DETRv2-X(Lv et al.|2024) 0.734 0.74 71.57 50.14 24 259 76
PaddyFormer

(Ours) 0.756 0.825 84.5 51.12 3.21 26.1 76

Table 3: Performance of models on individual growth stage classes in terms of mAP@0.5. Bold values indicate the best per-

forming model of that growth stage.

Growth stage Faster-RCNN RetinaNet YOLOv5-X YOLOvVS-L YOLOvV10-X RT-DETR-L RT-DETRv2-X PaddyFormer (Ours)
Seedling 55.6 60.2 89.5 87.7 89.6 88.2 87.9 89.8
Tillering 72.1 71.5 92.3 90.4 92.6 90.5 79.9 92.3
Booting 63.5 54.9 87.8 85.8 91.1 87.3 80.5 91.4

Flowering 80.6 79.4 83.9 87.6 84.6 86.3 69.9 81.92
Harvesting 73.5 74.4 70.8 75.6 73.7 76.27 72.2 77.9
Weed 27.7 28.9 66.1 66.3 29.7 61.9 65.4 69.54

loss, PaddyFormer achieves robust performance in detecting
paddy growth stages. Our comprehensive evaluation demon-
strates PaddyFormer’s superiority, with an mAP@[0.5] of
84.5%, precision of 75.6%, and recall of 82.5%. Although
computationally intensive compared to recent YOLO vari-
ants and RT-DETR, the performance of the proposed method
justifies its complexity. To our knowledge, this is the first
study to apply such an approach in the Indian agricultural
context, offering valuable insights for high-throughput phe-
notyping and paving the way for future research in crop
monitoring and management.
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