
Generative Deep-Neural-Network Mixture Modeling
with Semi-Supervised MinMax+EM Learning

Nilay Pande and Suyash P. Awate
Computer Science and Engineering Department,

Indian Institute of Technology (IIT) Bombay, Mumbai 400076. India.

Abstract—Deep neural networks (DNNs) for nonlinear gener-
ative mixture modeling typically rely on unsupervised learning
that employs hard clustering schemes, or variational learning
with loose / approximate bounds, or under-regularized modeling.
We propose a novel statistical framework for a DNN mixture
model using a single generative adversarial network. Our learning
formulation proposes a novel data-likelihood term relying on a
well-regularized / constrained Gaussian mixture model in the
latent space along with a prior term on the DNN weights. Our
min-max learning increases the data likelihood using a tight
variational lower bound using expectation maximization (EM). We
leverage our min-max EM learning scheme for semi-supervised
learning. Results on three real-world image datasets demonstrate
the benefits of our compact modeling and learning formulation
over the state of the art for nonlinear generative image (mixture)
modeling and image clustering.

Index Terms—Deep neural network, nonlinear generative mix-
ture model, adversarial learning, expectation maximization, semi-
supervision, generative image modeling, image clustering.

I. INTRODUCTION

Generative mixture modeling has applications across many
fields including image analysis, e.g., clustering, interpolation,
and generation. Some of the earliest such methods model
real-world data distributions using variants of a multivariate-
Gaussian mixture model (GMM), where efficient model fitting
relies on expectation maximization (EM) [1]. To better model
the nonlinear manifolds that real-world data typically lie
around, some extended approaches rely on kernel methods [2]
and spectral clustering methods [3] which implicitly nonlin-
early map the data to a higher-dimensional space, e.g., a
reproducing kernel Hilbert space (RKHS), and fit a parametric
mixture model (e.g., a GMM) in the mapped space. Analogous
to the kernel-GMM is the kernelized dictionary modeling
approach that relies to sparsity-based regularization [4]. How-
ever, all such methods rely on modeling data using hand-
crafted features / kernels, and the methods’ performance can
be sensitive to these manual designs. Moreover, it can become
difficult / infeasible to visualize key RKHS statistics, e.g., the
mean or modes of variation, as pre-images in the absence of
explicit mappings between the input space and the RKHS.

More recent methods for mixture modeling or clustering
rely on deep neural networks (DNNs) that enable data-driven
feature learning optimized to the task at hand. Unlike many
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earlier methods, DNNs enable the explicit modeling of non-
linear mappings to model the manifolds that real-world data
reside around. Some such DNN methods [5], [6] use auto-
encoder (AE) based formulations for mixture modeling, or
clustering, by employing k-means based clustering in the
associated latent space. Such approaches enforce hard / crisp
cluster memberships leading to a strong prior that assumes the
inter-cluster probability density functions (PDFs) to be well
separated. Some DNN methods [7], [8] employ variational
AE (VAE) formulations that model a distribution of possible
latent-space encodings for each datum, and marginalize out
their effects during learning. To do so, they typically rely
on variational bounds on the log-likelihood function, where
the bounds lack tightness, both analytically and empirically.
Most of the recent DNN methods [9], [10], [11] leverage
generative adversarial networks (GANs) [12], [13] that employ
an adversarial discriminator DNN that aids the generator in
updating the generated-sample PDF towards the observed-data
PDF. However, some such methods use approximate lower
bounds that can make learning unreliable, and some employ
multiple-GAN frameworks that seriously risk over-fitting. In
contrast, we propose a novel DNN-based mixture model that
(i) uses a single-GAN framework with a well-regularized
learning formulation, (ii) models the latent-space PDF as a
constrained GMM, and (iii) formulates min-max learning to
learn the adversary and jointly increase the data likelihood
using a tight variational lower bound using EM.

Most DNN methods for generative mixture modeling or
clustering rely on unsupervised learning. We propose to extend
our learning framework to semi-supervised learning where a
small amount of expert supervision, through cluster labels for
a subset of the data, has the potential to improve the learning.
Thus, we extend our unsupervised adversarial-learning EM-
based framework to semi-supervised learning.

This paper makes several contributions. First, it proposes a
novel statistical framework for a DNN-based mixture model
(DNN-MM) using a single GAN, i.e., one generator, one
encoder, and one discriminator. Our learning formulation
proposes a novel data-likelihood term relying on a well-
regularized / constrained Gaussian mixture model in the latent
space along with a prior term on the DNN weights. Second,
we propose a novel learning formulation by combining min-
max learning with EM-based learning, termed MinMax+EM,
leveraging a variational lower bound that analytically guar-
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antees tightness to the log-likelihood of the data. Third,
we propose to extend our MinMax+EM learning to semi-
supervised learning. Fourth, results on three real-world image
datasets demonstrate the benefits of our compact modeling
and learning formulation over the state of the art for nonlinear
generative image (mixture) modeling and image clustering.

II. RELATED WORK

We describe related methods for mixture PDF estimation
or clustering that rely on the number of mixture compo-
nents or clusters being known. One class of methods rely
on clustering the data using hand-crafted features. Some
of the early and popular methods of clustering includes k-
means and k-means++ [14], both of which rely on hard
clustering leading to discrete optimization problems that are
NP hard. Later methods that became popular include Gaussian
mixture models (GMMs) that enabled modeling the cluster
PDFs as multivariate Gaussian, and lead to efficient fits using
EM optimization [1] that also gave fractional memberships
(posterior probability) for each datum belonging to each
cluster. Modeling fractional memberships to clusters typically
improves clustering performance when the cluster PDFs have
some amount of overlap, by leading to better model fits that
account for the possibility / uncertainty of datum to belonging
to multiple clusters. To enable modeling a mixture-component
PDF as complex non-Gaussian, later methods extended GMMs
to kernel GMMs [15] that modeled each mixture-component
PDF as a Gaussian in the implicitly-mapped RKHS [2]. Other
methods propose dictionary modeling with sparsity based
prior on the coefficients [16], principal geodesic analysis in
RKHS [17], dictionary modeling in RKHS [18], generalized
Gaussian modeling in RKHS [19], and spectral clustering [3].
The performance of these aforementioned methods often de-
pends heavily of the quality of the hand-crafted features.

DNNs enable the joint learning of the features along with
the clustering for a given class of observed data, thereby
relieving the designer from hand-crafting features. In this way,
for clustering a large amount of data, DNN based methods
typically outperform methods using hand-crafted features. A
survey of DNN-based clustering methods appears in [20]. This
paper focuses on methods that rely on generative mixture
modeling of the data. Such methods can effectively be par-
titioned into three categories: (i) AE based methods, (ii) VAE
based methods, and (iii) GAN based methods. In general, these
methods use a learning framework that combines a network
loss (for regularization or consistency) and a clustering loss (to
promote grouping of the data). The network loss can include
the reconstruction loss in AEs, the variational loss in VAEs,
or the adversarial loss in GANs.

AE-based Methods. DCN [5] trains an AE and jointly
optimizes a k-means-based hard-clustering loss in latent-space
along with the reconstruction loss of the AE. DynAE [6] is
a recent improved version of DCN that uses a heuristic to
dynamically update the subset of the training set for each
kind of loss (clustering and reconstruction). Both DCN and
DynAE perform hard clustering (instead of soft clustering)

and explicitly estimate the cluster means in latent space.
Because the nonlinearity in the DNN mappings that can easily
adapt to linear / nonlinear transformations of the means and
covariances, explicit mean estimation can make the model
over-flexible / under-regularized and make it prone to, say,
mode collapse. DSC-Nets [21] uses a self-expressive layer that
enforces a sparse representation of each latent-space encoding
using other encodings. Consequently, it leads to quadratic
complexity in time and space both, limiting its use for large
datasets [20]. This also limits the applicability of batch-based
backpropagation schemes because the gradient of the self-
expressive loss depends on the entire dataset. DEPICT [22]
augments an AE with a classifier on latent space and, to avoid
trivial solutions, enforces a strong prior on the classifier output
to produce a close-to-uniform distribution on empirical label
distribution. In contrast, our method relies on soft-clustering
models and estimates the mixture-component scaling factors
from the data using EM optimization, while making it easy to
incorporate priors on the scaling factors.

VAE-based Methods. VaDE [7] extends the VAE formu-
lation by replacing the Gaussian prior in the latent space to
a GMM prior. Akin to [5], [6], they explicitly estimate the
component means and covariances, making the model under-
regularized. Furthermore, they inherit from the VAE formu-
lation the limitation of the evidence lower bound (ELBO)
scheme being an approximation to optimizing the true ob-
jective function because the bound is not tight. [8] extends
the GMM prior in the VAE formulation to include another
prior involving a graph-embedding model that enforces sim-
ilar data to have similar embeddings. They aim to improve
VaDE’s optimization scheme to get a tight variational bound
by minimizing a Kullback-Leibler (KL) divergence, but their
scheme lacks the guarantee to make KL divergence zero, both
analytically and empirically. Moreover, designing an effective
graph-embedding affinity matrix relies on learning a Siamese
DNN that needs rich prior information unavailable with un-
supervised clustering methods. In contrast, our method relies
on an EM-based variational lower bound that analytically
guarantees tightness to the log-likelihood of the data.

GAN-based Methods. InfoGAN [9] has a generator that
takes as input a noise vector and a latent code (which indicates
the cluster assignment when InfoGAN is adapted for the
clustering problem). InfoGAN maximizes mutual information
between the latent space and the generated images. Like VAE-
based methods, InfoGAN also suffers from the true posterior
associated with the variational lower bound being unknown in
practice, with only the hope of approximating it by the DNN
during learning.

Mixture of GANs [10] proposes a separate GAN to model
each cluster within an EM framework, unlike our method
that utilizes the same generator and discriminator across all
clusters. Thus, [10] acknowledges that their method is prone
to early convergence in EM, risking trivial solutions, and,
thereby, purposely introduces an error in the variational bound
in the E step, calling it ε-EM. Thus, [10] loses convergence
guarantees underlying EM. [10] uses a classifier that gives
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cluster probabilities directly, unlike our model that explic-
itly introduces a GMM in latent space. To deal with class
imbalance in the training set, [10] uses a heuristic for data
augmentation, because they have a different GAN for each
cluster. In contrast, our model is well regularized because of
sharing one GAN to model all clusters, together with an auto-
encoding based regularizing prior.

ClusterGAN [11] extends InfoGAN to replace mutual infor-
mation by and auto-encoding loss and a cross-entropy term,
and, thereby, avoids ELBO related approximations. Unlike
VAE-based methods that estimate all GMM parameters, which
risks under-regularization, ClusterGAN fixes the parameter-
ization of the encoded PDFs in latent space; this is simi-
lar in spirit to our method. ClusterGAN models the latent
space as discrete-continuous, and its architecture counter-
intuitively uses the same encoder to map the input image
(i) to a continuous-valued (noise) vector and (ii) to a one-
hot encoding. In contrast, our method models the latent
space more conveniently as a Euclidean space comprising an
explicit multivariate GMM that, under the nonlinear generator
mapping, models the nonlinear mixture model of the observed
images. ClusterGAN’s formulation avoids modeling different
proportions of probability masses / data corresponding to
different clusters, while our formulation explicitly models
the proportions through the scaling parameters. Moreover,
we formulate the learning problem as an extension of a
maximum-likelihood / maximum-posterior estimation problem
for which we propose an efficient EM optimization coupled
with the min-max optimization problem underlying the adver-
sarial learning. Finally, our unsupervised learning formulation
coupled with EM based optimization lends itself naturally
to a semi-supervised learning formulation, while none of the
aforementioned methods (including ClusterGAN) extend their
work to the semi-supervised learning scenario.

III. METHODS

We describe a novel DNN-based learning framework for
semi-supervised nonlinear generative mixture modeling using
MinMax+EM, with applications to clustering.

A. Nonlinear Generative DNN Mixture Model (DNN-MM)

Let a set of N random fields {Xn}Nn=1 model the observed
set of images, all of which have an identical PDF P (X). We
assume that P (X) comprises K mixture components, where
each component represents a nonlinear distribution. This paper
tunes free parameter K using cross validation.

1) Generator Modeling: We propose to learn a DNN-
based generative model for the PDF P (X) of a given class /
kind of images. We propose to learn a DNN-based generator
G(·; θG), parameterized by DNN weights θG, that can generate
images belonging to P (X) through the action of the nonlinear
transformation function G(·; θG) on a random vector Y having
a known PDF P (Y ) in some latent space. We model the
latent space as the L-dimensional Euclidean space RL (this
paper sets L := 30; typically L� K). Specifically, we model
G(·; θG) as a nonlinear transformation function that transforms

Fig. 1. Our Architecture for DNN Mixture Modeling using semi-supervised
MinMax+EM learning.

a multivariate Gaussian mixture PDF P (Y ) in the latent space
to the PDF P (X) of the class of images.

Knowing that the P (X) is a mixture of K components,
and that the generator mapping is typically highly nonlinear
stemming from the DNN architectural design, we model
the latent-space PDF P (Y ), without loss of generality, as a
mixture of K (fixed) Gaussians in latent space, with each mean
lying at a corner of a K-simplex in the positive orthant of the
latent-space (at a distance of 4 units from the origin) and each
covariance being the identity matrix I. Let the Gaussian means
be {µk ∈ RL}Kk=1. Let the set of scaling factors associated
with each component in the mixture be ω := {ωk}Kk=1, under
with constraints that

∑K
k=1 ωk = 1 and ωk > 0,∀k. The

scaling factors are unknown and we propose to estimate them
from the training data. Our learning strategy is to have each
Gaussian component in P (Y ), under transformation G(·; θG),
to lead to the corresponding mixture component in P (X).

2) Encoder Modeling: During learning, if we knew which
observed image X came from which component / cluster
k, then it would be easy to learn, say, a separate DNN to
model each mixture component in P (X). However, obtaining
such cluster labels may (in the worst case) be intractable in
practice or (in the best case) entail a laborious process of
sifting through the data and labeling each image. Thus, in
many real-world applications involving large datasets, such
labeled information is unavailable for the observed data X .

We propose to reciprocate the generator mapping G(·; θG)
by modeling an encoder mapping E(·; θE), parameterized by
DNN weights θE , that maps images X to the latent space. The
learning strategy for the encoder is that, if X was drawn from
the k-th mixture component in P (X), then E(X; θE) maps to
an encoding closer to the k-th mean µk in the latent space.
In this way, the encoder mapping enables us to infer (i) the
probability density of image X being drawn from cluster k
and (ii) the probability / membership of an image X belong-
ing to the k-th cluster, by evaluating the Gaussian mixture
components in the latent space at the encoding E(X; θE).
Let Z be a hidden categorical random variable indicating the
mixture component to which image X belongs. Let Z take
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integer values within [1,K]. Let P (Z = k) = ωk be the prior
probability occurrence of the k-th component of the mixture
model. Then, the likelihood for an image X is

P (X|θE , ω) :=
K∑
k=1

ωkP (X|Z = k, θE). (1)

The probability density for image X drawn from cluster k is

P (X|Z = k, θE) := N (E(X; θE);µk, I). (2)

Moreover, the encoder enables us to estimate the probability
that image X was drawn from cluster k, i.e., the membership
of image X to cluster k, by using Bayes rule, as

P (Z = k|X, θE , ω) =
ωkN (E(X; θE);µk, I)∑K

k′=1 ωk′N (E(X; θE);µk′ , I)
. (3)

Thus, the log-likelihood function for the entire training set is

EP (X) log

[
K∑
k=1

ωkN (E(X; θE);µk, I)

]
. (4)

3) Consistency Prior on Generator + Encoder: To learn
an encoder mapping that reciprocates the generator mapping,
we want to ensure that the mapping from a y ∼ P (Y )
in latent space to G(y; θG) in the image space, followed
by the the encoder mapping back to the latent space, i.e.,
E(G(y; θG); θE), remains close to the initial y. This promotes
the encoder learning to avoid a “collapse” of its mapping
where all generated images map to a subset of the K mixture
components in P (Y ) in the latent space. So, we propose a
log-prior logP (θG, θE), upto the normalizing constant, as

EP (Y )[−‖Y − E(G(Y ; θG); θE)‖22] (5)

=

K∑
k=1

ωkEYk∼N (µk,I)[−‖Yk − E(G(Yk; θG); θE)‖
2
2]. (6)

4) Discriminator Modeling: We want the PDF of the
generated samples G(Y ; θG) to match the PDF P (X) un-
derlying the observed data. So, we introduce a DNN-based
discriminator as an adversarial learning component that plays
two roles iteratively: (i) it learns a decision boundary between
the distribution of generated images (output by the generator)
and the distribution P (X) of observed images, and (ii) it
leverages the decision boundary to help the generator learn
to produce images to which the discriminator assigns a larger
probability of being drawn from the PDF P (X) underlying the
observed images. Let the DNN-based discriminator / classifier
model a mapping D(·; θD), parameterized by DNN weights
θD, such that D(X ′; θD) gives the probability of image X ′

being drawn from the PDF P (X) of real-world images. Then,
the discriminator-based terms in the objective function are

EP (X)[− logD(X; θD)] + EP (Y )[logD(G(Y ; θG); θD)] (7)
= EP (X)[− logD(X; θD)]

+

K∑
k=1

ωkEYk∼N (µk,I)[logD(G(Yk; θG); θD)], (8)

where the learning seeks to update the generator weights θG to
increase the objective function, and update the discriminator
weights θD to decrease the objective function.

B. DNN Mixture Model (DNN-MM) Learning

We combine the objective-function terms from (i) the
encoder-based likelihood, (ii) the prior on the generator-
encoder combination, and (iii) the discriminator-based ad-
versarial learning component to propose a novel statistical
learning formulation for unsupervised DNN-based mixture
modeling. Given the training set {xn}Nn=1, the unsupervised
learning problem is the min-max optimization as

min
θD

max
ω,θG,θE

N∑
n=1

log

(
K∑
k=1

ωkN (E(xn; θE);µk, I)

)

−λ1
K∑
k=1

ωk

S∑
s=1

‖ysk − E(G(ysk; θG); θE)‖22

−λ2
N∑
n=1

logD(xn; θD)

+λ2

K∑
k=1

ωk

S∑
s=1

logD(G(ysk; θG); θD), (9)

where {ysk}Ss=1 is an independent sample drawn from the PDF
N (µk, I) in the latent space, and where λ1, λ2 ∈ R+ are (free)
weighting parameters tuned by cross validation.

C. Unsupervised MinMax+EM Learning for DNN-MM

In the learning formulation in Section III-B, the log-
likelihood term log

(∑K
k=1 ωkN (E(xn; θE);µk, I)

)
com-

prises a logarithm of a summation that cannot be simplified
further analytically. Nevertheless, variational learning using
the iterative expectation-maximization (EM) algorithm pro-
vides a way around it by (i) the introduction of the hidden
random variable Z indicating the cluster for each input X ,
(ii) designing a minorization of the data log-likelihood that
touches the log-likelihood function at the current parameter
estimate, using the Q(θE , ω) function, in the E step, and
(iii) updating the parameters to improve the value of the
minorized function in the M step. Thus, we propose to
simplify the log-likelihood through its optimal lower bound as
follows. Consider iteration t, with current parameter estimates
{θtG, θtE , θtD, ωt}. The E step then designs the function

Q(θE , ω; θ
t
E , ω

t)

:= EP (X)EP (Z|X,θtE ,ωt)[logP (X,Z|θE , ω)] (10)

= EP (X)

[
K∑
k=1

P (Z = k|X, θtE , ωt) logP (X|Z = k, θE , ω)

]

+ EP (X)

[
K∑
k=1

P (Z = k|X, θtE , ωt) logωk

]
, (11)

which is an optimal lower bound to the log-likelihood function
logP (X|θE , ω), upto an additive constant that is independent
of the parameters θE and ω. Here, P (Z = k|X, θtE , ωt) is
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the membership of image X to the k-th cluster based on
the current parameter estimates. Let the membership of the
observed training-set image xn to the k-th cluster, based on
parameter estimates θtE , ω

t, be γtnk. Then, at iteration t within
the EM algorithm, the objective function becomes

min
θD

max
ω,θG,θE

N∑
n=1

K∑
k=1

γtnk (logωk + logN (E(xn; θE);µk, I))

−λ1
K∑
k=1

ωk

S∑
s=1

‖ysk − E(G(ysk; θG); θE)‖22

−λ2
N∑
n=1

logD(xn; θD)

+λ2

K∑
k=1

ωk

S∑
s=1

logD(G(ysk; θG); θD). (12)

D. Semi-Supervised MinMax+EM Learning for DNN-MM

The performance of unsupervised mixture-model learning
on tasks like clustering or classification can improve greatly
by improving the efficacy of the learning using a small amount
of labeled data, i.e., with a small set of images {X̃m}Mm=1,
for which the cluster labels {Z̃m ∈ [1,K]}Mm=1 are provided.
We propose an extension of the EM-based variation learning
scheme that leverage this small amount of labeled training
data. For those input images for which the label is provided
by experts, we do not need to introduce a hidden variable and
we can consider the membership function to be crisp, i.e., the
membership belongs completely to one and only one cluster.
This introduces two additional terms in the objective function
involving the variables X̃m, analogous to those involving the
images Xn. Thus, the semi-supervised learning formulation is

min
θD

max
ω,θG,θE

M∑
m=1

K∑
k=1

I(Z̃m, k) (logωk + logN (E(x̃m; θE);µk, I))

+

N∑
n=1

K∑
k=1

γtnk (logωk + logN (E(xn; θE);µk, I))

−λ1
K∑
k=1

ωk

S∑
s=1

‖ysk − E(G(ysk; θG); θE)‖22

−λ2
N∑
n=1

logD(xn; θD)− λ2
M∑
m=1

logD(x̃m; θD)

+λ2

K∑
k=1

ωk

S∑
s=1

logD(G(ysk; θG); θD), (13)

where I(Z̃m, k) is the indicator function that takes a value of
1 when Z̃m = k, and takes a value of 0 otherwise. We define
the level of supervision as α := M/(M +N) that takes real
values within [0, 1]. Here, M = 0 =⇒ α = 0 leading to the
unsupervised learning case, and N = 0 =⇒ α = 1 leading
to the supervised learning case. In general, M > 0 and N > 0
leads to the semi-supervised learning case where α ∈ (0, 1).

E. MinMax+EM Optimization

Within the MinMax+EM formulation in Section III-D,
within each iteration t, we propose an alternate minimization
scheme for the parameters θG, θE , θD, ω. We use Adam [23]
for updating the DNN weights θG, θE , θD and we use pro-
jected gradient descent to update the scaling factors ω, where
the projection is on the convex set comprising positive ωk val-
ues that sum to one. After updating θG, θE , θD, ω at iteration,
we move to iteration t+ 1 and repeat the iterations. We tune
the free parameters, i.e., K, λ1, and λ2, using the validation
set to maximize the clustering accuracy.

1) Pretraining Strategy: For any clustering method, es-
pecially relying on unsupervised learning or relying on learn-
ing with a small amount of supervision, the initialization
strategy for the variables being optimized can be important
for improved performance. In the pretraining stage, we pro-
pose to find a good initializations for the DNN parameters
(θG, θE , θD) using a sequential pretraining scheme as follows.

Semi-supervised K-means. We first run semi-supervised
kmeans on the images in the training set data to get an initial
clustering. During this process, we fix the cluster label for
those images X for which it has been provided as part of the
expert supervision. We also update ωk to be the fraction of the
images assigned to cluster to cluster k, leading to a pretrained
estimate of the latent-space PDF P ′(Y ).

Encoder Pretraining. We use the kmeans clustering to
pretrain the encoder such that, if an image X mapped to cluster
zn ∈ [1,K], then the encoder learns to map that X close to
the mean µzn in the latent space. Thus, we pretrain θE to

θ′E := argmax
θE

N∏
n=1

N (E(xn; θE);µzn , I). (14)

Generator Pretraining. After fixing the encoder parame-
ters θE , we pretrain the generator weights θG to

θ′G := argmin
θG

EP ′(Y )[‖Y − E(G(Y ; θG); θ
′
E)‖22]

+EP (X)[‖X − G(E(X; θ′E); θG)‖]. (15)

Discriminator Pretraining. After pretraining the generator,
we pretrain the discriminator to separate the PDFs of the
generated data and the observed data. Thus, we pretrain θD to

θ′D := argmin
θD

EP (X)[− logD(X; θD)]

+EP ′(Y )[logD(G(Y ; θ′G); θD)]. (16)

IV. RESULTS AND DISCUSSION

For evaluation, we use 3 publicly available real-
world datasets: (i) MNIST [24], (ii) CIFAR10 [25], and
(iii) CelebA [26]. We compare our method with 2 other
methods: (i) ClusterGANss: an extension of ClusterGAN [11]
to semi-supervised learning, and (ii) DynAEss: an extension
of DynAE [6] to semi-supervised learning, where DynAE is
known to improve over DCN [5]. Compared to ClusterGAN,
our ClusterGANss introduces an additional loss term penaliz-
ing the cross entropy between its encoder-estimated encodings
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and the true one-hot encodings for the subset of training set
(where the true one-hot encodings are known). DynAEss uses
a similar strategy to improve over DynAE. As per the results
in [27], ClusterGAN provided favorable clustering results on
CIFAR10, compared to earlier methods. As per the results in
[6], DynAE provided favorable clustering results on MNIST,
compared to earlier methods. Thus, ClusterGAN and DynAE
have the best known performance for generative clustering on
the CIFAR10 and MNIST, respectively. For all 3 datasets,
we evaluate all 3 methods at varying levels of supervision
α = [0.1, 0.2, · · · ]. We use 3 metrics for quantitative evalu-
ation of the clustering: (i) accuracy, (ii) adjusted rand index
(ARI), and (iii) normalized mutual information (NMI). For
each dataset, we choose a random subset of images to evaluate
mixture modeling / clustering; to evaluate the variability in the
performance resulting from the choice of the chosen subset,
we repeat the evaluation 15 times and show error bars for the
performance metrics.

(a1) Accuracy: 5 clusters (a2) Accuracy: 7 clusters

(b1) ARI: 5 clusters (b2) ARI: 7 clusters

(c1) NMI: 5 clusters (c2) NMI: 7 clusters

Fig. 2. Results: MNIST; Quantitative. Clustering performance for all
methods at varying levels of supervision α = 0.1, 0.2, · · · .

(a1) Ours: α = 0.1 (a2) Ours: α = 0.5

(b1) ClusterGANss: α = 0.1 (b2) ClusterGANss: α = 0.5

(c1) DynAEss: α = 0.1 (c2) DynAEss: α = 0.5

Fig. 3. Results: MNIST; Visualizations of Latent-Space Encoding PDFs.
t-SNE visualizations of latent-space PDFs for all methods at levels of
supervision α = 0.1, 0.5.

Fig. 4. Results: MNIST; Interpolation in Latent Space. At level of
supervision α = 0.1, generated images using (i) linear interpolation between
the mixture-component means (corresponding to digits 1 and 3) in latent space
and (ii) subsequent mapping to the image space using the generator.

A. Results: MNIST Dataset
For the MNIST dataset, we evaluate methods on two tasks:

(i) mixture modeling 5 classes, i.e., 1000 images of each digit
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from 0 to 4 (Figure 2(a1)–(c1)), and (ii) mixture modeling
7 classes, i.e., 1000 images of each digit from 0 to 6 (Fig-
ure 2(a1)–(c1)). For both these tasks, at virtually all levels of
supervision α, and all 3 clustering-performance metrics, our
method outperforms ClusterGANss and DynAEss (Figure 2).
While the performance of ClusterGANss and DynAEss deteri-
orates as the dataset incorporates more number of clusters, our
method’s performance remains virtually unaffected. For the 5-
cluster dataset, DynAEss performs better than ClusterGANss,
but ClusterGANss starts to improve over DynAEss as the
number of clusters increases (to 7) and the mixture modeling
becomes more challenging. The t-SNE visualizations of the
latent-space PDFs (Figure 3) clearly indicate that the proposed
method produces image encodings for each mixture compo-
nent with far smaller overlap across components, at both levels
of supervision α = 0.1 and α = 0.5. Consequently, despite the
relatively small size of the dataset (1000 images per mixture
component), for our method, the images generated by mapping
the mixture-component means in latent space resemble actual
hand-written digit images quite well (Figure 4). In contrast, the
appearance of the digit three generated from ClusterGANss

(a1) Accuracy: CIFAR10 (a2) Accuracy: CelebA

(b1) ARI: CIFAR10 (b2) ARI: CelebA

(c1) NMI: CIFAR10 (c2) NMI: CelebA

Fig. 5. Results: CIFAR10 and CelebA; Quantitative. Clustering perfor-
mance for all methods at varying levels of supervision α = 0.1, 0.2, · · · .

(a1) Ours: CIFAR10 (a2) Ours: CelebA

(b1) ClusterGANss: CIFAR10 (b2) ClusterGANss: CelebA

(c1) DynAEss: CIFAR10 (c2) DynAEss: CelebA

Fig. 6. Results: CIFAR10 and CelebA; Visualizations of Latent-Space
Encoding PDFs. t-SNE visualizations of latent-space PDFs for all methods
at level of supervision α = 0.5.

using that cluster representative in latent space is distorted
(Figure 4). Latent-space means in DynAEss map to images
that are blurrier and dimmer, probably because of (i) the lack
of an adversarial component and (ii) the hard-clustering that
leads to unweighted averaging of the encodings in the over-
lapped mixture distributions. Moreover, interpolating between
the means in latent space shows a more gradual semantic
variation for our method compared to others (Figure 4). For
DynAEss, the interpolation leads to an intermediate stage
(second image from left) that seems like a blend of the digits
1 and 3.

B. Results: CIFAR10 and CelebA Datasets

For the CIFAR10 dataset, we evaluate all methods on two
tasks: (i) mixture modeling 3 classes, i.e., 1000 images from
each of the first 3 classes, and (ii) mixture modeling 5 classes,
i.e., 1000 images from each of the first 5 classes. To make
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the task more challenging, we introduce white noise in the
red channel of the RGB images, with a standard deviation of
10% of the intensity range. For the CelebA dataset, we choose
1000 images each from 5 distinct classes corresponding to
(i) BlackHair, (ii) BlondeHair, (iii) BrownHair, (iv) GrayHair
and (v) Bald. To make the task more challenging, we introduce
white noise in the each channel of the RGB images, with a
standard deviation of 20% of the intensity range. Both these
datasets exhibit complex image PDFs for each class.

Our GMM-based data-likelihood maximizing formulation
leads to statistically significantly better performance than
ClusterGANss (Figure 5), especially at smaller levels of su-
pervision α, indicating improved robustness to noise, for both
CIFAR10 and CelebA datasets. Indeed, for both CIFAR10
and CelebA datasets, t-SNE visualizations of the latent-space
PDFs show (Figure 6) that (i) DynAEss is unable to seperate
the representations of the mixture components in latent space,
(ii) ClusterGANss performs much better then DynAEss, but
still leads to a significant overlap between the encodings of
multiple mixture components / clusters, and (iii) our method
maintains significantly better separability between clusters as
well as restricts the overlap between clusters to a significantly
smaller region in latent-space.

V. CONCLUSION

We have proposed a novel statistical framework for a DNN-
based mixture modeling using a single GAN. We leverage the
generative component in our GAN to nonlinearly transform a
GMM model in latent space to a nonlinear mixture model in
the space of images. We leverage the adversarial component
in our GAN to aid the learning of the generator in order
to drive the generated-sample PDF towards the observed-
data PDF. Our learning formulation proposes a novel data-
likelihood term relying on a well-regularized and constrained
Gaussian mixture model in the latent space (with only the
scaling weights being learned) along with a prior term on
the DNN weights. Unlike VAE-based methods, our min-max
learning increases the data likelihood using a tight variational
lower bound using EM. Unlike typical DNN-based mixture
models, we leverage our MinMax+EM learning scheme for
semi-supervised learning. Results on three real-world image
datasets demonstrate the benefits of our compact modeling
and learning formulation over the state of the art for nonlinear
generative image (mixture) modeling and image clustering.
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