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Abstract
Optimal transport (OT) is a powerful geometric
machine learning tool for comparing distances be-
tween samples. Accurate OT distances rely on the
underlying distance between dataset features, or
ground metric. Ground metrics are commonly
decided with heuristics or learned with super-
vised algorithms. However, since many interest-
ing datasets are unlabelled, unsupervised ground
metric learning approaches have recently been in-
troduced. One promising option employs Wasser-
stein singular vectors (WSV), which emerge when
computing OT distances between features and
samples simultaneously. WSV is effective, but
computationally expensive (O(n5) complexity).
Here, we propose to augment this method by em-
bedding samples and features on trees, on which
we compute the tree Wasserstein distance (TWD).
We demonstrate theoretically and in practice that
the algorithm converges to a better approximation
of the full WSV approach than entropy regularisa-
tion, with faster (cubic) computational efficiency.
In addition, we show that the initial tree struc-
ture can be chosen flexibly, since tree geometry
does not constrain the solution up to the number
of edge weights. These results poise unsuper-
vised ground metric learning with TWD as a low-
rank approximation of WSV with the potential for
widespread low-compute application.

1. Introduction
The geometric nature of data structures can help to solve
unsupervised learning tasks. For example, clustering (e.g.
k-means) compares groupings based on a distance between
samples. Inherently, the heuristic that one chooses for the
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distance matrix or function determines the outcome of the
algorithm. So, how should one choose or learn this distance?

From an optimal transport perspective, the optimal sample
distance is the Wasserstein distance: that is, the minimum
cost from the best mapping between samples, weighted by
the cost, or ground metric, between their features. For exam-
ple, samples might be documents, and features words. Then
the distance/cost between two documents is determined by
the relative expression of words in each, mappings between
them, and the ground metric between words. This turns the
problem of learning sample distances into one of learning –
or choosing – the (feature) ground metric.

State-of-the-art methods usually employ heuristics for the
ground metric, commonly Euclidean, with embeddings for
the features, e.g. word2vec for documents (Kusner et al.,
2015), and gene2vec in bioinformatics (cell identification
from gene expression) (Zou et al., 2019; Du et al., 2019).
However, embeddings are not always available or may be
difficult to learn. We are interested in unsupervised ways to
learn the ground metric.

We do so by augmenting an iterative method by Huizing et al.
(2022): they suggest learning distances on samples, which
then act as the ground metric to learn (ground) distances on
features, which then are the ground metric and improve the
metric on samples, and so on.

To illustrate the idea, consider the words “opera” and “Vi-
enna”, which one might expect to be close in word-space.
If the metric between documents in the corpus that contain
both of these words is close, we learn a smaller distance in
the word dictionary between “opera” and “Vienna”. This in
turn decreases the distance between documents containing
these words. Such an approach could be applied to gene
expression (features) in cells (samples), V1 neuronal ac-
tivity (features) corresponding to representation of images
(samples), and other unlabelled high-dimensional data.

While effective, Huizing et al. (2022)’s algorithm is expen-
sive to run as it requires multiple pairwise distance compu-
tations per iteration. Inspired by Yamada et al. (2022), we
propose a method that reduces algorithmic complexity by at
least a quadratic factor by representing the data on a tree and
learning weights on tree edges, rather than the full pairwise
distance matrix. Our method offers a geometric low-rank ap-
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proximation interpretation of the full unsupervised ground
metric learning problem. We show that it performs well on
a toy dataset.

1.1. Previous and related work

In this section we introduce optimal transport distances,
tree Wasserstein distances, inverse optimal transport and
unsupervised ground metric learning.

Optimal transport and optimal transport distances: Op-
timal transport can be thought of as a “natural geometry” for
probability measures (Peyré & Cuturi, 2019). The classical
OT problem – attributed to Monge (1781) and Kantorovich
(1940) –asks how to find an optimal transport plan between
two probability distributions subject to some cost.

Consider the empiric discrete OT problem. Let µ =∑n
i aiδxi

and ν =
∑n

j bjδxj
be discrete probability dis-

tributions (“histograms”: normalised bin counts), with δxi

the Dirac delta function at position xi. Then the OT problem
is to find optimal P satisfying:

W1−C(µ, ν) = min
P∈Rn×n

+

⟨P,C⟩ = min
P∈Rn×n

+

∑
i

∑
j

PijCij (1)

where P1n = a, P⊤1n = b and C is some cost function.
W1−C(µ, ν) is known as the (1)-Wasserstein distance. In
this paper, we shall drop the 1 and assume thatWC includes
the pairwise distance matrix C as its ground metric.

For example, in document similarity, xi, xj are words (or
embedding vectors) and a, b tell us the frequency of words
in a given document µ (or ν). Usually, C is assumed to
be the Euclidean distance between word embeddings, and
thenWC(µ, ν) is the word mover’s distance (Kusner et al.,
2015). Here, we instead take the approach of learning
C in an efficient manner, rather than utilising pre-trained
embeddings, for documents represented as bag-of-words.

Computationally efficient OT: Solving the OT problem
to compute WC via linear programming has complexity
O(n3 log n). Cuturi (2013) suggested using the celebrated
Sinkhorn’s algorithm, which speeds up the calculation
through entropic-regularised OT to O(n2). Another more
recent formulation is via tree Wasserstein distance, which
has linear complexity (Le et al., 2019).

Tree Wasserstein distance (TWD): The tree Wasserstein
distance represents samples on a tree. Another geometric
embedding is the sliced Wasserstein distance (SWD), in
whichWC is computed via projection to a one-dimensional
subspace, with complexityO(n log n) (Kolouri et al., 2016).
SWD is a special case of TWD (Le et al., 2019).

Consider a tree T with dT the tree metric (the unique and
shortest path between any two nodes on T ). Let w be the set
of weights between nodes and Z the tree parameter (Zij = 1

if node i = Parent(j), 0 otherwise). Given dT (x,y), the
TWD can be written (Le et al., 2019; Yamada et al., 2022):
WT (µ, ν) = infπ

∫
X×Y dT (x,y)dπ(x,y).

Furthermore, TWD takes on a closed analytical form
(Takezawa et al., 2021):

WT (µ, ν) = ||diag(w)Z(a− b)||1 (2)

From (2), TWD can be computed inO(size(w)) (Takezawa
et al., 2021). TWD is a good approximation of the full
1-Wasserstein distance (Yamada et al., 2022).

The inverse OT problem and ground metric learning:
Leveraging the geometric nature of the Wasserstein/OT dis-
tance for unsupervised learning tasks relies on having a
good idea of the ground metric between features that is then
“lifted” to the OT distance between samples. Heuristics for
ground metrics can be useful, especially with embeddings
(Kusner et al., 2015; Du et al., 2019), but we are interested
in broader, principled ways to find ground metrics.

Inverse optimal transport provides one solution: given a
transport plan P , find the distance matrix C. For matching
problems based on recommendation systems, for example
the marriage dataset where preferred pairings and the associ-
ated features (i.e. the transport plan) are known, inverse OT
can find the underlying distance between features. While
in general this problem is underconstrained, solutions exist
given sufficient constraints on C (Paty & Cuturi, 2020; Li
et al., 2019; Stuart & Wolfram, 2019). However, inverse OT
requires access to the full transport plan – in practice and
for high-dimensional features, such as gene-cell data, that is
not feasible.

An alternative is to use partial information about distance or
similarity to learn the ground metric, for example with super-
vised or semi-supervised learning (Cuturi & Avis, 2014). A
related but distinct concept is the idea of supervised learning
of sample Wasserstein distances (Huang et al., 2016) and
supervised TWD (Takezawa et al., 2021): here, the (feature)
ground metric is still assumed (Euclidean), but information
about distances is used to learn metrics between samples.
The unsupervised approach differs in that neither a feature
nor a sample ground metric needs to be assumed.

Unsupervised ground metric learning with Wasserstein
singular vectors (WSV): Unsupervised techniques harness
the relationship between the geometry of features (embed-
ded in samples) and the geometry of samples (embedded in
features) (Paty & Cuturi, 2020; Huizing et al., 2022).

Consider some data matrix X ∈ Rn×m
+ . Let ai ∈ Rm

+

be a sample (normalised row) of X , and bk ∈ Rn
+ be a

feature (normalised column). These are just histograms
“embedding” a sample as a distribution over features, and
vice versa. For example, the ai (of which there are n) could
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be a histogram of words in a document, and the bk (of which
there are m) documents containing a given word. As another
example, ai might represent cells (samples) as histograms
over gene expression, where bk are the genes (features) as
histograms over cells that contain each gene.

Huizing et al. (2022) learn ground metric matrices A ∈
Rm×m,B ∈ Rn×n satisfying the fixed point equations:

Ak,l =
1

λ
WB(bk, bl);Bi,j =

1

µ
WA(ai, aj) (3)

∀k, l ∈ {1, ..,m}, i, j ∈ {1, ..., n}, where Wd is the 1-
Wasserstein distance with ground metric d.

Power iterations are used to compute these matrices,
ΦA(A)i,j := WA(ai, aj) + τ ||A||∞R(ai − aj) (and simi-
larly for B). Then the equivalent problem is to find Wasser-
stein singular vectors (WSV) such that
∃(λ, µ) ∈ (R∗

+)
2 s.t. ΦB(B) = λA,ΦA(A) = µB.

The complexity of a single power iteration is
O(n2m2(n log(n) + m log(m))) (since it requires
computing m2, n2 Wasserstein distances), which Huizing
et al. (2022) propose to reduce via stochastic optimi-
sation and entropic regularisation, the latter improving
performance to at best O(n2m2).

1.2. Contributions

We propose to improve on the WSV computational bottle-
neck by embedding the dataset in trees and approximating
Wd with the TWD. We show that:

• We can learn a set of non-zero tree edge weights via a
system of linear equations (Algorithm 1).

• This system is determined by a tree-parameter-based
tensor whose rank is equal to the number of edges in
the tree or one less the number of edges.

• The TWD singular vectors approach is more computa-
tionally efficient and outperforms entropic regularisa-
tion in terms of accuracy, as compared to WSV.

This positions our method as a low-rank approximation
of the full WSV approach with geometric interpretation,
advantages for scaling and low-resource efficiency gains.

2. Unsupervised tree Wasserstein distance
ground metric learning

We propose to use the TWD (i.e. distance between leaves) to
learn the tree ground metric (i.e. distance between features,
embedded in the tree structure).

rA

◦

a1 a2

◦

a3 a4

rB

◦

b1 b2

◦

b3 b4 b5

Figure 1. Tree embeddings for samples A as leaves in TA (left) and
features B as leaves in TB (right). The tree metric dTA(a2, a3)
is shown as the shortest path between these leaves in orange.
Equivalently, we can use the relative expression of the features
{b1, b2, b3, b4, b5} that represent a2, a3 respectively (as shown in
different hues of blue) to compute a TWD, WT B(a2, a3), in TB .

2.1. Set-up and intuition

Let A = {ai}, B = {bk}, i ∈ {1, ..., n}, k ∈ {1, ...,m}
– the set of rows (samples) and set of columns (features)
respectively – of the data matrix X ∈ Rn×m

+ be embedded
in two trees TA and TB .

Specifically, let the vectors in A = {a1, ..., an} be the
leaves of TA, ai defined as for WSV, and let TB have leaves
the vectors in B = {b1, ..., bm} (Fig. 2.1). Let ZA, ZB ,
Z ∈ {0, 1}N×Nleaf be the tree parameters for each tree,
where [Z]i,j = 1 when node i is the parent of node j or
itself (i = j), and otherwise is 0. For TA, Nleaf = n, and
for TB , Nleaf = m. Let wA ∈ RN−1

+ ,wB ∈ RM−1
+ be the

vectors of edge weights (size one less than the number of
nodes in each tree, N,M respectively).

Proposition 2.1. The WSV fixed point equations (3) can be
expressed on the trees TA, TB as:

dTA
(ai,aj) =

1

λ
WB(ai,aj); dTB

(bk,bl) =
1

µ
WA(bk,bl)

where the singular vector update is to find wA (and sym-
metrically wB) such that ∀i, j

λAwA
⊤
(
z
(A)
i + z

(A)
j − 2z

(A)
i · z(A)

j

)
=

∣∣∣∣∣∣diag(wB)Z
(B)

(ai − aj)
∣∣∣∣∣∣

1
(4)

Proof: Appendix A

For intuition about Proposition 2.1, choose two samples
ai, aj that are leaves in one of the trees, WLOG TA (Fig.
2.1). The tree metric dT is the shortest path between these
leaves with edges in TA. Each sample can also be ex-
pressed as some histogram over features, which are leaves
on TB . The 1-Wasserstein distance between the two sam-
ples is some cost matrix B applied to this expression, that
is minP

∑
k

∑
l PklCkl where P1n = ai and P⊤1n = aj .

From Yamada et al. (2022), W1−B(ai, aj) is equivalent
to the TWD between ai, aj on TB , which we can express
through summing proportions of dTB

between the leaves in
TB : dTA

(a2, a3) =WT B(a2, a3).

3



Unsupervised Ground Metric Learning with Tree Wasserstein Distance

2.2. Solutions to the tree WSV problem exist

We can utilise Proposition 2.1 to learn low-rank approxima-
tions ofWB(ai,aj) andWA(bk,bl).

Let yij = z
(A)
i + z

(A)
j − 2z

(A)
i z

(A)
j and Y(A) be the tensor

of all yijs. Equation 4 presents a system of n2 linear equa-
tions, since each yij is dimension N and Y(A) is a tensor
of dimension n × n ×N . The system is over-determined
since N << n2 from max(N) = 2n − 1 < n2. Since
Proposition 2.1 is still a singular vector problem, it can be
solved with power iterations, and satisfies the convergence
guarantees in Huizing et al. (2022), if solutions exist.

For non-negative solutions for all components of w to
exist, the matrix multiplier in the system of linear equations
needs to have rank at least equal to that of wA. The matrix
multiplier is the tensor Y unravelled along the n × n
dimensions to create a matrix Y ′ of size n2 × N . That
we can choose trees for which the rank of Y ′ is N − 1 is
proved in Theorem 2.2.

Theorem 2.2. Let the number of nodes in a tree, including
the root and leaves, be N . Then there can be at most one
non-leaf node of a tree of degree 2. In addition, if such a
node exists, it is the root and Y ′ has rank N − 2. Otherwise,
every degree of the tree is at least 3, and Y ′ has rank N − 1.

Proof: Appendix B

This theorem implies that as long as we restrict ourselves
to trees whose nodes have degree all greater than 2, we
can ensure non-zero solutions to (4) since the rank of Y ′ is
guaranteed to be N − 1, i.e. the length of w.

2.3. Computational complexity and speed-ups

The method detailed above provides a computationally effi-
cient way of computing Wasserstein singular vectors, since
each inner power iteration computes m2 Wasserstein dis-
tances in O(n) rather than O(n2). There are a few addi-
tional speed-ups possible, too.

First, note that we only need to construct trees once (with-
out edge weights), using ClusterTree or QuadTree with the
number of children k set as k > 2 (Le et al., 2019; Indyk &
Thaper, 2003). We compute ZA, ZB once for each of A,B,
and Z(A)(bk − bl)∀k, l and Z(B)(ai − aj)∀i, j just once.

Similarly, we only learn the Y tensors once with the tree
structure. In fact, we do not need to learn the whole tensor:
we just need a square sub-matrix of Y ′ of rank N − 1,
from Theorem 2.2. Since Y is sparse, we employed scipy
sparse methods to find this basis set, say U. Sparse QR
decomposition or singular value decomposition (SVD) can
be used; in practice sparse SVD performed faster.

Algorithm 1 Unsupervised Ground Metric Learning with
Trees

Input: dataset X , size n×m
do once
A← {ai = X

(i)
row/

∑
X

(i)
row}

B← {bk = X
(k)
col/

∑
X

(k)
col}

Z(B),Z(A) ← ClusterTree(B),ClusterTree(A)

Y(A) ← tensor
{
yij = z

(A)
i + z

(A)
j − 2z

(A)
i z

(A)
j

}
Y(B) ← tensor

{
ykl = z

(B)
i + z

(B)
j − 2z

(B)
i z

(B)
j

}
U(A) ← basis sparse SVD

[
upper triangular(Y(A)))

]
U(B) ← basis sparse SVD

[
upper triangular(Y(B)))

]
Zdiff

(Akl) ← Z(Akl)(bk − bl)∀k, l ∈ Bbasis indices

Zdiff
(Bij) ← Z(B)(ai − aj)∀i, j ∈ Abasis indices

initialise
wA,wB ← random vectors size Aleaf ,Bleaf

repeat
for t = 1 to num iterations do
WT (A)←

{∣∣∣∣diag(wA)Zdiff
(Akl)

∣∣∣∣
1
,∀k, l

}
WT (B)←

{∣∣∣∣diag(wB)Zdiff
(Bij)

∣∣∣∣
1
,∀i, j

}
WT (A)norm ←WT (A)/max

(
WT (A)

)
WT (B)norm ←WT (B)/max

(
WT (B)

)
wA ← NNLS solver

[
wA

⊤U(A) =WT (B)norm
]

wB ← NNLS solver
[
wB

⊤U(B) =WT (A)norm
]

end for
until convergence: wB = wB(prev),wA = wA(prev)

Thereafter, the goal is to iteratively learn wA and wB:

λAwA
⊤

(
z
(A)
i + z

(A)
j − 2z

(A)
i · z(A)

j

)
︸ ︷︷ ︸
y(B)

ij∈Y(B) – learn as sparse U(B)

=
∣∣∣∣∣∣diag(wB)Z

(B)
(ai − aj)︸ ︷︷ ︸

learn once

∣∣∣∣∣∣
1

(and symmetrically for wB). We use the same basis set in-
dices to compute the TWD on the right-hand side as appears
in U(B). A solution exists, and can be found with a linear
systems solver. We used non-negative least squares (NNLS),
which is efficient compared to other solvers since weights
are non-negative by assumption.

Using NNLS to solve for the w vector as a system of N − 1
linear equations has cubic complexity. Each compute of a
pairwise TWD is linear. This gives overall complexity per
power iteration: O(N3) < O((2n− 1)3) << O(n5).

We summarise the full, computationally efficient unsuper-
vised ground metric learning with TWD algorithm in Algo-
rithm 1.

3. Experimental results on toy datasets
We demonstrated the utility of our method on the synthetic
dataset X ∈ Rn×m, n = 80,m = 60, as employed in prior
work (Huizing et al., 2022).
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Figure 2. Comparison of mean time complexity (left) and Frobe-
nius norm error (right) for different ground metric learning al-
gorithms. Tree algorithms are specified by restrictions on the
minimum number of children per node in the tree. In both, lower is
better. Standard error of the mean is shown with black bars. “Many
children” refers to ClusterTree initialised with 10 as the minimum
children parameter, and 3, 2 with 3, 2 children respectively.

3.1. Dataset construction and experimental methods

The dataset uses various translations of a (unimodal) peri-
odic function on 1-d torus (with boundary conditions), such
that Xik = exp

(
−
(
i
n −

k
m

)2
/σ2

)
. On X, the underlying

(and learned) ground metrics look like
∣∣ sin( i

n −
j
n )

∣∣ (and
symmetrically for m).

We ran experiments 3 times for 100 iterations each on CPU
with different methods, using a translation of the periodic
function, to which we added a 50% translation of the torus
with half the magnitude. We set σ = 0.01. Thus:
Xik ∝ exp

(
−
(

i
n
− k

m

)2
/σ2

)
+ 0.5

(
−
(

i
n
− k

m
+ 0.5

)2
/σ2

)
.

In order to control against potential gains from tree con-
struction based on preferred data ordering, we randomly
permuted the dataset rows and columns before each experi-
ment. We compare performance via computation time and
the Frobenius norm of the difference between the learned
cost and the metric uncovered by the relevant WSV algo-
rithm (Fig. 2).

3.2. Results

All tree-based methods were faster than both standard WSV
and entropic regularised WSV by 2-3 orders of magnitude
(3-children trees took 1% of the time of the full WSV, for
example), as predicted by our theoretical time complexity
calculations. Interestingly, the tree-based methods had lower
Frobenius norm error when compared to entropic WSV.

As expected from Theorem 2.2, the “many” children trees
(at least 10 children) had lower ranks than both 2- and 3-
trees, and 3-trees had lower ranks than 2-trees. In general,
rank correlated with accuracy and time – that is, trees with
fewer children per node computed distance matrices slower,
but produced more accurate results (Fig. 2). One exception

follows directly from Theorem 2.2: the 2-trees have rank
N − 2 while the 3-trees are rank N − 1, so the full weight
vector cannot be learned for all edges on 2-trees. As a result,
the 2-trees performed worse in terms of accuracy that the
3-trees (Fig. 2 right).

4. Conclusions and future work
We present here a new, computationally efficient approach
to learn ground metrics in an unsupervised manner by har-
nessing tree Wasserstein distance as an approximation of the
1-Wasserstein distance. The results are interesting both from
an efficiency standpoint, and because Theorem 2.2 provides
a new geometric underpinning of the restrictions needed for
tree structures to flexibly represent data in low-rank approx-
imations, which a toy model supports. Future work includes
scaling the experiments to real-world datasets and exploring
stochastic WSV (Huizing et al., 2022) against TWD singular
vectors as an alternative low-rank approximation.
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A. Proof of Proposition 2.1
First, note that for all discrete measures and distance metric d, we are guaranteed theoretically that there exists a tree for
whichW1 =WT , and we can construct it by setting d = dT (Le et al., 2019; Yamada et al., 2022).

Following Yamada et al. (2022), define a tree parameter-based vector for every ai, aj as yAij := zi + zj − 2zi ◦ zj with
zi, zj ∈ ZA, which is known from the tree structure. The tree metric (distance between two leaves on TA) is given by:

dTA
(ai, aj) = w⊤

Ay
A
ij (5)

Note that any bk is a distribution over leaves in TA and vice versa. From these, we can derive Wasserstein distances between
any bk, bl. TWD can approximate the 1-Wasserstein distance and admits the closed form in equation 2 (Yamada et al., 2022),
soWTA

(bk, bl) = ||diag(wA)ZA(bk − bl)||1.

Now, let us assume that instead of learning the ground metric for the non-tree case, we want to learn a tree metric. The
equivalent claim as in Huizing et al. (2022) is that we achieve the fixed points in Proposition 2.1.More formally, as before,
we would like:

λBwB
⊤Y(B) = ϕA(wA);λAwA

⊤Y(A) = ϕB(wB)

with λA, λB , τ ∈ R+, where ϕA(WA)ij = WTA(ai, aj) + τ ||A||∞R(ai − aj), and Y is the tensor composed of the n2

(or m2) yij vectors. So, Φs map ground costs to Wasserstein distance matrices.

Let ZA(bk − bl) = zAkl. Since wA ∈ RN
+ is positive, and letting |.| denote element-wise absolute value,

WTA
(bk, bl) = ||diag(wA)z

A
kl||1

=

M∑
s

w
(s)
A |z

A(s)
kl | = w⊤

A |zAkl|

So from (2) and Proposition 2.1:
λw⊤

By
B
kl = w⊤

A |zAkl|, µw⊤
Ay

A
ij = w⊤

B |zBij | (6)

∀k, l ∈ {1, ..,m}, i, j ∈ {1, .., n}.
In full, the singular vector update becomes to find wA such that ∀i, j

λAwA
⊤
(
z
(A)
i + z

(A)
j − 2z

(A)
i · z(A)

j

)
=

∣∣∣∣∣∣diag(wB)Z
(B)

(ai − aj)
∣∣∣∣∣∣

1
(7)

(and symmetrically for the wB iteration).

B. Proof of Theorem 2.2
As preliminaries, we assert that N > Nleaf = m, and Z ∈ {0, 1}N×l has rank m. Note that Y ∈ {0, 1}N×l×l is strictly a
tensor, but in practice we only care for the reshaped matrix Y ∈ {0, 1}N×l2 .

Assume that trees cannot have redundant nodes (i.e. nodes with exactly 1 child, not including themselves), and let every tree
have root node r and leaf nodes 1, ..., l, which we also use to index the associated positions along vectors z and y.

Note that at most one inner (non-leaf) node can have degree less than 3, and it must be the root. In this case, the root has
degree 2. Otherwise all inner nodes are of degree ≥ 3.

Some bounds for N in terms of l can be derived from the observation that rank is upper-bounded by the number of pairs that
two distinct leaves can make, noting yi,j = yj,i and yi,i = 0. For l ≥ 4,

l2 >
l(l − 1)

2
≥ 2l − 2 ≥ N − 1 ≥ l (8)

Replacing N − 1 for N − 2 we get bounds for l ≥ 2. 2l− 2 ≥ N − 1 in (8) is derived from the upper bound on the number
of nodes in the maximal spanning tree, a binary tree.

We prove by induction on the number of tree nodes that the rank of Y is N − 1 for any tree structure in which all nodes
have degree ≥ 3, and N − 2 otherwise, for any l ≥ 2.
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N − 2 base case, N = 3: The tree can only be a root connected to two leaves. There is only one y-vector, between the two
leaves. So the rank is N − 2 = 1.

N − 1 base case, N = 4: r connects to each of the three 3 leaves. In general for N = l + 1, l ≥ 3, we can show the rank is
N − 1 = l. WLOG, choose a leaf i and consider yi,j ,∀j ̸= i. Since every zj is 0 everywhere except for positions indexed
by node i and root r, where it is 1, yi,j is 1 at i, j and 0 otherwise. Therefore the set of l − 1 vectors Si = {yi,j , i ̸= j,∀j}
is linearly independent. Additionally, we can choose any two distinct nodes j, k where j ̸= k ̸= i, and S = {yj,k ∪Si} must
also be a linearly independent set. This follows because yj,k is 1 at nodes j, k and 0 otherwise; and no linear combination of
yi,k, yi,j (with i = 1 for both vectors, which should be cancelled) can reproduce yj,k.

Can we add any more vectors from Y to S such that the set is still linearly independent? No. To show this, assume that there
exists some yg,h /∈ span(S). Trivially, g ̸= h ̸= i and {g, h} ≠ {j, k}, so yg,h is 0 everywhere except at the g, h positions.
But note that we can write yg,h using vectors in S:

yg,h = yi,g + yi,h −
(
yi,j + yi,k − yj,k︸ ︷︷ ︸
=2 at i; 0 otherwise

)
(9)

So our assumption was incorrect and Y ∈ span(S). Therefore rank(Y) = l = N − 1.

Induction hypothesis, N ≤ m: Assume that the rank of any tree structure with parameter N ≤ m,m ∈ N, has rank
N − 1 = m− 1 if all inner nodes are degree 3 or more, and N − 2 = m− 2 otherwise. We call this a m-tree.

Inductive step, N = m+ 1 ≥ 4: We define a set of “adjacent” leaf nodes A to be the set of all leaves connected to the
same parent node ρ where ρ has no non-leaf children.

Note first that we can construct any valid [m+ 1]-tree structure from some previous valid m-tree: for any [m+ 1]-tree,
consider a complete set of adjacent leaf nodes of depth at least 2 from r – that is, all the leaves connected to the same
non-root node ρ (if depth is less than 2, we get the extended base case). These leaves have common ancestry, and their
z-parameters differ only at the indices of the leaves themselves. Since n > 1, there must exist at least one node ρ that is
neither r nor a leaf. Collapse the ρ-sub-tree by removing ρ and reconnecting its leaves to the immediate parent node of ρ.
Then the new tree is an m-tree (we have lost one node), as claimed.

Every tree must have at least one such set A, and it must have at least 2 elements. We consider the smallest A-sub-tree and
the L/A-sub-tree consisting of the rest of the tree, in two cases.

Case 1, |A| ≥ 3: From the base case, the rank of the A-sub-tree up to the parent node ρ is |A|. Now consider the sub-tree
consisting of all the other leaves in the tree, L/A, up until ρ, where the two sub-trees connect. Imagine ρ is a leaf (ignore its
children A). Then the L/A-sub-tree has tree parameter NL/A = m+ 1−A,≤ m, so by the inductive hypothesis it has
rank N − 1−A or N − 2−A, depending on the degree of r.

How do we join the sub-trees? Let links including ρ now extend to some (the same) new leaf in {A}, say ai. The union
of the yi,j making up each sub-tree’s basis set is linearly independent. To see this, note that the only yi,j that have a 1 at
position ρ were those ending at ρ the leaf on {L/A}. So to express any ylk,ai

, a link via ρ is needed, that is the rank is
lower-bounded by N − 1 or N − 2 respectively.

We cannot add any more ys: since the sub-trees are saturated by assumption, any addition y should also be a link, but any
link can be expressed via an existing link through ρ and combinations of the sub-tree basis sets (following the argument for
the extended base case N > 3, since we know that each sub-tree has more than 3 nodes). Therefore rank([m + 1]-tree)
= N − 1 or N − 2 based on the sub-tree, as required.

Case 2, |A| = 2: In this case, the L/A-sub-tree has rank N − 3 or N − 4 and the A-sub-tree has internal rank 1 since there
is just one pair of leaves to make ya1,a2

. WLOG, assume the ρ links extend to a1, with {yli,a1
} for some (not necessarily

single) i, necessarily linearly independent of ya1,a2 . The total rank is then N − 2 or N − 3.

In the 2-case, we can also create another ylj ,a2
, where j can either be the same as i or different.

How do we know that ylj ,a2
is not in the span of the two sub-tree’s y vectors? Assume it is in the span. ylj ,a2

has 1s at
ρ. The only other ys which shares this property are from yli,a1

. So, if ylj ,a2
could be written using already chosen y, its

decomposition must include yli,a1
. But since a1 is non-zero in ya2,lj , it should be removed through linear combinations with

other ys; however, there is just one y involving a1, ya1,a2 . So we must subtract ya1,a2 , resulting in −1 at the a2 position.
But we require a2 to be 1: there is no linear combination that allows both the ancestral node ρ and a2 to be 1.
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So we must be able to add one link, and so here, too, the rank is N − 1 or N − 2 in total (trivially any further ys must be
links and so would be in the span).
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