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ABSTRACT

The rapid growth of earth observation systems calls for a scalable approach to
interpolate remote-sensing observations. These methods in principle, should ac-
quire more information about the observed field as data grows. Gaussian processes
(GPs) are candidate model choices for interpolation. However, due to their poor
scalability, they usually rely on inducing points for inference, which restricts their
expressivity. Moreover, commonly imposed assumptions such as stationarity pre-
vents them from capturing complex patterns in the data. While deep GPs can
overcome this issue, training and making inference with them are difficult, again
requiring crude approximations via inducing points. In this work, we instead ap-
proach the problem through Bayesian deep learning, where spatiotemporal fields
are represented by deep neural networks, whose layers share the inductive bias of
stationary GPs on the plane/sphere via random feature expansions. This allows
one to (1) capture high frequency patterns in the data, and (2) use mini-batched
gradient descent for large scale training. We experiment on various remote sens-
ing data at local/global scales, showing that our approach produce competitive or
superior results to existing methods, with well-calibrated uncertainties.

1 INTRODUCTION

The advent of earth observation systems have made it possible to monitor virtually all of earth’s
atmosphere and the ocean at unprecedented scales. This development has been pivotal to the un-
derstanding of anthropogenic impact on the environment, including global warming and rise in sea
level. Hence, it is crucial that we are able to process the voluminous data effectively and extract
maximal information from it to make better informed decisions in our path to achieving sustainable
development goals.

However, observations from satellite products are inherently sparse in space-time, requiring methods
to effectively fill in the gap at unobserved locations (Le Traon et al., 1998). This typically relies on
data assimilation techniques such as the ensemble Kalman filter (Evensen, 2003), which requires one
to have access to a physical model that describes the evolution of the field. While this can produce
detailed and accurate reconstructions of the field, the physical models are typically expensive to
run at high resolutions, often requiring access to high performance compute clusters. This can be
challenging when one does not have the expertise nor the resources to gain access and/or run the
models. On the other hand, statistical methods such as Gaussian process regression (GPR, Williams
& Rasmussen (2006)) can be deployed. However, GPR scales poorly to large data sets, necessitating
approximate inference schemes such as sparse Gaussian processes (Titsias, 2009), which may result
in crude approximations if the underlying process does not have sufficiently large lengthscale or
smoothness (Burt et al., 2019). Moreover, kernels used for GPR are often too simplistic, which can
prevent learning of detailed fluctuations in the underlying non-stationary and multi-scale field. Deep
Gaussian processes (DGPs) (Damianou & Lawrence, 2013) have emerged as an attractive solution
to the latter problem. However, they still suffer from the difficulty of computing the posterior, again
requiring variational inference to learn only a crude approximation to the true posterior.

In recent years, Bayesian deep learning (BDL) have emerged as an alternative paradigm for sta-
tistical modelling, which combines the flexibility and scalability of deep learning methods with
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Figure 1: We propose deep random features (DRF) for accurate and flexible interpolation of satellite
measurements of the earth’s surface (Left). Compared to sparse variational GPs (SVGP, Centre),
an ensemble of DRFs is able to achieve more detailed reconstructions of the field with sensible
uncertainty estimates (Right).

Bayesian modelling principles (Papamarkou et al., 2024). In our current setting, we can approach
spatiotemporal interpolation using BDL, by representing the ground truth underlying field f† by a
Bayesian neural network fθ : X → Y , (here, X denotes the spatiotemporal input space and Y the
output signals) and training on input-output pairs D = {(xn, yn)}Nn=1 for xn ∈ X and yn ∈ Y ,
corresponding to earth observations. However, naı̈ve design choices for fθ can lead to poor recon-
structions of f†; for example, a vanilla deep ReLU network is bound to perform poorly as it fails
to learn high frequency features Tancik et al. (2020). On the other hand, deep neural networks with
trigonometric activations (Sitzmann et al., 2020; Lu & Shafto, 2022) have emerged as an effective
model for representing high-frequency spatiotemporal signals. However, they are not designed for
interpolation of sparse data in mind and are therefore prone to overfitting.

Taken altogether, we propose to design fθ inspired by DGPs, such that it retains the learning capac-
ity of DNNs, while having the interpretability and inductive biases of GPs. Our main contributions
are as follows: We propose the use of kernel-derived random features (Rahimi & Recht, 2007) as
building blocks for BNNs to model spatiotemporal fields. We demonstrate through extensive exper-
iments that they are capable of capturing fine-scale information in data, while being able to quantify
uncertainty accurately by considering deep ensembles. Furthermore, motivated by recent develop-
ments in geometric probabilistic modelling (Borovitskiy et al., 2020), we also consider analogous
random features on the sphere, leading to a novel DNN architecture with Gegenbauer polynomial
activation functions that can model global weather fields that are adapted to the sphere. Our models
are easily implementable in modern deep learning frameworks such as PyTorch and scale up to
large datasets exceeding millions of data points through mini-batched gradient-based optimisation,
pushing the boundary of what is currently possible with statistical interpolation.

1.1 RELATED WORKS

In Cutajar et al. (2017), trigonometric feature expansion of DGPs similar to ours have been consid-
ered, with the intent of proposing a tractable variational inference (VI) scheme for DGPs. They show
superior performance to mean-field VI (Damianou & Lawrence, 2013), however, have been largely
overlooked due in part to the adoption of doubly stochastic VI (Salimbeni & Deisenroth, 2017), as
the de facto standard method for DGP inference. Jiang et al. (2024) similarly leverages random
Fourier features to approximate kernel machines, emphasising composite kernels for incorporating
prior knowledge into neural networks. DNNs with trigonometric activations have resurfaced as an
object of interest more recently, with the emergence of neural radiance fields (Mildenhall et al., 2021)
and subsequent work on implicit neural representations Tancik et al. (2020); Sitzmann et al. (2020).
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Rigorous study of trigonometric networks and their connection to DGPs have been considered in Lu
& Shafto (2022), and more general investigation of wide DNNs with bottlenecks in relation to DGPs
have been considered in Agrawal et al. (2020); Pleiss & Cunningham (2021). Other closely related
works include Meronen et al. (2020; 2021), who study calibration of shallow networks with periodic
activations, Garnelo et al. (2018) proposes a different approach to combining aspects of GPs with
DNNs, and the works Sun et al. (2020); Dutordoir et al. (2021) establish connections between neural
network layers and inducing points for GPs/DGPs.

2 BACKGROUND

2.1 GAUSSIAN PROCESSES AND DEEP GAUSSIAN PROCESSES

A Gaussian process (GP) is a random function f : RI → R such that for any N > 0 and any
set of points xn ∈ RI for n = 1, . . . , N , we have that (f(x1), . . . , f(xN ))⊤ ∈ RN is Gaus-
sian. GPs are characterised by a mean function m : RI → R and a kernel k : RI × RI → R,
such that E

[
f(x)

]
= m(x) and Cov [f(x), f(x′)] = k(x,x′) for all x,x′ ∈ RI (Williams &

Rasmussen, 2006). Extending these to have vector outputs f : RI → RO is made possible by
considering vector-valued means m : RI → RO and matrix-valued kernels k : RI ×RI → RO×O,
satisfying E

[
fi(x)

]
= mi(x) and Cov [fi(x), fi(x

′)] = kij(x,x
′), ∀i, j = 1, . . . , O. We write

f ∼ GP(m,k) to denote that f is a GP with mean m and kernel k. A deep GP (DGP)
f : RI → RO extends GPs by considering compositions f(x) = fL ◦ · · · ◦ f1(x), where
f1 : RI → RB , f ℓ : RB → RB for ℓ = 2, . . . , L − 1 and fL : RB → RO are vector-GPs.
The intermediate states RB are referred to as the bottlenecks. We note that DGPs are more flex-
ible class of models than GPs. However, due to their compositional structure, they are no longer
Gaussian and therefore require approximate methods for inference, e.g. using variational Bayes.

2.2 RANDOM FOURIER FEATURES

Consider a zero-mean scalar GP f ∼ GP(0, k) for some kernel k. We say that k is stationary if
there exists a function κ : RI → R such that k(x,x′) = κ(x−x′). In Rahimi & Recht (2007), it is
shown that any stationary kernel on RI can be expressed as an expectation

k(x,x′) = 2σ2Eω,b

[
cos(ω⊤x+ b) cos(ω⊤x′ + b)

]
(1)

≈ 2σ2

H

H∑
h=1

cos(ω⊤
h x+ bh) cos(ω

⊤
h x

′ + bh), ωh ∼ p(ω), bh ∼ U([0, 2π]) (2)

for some σ > 0, where p(ω) is the normalised Fourier transform of the function κ and U([0, 2π])
denotes the uniform distribution in the interval [0, 2π]. From the weight-space viewpoint of GPs,
equation 2 implies that we have

f(x) ≈
H∑

h=1

θhϕh(x), θh ∼ N (0, 1), (3)

where ϕh(x) =
√
2σ2/H cos(ω⊤

h x+ bh), h = 1, . . . ,H, (4)
with ωh ∼ p(ω) and bh ∼ U([0, 2π]). Extension to vector-valued GPs f : RI → RO with indepen-
dent output components is straightforward, leading to a random Fourier feature representation of the
form f(x) = Θϕ(x) for Θ ∈ RO×H with Θij ∼ N (0, 1), i.i.d. ∀i, j. For details and examples of
random Fourier features, we refer the readers to Appendix A

3 DEEP RANDOM FEATURES FOR SPATIOTEMPORAL MODELLING

GPs are commonly used in spatiotemporal modelling due to their interpretability and smoothness
inductive biases that are appealing to many geostatistical applications (Wikle et al., 2019). However,
they are limited by their poor scalability and Gaussian assumptions. On the other hand, deep neural
networks (DNN) offer a scalable, flexible modelling framework, however, do not have the desirable
inductive bias of GPs. Motivated by this, we consider deep random features (Figure 2), which
use random features corresponding to stationary GPs as building blocks for a larger neural network
model tailored for spatiotemporal modelling, combining the benefits of both GPs and DNNs.
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Figure 2: Illustration of spatiotemporal modelling with deep random features.

3.1 DEEP RANDOM FEATURES

In Section 2.2, we have seen that a shallow GP can be approximated by a combination of random
features according to equation 3. In a similar fashion, Cutajar et al. (2017) propose a random feature
expansion of deep GPs, by replacing each GP layer by their corresponding random features, yielding
a DNN architecture that mimic the behaviour of the original DGP. In further details, let ϕ1 : RI →
RH be a random feature (equation 4), which may be viewed equivalently as a single layer of a neural
network with weights {ωm}Hm=1, biases {bm}Hm=1 and cosine activation. The first hidden layer in a
deep GP, which itself is a vector-valued GP f1 : RI → RB , can be approximated by a linear model

h1(x) = Θ1ϕ1(x), (5)

where Θ1 ∈ RB×H with Θ1
ij ∼ N (0, 1), i = 1, . . . , B, j = 1, . . . ,H . Similarly, given random

features ϕℓ : RB → RH for ℓ = 2, . . . , L, Gaussian weights Θℓ ∈ RB×H for ℓ = 2, . . . , L− 1 and
ΘL ∈ RB×O, we may consider a DNN fΘ : RI → RO of the form

fΘ(x) = hL ◦ · · · ◦ h2 ◦ h1(x), where hℓ(x) := Θℓϕℓ(x), ℓ = 1, . . . , L, (6)

which we refer to as the random feature expansion of a DGP f : RI → RO. Generally, we may
consider building DNNs independently of a DGP by using layers of the form h(x) = Θϕ(x) as
building blocks for a neural network. We refer to such models as deep random features. Note that
while each layer hℓ(x) approximates a stationary GP, its compositions are no longer stationary.

3.1.1 TRAINING

In contrast to standard neural networks, when we train deep random features, we opt to alternate
between trainable and fixed layers, where the parameters ωℓ

m, bℓm in the layers ϕℓ(·) are fixed upon
initialisation, but the parameters Θ := {Θ1, . . . ,ΘL} are trained. This is to mimic training of
DGPs from the weight-space perspective, where inference should only be made with respect to Θ.
Given a dataset D = {(Xn,yn)}Nn=1, and an arbitrary loss ℓ : RO × RO → R, we minimise

Ltrain(Θ;D) =
1

N

N∑
n=1

ℓ(fΘ(Xn),yn) + β∥Θ∥2, (7)

for some regularisation parameter β > 0. From a generalised Bayes’ perspective, this is equivalent
to maximum a priori estimation with the generalised posterior p(Θ|D) ∝ exp(−ℓ(fΘ(X),y))p(Θ)
(Bissiri et al., 2016). Using mean-squared error as the loss and considering a shallow network,
minimising equation 7 via gradient descent can be seen as sampling from the GP posterior in the
neural tangent kernel limit (Lee et al., 2019; He et al., 2020). Using other losses such as the Huber
loss, this becomes akin to robust GP regression (Algikar & Mili, 2023; Altamirano et al., 2024).
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3.1.2 SPHERICAL RANDOM FEATURES

When modelling signals over the sphere, which arises when we need to interpolate global satellite
measurements (see Figure 1), we require an analogous notion of random features defined over the
sphere. In Borovitskiy et al. (2020), commonly used kernels such as the Matérn kernels are extended
to be defined over general Riemannian manifolds, including the two-sphere S2. In general, such
kernels can be approximated by the Mercer sum

k(s, s′) ≈ 1

CΦ

J∑
j=0

Φ(λj)φj(s)φj(s
′), s, s′ ∈ S2, (8)

for some Φ : R → R and constant CΦ determined from the kernel, and {λj}Jj=0, {φj}Jj=0 are the
J top eigenvalues and eigenfunctions respectively of the negative Laplace-Beltrami operator; on S2,
the latter is precisely the spherical harmonics. Furthermore, on S2, by making use of the addition
theorem for spherical harmonics and the result (Azangulov et al., 2024, Proposition 7), we get an
alternative expression for the kernel (see Appendix A.2 for the derivation)

k(s, s′) ≈ Eω,b

[
cω G1/2

ω (dS2 (s, b))G1/2
ω (dS2 (s

′, b))
]
, s, s′ ∈ S2, (9)

where Gα
n (·) are the Gegenbauer polynomials of order n and weight parameter α, dS2(·, ·)

denotes the geodesic distance on S2, cω is an appropriate scaling constant, and the ex-
pectation is taken over b ∼ U(S2), the uniform distribution over the sphere, and ω ∼
Multinomial(C−1

Φ Φ(λ1), . . . , C
−1
Φ Φ(λJ)). Then, by considering Monte Carlo approximation of

the expectation in equation 9, this implies random feature maps of the form

ϕm
S2(s) =

√
M−1cωm

G1/2
ωm

(dS2 (s, bm)), s ∈ S2, m = 1, . . . ,M, (10)

where ωm ∼ Multinomial(C−1
Φ Φ(λ1), . . . , C

−1
Φ Φ(λJ)), bm ∼ U(S2). (11)

This gives us an analogous notion of random features (equation 4) on the sphere, which we can use
as a component in our deep random feature model when our input is spherical.

Remark 1 We may also consider the deterministic features ϕm(s) =
√

C−1
Φ Φ(λm)φm(s), derived

from equation 8, which is analogous to the regular Fourier features (Hensman et al., 2018; Solin &
Särkkä, 2020) in the planar case. However in practice, we find that working with random features
(equation 10) produce more stable results when using single precision arithmetic.

3.1.3 SPATIOTEMPORAL MODELLING WITH DEEP RANDOM FEATURES

So far, we have only discussed how to process spatial inputs. In order to deal with the temporal
components in our data, we first consider deep random features in the spatial domain h

(Lx)
x : X →

RB (X = RI or S2), and temporal domain h
(Lt)
t : R → RB separately, before combining them as

f(x, t) = Θ
(
concat[h(Lx)

x (x),h
(Lt)
t (t)]

)
, (12)

where Θ ∈ RO×2B are learnable weights initialised with i.i.d. standard Gaussians. At short
timescales, geospatial fields are approximately stationary, hence we can use a single layer network
to model the temporal component h(Lt)

t (i.e., Lt = 1). To introduce more complex spatiotempo-
ral dependence, we can replace the linear output layer in equation 12 with deep random features.
However we find that in most applications this is unnecessary, only introducing extra cost.

3.1.4 SKIP CONNECTIONS

To prevent pathological behaviour from emerging as we increase the network depth, we add skip
connections to the inputs (Duvenaud et al., 2014; Dunlop et al., 2018). In the planar case, this takes

h(ℓ+1)(x) = Θℓ+1ϕℓ+1
(
concat[h(ℓ)(x),x]

)
(13)

in the (ℓ + 1)-th layer of the network, where ϕℓ+1 : RB+I → RM . In the spherical case, this
is not straightforward as the outputs of each layer will be Euclidean while the input is spherical.
To this end, we consider ϕℓ+1 to be additive random features corresponding to the sum kernel
k((x, s), (x′, s′)) = kRB (x,x′) + kS2(s, s

′), for x,x′ ∈ RB , s, s′ ∈ S2, where kRB (·, ·), kS2(·, ·)
are stationary kernels on their respective spaces (see Appendix B.1 for details).
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3.2 UNCERTAINTY QUANTIFICATION

Uncertainty quantification (UQ) with deep random features is achieved using standard Bayesian
deep learning techniques. In particular, we consider the following methods in our experiments:

Variational inference. This considers a Gaussian approximation to the posterior p(Θ|D) ≈
N (Θ|m,C). Here, the moments of the variational distribution q(Θ) := N (Θ|m,C) are learned
by maximising the evidence lower bound (ELBO)

LELBO(fΘ;D) = Eq [−ℓ(fΘ(X),y)]−KL(q||pΘ), (14)

where pΘ(Θ) = N (Θ|0, I) is the prior on Θ and KL(·||·) is the Kullback-Leibler divergence.

Dropout at test time. A simple heuristic for obtaining uncertainty estimates is to apply dropout
not only at training time but also at test time. This yields an ensemble of random outputs, whose
empirical distribution informs us of the model uncertainty. In fact, one can understand this as a form
of variational inference, as shown in Gal & Ghahramani (2016).

Deep ensembles. Deep ensembles (Lakshminarayanan et al., 2017) obtain uncertainty estimates
by training an ensemble of models, initialised from different random seeds. The ensemble of outputs
is then used to estimate uncertainty, similar to the dropout method for UQ. While being a simple
method, this has been shown to be surprisingly effective at obtaining uncertainty estimates. More-
over, provided the model is small enough (which is often the case for deep random features), the
ensembles can be trained in parallel on a single GPU.

3.3 HYPERPARAMETER SELECTION

Our deep random features model contain several hyperparameters λ, including those of the kernel
(e.g. lengthscales) that we use to derive our random features. If variational inference is used for
UQ, we can take the ELBO (equation 14) for model comparison, as it may be viewed as a surro-
gate for the log model evidence log p(D|λ), being its lower bound. When using ensemble based
methods, we rely on performance on a held-out validation set D∗ = {(x∗

n,y
∗
n)}N

∗

n=1 to select our
hyperparameters. In particular, we consider the following validation loss to select λ

Lval(λ) =
1

N∗

N∗∑
n=1

1

J

J∑
j=1

ℓ(fj(x
∗
n;D,λ);y∗

n), (15)

where {fj}Jj=1 are the ensembles. Note that this can be viewed as approximating the negative
log-predictive density (see Remark 3, Appendix C.1). We minimise this loss using Bayesian opti-
misation. In practice, we find that learning λ from equation 15 alone may still lead to overfitting
models. Therefore to prevent this, we may opt to add an extra functional regularisation term

Lval+reg(λ) = (1− α)Lval(λ) + α∥∇f̄( · ;D,λ)∥2L2 , f̄ :=
1

J

J∑
j=1

fj (16)

for α ∈ [0, 1), which helps to penalise those λ that give rise to functions f with sharp gradients (see
Remark 2 in Appendix B.2 on why we do not consider hyperpriors for regularisation). Here, ∥ · ∥2L2

denotes the appropriate L2 norm depending on the input space and ∇ the gradient. For spherical
inputs, we refer the readers to Appendix B.2 for more details.

4 EXPERIMENTS

We evaluate the spatiotemporal deep random features (DRF) model on various remote sensing
datasets and compare against various baselines to assess its ability to make predictions and quantify
uncertainty. In our first experiment, we consider interpolation of synthetic data, and evaluate our
model’s ability to recover the ground truth. In our second and third experiments, we consider inter-
polation of real satellite data at local and global scales to test the robustness of our method. Details
can be found in Appendix C. All experiments are performed using the NVIDIA L4 GPU.
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4.1 BASELINE MODELS

Throughout this section, we consider several models as baselines to compare our model against. We
consider both GP-based baselines and DNN-based baselines. In the former category, we consider
the sparse variational GP (SVGP) model in Hensman et al. (2013), deep GPs (DGP) using doubly
stochastic variational inference (Salimbeni & Deisenroth, 2017) and a mixture model of local GPs
using the GPSat library (Gregory et al., 2024b). In the latter caregory, we consider deep ensembles
of multilayer perceptrons (MLP) with ReLU activations, Fourier features network (FFN, Tancik et al.
(2020)), which use random Fourier features in the first layer only, MLP with sinusoidal activations
(SIREN, Sitzmann et al. (2020)) and conditional neural processes Garnelo et al. (2018).

4.2 EVALUATION ON SYNTHETIC DATA

The purpose of our first experiment is to use synthetic observations from a ground truth field to
evaluate our model’s ability to reconstruct the field. We use mean sea surface height (MSS) in the
arctic as our ground truth, synthesised from 12 years of altimetry readings of Sentinel-3A, 3B (S3A,
3B) and CryoSat-2 (CS2) satellites. We then generate artificial measurements along S3A, 3B and
CS2 tracks between the dates March 1st–10th 2020, taking the MSS values along the tracks and
adding i.i.d. Gaussian noise to mimic measurement noise. Our final dataset comprise 1,158,505
datapoints; we select 80% of these randomly for training and the remaining 20% for validation. We
train all models using the mean-squared error loss (for GP baselines, this corresponds to a Gaussian
likelihood) with fixed weight decay parameter matching the observation noise variance. Visual
comparison of predictions from all models can be found in Appendix C.5.1.

4.2.1 EFFECT OF DEPTH

In Figure 3, we show the effect of depth on our model’s ability to reconstruct the true MSS field
(in terms of RMSE) and corresponding computation time of the entire workflow, including the time
to tune the kernel hyperparameters (see Appendix C.2.2). Generally, we find that deep networks
outperform the shallow network on the RMSE, with the four layer model performing the best on this
example. With > 4 layers, we start to see some overfitting, which explains the higher RMSE for the
10 and 20 layer models. In Figure 4, we display mean results for models with two and four layers.
We see that the deeper network is able to capture higher frequency details, resulting in the improved
RMSE. The time it takes to train and tune models with 1-4 layers are not significantly different.

Figure 3: Comparison of RMSE and
computation time vs. number of layers.

2-layer DRF 4-layer DRF

0.4

0.2

0.0

0.2

0.4

Figure 4: Comparison of predictions from DRF with
two layers (left) and four layers (right). The four layer
model is able to capture finer details compared to the
two layer model.

4.2.2 UQ COMPARISONS

Next, we compare various UQ methods applied to a DRF model with four layers. In Table 1, we dis-
play comparisons with respect to the root mean squared error (RMSE), the negative log-likelihood
(NLL), and the continuous ranked probability score (CRPS) (see Appendix C.1 for details on our
evaluation method). The latter two evaluate the quality of uncertainties produced. Overall, we find
that deep ensembles produce the best result in the CRPS and the RMSE, whereas variational infer-
ence (VI) yielded the best NLL. The lower NLL using VI may be due to the fact that its predictions
are typically underconfident (see Figure 8, Appendix C.5.1) and NLL penalises them more lightly
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Model CRPS NLL RMSE Time (minutes)

DRF (Ensembles) 0.046± 0.005 13.590± 4.899 0.135± 0.006 19.7± 0.4
DRF (VI) 0.071± 0.019 −0.407± 0.756 0.166± 0.021 6.40± 0.06
DRF (Dropout) 0.174± 0.001 425.987± 208.969 0.238± 0.001 48.6± 2.5

SVGP 0.230± 0.001 320.811± 52.960 0.155± 0.002 14.6± 0.0
DGP 0.058± 0.001 1614.069± 328.517 0.135± 0.002 42.3± 0.03
GPSat 0.045± 0.007 74.738± 15.622 0.126± 0.001 63.6± 0.2
ReLU MLP 0.062± 0.000 30.504± 7.877 0.146± 0.000 10.07± 0.01
FFN 0.072± 0.008 126.869± 111.178 0.153± 0.005 31.3± 0.3
SIREN 0.066± 0.000 13.974± 0.393 0.155± 0.000 2.55± 0.002
CNP 0.238± 0.070 2.525± 0.459 0.202± 0.010 21.0± 0.1

Table 1: Comparison of the CRPS, NLL and RMSE scores for a four-layer DRF (with different UQ
methods) against various baselines on the synthetic experiment. Best performing model in bold,
second best performing in blue and third best performing in orange. We display the mean and
standard deviation over five experiments.

than overconfident ones. However, the results in Figure 8 suggest that the results from deep en-
sembles are better calibrated to the observations, which explains the lower CRPS. Dropout does not
perform well in neither the mean prediction nor uncertainty estimation.

4.2.3 BASELINE COMPARISONS

In Table 1, we also display results for the other baseline models described in Section 4.1. Regarding
computation times, for DRF and FFN, we include the time to tune the kernel hyperparameters using
Bayesian optimisation (Section 3.3) to make a fair comparison with the GP-based baselines, where
the total time for training and inference are recorded. However, we assume other hyperparameters,
such as number of layers and hidden units to be fixed (L = 4, B = 128, H = 1000). For the other
DNN-based baselines, we assume the architecture is tuned ahead of time and fixed.

Comparing with the GP baselines, we find that DGP and the GPSat model to be closest competitors
to the DRF deep ensembles, with GPSat surpassing its performance on the RMSE. However, the
time taken to train the DGP and GPSat model are two to three times longer than the time taken to
train and tune the ensemble DRF. For example, GPSat trains 1225 local GP models on this example,
which makes computation heavy. DGP has overall low predictive variances (see Figure 9, Appendix
C.5.1), which results in high NLL values. In contrast, the uncertainty estimates of DRF and GPSat
are well-calibrated to the satellite tracks. Qualitatively, all three models recover the ground truth
well, with GPSat and DRF reconstructing it almost perfectly.

Comparing to other DNN baselines, SIREN’s performance is noteworthy, being similar to DRF
in that it uses trigonometric activations and differing only in the way the weights are initialised
and whether it has bottleneck layers with fixed preactivations. The DRF ensemble is better able to
capture the spatiotemporal patterns of the field, reinforcing the importance of the subtle architectural
differences. The ReLU network, FFN and CNP all lead to oversmoothing results, similar to SVGP.

4.3 FREEBOARD ESTIMATION FROM SATELLITE ALTIMETRY DATA

Here, we consider the interpolation of real altimeter readings of sea-ice freeboard taken along the
Sentinel-3A, 3B and CryoSat-2 satellites (Gregory et al., 2024a). Real satellite altimetry measure-
ments are typically noisy with heavy-tailed statistics (see Figure 7, Appendix C.3), hence they
present a more challenging setting than our previous synthetic experiment. Our goal here is to
test the robustness of our approach in comparison to other methods in this more realistic setting. Ex-
perimental details can be found in Appendix C.3 and visual comparison of all results can be found
in Figure 10, Appendix C.5.2.

We compare a two-layer DRF against the same baselines as before and display the root mean abso-
lute error (RMAE), CRPS and negative log-predictive density (NLPD) on a separately held out test
data comprising 15% of the entire data in Table 2. We use the RMAE instead of the RMSE here
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as it is more robust to the heavy-tailed statistics of the measurement error, and therefore provides a
more reliable performance metric in this setting. The hyperparameter search for DRF was performed
with functional regularisation (see Section 3.3) as we found that without it, optimising on only the
validation loss lead to overfitting models (see Figure 5). Here, we used a penalty weight of α = 0.9.

We find that out of our GP-based baselines, SVGP and the GPSat model give comparable perfor-
mance to DRF ensembles, with GPSat giving the best performance quantitatively. However, when
we examine the outputs from all three models (Figure 5), we find that the results from GPSat con-
tain spurious patterns resulting from unstable hyperparameter optimisation at several local expert
locations. This issue occurs since the GPSat local experts only see data in local regions, making
them more sensitive to the heavy noise present in the data. On the other hand, DRF sees data glob-
ally, which helps them to identify the larger structures in the data, while simultaneously capturing
the finer details owing to their deep architecture. We find that qualitatively, SVGP performs well
on this example, due to the larger prominence of low frequency features in the underlying field that
extend across the basin. We see that DRF provides a middle ground between the two, being neither
“too local” as we see in GPSat, nor “too global”, demonstrating its ability to adapt to the character-
istics of the field. The other DNN baselines are found to perform poorly, with the ReLU MLP and
CNP showing especially poor fit. The quantitative metrics for FFN and SIREN are actually decent,
with FFN performing best on RMAE. However, the qualitative results in Figure 10 show signs of
heavy overfitting with both models, which is especially prominent in SIREN.

Model CRPS NLPD RMAE

DRF (Ensembles) 0.077± 0.000 −0.944± 0.020 0.322± 0.000
SVGP 0.079± 0.001 −1.300± 0.004 0.322± 0.001
DGP 0.208± 0.000 −0.159± 0.000 0.339± 0.001
GPSat 0.076± 0.001 −1.167± 0.025 0.318± 0.000
ReLU MLP 0.714± 0.936 0.076± 1.578 0.751± 0.554
FFN 0.080± 0.001 2.145± 1.811 0.316± 0.004
SIREN 0.088± 0.000 −1.109± 0.010 0.345± 0.001
CNP 0.101± 0.001 −0.898± 0.030 0.328± 0.002

Table 2: Comparison of the CRPS, NLPD and RMAE scores for a two-layer DRF against various
baselines on sea-ice freeboard interpolation from S3A, 3B and CS2 satellite altimetry readings. Best
performing model in bold, second best performing in blue and third best performing in orange.

DRF(No reg) DRF(reg) GPSat SVGP

0.1

0.0

0.1

0.2

0.3

Figure 5: Mean results of DRF, GPSat and SVGP on freeboard interpolation. For DRF, we plot
results obtained both with and without functional regularisation during hyperparameter search.

4.4 LARGE SCALE INTERPOLATION OF GLOBAL SEA LEVEL ANOMALY

In this final experiment, we investigate the potential of DRF to interpolate global fields using spheri-
cal random features (Section 3.1.2) in the spatial inputs. For this experiment, we use real data of sea
level anomaly measurements collected from the Sentinel 3A, 3B satellites (Copernicus Data Space
Ecosystem, 2024). By considering four days of measurements, our final data consists of 8,094,569
datapoints. We use 80% for training, and 20% for validation. Similar to our previous data ob-
tained from real satellite measurements, this data contains many outliers, making it a challenge to
interpolate the data robustly, let alone whilst being consistent with the geometry of the sphere.
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Our goal is to fit a spatiotemporal field f : S2 × R → R. To this end, we consider a DRF model
whose first layer in the spatial component is given by the spherical random feature ϕS2 : S2 → RH

(equation 10). The subsequent layers are given by Euclidean random feautures. To train our model,
we opted to use the Huber loss instead of MSE, which gave rise to slightly more robust results, likely
due to the large number of outliers. We also used functional regularisation with a penalty weight of
α = 0.95 when tuning hyperparameters.

In Figure 6, we compare the mean predictions of the spherical DRF model with predictions from
(1) SVGP using the spherical Matérn kernel of Borovitskiy et al. (2020), and (2) the Euclidean
DRF model, taking the longitude and latitude coordinates of the satellite tracks as spatial in-
puts in R2. We use the spherical Matérn kernel implementation in the geometric-kernels
package Mostowsky et al. (2024) to model the spatial component of our SVGP baseline. The
temporal component is included by modelling the GP with a product kernel k((x, t), (x′, t′)) =
kS2(x, x

′)kR(t, t
′). Comparing the SVGP output with DRF, we see that they are both able to capture

the larger patterns in the data. However, SVGP fails to capture some of the finer fluctuations (as
also indicated by quantitative metrics in Table 3 in Appendix C.4.3), for instance those around the
Antarctic circumpolar current, known for its intense ocean activities.

For the Euclidean DRF, while it admits a deep structure, we find that it is not flexible enough to adapt
to the spherical geometry of the input space. For example, there are spurious distortions around the
poles cause by the stereographic projection, in addition to a discontinuity at longitude = 0◦ (see
Figure 11 in Appendix C.5.3). Perhaps more interestingly, the Euclidean DRF is not able to learn
the fine scale fluctuations that the spherical DRF is able to pick up, only being able to learn large
scale trends in the data, similar to SVGP. This highlights the importance of explicitly incorporating
the spherical inductive bias into the model when modelling global fields.

Spherical SVGP Euclidean DRF Spherical DRF

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3

Figure 6: Mean results for global sea level anomaly interpolation. From left to right: SVGP using
the spherical Matérn kernel, Euclidean DRF, and Spherical DRF. Spherical DRF is able to learn
more intricate details compared to the other two baselines.

5 CONCLUSION

In this paper, we propose to model spatiotemporal fields using deep neural networks, whose layers
are derived from random feature expansions of stationary kernels. This neural representation can
be trained on observations to effectively fill in the gaps between remote sensing observations of
the earth’s surface. Our experiments on various remote sensing data demonstrate that the deep
ensemble model is able to flexibly adapt to the data, being able to learn both low and high-frequency
structures that exist in the underlying field. A current limitation of our approach is the difficulty
of tuning kernel hyperparameters; we use Bayesian optimisation (BO) on the validation loss to
achieve this, which require knowledge of the ranges each hyperparameter may take. This is not
clear due to the deep architecture, making the hyperparameters less interpretable than the shallow
case. Additionally, we observe that it is sometimes necessary to add functional regularisation to
reduce BO variance, necessitating hand tuning of the penalty weight α, a hyper-hyperparameter.
Despite this, our promising results suggest the potential for deep learning methods to pave the way
for more accurate and flexible reconstructions of spatiotemporal fields from remote sensing data.
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A RANDOM FEATURES FOR STATIONARY GAUSSIAN PROCESSES

A.1 RANDOM FOURIER FEATURES FOR PLANAR GAUSSIAN PROCESSES

Let k : Rd × Rd → R be a stationary kernel. That is, there exists a function κ : Rd → R such
that k(x,x′) = κ(x − x′). Then Bochner’s theorem states that there exists a spectral density
s : Rd → R, such that

κ(x− x′) =

∫
Rd

s(ω)eiω
⊤(x−x′) (17)

= σ2Eω∼p(ω) [ζω(x)ζ
∗
ω(x

′)] , (18)

where ζω(x) := eiω
⊤x, σ2 :=

∫
Rd s(ω)dω and p(ω) = s(ω)/σ2, so that p(ω) is a probability

density function. Expanding this further, we have

18 = σ2Eω∼p(ω)[cos(ω
⊤x) cos(ω · x′) + sin(ω⊤x) sin(ω⊤x′)] (19)

− iσ2 Eω∼p(ω)[cos(ω
⊤x) sin(ω⊤x′) + sin(ω⊤x) cos(ω⊤x′)]︸ ︷︷ ︸

=0 (since function is odd)

(20)

= σ2Eω∼p(ω)

[
1

π

∫ 2π

0

cos(ω⊤x+ b) cos(ω⊤x′ + b)db

]
(21)

= 2σ2Eω∼p(ω)

[
Eb∼U [0,2π]

[
cos(ω⊤x+ b) cos(ω⊤x′ + b)

]]
(22)

≈ 2σ2

N

M∑
m=1

cos(ω⊤
mx+ bn) cos(ω

⊤
n x

′ + bm), (23)

where ωn ∼ p(ω), bn ∼ U [0, 2π]. (24)

The final expression gives us the random features

ϕm(x) =

√
2σ2

M
cos(ω⊤

mx+ bm), m = 1, . . . ,M, (25)

corresponding to the stationary kernel k. The only information that changes as we change the kernel
is the (normalised) spectral density p(ω), used to sample the weights ω. Below, we give examples
of such p(ω) for the squared-exponential and Matérn kernels.

Example 1 (Squared-exponential kernel) The squared-exponential kernel is given by

κ(x− x′) = σ2 exp

(
−∥x− x′∥2

2ℓ2

)
, (26)

where ℓ is the lengthscale hyperparameter and σ2 is the kernel variance. The Fourier transform of
κ (up to a normalisation constant) can be checked to be given by

p(ω) =
ℓd

(2π)d/2
exp

(
−∥ω∥2ℓ2

2

)
. (27)

Note that this is precisely the probability density function of a multivariate Gaussian N (0, ℓ−2I).
Thus, we obtain a random features approximation to the squared-exponential GP by sampling ωm ∼
N (0, ℓ−2I) in equation 24.

Example 2 (Matérn kernel) The Matérn kernel is given by

κ(x− x′) = α2 2
1−ν

Γ(ν)

(√
2ν

∥x− x′∥
ℓ

)ν

Kν

(√
2ν

∥x− x′∥
ℓ

)
, (28)
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where ν is the smoothness hyperparameter and Kν is the modified Bessel function of the second
kind. It is well-known that the Fourier transform of the Matérn kernel equation 28 reads

p(ω) =
2dπd/2Γ(ν + d

2 )(2ν)
ν

Γ(ν)ℓ2ν

(
2ν

ℓ2
+ 4π2ω2

)−ν+ d
2

, (29)

and in fact, this can be identified as the probability density function of the multivariate t-distribution
t2ν(0, ℓ

−2I). Thus, we obtain a random features approximation to the Matérn GP by sampling
ωm ∼ t2ν(0, ℓ

−2I) in equation 24.

A.2 MATÉRN GAUSSIAN PROCESSES ON THE SPHERE

Following Borovitskiy et al. (2020), we define a Matérn Gaussian process on the two-sphere S2 with
lengthscale ℓ and smoothness parameter ν to be a stochastic process f defined by the solution to the
stochastic partial differential equation(

2ν

ℓ2
−∆S2

) ν+1
2

f = Ẇσ. (30)

Here, Ẇσ denotes the space-time white noise process over L2(S2) with spectral density σ and ∆S2
denotes the Laplace-Beltrami operator on the two-sphere (see Borovitskiy et al. (2020) for the notion
of solution to this equation). By (Borovitskiy et al., 2020, Theorem 5), the corresponding kernel has
an explicit expression of the form (follows from Mercer’s theorem)

kS2(s, s
′) =

σ2

Cν

∞∑
j=0

2j+1∑
k=1

(
2ν

ℓ2
+ λj

)−ν−1

φj,k(s)φj,k(s
′), ∀s, s′ ∈ S2, (31)

where {λj}∞j=0 are the eigenvalues of the positive definite operator −∆S2 , {φj,k}∞,2j+1
j,k=0,1 are the

spherical harmonics (these are also eigenfunctions of −∆S2 ), and

Cν :=

∞∑
j=0

(
2ν

ℓ2
+ λj

)−ν−1

, (32)

is a normalisng constant for the Matérn spectral density on the sphere p(j) ∝
(
2ν
ℓ2 + λj

)−ν−1
. From

equation 31, the weight-space view of Gaussian processes implies that f is equivalent to a general
linear model with deterministic feature maps of the form

ϕj,k
S2,det(s) =

√
σ2

Cν

(
2ν

ℓ2
+ λj

)−ν−1

φj,k(s), j = 1, . . . ,∞, k = 1, . . . , 2j + 1. (33)

That is,

f(s) =

∞∑
j=0

2j+1∑
k=1

θj,kϕ
j,k
S2,det(s) (34)

for θj,k ∼ N (0, 1) i.i.d. for all j = 1, . . . ,∞ and k = 1, . . . , 2j + 1. This set of features can cause
issues when using them in practice, since spherical harmonics have increasingly high fluctuations
as j → ∞, eventually not being realisable numerically due to aliasing issues. For example, using
single precision floating point arithmetics, we observe that such issues occur at around the level
j = 20. We observe that random features, which we will consider next, are better suited if we wish
to keep floating arithmetics to single precision, in order to save memory.

A.2.1 RANDOM FEATURES ON THE SPHERE

We now derive an alternative feature map representation of Matérn GPs over S2 that is analogous to
the random features equation 25 in the Euclidean setting. First, the addition theorem for spherical
harmonics states that

2j+1∑
k=1

φj,k(s)φj,k(s
′) =

2j + 1

4π
G1/2
j

(
dS2 (s, s

′)
)
, (35)
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where dS2 (·, ·) denotes the geodesic distance on the sphere and Gα
n (·) are the Gegenbauer polyno-

mials. Furthermore, (Azangulov et al., 2024, Proposition 7) gives us that

G1/2
j

(
dS2 (s, s

′)
)
=

2j + 1

4π

∫
S2
G1/2
j

(
dS2 (s, u)

)
G1/2
j

(
dS2 (s

′, u)
)
µS2(du), (36)

where µS2 is the invariant measure on the sphere. Putting all of this together gives

kS2(s, s
′) = σ2

∫
R

∫
S2

(
2ω + 1

4π

)2

G1/2
ω

(
dS2 (s, u)

)
G1/2
ω

(
dS2 (s

′, u)
)
µS2(du)µ

ν(dω), ∀s, s′ ∈ S2,

(37)

where µν(dω) is the discrete measure

µν(dω) :=
1

Cν

∞∑
j=1

(
2ν

ℓ2
+ λj

)−ν−1

δj(dω). (38)

In practice, we consider a truncated series for equation 31, giving us equation 37 with the finite
discrete measure

µν
J(dω) :=

1

Cν,J

J∑
j=1

(
2ν

ℓ2
+ λj

)−ν−1

δj(dω), Cν,J =

J∑
j=0

(
2ν

ℓ2
+ λj

)−ν−1

, (39)

which is equivalent to the multinomial distribution

ω ∼ Multinomial

(
C−1

ν,J

(
2ν

ℓ2
+ λ1

)−ν−1

, . . . , C−1
ν,J

(
2ν

ℓ2
+ λJ

)−ν−1
)
. (40)

Thus, by Monte Carlo approximation, we have

kS2(s, s
′) ≈ σ2

M∑
m=1

(
2ωm + 1

4π

)2

G1/2
ωm

(
dS2 (s, um)

)
G1/2
ωm

(
dS2 (s

′, um)
)
, ∀s, s′ ∈ S2, (41)

with b ∈ U(S2), the uniform distribution on the sphere, and ω is sampled according equation 40.
This implies the random spherical features

ϕm
S2(s) =

√
M−1cωm

G1/2
ωm

(dS2 (s, bm)), s ∈ S2, m = 1, . . . ,M, cω :=

(
σ(2ω + 1)

4π

)2

.

(42)

We may also conisder the limiting kernel ν → ∞, giving us the so-called heat kernel (Borovitskiy
et al., 2020), which is analogous to the squared-exponential kernel in the Euclidean case. This is the
same as before, except now the measure to sample ω reads

µ∞
J (dω) :=

1

Cν,J

J∑
j=1

e−
ℓ2

2 λjδj(dω), Cν,J =

J∑
j=0

e−
ℓ2

2 λj . (43)

From a more general perspective, on the two-sphere S2, we have an analogous notion of a kernel
k : S2 × S2 → R to be stationary if it satisfies

k(x, y) = k(Ox,Oy), (44)

for all x, y ∈ S2 and O ∈ SO(3). Then a general result in (Azangulov et al., 2024) states that for
any stationary kernel on S2, there exist a random feature representation, extending the classic result
in Euclidean space by Rahimi & Recht (2007). In fact, this construction can be further generalised
to any kernels over homogeneous spaces, which S2 is merely a special case of (Azangulov et al.,
2024). However, for the purpose of this paper, we do not need to extend beyond the spherical setting.
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B ADDITIONAL DETAILS FOR DEEP RANDOM FEATURES

B.1 ADDITIVE RANDOM FEATURES

In our deep neural network architecture, we add skip connections from the input layer to each
bottleneck layer in order to prevent the emergence of pathological behaviours as we increase
depth (Duvenaud et al., 2014). When considering spherical inputs, this requires building layers
ϕℓ : RB × S2 → RH . We achieve this by taking ϕℓ to be the H random features of a GP
f : RB × S2 → RB with the additive kernel k((x, s), (x′, s′)) = kRB (x,x′) + kS2(s, s

′), where
kRB : RB × RB → RB×B and kS2 : S2 × S2 → RB×B are matrix-valued stationary kernels on
the respective spaces. This corresponds to an additive GP (Duvenaud et al., 2011) f = fRB + fS2 ,
where fRB : RB → RB and fS2 : S2 → RB are independent GPs with kernels kRB and kS2 ,
respectively. In particular, this implies layers ϕℓ of the form

ϕℓ = ϕℓ
RB + ϕℓ

S2 , (45)

where ϕℓ
RB ,ϕ

ℓ
S2 are the random features corresponding to the GPs fRB ,fS2 , respectively.

Putting this together, our final deep neural network architecture fΘ : S2 → RO on the sphere with
skip connections reads, for all s ∈ S2,

h1(s) := Θ1ϕ1
S2(s), hℓ(x, s) := Θℓ

(
ϕℓ

RB (x) + ϕℓ
S2(s)

)
, ℓ = 2, . . . , L, x ∈ RB , (46)

fΘ(s) = h(L)(s), where h(1)(s) := h1(s), h(ℓ)(s) := hℓ(h(ℓ−1)(s), s), ℓ = 2, . . . , L,
(47)

where Θℓ ∈ RB×H for ℓ = 1, . . . , L− 1 and ΘL ∈ RB×O are trainable weights.

B.2 FUNCTIONAL REGULARISATION

Here, we provide details on the functional regularisation that we use to regularise training of the
model hyperparameters. We assume the case O = 1 (one output dimension) for simplicity, but this
can be extended easily to multiple output dimensions. In the planar model, the regularisation term
reads

∥∇f∥2L2(t) =

∫
RI

∇f(x, t) · ∇f(x, t)dx. (48)

The gradient is computed using PyTorch’s automatic differentiation and the integral is computed
using the trapezoidal rule (note: our input dimesion I is typically small, e.g. two or three).

In the spherical setting, we must adapt the computations to account for the curvature of the sphere.
First, we consider parameterisation of the sphere in the following spherical coordinates:

(Longitude) φ ∈ [0, 2π), (49)
(Latitude) θ ∈ [−π/2, π/2). (50)

We consider L2-inner product with respect to the Haar measure on the sphere µ = cos θ dθ dφ and
consider the Laplace-Beltrami operator on the sphere, which reads

∆S2f =
1

cos θ

∂

∂θ

(
cos θ

∂f

∂θ

)
+

1

cos2 θ

∂2f

∂φ2
. (51)

By integration-by-parts, we get the following expression for functional regularisation on the sphere

⟨f, (−∆S2)f⟩L2(S2) = −
∫ 2π

0

∫ π/2

−π/2

f(θ, φ)

(
1

cos θ

∂

∂θ

(
cos θ

∂f

∂θ

)
+

1

cos2 θ

∂2f

∂φ2

)
cos θ dθ dφ

(52)

=

∫ 2π

0

∫ π/2

−π/2

((
∂f

∂θ

)2

+
1

cos2 θ

(
∂f

∂φ

)2
)
cos θ dθ dφ. (53)

Again, the gradients are computed via automatic differentiation and the integral is computed using
the trapezoidal rule.
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Remark 2 We consider functional regularisation to regularise our hyperparameters λ instead of
considering hyperpriors, since in deep GPs, the kernel hyperparameters in each layer are less in-
terpretable compared to shallow GP hyperaparameters. Therefore, it becomes questionable to set a
prior on the hyperparameters, when we do not really have good knowledge of them. The functional
regulrisation that we use here do not require prior knowledge on the hyperparameters. Instead,
it assumes prior knowledge on the corresponding model fΘ(·;λ), which is more realistic; for in-
stance, we might have some prior knowledge, such as smoothness, of the ground truth field f † that
we are trying to model. This knowledge can then be used to regularise the search for λ, without
directly imposing a prior on λ.

C EXPERIMENT DETAILS

C.1 EVALUATION METRICS

Denote by D = {(Xn,yn)}Nn=1 the training set and D∗ = {(Xn,yn)}N
∗

n=1 be a test set, where
Xn = (xn, tn) denotes spatiotemporal coordinates. We consider the following metrics to evaluate
our model f , trained on the set D.

Root Mean Squared Error (RMSE). We first consider the root mean squared error, given by

LRMSE(f ;D) =
√
E(X,y) [∥y − E [f(X)|D] ∥2] (54)

≈

√√√√ 1

N∗

N∗∑
n=1

∥yn − E [f(Xn)|D] ∥2, (55)

where we denote by E [ · |D] the conditional expectation with respect to the event of observing the
training set D. For ensemble based models, we approximate the conditional expectation by the
empirical mean of the trained models.

Root Mean Absolute Error (RMAE). Similar to the RMSE score, we consider the root mean
absolute error, computed as

LRMAE(f ;D) =
√

E(X,y) [∥y − E [f(X)|D] ∥] (56)

≈

√√√√ 1

N∗

N∗∑
n=1

∥yn − E [f(Xn)|D] ∥. (57)

Compared to the RMSE, the RMAE is more robust to outlier values, making it a more reliable metric
when the data generating model has heavier tails than Gaussian.

The RMSE and RMAE only evaluates the quality of a single statistic of the distribution f (here,
we used the predictive mean). Below, we introduce metrics that also evaluates the quality of the
predictive uncertainties.

Negative Log-Likelihood (NLL). When we have access to the ground truth field f †, we can use
the negative log-likelihood score to evaluate how well our model’s predictive distribution describes
the ground truth. This is computed for each input coordinate X as

NLL(f(X);f †(X),D) = − log pf(X)|D(f
†(X)), (58)

where pf(X)|D denotes the probability density function of the random variable f(X)|D. In partic-
ular, assuming that this is Gaussian, pf(X)|D(y) = N (y|µX ,ΣXX), we get

58 =
1

2

(
f †(X)− µX

)⊤
Σ−1

XX

(
f †(X)− µX

)
+

1

2
log |ΣXX |+ const. (59)

We then use the following empirical risk to assess the overall quality of uncertainty of our model f
LNLL(f ;D) = EX

[
NLL(f(X);f †(X),D)

]
(60)

≈ 1

N∗

N∗∑
n=1

NLL(f(Xn);f
†(Xn),D). (61)
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For ensemble based models, we use its Gaussian approximation constructed from the empirical
means and variances to evaluate the NLL 59.

Negative Log-Predictive Density (NLPD). On the other hand, when we do not have access to
the ground truth field f †, we can use the negative log-predictive density to evaluate the uncertainty
estimates of our model. This is given by

NLPD(f ;D,X,y) = − logEf |D [p(y|f ,X)] . (62)

In the case of Gaussian likelihoods, i.e., p(y|f ,X) = N (y|f(X), σ2I) and Gaussian posteriors
f |D ∼ GP(µ,Σ), we have the following closed-form expression for the NLPD

62 = − logN (y|µX ,ΣXX + σ2I) (63)

=
1

2
(y − µX)

⊤
(ΣXX + σ2I)−1 (y − µX) +

1

2
log |ΣXX + σ2I|+ const. (64)

Again, we use the corresponding risk to evaluate the predictive uncertainties of our model

LNLPD(f ;D) = E(X,y) [NLPD(f ;D,X,y)] (65)

≈ 1

N∗

N∗∑
n=1

NLPD(f ;D,Xn,yn). (66)

As with the NLL, for ensemble based models, we use the Gaussian approximation constructed from
its empirical means and variances to evaluate equation 64.

Remark 3 In non-conjugate models, we may consider the following upper bound of the NLPD

66 ≤ Ef |D [− log p(y∗|f ,x∗)] (67)

≈ − 1

J

J∑
j=1

log p(y∗|fj ,x
∗), fj ∼ p(f |D), (68)

where we used Jensen’s inequality in the second line and Monte Carlo approximation in the last
line. The resulting emprical risk reads

LNLPD(f ;D) ≤ − 1

N∗

N∗∑
n=1

1

J

J∑
j=1

log p(y∗
n|fj ,x

∗
n), fj ∼ p(f |D). (69)

Continuous Ranked Probability Score (CRPS). The continuous ranked probability score is an-
other metric used to evaluate the quality of predicted uncertainties. Compared to the NLL or NLPD,
CRPS is more robust to outliers and measures holistic calibration rather than pointwise calibration
(Gneiting & Raftery, 2007).

Given a data y ∈ R, the CRPS of a random variable X ∈ R for modelling the data y is computed as

CRPS(X; y) =

∫ ∞

−∞
(PX(X ≤ x)−H(x ≤ y))

2
dx, (70)

where PX denotes the law of X . Alternatively, one can write this as

CRPS(X; y) = Ex [|x− y|]− 1

2
Ex,x′ [|x− x′|] , (71)

where Ex,Ex,x′ denotes expectation with respect to the laws PX ,PX ⊗ PX . This formulation can
be used to evaluate the CRPS empirically using i.i.d. samples x, x′ ∼ PX . Furthermore, when X is
Gaussian with mean µ and standard deviation σ, we have a closed form expression of the CRPS of
the form

CRPS(X; y) = σ

(
y

(
2Φ

(
y − µ

σ

)
− 1

)
+ 2ϕ

(
y − µ

σ

)
− π−1/2

)
, (72)

where ϕ and Φ are the probability density function and cumulative density function respectively of
the standard Gaussian random variable.
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Assuming that the output dimension of our model is one (i.e. O = 1), we get the following metric
for assessing model calibration based on the CRPS

LCRPS(f ;D) = E(X,y) [CRPS(f(X)|D; y)] (73)

≈ 1

N∗

N∗∑
n=1

CRPS(f(Xn)|D; yn). (74)

C.2 EXPERIMENT 1: EVALUATION ON A SYNTHETIC DATA

To generate our synthetic ground truth field f† for this experiment, we create a MSS using 12 years
of altimeter readings of sea surface height (SSH) from CS2 (2010-2022) covering the polar region
densely. To de-slope the MSS we subtract the EGM2008 geoid (Skourup et al., 2017). We bin
measurements on a 5x5km grid in the arctic and take the average in each bin to get an estimate of
a typical polar mean SSH field. The resulting field is suitable for our assessment since it exhibits
spatial non-stationarity and contains several high frequency features, which would be a challenge to
recover accurately. To generate the artificial measurements, we first take nine days of space-time
coordinates (between March 1st and 10th 2020) of time-evolving tracks from Sentinel-3A, 3B and
CryoSat-2 satellites, then extract the value of our artificially generated mean SSH field at those
spatial coordinates, and finally add i.i.d. Gaussian noise to mimic epistemic uncertainty. That is, for
space-time coordinates (xn, tn) of the satellite track, we take

yn = f†(xn, tn) + ϵn, ϵn ∼ N (0, σ2
y), (75)

where we set σy = 0.01. Our final dataset comprise 1,158,505 datapoints; we select 80% of these
randomly for training and the remaining 20% for validation.

C.2.1 TRAINING DETAILS

As usual, let D = {(Xn, yn)}Nn=1 denote our training data, where Xn = (xn, tn) for n = 1, . . . , N
are spatiotemporal coordinates of the satellite tracks. We train our model using the MSE loss, giving
us the regularised empirical risk

Ltrain(Θ;D) =
1

N

N∑
n=1

|fΘ(xn, tn)− yn|2 + β∥Θ∥2, (76)

which we minimise to find the optimal neural network weights Θ. In this experiment, we assume
knowledge of the data generating process in equation 75, giving us the negative log posterior

− log p(Θ|D) =
1

2σ2
y

N∑
n=1

|fΘ(xn, tn)− yn|2 +
1

2
∥Θ∥2 + const. (77)

Comparing equation 76 with equation 77, we have the relation

β = σ2
y/N. (78)

Assuming knowledge of the observation noise σy , we fix the weight decay parameter β accordingly.
We summarise the training details as follows:

• Optimiser: Adam
• Learning Rate: 0.001
• Loss Function: Mean Squared Error (MSE) with L2 regularisation (equation 76)
• Number of Epochs: 1
• Batch Size: 1024

C.2.2 DRF MODEL DETAILS

For the DRF model used in this experiment, we use the following model configurations:

• Bottleneck size: B = 128 for both spatial and temporal layers.
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• Hidden unit size: H = 1000 for both spatial and temporal layers.

• Number of spatial layers: Lx = 1, 2, 3, 4, 10, 20. For results in Table 1, we fix Lx = 4.

• Number of temporal layers: Lt = 1.

We use random features corresponding to the Matérn-3/2 kernel for both spatial and temporal layers
(see Example 2 in Appendix A.1). The lengthscale and amplitude hyperparameters for both the
spatial and temporal layers are tuned with Bayesian optimisation using the Python library BoTorch
(Balandat et al., 2020) with the following configurations:

• Spatial Lengthscale (ℓspatial): Optimised over the range [0.1, 10]

• Temporal Lengthscale (ℓtemporal): Optimised over the range [0.1, 10]

• Amplitude (σ): Optimized over the range [0.1, 1]

• Observation Noise (σy): Not optimised; set to 1× 10−2 in the loss function

• Total Iterations: 10

• Initial Samples: 10 (generated via Latin Hypercube Sampling)

• Acquisition Function: Expected Improvement (EI)

• Surrogate Model: Gaussian Process Regression (SingleTaskGP)

• Number of Restarts for Optimisation: 100

• Number of Raw Samples for Initialisation: 100

We used the same Bayesian optimisation configurations for DRF with different UQ methods (Deep
Ensembles and MC Dropout).

C.2.3 UQ DETAILS

Deep Ensembles We consider 10 models to form an ensemble in this experiment. Each model in
the ensemble uses the same architecture – 4 Matérn random feature layers with skip connections,
each trained for 1 epoch per Bayesian optimisation iteration. The training and evaluation processes
for the ensemble are parallelised using the joblib library, allowing efficient computation across
multiple cores.

Monte-Carlo Dropout We consider the same architecture (4 Matérn RFF layers) for this UQ
method, however we trained it for 10 epochs to make sure the model is well-converged before
dropout can be used effectively during inference. The implementation is based on the Python pack-
age lightning-uq-box (Lehmann, 2024).

Variational Inference We consider the same architecture (4 Matérn RFF layers) for this UQ
method, however we use ELBO maximisation (equation 14) for hyperparameter tuning. The im-
plementation is based on lightning-uq-box.

C.2.4 BASELINE DETAILS

GPSat. GPSat (Gregory et al., 2024b) is a Python package for making predictions based on
a mixture of local GP models, developed specifically for satellite interpolation. Individual local
expert models are trained on data in subregions of the domain of interest and combined together in
a post-processing step. We use expert locations spaced evenly on a 200km resolution Equal-Area
Scalable Earth (EASE) grid covering the arctic region. This results in 1225 expert locations. Each
local expert model uses the Sparse Gaussian Process Regression (SGPR) model in Titsias (2009) for
inference, each with 500 inducing points and trained with the L-BFGS-B optimiser.

Sparse Variational Gaussian Process (SVGP). We consider the sparse variational Gaussian pro-
cess model in Hensman et al. (2013) with 3000 inducing points. The model is trained using the
Adam optimiser with a learning rate of 0.01, a minibatch size of 1024, and 5 epochs for training.
Implemented using the Python package GPyTorch (Gardner et al., 2018).
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Deep Gaussian Processes (DGP). We consider a deep Gaussian process with two layers in this
experiment. We use the doubly stochastic variational inference (Salimbeni & Deisenroth, 2017) for
training with 512 inducing points per layer, a Monte Carlo sample size of 10 and a minibatch size of
1024. We found that increasing the number of layers did not lead to significant improvements. The
model is trained using the Adam optimiser with a learning rate of 0.01 and trained for 10 epochs.
Implemented using the Python package GPyTorch.

ReLU MLP. We consider a vanilla RELU MLP with 6 hidden layers, 1024 hidden units and
trained with a learning rate of 0.01 for 5 epochs. We used a deep ensemble of 10 models to obtain
the uncertainty estimates.

Fourier Features Network (FFN). Similar to SIREN, we consider a FFN with 4 layers (1 RBF
RFF layer and 3 fully connected linear layers), 512 hidden units for each layer and trained with
a learning rate of 1 × 10−5 for 10 epochs. We used a deep ensemble of 10 models to obtain the
uncertainty estimates. For the positional encoding, we used random Fourier features (equation 25)
and employed Bayesian Optimisation to tune the kernel hyperparameters ℓ and σ.

SIREN. We consider a SIREN network with 4 hidden layers, 512 hidden units and trained with
a learning rate of 1 × 10−5 for 10 epochs. We used a deep ensemble of 10 models to obtain the
uncertainty estimates.

Conditional Neural Processes (CNP). The encoder consists of fully connected layers with di-
mensions [xdim + ydim, hdim, . . . , rdim] to extract the context information, and the decoder maps this
context to the target values through a series of layers [xdim + rdim, hdim, . . . , 2× ydim].

• Encoder dimensions: [xdim + ydim = 4, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000]

• Decoder dimensions: [xdim+rdim = 1003, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 2×
ydim = 2]

Remark 4 The architectures for the neural network baselines were selected by optimising (via grid-
search) on the mean NLPD score (equation 62) on the held-out validation set.

C.3 EXPERIMENT 2: FREEBOARD ESTIMATION FROM SATELLITE ALTIMETRY DATA

In this experiment, we use along-track data from the Sentinel-3A+B (S3A, S3B) and CryoSat-2
(CS2) satellites measuring sea-ice freeboard (in fact, the raw satellite measurement is the radar
freeboard, which is distinct from sea-ice freeboard. This is converted to sea-ice freeboard in a
postprocessing step). Freeboard measures the height of sea ice surface relative to sea level, which
can be used to compute sea ice thickness (Gregory et al., 2021); the latter is important for monitoring
the effect of climate change on the polar climate system.
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Figure 7: Freeboard measurements along a sample satellite track segment (highlighted in orange in
the left figure). Real satellite measurements are typically very noisy.
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We use the freeboard observations along S3A, 3B and CS2 satellite tracks downloaded from Gregory
et al. (2024a). Our final dataset contains 1,174,848 data points. Since we do not have access to a
ground truth field, we hold out a separate test set that we use to make our final evaluations. We
use 70% of the data (randomly sampled) for training, 15% for validation and the remaining 15%
for testing. The satellite measurements are extremely noisy and contain many outliers, making it a
challenge to interpolate robustly, picking out the signal from the noise (see for example Figure 7 for
freeboard measurements along an example track).

C.3.1 DRF MODEL DETAILS

We use the same model architecture and Bayesian Optimisation settings as in our first experiment.
For training, we also use the same procedure as in our first experiment, except we now treat the
observation noise σy as a tunable hyperparameter, learned jointly with the kernel hyperparameters
via Bayesian optimisation.

C.3.2 BASELINE DETAILS

GPSat. We use the same configuration as in our first experiment.

Sparse Variational Gaussian Process (SVGP). We use the same configuration as in our first
experiment.

Deep Gaussian Processes (DGP). We use the same configuration as in our first experiment.

ReLU MLP. We consider a vanilla RELU MLP with 6 hidden layers, 1024 hidden units and
trained with a learning rate of 0.01 for 5 epochs. We used a deep ensemble of 10 models to obtain
the uncertainty estimates.

Fourier Features Network (FFN). We consider a FFN with 4 layers (1 RBF RFF layer and 3
fully connected linear layers), 256 hidden units for each layer and trained with a learning rate of
0.01 for 5 epochs. We used a deep ensemble of 10 models to obtain the uncertainty estimates. For
the positional encoding, we used random Fourier features (equation 25) and employed Bayesian
Optimisation to tune the kernel hyperparameters ℓ and σ.

SIREN. We consider a SIREN network with 6 hidden layers, 512 hidden units and trained with a
learning rate of 0.01 for 5 epochs. We used a deep ensemble of 10 models to obtain the uncertainty
estimates.

Conditional Neural Processes (CNP). We use the same configuration as in our first experiment.

C.4 EXPERIMENT 3: LARGE SCALE INTERPOLATION OF GLOBAL SEA LEVEL ANOMALY

In our final experiment, we used global sea level anomaly measurements from the Sentinel 3A
satellite for the period March 1st–4th, 2020, resulting in 8,094,569 data points. We use 80% of these
for training and 20% for validation.

C.4.1 DRF MODEL DETAILS

For the DRF model used in this experiment, we use the following model configurations:

• Number of spatial layers: One spherical random feature layer + two Euclidean random
feature layers.

• Number of temporal layers: Lt = 1.

• Bottleneck size: B = 128 for both spatial and temporal layers.

• Hidden unit size: H = 1000 for both spatial and temporal layers.
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We use random features corresponding to the Matérn-3/2 kernel for both spatial (spherical and Eu-
clidean) and temporal layers. The lengthscale and amplitude hyperparameters for both the spatial
and temporal layers are tuned with Bayesian optimisation with the following configurations:

• Spatial Lengthscale for Spherical Layer (ℓspherical): Optimised over the range [1 ×
10−5, 0.1]

• Spatial Lengthscale for Euclidean Layer (ℓeuclidean): Optimised over the range [1 ×
10−5, 10]

• Amplitude for Spherical Layer (σspherical): Optimised over the range [1× 10−5, 1]

• Temporal Lengthscale (ℓtemporal): Optimised over the range [1× 10−5, 10]

• Amplitude for Euclidean Layer (σeuclidean): Optimised over the range [1× 10−5, 1]

• Total Iterations: 10

• Initial Samples: 15 (generated via Latin Hypercube Sampling)

• Acquisition Function: Expected Improvement (EI)

• Surrogate Model: Gaussian Process Regression (SingleTaskGP)

• Number of Restarts for Optimisation: 100

• Number of Raw Samples for Initialisation: 100

We train the model with a Huber loss

ℓHuber(f ;X,y, δ) =

{
1
2 |f(X)− y|2
δ(|f(X)− y| − δ/2)

(79)

with δ = 0.1. This loss is more robust than the mean squared error to outlier values.

C.4.2 BASELINE DETAILS

Spherical SVGP. We used the spherical Matérn-3/2 GP (Borovitskiy et al., 2020) with 3000 in-
ducing points, trained using the Adam optimiser with a learning rate of 0.01 and a minibatch size of
1024. Implemented using the Python package GPyTorch with the spherical kernel implemented
with the geometric-kernels package.

Euclidean DRF. We used a Euclidean DRF model with two layers, each with bottleneck dimen-
sion B = 128 and hidden dimension H = 1000. We also utilised Bayesian Optimisation to tune the
kernel hyperparameters ℓspatial , ℓtemporal and σ.

C.4.3 QUANTITATIVE RESULTS

Model NLPD CRPS
Spherical DRF 0.0063± 0.0002 0.0918± 0.0021
Euclidean DRF 0.0387 ± 0.0001 0.1158 ± 0.0008
SVGP 0.0085 ± 0.0001 0.1210 ± 0.0010

Table 3: NLPD and CRPS comparison for Spherical DRF, Euclidean DRF and SVGP Models

In Table 3, we present the quantitative results for experiment 3, comparing the performance of
spherical DRF, Euclidean DRF and spherical SVGP models using the NLPD and CRPS metrics.
For the NLPD computation, we use its approximation (equation 69) with the likelihood defined by
the Huber loss. That is, p(y|f ,X) ∝ exp (−ℓHuber(f ;X,y, δ)).

Consistent with what we see in the qualitative performance (Figure 6), the spherical DRF signifi-
cantly outperforms the other baselines, achieving the lowest NLPD and CRPS.
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C.5 GALLERY OF PREDICTIONS

C.5.1 GALLERY OF PREDICTIONS: EXPERIMENT 1

Figure 8: Comparison of predictive means and variances of the DRF model using various UQ meth-
ods on the synthetic experiment. Left column: predictive means, Middle column: predictive vari-
ances, Right column: ground truth MSS field.
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Figure 9: Comparison of the baseline models on the synthetic experiment. Left column: predictive
means, Middle column: predictive variances, Right column: ground truth MSS field.
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C.5.2 GALLERY OF PREDICTIONS: EXPERIMENT 2

Figure 10: Comparison of DRF and other baseline models on freeboard interpolation. We display
both predictive means and variances for each model.
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C.5.3 GALLERY OF PREDICTIONS: EXPERIMENT 3
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Figure 11: Result maps (mean and variance) for global sea level anomaly interpolation. From top to
bottom: Spherical DRF, Euclidean DRF and Spherical SVGP.
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C.6 FURTHER ABLATION STUDY

C.6.1 DATA SCALABILITY

Here, we conducted an experiment where we trained on 10% and 1% subsampled data of our global
sea level anomaly interpolation experiment. The dataset partition follows the following ratios: 70%
training, 15% validation and 15% testing splits to compute the metrics. The results can be found in
Table 4 below where we compare our DRF model against SVGP (3, 000 inducing points, trained for
2 epochs).

This show that, as expected, the DRF model achieves better performance with increasing data size, as
evidenced by the lower NLPD and CRPS values. We also find that for larger data (10% and 100%),
DRF performs better than SVGP due to its ability to capture finer and finer scale features as we
increase data resolution (note that the performance of SVGP does not change much by increasing
the data from 10% to 100%). On the other hand, for smaller data proportions (1%), the simpler
inductive bias in the SVGP helps to generalise better, resulting in better performance compared to
DRF. See figure 12 for comparisons.

(a) DRF trained with 100% dataset (b) SVGP trained with 100% dataset

(c) DRF trained with 10% dataset (d) SVGP trained with 10% dataset

(e) DRF trained with 1% dataset (f) SVGP trained with 1% dataset

Figure 12: Results maps shows data scalability and corresponding performances for DRF (left col-
umn) and SVGP (right column)

C.6.2 SKIP CONNECTIONS

Below, we show how the addition of the skip connections affect our global sea level anomaly in-
terpolation results. We find that without the skip connections, we get unstable results, sometimes
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Dataset NLPD CRPS Time (mins)

Full Dataset-DRF 0.0063 0.0927 291.15
Subsampled-DRF (1 in 10) 0.0079 0.1114 45.61
Subsampled-DRF (1 in 100) 0.1314 0.6490 17.82

Full Dataset-SVGP 0.0085 0.1205 345.04
Subsampled-SVGP (1 in 10) 0.0086 0.1200 47.46
Subsampled-SVGP (1 in 100) 0.0161 0.1435 18.10

Table 4: Comparison of NLPD, CRPS, and Time for Various Dataset Sizes for DRF and SVGP

leading to poor reconstructions of the field as illustrated in the left figure 13a. We display the cor-
responding metrics in Table 5, where we see that the model with the skip connection produce better
scores as a result.

For our other experiments, we did not see major differences between the model with or without skip
connections.

(a) Example of poor result when using DRF model
without skip connections

(b) Typical prediction of DRF model with skip con-
nections

Figure 13: Performances of DRF models with and without skip connections

Model NLPD CRPS

Model with skip connections 0.0063± 0.0002 0.0918± 0.0021
Model without skip connections 0.0078 ± 0.0007 0.1092 ± 0.0101

Table 5: Comparison of NLPD, CRPS, for model with or without skip connections

C.6.3 SCALABILITY WITH MODEL WIDTH

Here, we present the results of ablation experiment with respect to model width defined as the
number of random feature per layer. In the first part, we fixed the bottleneck size B per layer and
varied the number of hidden units H between the bottlenecks, while keeping the model depth fixed
at 3. The number of hidden units H directly corresponds to the number of random features per layer.
Our findings indicate that, in general, increasing the number of random features (i.e., enlarging H)
leads to improved performance, as shown in Table 6.

DRF Model NLPD CRPS

H = 1000, B = 128 0.0063± 0.0002 0.0918± 0.0021
H = 500, B = 128 0.0064 ± 0.0001 0.0944 ± 0.0009
H = 250, B = 128 0.0065 ± 0.0001 0.0951 ± 0.0006

Table 6: NLPD and CRPS Comparison for DRF models with different hidden size

30



Published as a conference paper at ICLR 2025

In the second part, we have conduced an ablation experiment with respect to the bottleneck size B
while hidden size held fixed (H = 1000).

DRF Model NLPD CRPS

H = 1000, B = 32 0.0066 ± 0.0001 0.0969 ± 0.0006
H = 1000, B = 64 0.0067 ± 0.0003 0.0969 ± 0.0030
H = 1000, B = 128 0.0063± 0.0002 0.0918± 0.0021
H = 1000, B = 1000 0.0065 ± 0.0003 0.0932 ± 0.0035

Table 7: NLPD and CRPS Comparison for DRF models with different bottleneck size

We also observe that increasing the bottleneck size generally improves performance, but this only
holds true up to a certain point. Beyond that, such as when we set B = 1000, the results actually
begin to deteriorate, and the hyperparameter tuning process becomes less stable. Figure 14 shows
an example of poor results we got when we set H = 1000, B = 1000.

Figure 14: Example of poor result of DRF model with H = 1000, B = 1000
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