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Abstract

Optimal transport (OT) has become a natural framework for guiding the probabil-1

ity flows. Yet, the majority of recent generative models assume trivial geometry2

(e.g., Euclidean) and rely on strong density-estimation assumptions, yielding tra-3

jectories that do not respect the true principles of optimality in the underlying4

manifold. We present Hamiltonian Optimal Transport Advection (HOTA), a Hamil-5

ton–Jacobi–Bellman based method that tackles the dual dynamical OT problem6

explicitly through Kantorovich potentials, enabling efficient and scalable trajec-7

tory optimization. Our approach effectively evades the need for explicit density8

modeling, performing even when the cost functionals are non-smooth. Empirically,9

HOTA outperforms all baselines in standard benchmarks, as well as in custom10

datasets with non-differentiable costs, both in terms of feasibility and optimality.11

1 Introduction12

Static (Monge-Kantorovich) optimal transport was originally considered as the main framework for13

comparing and finding a cost-minimizing coupling between distributions [Villani et al., 2008], while14

optimality was mainly measured through the boundary marginals. Development of efficient and15

scalable OT solvers [Cuturi, 2013, Peyré et al., 2019] popularized OT across different areas, such as16

generative modeling [Makkuva et al., 2020, Korotin et al., 2022, Buzun et al., 2024], computational17

biology [Bunne et al., 2022], graphics [Bonneel and Digne, 2023], high-energy physics [Nathan18

T. Suri, 2024], and reinforcement learning [Klink et al., 2022, Asadulaev et al., 2024, Bobrin et al.,19

2024, Rupf et al., 2025]. However, one crucial limitation of static formulation is its inability to20

produce non-straight paths, which completely ignores the underlying geometry of the manifold of the21

data. In classical OT, the underlying geometric structure is solely determined by the choice of cost22

function (e.g., , Euclidean distance), inherently limiting the capacity for fine-grained control over the23

trajectories. We refer to [Montesuma et al., 2024, Pereira and Amini, 2025] for recent overview of24

practical applications of OT and to Villani et al. [2008], Santambrogio [2015], Peyré et al. [2019] for25

a formal treatment.26

On the other hand, the dynamical optimal transport paradigm, developed by Benamou and Brenier27

[2000], recasts static OT as a continuous-time variational problem on the space of probability paths,28

effectively incorporating time variable and enabling more nuanced control over optimal trajectories29

(e.g., , through velocity, acceleration, length, or energy over the paths). Importantly, such formulation30

enables one to directly operate on manifolds of non-trivial geometry, whenever the underlying space31

contains curvature, obstacles, or is defined through potentials. This formulation is closely connected32

to stochastic optimal control (SOC), where trajectories are stochastic yet must still maintain optimality,33

a problem class known as the generalized Schrödinger bridge (GSB) Liu et al. [2024], Bartosh et al.34

[2024],.35

A common strategy for GSB involves solving the dual formulation via Hamilton-Jacobi-Bellman36

(HJB) equations, which provide a flexible and a theoretically grounded framework for deriving37

optimal trajectories (Liu et al. [2022], Neklyudov et al. [2024]). These methods parameterize the38
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cost through a Lagrangian, enforcing optimality via the preservation of kinetic energy or using other39

path-based penalties. While HJB-based approaches yield theoretically sound solutions, they suffer40

from critical drawbacks: (1) unstable optimization dynamics, leading to high-variance gradients41

and poor sample efficiency in high dimensions, and (2) the absence of a strict terminal distribution42

matching criterion, resulting in inexact couplings. Additionally, they typically require differentiable43

Lagrangians, restricting applicability to smooth costs only.44

In the current work, we study the Generalized Schrodinger Bridge problem between two mea-45

sures, where the underlying geometry is defined through potentials. We propose a new HJB-based46

framework that explicitly solves GSB task, resolves the learning stability problems of the previous47

approaches, and has theoretical guarantees. We conduct extensive empirical evaluations on existing48

low-dimensional physically-inspired benchmarks, as well as in the high-dimensional generative49

setting. In short, our contributions are as follows:50

• Hamiltonian dual reformulation of dynamical OT that binds Kantorovich potentials with an51

HJB value function, yielding a density-free objective and providing the performance gain52

compared to existing works;53

• Proposed approach is robust to complex geometries and works even with non-smooth cost54

functions as the proposed objective explicitly incorporates the potential term;55

• HOTA attains state-of-the-art empirical results in a diverse set of tasks, demonstrating both56

better feasibility (exact marginal matching) and optimality (cost along trajectories) compared57

to current dynamic OT solvers.58

2 Related work59

Diffusion Models and Matching Algorithms. Diffusion models have emerged as powerful tools for60

generative modeling by prescribing the time evolution of marginal distributions. Matching algorithms,61

such as Action Matching (Neklyudov et al. [2024]) and Flow Matching (Lipman et al. [2023]), learn62

stochastic differential equations (SDEs) that align with prescribed probability paths [Blessing et al.,63

2025]. These methods typically assume explicit or implicit intermediate densities of the flow, whereas64

our approach (HOTA) optimizes a complete stochastic path from source to target distributions.65

Generalized Schrödinger Bridge. The GSB problem extends SB by introducing state costs that66

penalize or reward specific trajectories (Chen et al., 2015). Prior methods for solving GSB, such as67

DeepGSB (Liu et al. [2022]), often relax feasibility constraints or rely on Sinkhorn-based approxima-68

tions, which can lead to instability or suboptimal solutions.69

A recent approach GSBM [Liu et al., 2024] follows an alternating optimization scheme: in the first70

stage, it learns the drift field vt while keeping the marginal distributions ρt(xt) fixed, using a Flow71

Matching-style objective. In the second stage, it updates the marginals conditioned on the boundary-72

coupled distribution ρt(xt | x0, x1), which is defined via the previously learned drift. While GSBM73

demonstrates strong empirical performance, it imposes two critical limitations: 1) it requires the state74

cost function U(xt) to be differentiable everywhere, and 2) it assumes that the conditional marginals75

ρ(xt | x0, x1) are Gaussian. The first constraint restricts the method’s applicability to domains with76

smooth geometries, sometimes mitigated via interpolation [Kapusniak et al., 2024], while the second77

can lead to suboptimal solutions, unless Ut function is not quadratic.78

Stochastic Optimal Control. The connection between GSB and stochastic optimal control (SOC) has79

been explored in prior works (Theodorou et al. [2010]; Levine [2018]). SOC formulations often relax80

hard distributional constraints into soft terminal costs, which can introduce bias or require adversarial81

training (Liu et al. [2022]). Recently introduced Adjoint Matching approach [Domingo-Enrich et al.,82

2024a] and Stochastic Optimal Control matching (SOCM) [Domingo-Enrich et al., 2024b] address83

several existing limitations, but still produce highly unstable variance estimations. Our method84

provides a natural way to preserve the feasibility via Kantorovich potential sum.85

3 Preliminaries86

Consider stochastic process with controlled drift and diffusion:87

dxt = v(t, xt) dt+ σ(t, xt) dWt (1)

where v : [0, 1]×Rd → Rd is the drift (control), σ : [0, 1]×Rd → R is the diffusion coefficient, Wt88

is d-dimensional Brownian motion. We solve the OT minimization task with marginal distributions (α,89
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β) and dynamic cost functions c(x, µ) and stochastic transport mapping µ : Rd → P(Rd) presented90

in paper Korotin et al. [2022]91

c(x, µ) = inf
v(t,x): x0=x, x1∼µ

∫ 1

0

EL(t, xt, vt)dt, L(t, xt, vt) =
∥vt∥2

2
+ U(xt). (2)

This problem is also known as generalized Schrödinger bridge (GSB). It is an extension of the classical92

Schrödinger Bridge (SB) problem, which is a distribution-matching task seeking a diffusion model93

that transports an initial distribution α to a target distribution β. While the standard SB minimizes the94

kinetic energy (L2 cost in OT), the GSB introduces additional flexibility by incorporating a state cost95

U(xt), allowing for more general optimality conditions beyond just kinetic energy minimization. The96

standard SB’s reliance on kinetic energy (Euclidean cost) may not be ideal for all applications (e.g.,97

image spaces, where distance may not be meaningful). Many scientific domains (population modeling,98

robotics, molecular dynamics) require richer optimality conditions, which GSB accommodates via99

U(xt). The potential term usually characterizes the geometry of the space. But in addition, we can100

also include some physical properties of the flow, e.g., entropic penalty or “mean-field” interaction101

[Liu et al., 2022]. Thus, the optimal trajectories are curved to avoid regions with high values of102

U(xt).103

Neural networks can effectively solve high-dimensional Optimal Transport (OT) problems by learning104

the Kantorovich potentials, which maximizes the dual objective (Korotin et al. [2022], Buzun et al.105

[2024]). It is shown in Villani et al. [2008] (Theorem 5.10) that OT task is equivalent to the106

maximization of the Kantorovich potentials sum:107

sup
g∈L1(β)

[
Eα[g

c(x)] + Eβ [g(y)]
]
, (3)

where gc denotes c-conjugate transform of the potential g:108

gc(x) = inf
µ(x):Rd→P(Rd)

Ey∼µ(x)

[
c(x, µ)− g(y)

]
. (4)

Here µ(x) is the stochastic transport mapping, and in our notation it is the final distribution of109

the stochastic process x1 under condition that x0 = x. The marginality requirement of the final110

distribution of x1 (which must correspond to β) is ensured by the potential difference Eβg(y) and111

EαEy∼µ(x)g(y), which tends to infinity otherwise.112

But unlike classical OT, we need to minimize the cost throughout the trajectory xt, t ∈ [0, 1] with the113

following objective114

gc(x) = inf
v(x,t)

E
[∫ 1

0

(
∥v(t, xt)∥2

2
+ U(xt)

)
dt− g(x1)

∣∣∣∣x0 = x

]
. (5)

In the last expression, we have united infimums by µ(x) and control v(t, x) and as a sequence have115

removed the right side condition x1 ∼ µ(x). Based on dynamic programming approach, define the116

value function. For any 0 ≤ t ≤ 1, the value function satisfies:117

s(t, x) = inf
xt

E
[∫ 1

t

(
∥v(t, xt)∥2

2
+ U(xt)

)
dt− g(x1)

∣∣∣∣xt = x

]
, (6)

such that our objective equals s(0, x) and the boundary condition at time point t = 1 is118

∀x ∈ Rd : s(1, x) = −g(x).

Function s(t, x) solves the Hamilton-Jacobi-Bellman (HJB) differential equation and it in turn allows119

us to find the conjugate potential gc (4).120

−∂ts(t, x) = inf
v
{vT∇xs(t, x) + L(t, x, v)}+

σ2

2
tr{∇2s(t, x)}. (7)

Representation of the Lagrange function as a sum of kinetic and potential energy allows us to find121

the minimum in velocity (v) in explicit form, such that vt = −∇xs(t, xt). Together with potential122

optimization (3), we obtain the final GSB objective in dual Kantorovich form. We provide a detailed123

proof in Section 6.124
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Theorem 1 (Dual GSB problem). Given distributions α, β ∈ P(Rd) and stochastic dynamics (1)125

with cost functional (2), the dynamic optimal transport problem admits the following formulation:126

max
s(1,·)∈L1(β)

{Eα s(1, x1)− Eβ s(1, y)} (8)

where s(t, x) ∈ C1,2([0, 1]× Rd) and satisfies HJB PDE ∀t ∈ [0, 1] and ∀x ∈ Rd127

−∂ts(t, x) = −
1

2
∥∇xs(t, x)∥2 + U(x) +

σ2

2
tr{∇2s(t, x)}. (9)

The first expression in Theorem 1 plays the role of a discriminator and guarantees matching the128

target distribution β, and the second one is responsible for the optimality of trajectories. For the129

HJB equation to have a unique solution (in the viscosity sense), we require coercivity (Theorem 4.1130

[Fleeting and Soner, 2006]) of the Hamiltonian for some constants C1 > 0 and C2 ≥ 0131

H(x,∇s,∇2s) =
1

2
∥∇xs∥2 − U(x)− σ2

2
tr{∇2s} (10)

≥ C1(∥∇s∥)− C2(1 + ∥x∥+ ∥∇2s∥) (11)

The term ∥∇xs∥2 dominates for large values, so in case U(x) is bounded and σ > 0 the solution132

is unique. By means of the optimized function s(t, x) we can generate the OT trajectories using133

Euler-Maruyama algorithm:134

xt+∆t = −∇xs(t, xt)∆t+ σ∆W, x0 ∼ α. (12)

Unlike most other methods, here we do not need to model the intermediate density of the xt135

(t ∈ (0, 1)) distribution, which greatly simplifies the learning process, but we need to store the136

generation history in a replay buffer for more stable HJB optimization in high-dimensional spaces.137

4 Method138

To find a stable and balanced solution s(t, x) for the given dynamic OT problem (1), we can follow a139

composite approach that combines optimal control (via HJB PDE constraints) and RL techniques140

(policy-based trajectory optimization). We approximate the value function using a parametric model141

sθ(t, x). We have to maximize the potential matching functional (8) subject to the constraint that142

sθ(t, x) satisfies the HJB PDE. For that divide the time interval [0, 1] into T time steps and simulate143

n trajectories {tk0 , xk
0 , . . . , t

k
T , x

k
T }nk=1 using initial α distribution and Euler-Maruyama method (12).144

Sample also n points yk from the target distribution β and compute the potential matching loss as145

Lpot (sθ) =
1

n

n∑
k=1

sθ(1, x
k
T )−

1

n

n∑
k=1

sθ(1, y
k). (13)

The HJB PDE must hold for all t ∈ [0, 1] and x ∈ Rd, but in practice, for more effective training, the146

training data should be sampled in the region of the flow (trajectories) concentration (according to147

Liu et al. [2022]). We enforce this by linear interpolation between datasets from α and β as a rough148

estimation of the flow region and subsequently use the replay buffer B to collect points from the149

previously obtained trajectories. Using data samples {tk, xk}nk=1 from B or the linear interpolation150

we compute HJB residual loss as151

Lhjb(sθ, s) =
1

n

n∑
k=1

(
∂skθ
∂t
− 1

2
∥∇xs

k∥2 + U(xk) +
σ2

2
tr{∇2sk}+ λa∥ak∥

)2

(14)

+
1

n

n∑
k=1

(
∂sk

∂t
− 1

2
∥∇xs

k
θ∥2 + U(xk) +

σ2

2
tr{∇2skθ}+ λa∥ak∥

)2

, (15)

where skθ = sθ(t
k, xk), sk = s(tk, xk) denotes the target model with EMA parameters, ak is angular152

acceleration defined as153

ak =
d

dt

∇sθ(tk, xk)

∥∇sθ(tk, xk)∥
. (16)

The angular acceleration with coefficient λa forces the straightening of the trajectories (optionally).154

We divide the model into sθ and s as it usually done in RL methods to make the optimization problem155

more similar to regression.156
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In the result, our model is trained on two criteria (Lpot and Lhjb) simultaneously and to balance both157

impacts we scale the gradients of the hjb-loss and sum it with the pot-loss:158

∇θLpot(sθ) + λhjbEMA
(
∥∇θLpot(sθ)∥
∥∇θLhjb(sθ, s)∥

)
∇θLhjb(sθ, s). (17)

The complete method is implemented as shown in Algorithm 1. It effectively combines the theo-159

retical guarantees of optimal transport with the flexibility of neural network approximations, while160

maintaining numerical stability through careful gradient management. The adaptive balancing of the161

potential matching and HJB residual losses ensures stable convergence to a solution that satisfies both162

the optimality conditions and the boundary constraints.163

Algorithm 1 HOTA: Hamiltonian framework for Optimal Transport Advection

1: Input: value model sθ, model optimizer s_opt, distributions α and β, potential function U(x),
diffusion coefficient σ.

2: Hyperparameters: train steps N , iterpolation sample steps N0, temporal discretization T , batch
size n, hjb-loss weight λhjb, acceleration coefficient λa, learning rate lr, gradients scale EMA
coefficient τ .

3: Initialize target model s; replay buffer B ← ∅; gradients scale α← 1.0
4: for iteration i = 1 to N do
5: Sample train data {xk

0}nk=1 ∼ α; {yk}nk=1 ∼ β
6: if i < N0 then
7: Sample times {tk}nk=1 ∼ U(0, 1)
8: For 1 ≤ k ≤ n set xk = xk

0 · (1− tk) + yk · tk
9: else

10: Sample {tk, xk}nk=1 ∼ B
11: end if
12: Generate n trajectories {tk0 , xk

0 , . . . , t
k
T , x

k
T }nk=1 using current policy vt = −∇s(t, x)

13: Add the 1-st trajectory {t00, x0
0, . . . , t

0
T , x

0
T } to B

14: Compute gradients:
15: ghjb = ∇θLhjb(sθ, s, {tk, xk}nk=1)

16: gpot = ∇θLpot(sθ, {xk
T }nk=1, {yk}nk=1)

17: Update Parameters:
18: Compute norms Ghjb = ∥ghjb∥2 and Gpot = ∥gpot∥2
19: EMA update of gradients scale α = τGpot/Ghjb + (1− τ)α
20: Sum the gradients g = gpot + λhjb α ghjb
21: Update model parameters θ with s_opt(g)
22: EMA update of target model s
23: end for

5 Experiments164

In this section, we evaluate our method on a series of distribution matching tasks with non-trivial165

geometries. In Section 5.2, we compare HOTA with state-of-the-art baselines, demonstrating its166

superior performance on both standard benchmarks including datasets with almost non-differentiable167

potentials. In Section 5.3, we demonstrate the scalability of our approach by showcasing its ef-168

fectiveness in high-dimensional settings. Finally, in Section 5.4, we ablate key components of our169

method.170

5.1 Experimental Setup171

Evaluation We assess performance using two metrics: feasibility and optimality. Feasibility reflects172

how well the method matches the target distribution, evaluated via Wasserstein distance with squared173

Euclidean cost (W2(T#α, β)), where the transport mapping T uses optimized value function sθ and174

samples x1 by procedure (12). Optimality measures the quality of the resulting mapping, estimated175

through the integral trajectory cost:
∫ 1

0

[
Eρt

∥vt(xt)∥2

2 + U(xt)
]
dt, where xt follows (1).176

Network In all our experiments, we employ a simple MLP augmented with Fourier feature encoding177

of the time component. For general time embeddings of the form emb(t) = sin(f · t+ φ), the time178
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derivative is given by ∂temb(t) = f · cos(f · t+ φ). As the frequency f increases, the magnitude179

of this derivative also grows, potentially leading to numerical instability—especially when the time180

derivative of the network is explicitly involved in the objective. This issue has been previously181

discussed in Lu and Song [2024]. To address this, we restrict the frequency range to [1, 20] and182

normalize the resulting Fourier features by dividing by the corresponding frequencies.183

Baselines We use source code from GSBM repository for running it in our experiments on BabyMaze,184

Slit and Box datasets. Other results were taken from the original papers Liu et al. [2024], Pooladian185

et al. [2024] where dataset were previously introduced.186

All experiments are conducted on a GeForce RTX 3090 GPU and take less than ten minutes for187

training. Additional experimental details are provided in Appendix A.188

5.2 Comparative Evaluation on Two-Dimensional Data189
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Figure 1: Evaluation of HOTA method on smooth (top) and non-smooth datasets (bottom): Stunnel,
Vneck, GMM, BabyMaze, Slit, Box. Blue regions indicate high values of potential U(x). Distribu-
tions α (red), β (black) and the mapped T#α (green).

In this section, we compare our method to previous state-of-the-art approaches on the standard bench-190

marks including datasets that feature almost non-differentiable potential functions. Visualizations191

of the datasets are provided in Figure 1. The first three datasets—Stunnel, Vneck, and GMM—are192

adopted from Liu et al. [2024]. These benchmarks incorporate state cost functions U(xt) that en-193

courage the optimal solution to respect complex geometric constraints. Each dataset is designed to194

highlight specific capabilities of the evaluated algorithms. Stunnel assesses whether a method can195

capture drift fields that undergo rapid and localized changes. Vneck evaluates the ability to model196

drift that compresses and expands the support of marginal distributions. GMM tests whether the197

method can disambiguate closely situated points and assign them to distinct trajectories. The re-198

maining datasets—BabyMaze, Slit, and Box (Pooladian et al. [2024])—are constructed using similar199

underlying principles but pose additional difficulties due to the presence of almost non-differentiable200

state cost functions. A summary of the quantitative results across all datasets is provided in Table 1.201

Our method, HOTA, consistently outperforms existing approaches in terms of both feasibility and202

optimality. In particular, HOTA achieves a substantial performance gain on the GMM dataset, which203

may refer to its superior capability in trajectory separation for closely situated points.204

5.3 Scalability to High-Dimensional Spaces205

In this section, we test the scalability of our method, demonstrating its stable performance in higher-206

dimensional settings. For this purpose, we use Sphere datasets parameterized by data dimensionality207
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Table 1: Quantitative comparison between recent state-of-the-art methods and our approach, HOTA.
Performance is evaluated using two criteria: Feasibility (how well the target distribution is covered)
and Optimality (efficiency of the learned mapping). Our method consistently outperforms existing
approaches, with significantly better results in certain tasks, such as GMM. N/A cells indicate that
original authors of particular method did not include results for those tasks. The mean and the
standard deviations of our method are computed across 5 different seeds. Best values are highlighted
by bold font (lower is better). Gray values correspond to the method’s divergence.

Feasibility W2(T#(α), β) Optimality (integral cost)

Stunnel Vneck GMM Stunnel Vneck GMM

NLSB 30.54 0.02 67.76 207.06 147.85 4202.71
GSBM 0.03 0.01 4.13 460.88 155.53 229.12
HOTA 0.006±0.003 0.002±0.001 0.19±0.05 320.90±12.5 115.09±8.9 80.44±2.6

BabyMaze Slit Box BabyMaze Slit Box

NLSB > 1 0.013 0.024 N/A N/A N/A
NLOT > 1 0.013 0.016 N/A N/A N/A
GSBM 0.01 0.01 0.02 6.5 4.9 3.8
HOTA 0.004±0.003 0.0004±0.0001 0.002±0.001 4.87±0.14 3.06±0.09 2.84±0.11
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Figure 2: (a) Visualization of Sphere dataset for N = 3. (b) Feasibility and Optimality trends with
respect to 3D unit sphere smoothness (left) and unit sphere dimensionality (right). Our method
maintains robust performance across both non-differentiable potentials and high-dimensional settings.

N . Specifically, we define an N -dimensional unit sphere as a potential barrier inducing corresponding208

state cost function U(xt). The source and target distributions are samples from a standard distribution209

located at the poles, projected onto the unit sphere. The three-dimensional case is visualized in210

Figure 2a. The performance of our method across varying data dimensions is shown in Figure 2b211

(right). Notably, HOTA demonstrates robust and stable performance as the dimensionality N212

increases.213

5.4 Ablation study214

Table 2 presents comparison of the full HOTA model against variants without the replay buffer B215

that stores simulation history or the adaptive gradient balancing by means of α (17), evaluating as216

previously feasibility and optimality metrics across Stunnel, Vneck, and GMM datasets. The full217

HOTA achieves strong metric scores, while removing the buffer severely degrades feasibility in218

Vneck and GMM and increases costs in Stunnel. Disabling gradient balancing harms feasibility in219

Stunnel and GMM. The results highlight the buffer’s critical role in maintaining feasibility and the220

nuanced trade-offs between gradient balancing and transport efficiency across different scenarios.221

Additionally we have evaluated the influence of acceleration term λa∥a∥ used in loss Lhjb depending222

on λa (Figure 3). It performs the function of straightening trajectories by penalizing the change223

in angular velocity. It follows from the results that increasing λa improves the optimality of the224

transportation trajectories while introducing a small bias in the matching of the target distribution225

β, which is reflected in the feasibility metric. In the GMM task, due to the specificity of the dataset226
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and the divergence of trajectories in different directions, a small penalization of acceleration also227

improves feasibility.

Table 2: Comparison of HOTA method against variants without the replay buffer B and the adaptive
gradient balancing. Best values are highlighted by bold font (lower is better). Gray values correspond
to the method’s divergence.

Feasibility W2(T#(α), β) Optimality (integral cost)

Stunnel Vneck GMM Stunnel Vneck GMM

HOTA 0.006 0.002 0.19 320.90 115.09 80.44
HOTA w/o buffer 0.076 16.47 1.248 706.89 82.49 121.6
HOTA w/o grad. balancing 3.60 0.026 2.64 325.22 109.25 72.77
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Figure 3: Impact of acceleration coefficient λa. Left: Stunnel, right: GMM datasets.

6 Proof of Theorem 1 (Dual Formulation of GSB)229

We prove in the first step the equivalence between the GSB (stochastic control formulation) and its230

dual formulation using Kantorovich-style duality. Remind that we consider the stochastic process231

xt (1) with conditions x0 ∼ α, x1 ∼ β, control function v(t, xt), and Brownian motion σ(t, xt)dWt.232

The primary problem of GSB optimization is:233

inf
v(x,t)

E
[∫ 1

0

L(t, xt, vt)dt

]
s.t. x0 ∼ α, x1 ∼ β, (18)

where in the particular case L(t, x, v) = v2/2 + U(x). Since the stochastic process xt starts from234

x0 ∼ α the primal problem is equivalent to:235

inf
v(t,x)

(
E
[∫ 1

0

L(t, xt, vt)dt

]
+ sup

g∈L1(β)

(−E[g(x1)] + Eβ [g(y)])

)
, (19)

where the supremum over g enforces the constraint x1 ∼ β (via Lagrange duality). Rewrite the236

Lagrangian problem as237

inf
v(t,x)

sup
g∈L1(β)

(
E
[∫ 1

0

L(t, xt, vt)dt− g(x1)

]
+ Eβ [g(y)]

)
. (20)

Assuming strong duality holds under mild regularity conditions (e.g., L convex in v, α, β absolutely238

continuous), we swap inf and sup:239

sup
g∈L1(β)

(
inf

v(t,x)
E
[∫ 1

0

L(t, xt, vt)dt− g(x1)

]
+ Eβ [g(y)]

)
. (21)

Note that since the optimal v∗(t, x) is Markovian (depends only on current time t and state x) and240

does not depend on the initial distribution α it holds that241

E
[∫ 1

0

L(t, xt, v
∗
t )dt− g(x1)

]
= Ex∼αE

[∫ 1

0

L(t, xt, v
∗
t )dt− g(x1)

∣∣∣∣x0 = x

]
. (22)
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Buy the definition of c-conjugate transform (5):242

Ex∼αE
[∫ 1

0

L(t, xt, v
∗
t )dt− g(x1)

∣∣∣∣x0 = x

]
= Ex∼αg

c(x). (23)

Thus, the dual problem becomes: supg∈L1(β) (Eα[g
c(x)] + Eβ [g(y)]) . In the second step find the243

optimal control solution v∗(t, x) by means of dynamic programming principle. Define the value244

function s(t, x) that for any 0 ≤ t ≤ τ ≤ 1 satisfies:245

s(t, x) = inf
v(t,x)

E
[∫ τ

t

L(z, xz, vz)dz + s(τ, xτ )

∣∣∣∣xt = x

]
. (24)

Applying Ito’s formula to s(τ, xτ ) we obtain that246

ds(τ, xτ ) = ∂τsdτ +∇s · dxτ +
1

2
tr(σ2∇2s) dτ (25)

=

(
∂τs+∇sT vτ +

1

2
tr(σ2∇2s)

)
dτ +∇sTσ dWs. (26)

Consider the evolution of the value between times t and τ :247

s(τ, xτ )− s(t, xt) =

∫ τ

t

(
∂zs+∇s · vz +

1

2
tr(σ2∇2s)

)
dz +

∫ τ

t

∇sTσ dW. (27)

Basing on the martingale property of Ito integrals (E[
∫
∇s · σ dW |xt = x] = 0) it holds that248

E[s(τ, xτ )|xt = x] = s(t, x) + E
[∫ τ

t

(
∂zs+∇s · vz +

1

2
tr(σ2∇2s)

)
dz

]
. (28)

Substitute back into dynamic programming and plug the last expression into the equation (24):249

s(t, x) = inf
v(t,x)

E
[∫ τ

t

L(z, xz, vz) dz + s(t, x) +

∫ τ

t

(
∂zs+∇sT vτ +

1

2
tr(σ2∇2s)

)
dz

]
.

(29)
Cancel s(t, x) from both sides and divide by (τ − t):250

0 = inf
v(s,t)

1

τ − t
E
[∫ τ

t

(
L(z, xz, vz) + ∂zs+∇sT vz +

1

2
tr(σ2∇2s)

)
dz

]
. (30)

Take limit τ ↓ t to derive the HJB equation for a general Lagrangian L251

0 = inf
v

{
L(t, x, v) + ∂ts+∇sT v +

1

2
tr(σ2∇2s)

}
. (31)

Identify optimal control for the particular L(t, x, v) = v2/2 + U(x). The infimum is attained when252

v∗ = −∇s, yielding the final result of Theorem 1.253

7 Limitations and Future Work254

While HOTA exhibits strong and robust performance, we observed sensitivity to certain network255

design choices—particularly the Fourier feature encoding of time, a commonly used technique in256

models that estimate ODE drifts. Additionally, because the value function in our framework must257

simultaneously support optimal control estimation and serve as a Kantorovich potential, it requires258

a network architecture capable of aggregating rich temporal and spatial information. The use of a259

simple MLP, while effective, may not be optimal from an optimization standpoint. Incorporating260

architectures with stronger inductive biases could further enhance performance. These considerations261

lie beyond the scope of this work, but we believe they offer promising directions for future research.262

8 Conclusion263

In this work, we introduced HOTA, a new OT method based on the Hamilton–Jacobi–Bellman264

(HJB) framework for solving the Generalized Schrödinger Bridge problem. We demonstrated that265

HOTA consistently outperforms recent state-of-the-art methods on standard benchmarks and scales266

effectively to high-dimensional settings. Remarkably, it works for non-smooth potentials and with267

non-differentiable cost functions, yielding robust performance gain in terms of strictly defined268

concepts of feasibility and optimality.269
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A Additional Experimental Details350

Hyperparameters Table 3 summarizes the hyperparameters used for each dataset presented in the351

paper. Note that the Sphere datasets, which are parameterized by data dimensionality, share all352

hyperparameters except for the potential weight, which may take value 10 for the low dimensions are353

30 for high ones.

Table 3: Hyperparameters used for each dataset presented in the paper.
Hyperparameter Stunnel Vneck GMM BabyMaze Slit Box Sphere
MLP hidden layers [512, 512, 512, 1]
Fourier frequencies {1,. . . ,20}

optimizer Adam with cosine annealing (α = 1e-2)
initial learning rate 5× 10−4

Adam [β1, β2] [0.9, 0.99]
# training iterations 70000

batch size 1024
EMA decay, τ 0.9
# control steps 30

diffusion coef., σ 0.3 0.2 0.1 0.03 0.05 0.03 0.01
control weight, λa 1.0 2.0 0.7 0.5 2.0 0.3 0.4

acc. weight, λa 0.0001 0.001 0.2 0.05 0.001 0.01 0
potential weight 25 1000 25 10 30 700 {10, 30}

354
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NeurIPS Paper Checklist355

1. Claims356

Question: Do the main claims made in the abstract and introduction accurately reflect the357

paper’s contributions and scope?358

Answer:[Yes]359

Justification: We provide theoretical derivation of the dual SGB problem. We made a360

thorough experiments on established benchmarks and compare proposed method with the361

other GSB solvers. In all extensive tests, HOTA outperforms the competition both in terms362

of feasibility and optimality.363

Guidelines:364

• The answer NA means that the abstract and introduction do not include the claims365

made in the paper.366

• The abstract and/or introduction should clearly state the claims made, including the367

contributions made in the paper and important assumptions and limitations. A No or368

NA answer to this question will not be perceived well by the reviewers.369

• The claims made should match theoretical and experimental results, and reflect how370

much the results can be expected to generalize to other settings.371

• It is fine to include aspirational goals as motivation as long as it is clear that these goals372

are not attained by the paper.373

2. Limitations374

Question: Does the paper discuss the limitations of the work performed by the authors?375

Answer: [Yes]376

Justification: We provided discussions on limitations in Section 6 of main paper.377

Guidelines:378

• The answer NA means that the paper has no limitation while the answer No means that379

the paper has limitations, but those are not discussed in the paper.380

• The authors are encouraged to create a separate "Limitations" section in their paper.381

• The paper should point out any strong assumptions and how robust the results are to382

violations of these assumptions (e.g., independence assumptions, noiseless settings,383

model well-specification, asymptotic approximations only holding locally). The authors384

should reflect on how these assumptions might be violated in practice and what the385

implications would be.386

• The authors should reflect on the scope of the claims made, e.g., if the approach was387

only tested on a few datasets or with a few runs. In general, empirical results often388

depend on implicit assumptions, which should be articulated.389

• The authors should reflect on the factors that influence the performance of the approach.390

For example, a facial recognition algorithm may perform poorly when image resolution391

is low or images are taken in low lighting. Or a speech-to-text system might not be392

used reliably to provide closed captions for online lectures because it fails to handle393

technical jargon.394

• The authors should discuss the computational efficiency of the proposed algorithms395

and how they scale with dataset size.396

• If applicable, the authors should discuss possible limitations of their approach to397

address problems of privacy and fairness.398

• While the authors might fear that complete honesty about limitations might be used by399

reviewers as grounds for rejection, a worse outcome might be that reviewers discover400

limitations that aren’t acknowledged in the paper. The authors should use their best401

judgment and recognize that individual actions in favor of transparency play an impor-402

tant role in developing norms that preserve the integrity of the community. Reviewers403

will be specifically instructed to not penalize honesty concerning limitations.404

3. Theory assumptions and proofs405

Question: For each theoretical result, does the paper provide the full set of assumptions and406

a complete (and correct) proof?407
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Answer: [Yes]408

Justification: We provided a theoretical proof of dual GSB task formulation.409

Guidelines:410

• The answer NA means that the paper does not include theoretical results.411

• All the theorems, formulas, and proofs in the paper should be numbered and cross-412

referenced.413

• All assumptions should be clearly stated or referenced in the statement of any theorems.414

• The proofs can either appear in the main paper or the supplemental material, but if415

they appear in the supplemental material, the authors are encouraged to provide a short416

proof sketch to provide intuition.417

• Inversely, any informal proof provided in the core of the paper should be complemented418

by formal proofs provided in appendix or supplemental material.419

• Theorems and Lemmas that the proof relies upon should be properly referenced.420

4. Experimental result reproducibility421

Question: Does the paper fully disclose all the information needed to reproduce the main ex-422

perimental results of the paper to the extent that it affects the main claims and/or conclusions423

of the paper (regardless of whether the code and data are provided or not)?424

Answer: [Yes]425

Justification: Along with detailed hyperparameter specifications in the Appendix, we in-426

cluded easy to follow Jupyter notebook which can be found in supplementary materials,427

enabling the others to fully reproduce the results in the paper.428

Guidelines:429

• The answer NA means that the paper does not include experiments.430

• If the paper includes experiments, a No answer to this question will not be perceived431

well by the reviewers: Making the paper reproducible is important, regardless of432

whether the code and data are provided or not.433

• If the contribution is a dataset and/or model, the authors should describe the steps taken434

to make their results reproducible or verifiable.435

• Depending on the contribution, reproducibility can be accomplished in various ways.436

For example, if the contribution is a novel architecture, describing the architecture fully437

might suffice, or if the contribution is a specific model and empirical evaluation, it may438

be necessary to either make it possible for others to replicate the model with the same439

dataset, or provide access to the model. In general. releasing code and data is often440

one good way to accomplish this, but reproducibility can also be provided via detailed441

instructions for how to replicate the results, access to a hosted model (e.g., in the case442

of a large language model), releasing of a model checkpoint, or other means that are443

appropriate to the research performed.444

• While NeurIPS does not require releasing code, the conference does require all submis-445

sions to provide some reasonable avenue for reproducibility, which may depend on the446

nature of the contribution. For example447

(a) If the contribution is primarily a new algorithm, the paper should make it clear how448

to reproduce that algorithm.449

(b) If the contribution is primarily a new model architecture, the paper should describe450

the architecture clearly and fully.451

(c) If the contribution is a new model (e.g., a large language model), then there should452

either be a way to access this model for reproducing the results or a way to reproduce453

the model (e.g., with an open-source dataset or instructions for how to construct454

the dataset).455

(d) We recognize that reproducibility may be tricky in some cases, in which case456

authors are welcome to describe the particular way they provide for reproducibility.457

In the case of closed-source models, it may be that access to the model is limited in458

some way (e.g., to registered users), but it should be possible for other researchers459

to have some path to reproducing or verifying the results.460

5. Open access to data and code461
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Question: Does the paper provide open access to the data and code, with sufficient instruc-462

tions to faithfully reproduce the main experimental results, as described in supplemental463

material?464

Answer: [Yes]465

Justification: We provided a fully reproducible code, written in JAX framework. Moreover,466

we provided step-by-step jupyter notebook, showcasing the performance of the proposed467

algorithm in all discussed tasks.468

Guidelines:469

• The answer NA means that paper does not include experiments requiring code.470

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/471

public/guides/CodeSubmissionPolicy) for more details.472

• While we encourage the release of code and data, we understand that this might not be473

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not474

including code, unless this is central to the contribution (e.g., for a new open-source475

benchmark).476

• The instructions should contain the exact command and environment needed to run to477

reproduce the results. See the NeurIPS code and data submission guidelines (https:478

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.479

• The authors should provide instructions on data access and preparation, including how480

to access the raw data, preprocessed data, intermediate data, and generated data, etc.481

• The authors should provide scripts to reproduce all experimental results for the new482

proposed method and baselines. If only a subset of experiments are reproducible, they483

should state which ones are omitted from the script and why.484

• At submission time, to preserve anonymity, the authors should release anonymized485

versions (if applicable).486

• Providing as much information as possible in supplemental material (appended to the487

paper) is recommended, but including URLs to data and code is permitted.488

6. Experimental setting/details489

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-490

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the491

results?492

Answer: [Yes]493

Justification: We provided detailed hyperparameters specifications in the Appendix for each494

of the tested benchmarks.495

Guidelines:496

• The answer NA means that the paper does not include experiments.497

• The experimental setting should be presented in the core of the paper to a level of detail498

that is necessary to appreciate the results and make sense of them.499

• The full details can be provided either with the code, in appendix, or as supplemental500

material.501

7. Experiment statistical significance502

Question: Does the paper report error bars suitably and correctly defined or other appropriate503

information about the statistical significance of the experiments?504

Answer: [Yes]505

Justification: All reported results are statistically significant. We include evaluation error506

(StDev) for each model and each dataset in the study across different runs and seeds.507
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• The answer NA means that the paper does not include experiments.509

• The authors should answer "Yes" if the results are accompanied by error bars, confi-510

dence intervals, or statistical significance tests, at least for the experiments that support511

the main claims of the paper.512
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• The factors of variability that the error bars are capturing should be clearly stated (for513

example, train/test split, initialization, random drawing of some parameter, or overall514
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• The assumptions made should be given (e.g., Normally distributed errors).518
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of the mean.520

• It is OK to report 1-sigma error bars, but one should state it. The authors should521

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis522

of Normality of errors is not verified.523

• For asymmetric distributions, the authors should be careful not to show in tables or524

figures symmetric error bars that would yield results that are out of range (e.g. negative525

error rates).526

• If error bars are reported in tables or plots, The authors should explain in the text how527

they were calculated and reference the corresponding figures or tables in the text.528

8. Experiments compute resources529

Question: For each experiment, does the paper provide sufficient information on the com-530

puter resources (type of compute workers, memory, time of execution) needed to reproduce531

the experiments?532

Answer: [Yes]533

Justification: We include the exact computer configuration in Appendix and mention GPU534

model in the main text.535

Guidelines:536

• The answer NA means that the paper does not include experiments.537

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,538

or cloud provider, including relevant memory and storage.539

• The paper should provide the amount of compute required for each of the individual540

experimental runs as well as estimate the total compute.541

• The paper should disclose whether the full research project required more compute542

than the experiments reported in the paper (e.g., preliminary or failed experiments that543

didn’t make it into the paper).544

9. Code of ethics545

Question: Does the research conducted in the paper conform, in every respect, with the546

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?547

Answer: [Yes]548

Justification: We read it and adhered to the ethical guidelines.549

Guidelines:550

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.551

• If the authors answer No, they should explain the special circumstances that require a552

deviation from the Code of Ethics.553

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-554

eration due to laws or regulations in their jurisdiction).555

10. Broader impacts556

Question: Does the paper discuss both potential positive societal impacts and negative557

societal impacts of the work performed?558

Answer: [No]559

Justification: Our paper does not address the societal impact as we operate with common560

datasets and benchmarks for testing GSB solvers.561

Guidelines:562

• The answer NA means that there is no societal impact of the work performed.563
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• If the authors answer NA or No, they should explain why their work has no societal564

impact or why the paper does not address societal impact.565

• Examples of negative societal impacts include potential malicious or unintended uses566

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations567

(e.g., deployment of technologies that could make decisions that unfairly impact specific568

groups), privacy considerations, and security considerations.569

• The conference expects that many papers will be foundational research and not tied570

to particular applications, let alone deployments. However, if there is a direct path to571

any negative applications, the authors should point it out. For example, it is legitimate572

to point out that an improvement in the quality of generative models could be used to573

generate deepfakes for disinformation. On the other hand, it is not needed to point out574

that a generic algorithm for optimizing neural networks could enable people to train575

models that generate Deepfakes faster.576

• The authors should consider possible harms that could arise when the technology is577

being used as intended and functioning correctly, harms that could arise when the578

technology is being used as intended but gives incorrect results, and harms following579

from (intentional or unintentional) misuse of the technology.580

• If there are negative societal impacts, the authors could also discuss possible mitigation581

strategies (e.g., gated release of models, providing defenses in addition to attacks,582

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from583

feedback over time, improving the efficiency and accessibility of ML).584

11. Safeguards585

Question: Does the paper describe safeguards that have been put in place for responsible586

release of data or models that have a high risk for misuse (e.g., pretrained language models,587

image generators, or scraped datasets)?588

Answer: [NA]589

Justification: Not applicable to this work.590

Guidelines:591

• The answer NA means that the paper poses no such risks.592

• Released models that have a high risk for misuse or dual-use should be released with593

necessary safeguards to allow for controlled use of the model, for example by requiring594

that users adhere to usage guidelines or restrictions to access the model or implementing595

safety filters.596

• Datasets that have been scraped from the Internet could pose safety risks. The authors597

should describe how they avoided releasing unsafe images.598

• We recognize that providing effective safeguards is challenging, and many papers do599

not require this, but we encourage authors to take this into account and make a best600

faith effort.601

12. Licenses for existing assets602

Question: Are the creators or original owners of assets (e.g., code, data, models), used in603

the paper, properly credited and are the license and terms of use explicitly mentioned and604

properly respected?605

Answer: [Yes]606

Justification: We properly refer to the original papers and use the open source codes from607

official repositories, providing the URLs to them.608

Guidelines:609

• The answer NA means that the paper does not use existing assets.610

• The authors should cite the original paper that produced the code package or dataset.611

• The authors should state which version of the asset is used and, if possible, include a612

URL.613

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.614

• For scraped data from a particular source (e.g., website), the copyright and terms of615

service of that source should be provided.616
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• If assets are released, the license, copyright information, and terms of use in the617

package should be provided. For popular datasets, paperswithcode.com/datasets618

has curated licenses for some datasets. Their licensing guide can help determine the619

license of a dataset.620

• For existing datasets that are re-packaged, both the original license and the license of621

the derived asset (if it has changed) should be provided.622

• If this information is not available online, the authors are encouraged to reach out to623

the asset’s creators.624

13. New assets625

Question: Are new assets introduced in the paper well documented and is the documentation626

provided alongside the assets?627

Answer: [Yes]628

Justification: We include all of the details corresponding to train procedures, datasets used,629

and citations. Moreover, we provide a readme file for the repository details. The released630

code is legally approved for the publication; no special documentation is needed.631

Guidelines:632

• The answer NA means that the paper does not release new assets.633

• Researchers should communicate the details of the dataset/code/model as part of their634

submissions via structured templates. This includes details about training, license,635

limitations, etc.636

• The paper should discuss whether and how consent was obtained from people whose637

asset is used.638

• At submission time, remember to anonymize your assets (if applicable). You can either639

create an anonymized URL or include an anonymized zip file.640

14. Crowdsourcing and research with human subjects641

Question: For crowdsourcing experiments and research with human subjects, does the paper642

include the full text of instructions given to participants and screenshots, if applicable, as643

well as details about compensation (if any)?644

Answer: [NA]645

Justification: No crowdsourcing was used in this study.646

Guidelines:647

• The answer NA means that the paper does not involve crowdsourcing nor research with648

human subjects.649

• Including this information in the supplemental material is fine, but if the main contribu-650

tion of the paper involves human subjects, then as much detail as possible should be651

included in the main paper.652

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,653

or other labor should be paid at least the minimum wage in the country of the data654

collector.655

15. Institutional review board (IRB) approvals or equivalent for research with human656

subjects657

Question: Does the paper describe potential risks incurred by study participants, whether658

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)659

approvals (or an equivalent approval/review based on the requirements of your country or660

institution) were obtained?661

Answer: [NA]662

Justification: No human studies/IRB was needed for this study.663

Guidelines:664

• The answer NA means that the paper does not involve crowdsourcing nor research with665

human subjects.666
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• Depending on the country in which research is conducted, IRB approval (or equivalent)667

may be required for any human subjects research. If you obtained IRB approval, you668

should clearly state this in the paper.669

• We recognize that the procedures for this may vary significantly between institutions670

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the671

guidelines for their institution.672

• For initial submissions, do not include any information that would break anonymity (if673

applicable), such as the institution conducting the review.674

16. Declaration of LLM usage675

Question: Does the paper describe the usage of LLMs if it is an important, original, or676

non-standard component of the core methods in this research? Note that if the LLM is used677

only for writing, editing, or formatting purposes and does not impact the core methodology,678

scientific rigorousness, or originality of the research, declaration is not required.679

Answer: [NA]680

Justification: This research does not involve LLMs.681

Guidelines:682

• The answer NA means that the core method development in this research does not683

involve LLMs as any important, original, or non-standard components.684

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)685

for what should or should not be described.686
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