
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VERIFIERQ: ENHANCING LLM TEST TIME COMPUTE
WITH Q-LEARNING-BASED VERIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent test time compute approaches with verifier models have significantly en-
hanced the reasoning capabilities of Large Language Models (LLMs). While this
kind of generator-verifier approach closely resembles the actor-critic framework
in reinforcement learning (RL), the verifiers currently are used rely on supervised
fine-tuning rather than on temporal difference learning. This paper introduces Ver-
ifierQ, a novel approach that integrates Offline Q-learning into LLM verifier mod-
els. We address three key challenges in applying Q-learning to LLMs: utterance-
level Markov Decision Processes (MDPs), large action spaces, and overestimation
bias. VerifierQ introduces a modified Bellman update, incorporates Implicit Q-
learning (IQL) for efficient action space management, and integrates a novel Con-
servative Q-learning (CQL) formulation for balanced overestimation. Our method
is among the first to apply Q-learning to LLM verifiers. This integration of RL
principles into verifier models complements existing advancements in generator
techniques. Experimental results on mathematical reasoning tasks demonstrate
VerifierQ’s superior performance compared to supervised fine-tuning approaches.

1 INTRODUCTION

Large Language Models (LLMs) offer a promising approach to multi-step reasoning tasks through
language. However, despite their prowess in generating coherent text, LLMs face significant chal-
lenges in sustained, multi-step logical reasoning due to their underlying architecture and propensity
for hallucinations (Lightman et al., 2024). Overcoming these challenges is critical for enabling the
next level of agent capabilities.

One of the most important recent developments in addressing these limitations is test time compute
(Snell et al., 2024; Cobbe et al., 2021). As demonstrated by OpenAI (2024), test time compute
represents a new paradigm in the scaling laws of LLMs. Test time compute essentially involves using
a verifier model to evaluate and select the best solutions generated by an LLM, allowing for more
extensive processing and deliberation during inference. By leveraging additional computational
resources at test time, LLMs can potentially perform more complex reasoning tasks with improved
accuracy and reduced hallucinations.

The concept of a verifier aligns closely with recent research on multi-step reasoning, which typically
employs two main components: a generator and a verifier (Lightman et al., 2024; Uesato et al.,
2022; Cobbe et al., 2021). The generator produces potential solutions, while the verifier evaluates
their correctness. This setup is analogous to the actor-critic framework in Reinforcement Learning
(RL) (Konda & Tsitsiklis, 1999). However, unlike RL critics that use temporal-difference (TD)
updates for long-term credit assignments, current verifiers in multi-step reasoning are often trained
using supervised fine-tuning (SFT). This limitation might hinder the verifier’s ability to guide the
generator toward better long-term outcomes, particularly in complex reasoning tasks.

To address these challenges, we propose leveraging Reinforcement Learning techniques, particularly
Offline Q-learning, to enhance verifier performance in long-horizon tasks. This approach draws in-
spiration from successful RL systems like AlphaGo Silver et al. (2016), which achieve superhuman
performance by combining learning and search techniques. Recent research has focused on improv-
ing generators using methods like Monte Carlo Tree Search (MCTS) (Chen et al., 2024; Wang et al.,
2024b;a; Zhang et al., 2024a). However, less attention has been given to applying RL to verifiers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

A robe takes 2 bolts of blue fiber and half that much
white fiber. How many bolts in total does it take?

It takes 2/2=<<2/2=1>>1 bolt of
white fiber

So the total amount of fabric is
2+1=<<2+1=3>>3 bolts of fabric

2. Answer is 2+ + -

Problem Action Action ActionReward Reward Reward

Generator
State Action

VerifierState Reward

Action

Figure 1: Illustration of State, Action (green), and Reward (orange) in a Math Problem. + denotes
correct (1) and − denotes incorrect (0). A state generator produces an action (i.e., the next solution
step). For example, a2 is generated from [P, a1], and a3 is generated from [P, a1, a2]. The verifier
assesses the current state and action and outputs a probability of correctness.

We introduce VerifierQ, an Offline Q-learning approach that integrates classical reinforcement learn-
ing techniques with LLMs. The core research question guiding this work is: Can Offline Q-learning
improve the verifier’s ability to handle multi-step reasoning tasks, and if so, how can we overcome
the obstacles limiting its application to LLM value networks?

Our work makes several key contributions: (1) We propose a flexible architecture for applying
offline Q-learning on utterance-level in language models, and we resolve the large action space
problem on the utterance level. (2) We present an innovative formulation of Conservative Q-learning
tailored for these large action spaces, mitigating overestimation issues in offline Q-learning. (3) Our
approach bridges the gap between classic critic models in reinforcement learning and verifier models
in language tasks, opening new avenues for improving test-time compute in large language models.

2 BACKGROUND

In reinforcement learning (RL), tasks are often modeled as Markov Decision Processes (MDPs).
A MDP consists of states s ∈ S, actions a ∈ A, a reward function r(s, a), a transition function
P (s′|s, a) from state s to state s′ with action a, and a discount factor γ. The goal is to find an
optimal policy π∗ that maximizes the expected cumulative reward: π∗ = argmaxπ E [

∑∞
t=0 γ

trt]

Q-learning estimates the optimal state action value Q by iteratively updating expected cumulative
rewards, while the V function is similar to Q but just estimates from states without need of actions.
Q-learning is a model-free RL algorithm commonly used to solve MDPs by minimizing the temporal
difference (TD) error:

LTD(θ) = E
[(
r + γmax

a′
Q(s′, a′; θ)−Q(s, a; θ)

)2
]
. (1)

Using a generator-verifier framework with large language models (LLMs) Lightman et al. (2024),
we can formulate the reasoning process as an utterance-level MDP. Given a problem statement p, the
generator produces a solution based on the problem and previous action steps, where [p, a1, ..., ai−1]
is the state and ai is an action. Each action is a complete sentence as shown in Figure 1. This differs
from token-level approaches where actions would be individual tokens from the vocabulary, which
can be a word or a subword. The state at step i is the dialogue history that consists of the problem
statement and all previous complete utterances generated up to that point: si = [p, a1, a2, . . . , ai].
Rewards are given at each step, with a reward of 1 for a correct step and 0 for an incorrect one. We
can see the illustrated example in Figure 1, where + indicates “correct” and− indicates “incorrect”.
We will discuss advantages of utterance level in Section 4.2.

In classical RL, the critic model is trained to estimate the Q value (Konda & Tsitsiklis, 1999). In
test time compute, the verifier model is trained to estimate the Q value (Snell et al., 2024). Given a
problem statement, the generator produces a sequence of steps as actions. The verifier’s inputs are
the problem and solution steps, and it outputs correctness scores.

In general, offline Q-learning, which uses a fixed dataset to estimate Q-values, has the advantage of
being more efficient to train compared to online methods since gathering new dense labeled data is
difficult. However, it comes with the risk of overfitting the training data, as it lacks the exploration
of new actions typically seen in online Q-learning, and it causes an overestimation problem. Recent
methods involve Conservative Q Learning and Implicit Q Learning to mitigate the issue of overes-
timation, and this work tries to combine both approaches to overcome the overestimation problem
(Kumar et al., 2020; Kostrikov et al., 2022)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Multi-step reasoning, particularly for mathematical tasks, commonly employs a generator-verifier
framework to enhance LLM performance. Process Reward Modeling (PRM), which assigns rewards
to each step, has been shown to outperform Object Reward Modeling (ORM), where rewards are
only given for the final output (Lightman et al., 2024; Uesato et al., 2022; Cobbe et al., 2021).
However, PRM requires extensive step-level labeling. Recent works mitigate this with Monte Carlo
Tree Search (MCTS) for automatic labeling, improving efficiency over manual methods (Chen et al.,
2024; Wang et al., 2024b;a). Nonetheless, verifiers in these approaches are trained via supervised
fine-tuning (SFT), and compared to classic RL, it is similar to imitation learning.

Recent studies emphasize the role of verifiers in improving test-time compute. Cobbe et al. (2021)
showed that an effective verifier can yield performance gains equivalent to increasing generator
size by 30x. Similarly, Snell et al. (2024) found that optimal verifiers at test time can outperform
generators 14x larger. However, these methods still rely on SFT for training verifier, limiting their
effectiveness in complex, long-horizon reasoning. A more effective learning method can improve
the verifier model to achieve better performance and in turn scale more efficiently.

Q-learning has seen limited use in LLMs, mainly for preference-based tasks. ILQL is the first
to show implicit Q-learning can be applied to LLMs for multi-turn dialogue tasks, but the focus
is on token-level actions (Snell et al., 2023). To resolve the challenges in training long-horizon
reasoning due to the granularity of token-level actions, ArCHer proposed an utterance level value
function, but the encoder style of value function makes estimation can compute step by step and less
efficient(Zhou et al., 2024). Both works are still limited by their step-by-step computations.

In contrast, our work focuses on utterance-level actions for the verifier, and multi-reward estima-
tion with one forward pass significantly improves training efficiency. We also integrate Implicit
Q-learning (IQL) and Conservative Q-learning (CQL) to better manage large action spaces and en-
hance performance, offering a more scalable solution for multi-step reasoning tasks.

4 PROBLEM STATEMENT

The central question we need to ask is: Can Offline Q-learning improve the verifier’s ability to
handle multi-step reasoning tasks? If so, how can we overcome the obstacles that currently limit its
application to LLM value networks?

4.1 OFFLINE Q-LEARNING VS IMITATION LEARNING:

The characteristic of MCTS rollout data in math problems is that it is noisy. There might be many
steps that are not optimal and incorrect for solving the problem. However, stitching the optimal steps
together might lead to a better solution. Those are cases that Offline Q-learning can handle better
than Imitation Learning, and one of the main conclusions from Kumar et al. (2022) is that given
the same noisy expert data, Offline Q-learning can outperform Imitation Learning on long horizon
tasks. Intuitively, Offline RL method should learn to stitch the suboptimal paths in the noisy data to
obtain a better path, and wrong answers can help offline RL what is wrong for the future. It could
lead to the better performance of the verifier model even with the same amount of rollout from the
generator.

4.2 CHALLENGES IN APPLYING OFFLINE Q-LEARNING TO LLMS:

There are several challenges in applying Offline Q-learning to LLMs. The first challenge is utterance
level RL. Existing works use token level actions (Snell et al., 2023). At the token level, the action
space has a smaller cardinality and is equivalent to the vocabulary size V , making it feasible to
compute max Q-values and estimates. However, this level of granularity is too fine for long-horizon
tasks (Zhou et al., 2024). On the other hand, using the utterance level allows better handling of
long-term horizons, but since each utterance may contain multiple tokens, the action space grows
exponentially large, making it computationally intractable (Wang et al., 2024a). Given the utterance
with the number of tokens of length n, we will have V n actions, and a typical sentence might contain
20 tokens. This is just one utterance, but a solution contains many utterances. This creates a tension

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Bellman Target

Q function

A robe takes... It takes 2/2... So the total... Answer is 2Step
Tag

Step
Tag

Step
Tag

Q1

0.7

Q2

0.6

Q3

0.2

R1

1

R2

1

R3

0

R1

1

Q2

0.6
+ γ (         )Q1

0.7

1
2

Bellman Backup

V function

Q1

0.7

Q2

0.6

Q3

0.2

A) Q Loss:

A robe takes... It takes 2/2... So the total... Answer is 2Step
Tag

Step
Tag

Step
Tag

Q function

Q1

0.7

Q2

0.6

Q3

0.2

V function

Q1

0.7

Q2

0.6

Q3

0.2

Polyak- averaged Q function

Q1

0.7

Q2

0.6

Q3

0.2

V function

Q1

0.7

Q2

0.6

Q3

0.2

B) CQL Loss:

 Function Function

 Function

Soft
Update

CQL

Polyak- averaged Q
function

Q function

Part A Here

Part B Here

C) Overall Components

Figure 2: Illustration of the VerifierQ architecture and modified Bellman update. Left: Bellman
update, where Qθ is updated via the TD target with V . Middle: CQL Loss component. The main
goal is to have the lower bound Vψ as the target policy distribution while the upper bound as the
data distribution. Right: Relationships among Qθ, Qθ̂, and Vψ . Qθ updates through the Bellman
equation as shown in (A), Vψ is updated through CQL as shown in (B), and Qθ̂ is updated via soft
update. The key intuition here is to leverage IQL’s regression to overcome the large action space
problem while CQL keeps estimation in check.

between choosing a level of granularity that is manageable and effective for long-term planning. We
need to find a practical method to make the verifier model to learn on the utterance level efficiently.

The second challenge with most methods is that they rely on an actor to sample actions because it is
hard to estimate the maximum Q-value when the action space is large. Each utterance level action
is exponentially large as the number of tokens grows. Since datasets typically consist of rollouts
with various actions, true offline learning becomes difficult. For example, for one action at at, it is
needed to fix state [P, a1, ..., at−1] and sample various actions at. It is not practical to have each step
have several samples while maintaining the previous steps to be the same. Given a sentence with m
steps, if we sample l actions for each step, then we will have lm different answers for one problem
if we want to apply offline learning. Additionally, finding the max Q is problematic due to the large
action space, as most methods require an MCTS actor to sample the maximum value of each step
(Chen et al., 2024; Wang et al., 2024a). This approach does not effectively utilize offline datasets,
complicating training. Approximating maxQ needs sampling, and online sampling is inefficient
for training. While it is easy to roll out a complete solution, it seems to be difficult to utilize the
complete rollout for training the verifier model. We need to efficiently train the verifier model with
offline datasets.

The third challenge is overestimation. The overestimation problem in Q-learning is well-known,
but it’s particularly severe in language models. As noted in Verma et al. (2022); Zhou et al. (2024),
this issue is amplified in language tasks because the Q-function is trained only on the responses in a
fixed dataset, making it unlikely to predict accurate values for arbitrary strings in an utterance. In our
preliminary experiments, we observed that changing just one critical token to incorrect utterances
can receive a higher value than the correct ones. This overestimation becomes more pronounced at
the utterance level, where the complexity and potential for incorrect value assignments are greater.

5 VERIFIER WITH Q-LEARNING (VERIFIERQ)

We introduce VerifierQ, a novel approach to enhancing verifier models using Offline Q-learning
for Large Language Models (LLMs). Our method addresses key challenges by modifying the Q-
learning algorithm and integrating it into language modeling tasks.

5.1 ARCHITECTURE OF VERIFIERQ

Addressing Utterance-Level MDP: To apply Offline Q-learning to LLMs at the utterance level, we
propose a flexible architecture that integrates with language modeling tasks (Figure 2). Following
Wang et al. (2024b) and Lightman et al. (2024), we utilize two tokens + and − to represent correct
and incorrect states, with a tag token indicating estimation. The probability of the correct token
out of two tokens can be interpreted as Q-values ranging from 0 to 1, aligning with the reward
structure in the MCTS-generated dataset from (Wang et al., 2024b). More details are provided in
the supplementary material Appendix A.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To address the bounded nature of outputs (0 to 1) compared to traditional Q-values, we modify the
Q-learning algorithm to operate within these constraints. We propose using the 1

2 of the traditional
Bellman update target as the target value instead of Equation 1:

Q∗(s, a) =
1

2
(r(s, a) + γmax

a′
Q∗(s′, a′)) (2)

where Q∗(s, a) is the optimal Q-value for state s and action a, r(s, a) is the immediate reward, γ is
the discount factor, and maxa′ Q

∗(s′, a′) is the maximum Q-value for the next state s′ taking action
a′. More details are provided in the supplementary material (Theorem 1 of Appendix A.1).

Here we need to ensure that Q∗ is bounded. Since r,Q ∈ [0, 1], we have 0 ≤ r + γmaxQ ≤ 2 for
γ ∈ [0, 1]. Thus we can bound 0 ≤ Q∗(s, a) = 1

2 (r(s, a) + γmaxa′ Q
∗(s′, a′)) ≤ 1. Therefore

Q∗(s, a) ∈ [0, 1], and it aligns with the model output range.

For each problem and solution sequence, we insert the tag token at the end of each step ai:
[p, a1, tag, a2, tag, . . . , an, tag]. Then we predict the probability of + or − tokens as shown in
Figure 1. The mean of the reward and next estimate is the target value for the Bellman update.

As shown in Figure 2, the verifier model estimates multiple Q-values for each step in the solution
sequence, enabling efficient parallel computation of Q-values for multiple steps in a single forward
pass. This architecture change enables VerifierQ to efficiently learn Q-values at the utterance level
while maintaining compatibility with existing language modeling frameworks.

5.2 ALGORITHM OF VERIFIERQ

Addressing Large Action Spaces: Traditional action selection in MDPs typically requires finding
the maximum Q-value explicitly over all possible actions. In utterance-level MDPs, this leads to
exponentially large action spaces of V n, where V is the vocabulary size and n is the length of
tokens in one utterance. To solve this, we employ Implicit Q-learning (IQL) (Kostrikov et al., 2022).

Our key intuition is to interpret IQL from a regression perspective. IQL approximates Q-values
through regression on existing actions, mitigating the need for explicit maximum Q-value sampling
and enabling efficient handling of limited per-step data. Instead of iteratively finding the maximum
Q for every single action in V n, it can regress the action based on the dataset and find the approxima-
tion through expectile. IQL can still approximate the maximum Q-value maxa∈AQ(s, a) without
explicitly evaluating all actions by fitting Q(s, a) to the expectiles of the target values given limited
data. With the vast action space, expectile regression helps interpolate and extrapolate to unobserved
actions based on the observed data. This provides smooth estimates and helps handle the curse of di-
mensionality inherent in large action spaces. It improves sample efficiency by eliminating the need
for an online algorithm to sample from. This regression-based approach makes IQL particularly
well-suited for utterance-level MDPs.

We follow Snell et al. (2023) for the IQL framework to our setting, using the expectile of the Q-value
to approximate the value function V :

LV (ψ) = E(s,a)∼D [Lτ2 (Qθ(s, a)− Vψ(s))] (3)

where Lτ2(u) = |τ − 1(u < 0)|u2, τ ∈ (0, 1) is the quantile level, D is the offline dataset, Qθ is the
learned Q-function, and Vψ is the approximated value function.

This formulation allows for efficient Q-value estimation without explicit maximization over all pos-
sible actions. Theoretically, as τ approaches 1, we have limτ→1 Vψ(s) = maxaQ

∗
θ(s, a) Kostrikov

et al. (2022), ensuring that our IQL-based approach can asymptotically recover the optimal value
function, even with large action spaces, given sufficient coverage in the offline dataset.

Our approach leverages regression to solve the large action space problem. By expectile regressing
the reward over utterances, we can find the approximation of the maximum Q-value and minimum
Q-value without needing to sample the action or iterate through all the combinations of tokens. We
focus on this regression aspect, not just the data support aspect. The approximation of minimum
through τ value is shown in Theorem 2 of Appendix A.1 .

Addressing Overestimation: Q-learning often suffers from overestimation bias, particularly severe
in language models with large action spaces and limited offline datasets. To mitigate this, we in-
corporate Conservative Q-learning (CQL) Kumar et al. (2020) into our framework. CQL penalizes
Q-values exceeding the target value, making the Q-function more conservative.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Illustration of our approach. Left two graphs: Orange line represents the overestimated
Q-value Qθ̂. The blue line indicates the data distribution Qθ. Minimizing the overestimation term
brings the orange line down to the mean of data distribution. Right two graphs: The green line shows
the lower expectile of the overestimated Q-value and the purple line shows the upper expectile of
the data Q-value. Minimizing those two can make the orange line approach the maximum Q-value
under the data distribution.

We add the following CQL term to the Bellman equation:

argmin
Q

α(Es∼D,a∼µ [Q(s, a)]− Es∼D,a∼π̂β
[Q(s, a)]) (4)

Where µ is the target policy distribution and π̂β is the data distribution. This term minimizes the
maximum Q-value under the target policy distribution while maximizing it under the data distribu-
tion, providing a tighter bound. Unlike token-level approaches, we leverage IQL to approximate
Q-values in the large action space, mitigating the need to sample a set number of actions for each
state and allowing more efficient Q-value estimation for longer sequences.

Combining IQL and CQL, we propose a novel formulation that directly approximates both the lower
bound Q-function and the upper bound of the data distribution using IQL:

LCQL(ψ) = α(Es∼D,a∼µ
[
Lτ12

(
Qθ̂(s, a)− Vψ(s)

)]
−Es∼D,a∼π̂β

[Lτ22 (Qθ(s, a)− Vψ(s))]) (5)

Here, τ1 is chosen to be close to 0 and τ2 close to 1, allowing for a more optimistic Q-value esti-
mation within the CQL framework. This approach maintains CQL’s conservatism while allowing
for adaptable control through the adjustment of τ1 and τ2. The lower bound of the target policy
pushes the Q-value down less aggressively, while the upper bound of the data distribution elevates
it more, resulting in a more adjustable conservatism under the CQL term. For more details on the
explanations of the CQL term, see Appendix 4.

Figure 3 illustrates the intuition. In the original CQL term, an overestimated Q-value would be
pushed down to the data distribution. In our formulation, the lower bound of the Q-value is pushed
down less aggressively, and the upper bound is elevated more, resulting in a more optimistic Q-value
that approaches the maximum Q-value under the data distribution more closely. The advantage of
this approach is that τ value can be adjusted to balance conservatism with optimism.

Overall Objective: The VerifierQ algorithm minimizes the Bellman error augmented with the CQL
term. We adapt the approach of Snell et al. (2023); Kostrikov et al. (2022), using Implicit Q-learning
to approximate the Q-value for each utterance level reasoning step with a separate value function
while modifying the objective to incorporate the CQL term.

Like previous works, we use a separate value function Vψ(s
′) to approximate the Q-value

maxa′ Q
∗(s′, a′). With our adaptation to the Bellman Update (Equation 1), the TD error is:

LQ(θ) = E

[(
1

2
(r(s, a) + γVψ(s

′))−Qθ(s, a)
)2

]
(6)

We augment this with our CQL term to achieve a more conservative yet optimistic estimation with
Equation 5:

LCQL(ψ) = α(Es∼D,a∼µ
[
Lτ12

(
Qθ̂(s, a)− Vψ(s)

)]
− Es∼D,a∼π̂β

[Lτ22 (Qθ(s, a)− Vψ(s))])

The comprehensive objective function of VerifierQ is thus the sum of the Bellman error and the CQL
term: L(θ, ψ) = LQ(θ) + LCQL(ψ) (7)

To enhance training stability, we employ a Polyak-averaged version of Qθ̂ (Polyak & Juditsky,
1992). The hyperparameter α is set to 1 in our experiments, balancing the influence of the CQL
term. The overall objective is shown in the Figure 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This formulation allows VerifierQ to benefit from the conservative nature of CQL while maintaining
an optimistic outlook, crucial for effective Q-value estimation in large action spaces characteristic
of language models. The expectile regression provides flexibility to adjust τ1, τ2 values as preferred.
By integrating these components, VerifierQ addresses the challenges of overestimation and large
action spaces in utterance-level MDPs, providing a robust framework for multi-step reasoning tasks.

6 EXPERIMENTS AND RESULTS

We evaluate VerifierQ on mathematical reasoning tasks from GSM8K and MATH datasets (Cobbe
et al., 2021; Hendrycks et al., 2021). We compare VerifierQ with the state-of-the-art Process Reward
Model (PRM) Lightman et al. (2024), using the same dataset as Wang et al. (2024b); Snell et al.
(2024) for a fair comparison. We do not include Object Reward Model (ORM) since Wang et al.
(2024b); Snell et al. (2024); Lightman et al. (2024) already validated PRM’s effectiveness over
ORM. Due to computational constraints, we use the TinyLlama-1.1B model (Zhang et al., 2024b).

6.1 EXPERIMENTAL SETUP

Dataset: We generate a test time compute set using a generator trained on MetaMath (Yu et al.,
2024). The generator is finetuned on MetaMath for 2 epochs with a learning rate of 2e-5, followed
by LoRA finetuning for 1 epoch to adjust the format of answer style (Hu et al., 2022). For each
question in the full GSM8K test set and a 500-question subset of MATH (following Lightman et al.
(2024)), we generate 256 answers. The verifier is trained on the MathShepherd dataset Wang et al.
(2024b), which uses MCTS-generated data with binary rewards (1 for correct, 0 for incorrect).

Model Architecture: Our model consists of a Q-network and a separate value network to prevent
single sample overestimation. We employ soft updates to stabilize training with rate 0.01.

Training: We initialize our model with MetaMath pretraining, then train with PRM on MathShep-
herd for 1 epoch, followed by VerifierQ training. Here are key hyperparameters. Learning rate:
2e-5 for all training phases. Batch size: 64 (crucial for Q-learning stability). Q-learning parameters:
γ = 0.99, α = 1 for the CQL term. For PRM, we continued training from 1 epoch to 2 epochs.
Majority Voting uses the raw output from the generator.

Evaluation Metrics: We evaluate the verifier against PRM and Majority Voting using accuracy.
Following Snell et al. (2024); Lightman et al. (2024), we use minimum evaluation metrics.

6.2 RESULTS

We evaluate VerifierQ against PRM (for epoch and two epochs) and Majority Voting on both
GSM8K and MATH datasets using minimum evaluation. For VerifierQ, we use τ1 = 0.3 for GSM8K
and τ1 = 0.5 for MATH.

Figure 4: Comparison of different methods on GSM8K (left) and MATH (right) using minimum
evaluation. Rolling average over 20 steps. For VerifierQ we use τ1 = 0.3 (left) and τ1 = 0.5 (right).

As shown in Figure 4, VerifierQ outperforms PRM (with 1 epoch), PRM 2nd Epoch and Majority
Voting on both datasets. On GSM8K, VerifierQ’s performance improves with an increase in the num-
ber of solutions per problem, aligning with trends observed in previous studies (Snell et al., 2024;
Lightman et al., 2024; Wang et al., 2024b). While the absolute improvement margins may appear
modest, a Wilcoxon signed-rank test demonstrates that VerifierQ’s improvements over PRM are sta-
tistically significant (GSM8K:W = 1500.0, p < 1.6410−35 MATH:W = 156.5, p < 4.7010−43).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This extremely low p-value indicates that the performance differences are highly unlikely to occur
by chance, suggesting that VerifierQ provides consistent, systematic improvements over baseline
methods. This aligns with our theoretical expectations of improvements in verifier accuracy. We
also want to point out that VerifierQ’s advantage emerges as it better leverages multiple solutions
for value estimation. PRM’s performance gap compared to majority vote increases with the num-
ber of solutions Lightman et al. (2024); Wang et al. (2024b); Snell et al. (2024), and in our study
VerifierQ’s performance gap over PRM increases with the number of solutions.

We note that for MATH, all methods underperform compared to Majority Vote, possibly due to
the small model size (1.1B) compared to other works. Most of the works use 7B size model as
the minimum baseline, sometimes 70B. Due to practical reasons, we do not have the resources,
therefor we only can work on a 1B model. Larger models are more sample efficient than smaller
models Kaplan et al. (2020), and in our tasks, it means larger LLM shall learn better and have better
performance given the same dataset size. They are also more capable of dealing with more complex
problems that occur in MATH not in GSM8K.

In Figure 4, VerifierQ achieves the highest accuracy both on GSM8K and on MATH with different τ1
values compared to PRM (see Figure 5a in Section 7), and it also outperforms other variations (see
Figure 5b in Section 7). We observe that PRM’s performance decreases after the first epoch, likely
due to overfitting. Therefore we will use first epoch of PRM hereafter for evaluation and ablation.
Different τ1 values have different performance on two datasets (see Figure 5a in Section 7).

These results demonstrate the potential of applying classic reinforcement learning to verifier models
for multi-step reasoning language tasks. They also highlight VerifierQ’s effectiveness, and identify
areas for future investigation, such as the impact of model size and the optimization of the values of
τ for different datasets.

7 ABLATION STUDY

Our ablation study addresses the challenges of large action spaces, computational efficiency, and
the impact of key components in VerifierQ. To be more specific, we investigate the efficiency of
IQL compared to sampling approaches, the effect of the CQL term, the impact of different expectile
choices, and the stability of Q-learning.

(a) Impact of different τ1 values on VerifierQ performance. Left: GSM8K dataset. Right: MATH dataset.

(b) Comparison of different components. PRM is blue. VerifierQ (Base) is green. VerifierQ (+IQL) is purple.
VerifierQ (Full) is yellow. Left: GSM8K dataset. Right: MATH dataset.

Figure 5: Comparison of VerifierQ performance with different components

7.1 COMPUTATIONAL EFFICIENCY

VerifierQ’s sentence-level approach offers significant computational advantages over existing ut-
terance BERT-type and online approaches, which use [CLS] token to estimate the Q value of one

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

utterance Zhou et al. (2024). Traditional approaches require separate forward passes for each step’s
Q-value estimation, resulting in O(n3m2) complexity for n steps (around 6) with m tokens (around
20) each. In contrast, VerifierQ’s parallel estimation through strategically placed tag tokens requires
only a single forward pass, reducing complexity to O(n2m2). This architectural improvement en-
ables the simultaneous computation of multiple Q-values, providing substantial efficiency gains,
particularly for longer sequences. Detailed theoretical analysis and proofs comparing BERT-style,
sequential decoder style, and VerifierQ are provided in Appendix C.1.

7.2 IMPACT OF ADJUSTABLE CQL TERM

We investigate the impact of CQL parameters τ1, which control the balance between conservatism
and optimism in Q-value estimation. Our analysis focuses primarily on τ1 while fixing τ2 at 0.9,
a choice guided by theoretical considerations of the CQL objective. The τ2 parameter in the CQL
term controls how much we push down overestimated Q-values toward the data distribution. Since
our goal is to find arg max Q, we want the upper bound of the data distribution.

Figure 5a illustrates the impact of different τ1 values on VerifierQ’s performance. We examine
different levels of optimism by varying τ1 (0.1, 0.3, 0.5, 0.7, 0.9) while fixing τ2 at 0.9 to tighten the
lower bound of VerifierQ to the maximum of the data distribution. As shown in Figure 5a, τ1 = 0.3
generally yields better results, suggesting it approximates the maximum Q-value more effectively
than other τ1 values. MATH dataset shows higher sensitivity to τ1 values, with τ1 = 0.5 performing
the best. The difference in optimal τ1 values between datasets suggests that dataset-specific tuning
may be necessary. It also suggests that more complex tasks (MATH) benefit from more conservative
estimation.

7.3 COMPONENT-WISE ANALYSIS

To understand the contribution of each component, we systematically remove key elements from
the full VerifierQ architecture. We conduct a comprehensive comparison of VerifierQ against other
Q-learning variants to empirically validate the effectiveness of our approach, particularly the impact
of the CQL term. All the rest parameters for the experiments are the same. Figure 5b shows Veri-
fierQ (Full) outperforming both VerifierQ (Base) and VerifierQ (+IQL) on the GSM8K dataset. The
following are different variations of VerifierQ:

• VerifierQ (Base): Q learning only. It is a SARSA-style standard Q-learning without CQL
and IQL components.

• VerifierQ (+IQL): Q learning with IQL component to approximate max Q without CQL.
It is an Implicit Q-learning (IQL) with τ = 0.9 similar to (Snell et al., 2023) for handling
the large action space problem, but without CQL since computation becomes intractable in
the utterance level large action space.

• VerifierQ (Full): Full VeriferQ with CQL and IQL components for tackling both the large
action space and the overestimation challenges.

Base Performance: Standard Q-learning performs similarly to PRM on GSM8K and much worse
on MATH, suggesting that naive application of Q-learning provides limited benefits. This aligns with
our hypothesis that simply applying Q-learning without addressing action space and overestimation
challenges is insufficient.

Impact of IQL: VerifierQ (+ IQL) shows notable improvements over the basic version. It is sig-
nificantly higher in GSM8K but dropped to a similar level to PRM in MATH. It demonstrates that
effectively handling large action spaces through IQL is crucial for language tasks, but the potential
overestimation problem might make it less robust across datasets.

Full VerifierQ: VerifierQ (Full) shows notable and consistent improvements on both GSM8K and
MATH datasets. VerifierQ outperforms other methods after 25 in GSM8K and all the time in MATH.
VerifierQ’s superior performance demonstrates the CQL component’s significant contribution and
its effectiveness in reducing overestimation. The adjustable τ terms in VerifierQ allow finer control
over the conservatism-optimism balance in Q-value estimation, enabling more optimistic maxQ
selection when appropriate for different datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

For the qualitative study, we added a case study and qualitative analysis in Appendix C.2. Overall
we can see the progression from the basic Q-learning to the full system demonstrates how address-
ing each challenge (large action spaces and overestimation) leads to cumulative improvements in
performance.

8 DISCUSSION, ETHICS, AND LIMITATIONS

VerifierQ demonstrates the potential of integrating classic reinforcement learning techniques with
language models to enhance multi-step reasoning capabilities. The actor-critic model in language
models could lead to more sophisticated planning and decision-making capabilities. Existing suc-
cess in AI explored the actor-critic model, and actor and critic model in language models could
enhance planning and decision-making capabilities, like AlphaGo.

The development and deployment of VerifierQ also raise important ethical considerations. The
alignment of the reward function with human values is crucial. As the model’s decision-making
process becomes more complex, ensuring transparency and maintaining a human understanding
what values represent becomes increasingly challenging but vastly important.

While VerifierQ demonstrates promising results, several limitations should be acknowledged: First,
due to computational constraints, our experiments were limited to the TinyLlama model. Testing
on larger models could potentially yield different but more likely more robust results. Second,
the model’s performance is highly sensitive to hyperparameter choices. We see that different τ1
choices have different performance changes in GSM8K and MATH. Resource constraints limited
our ability to conduct extensive hyperparameter tuning. Finally, the fully implemented VerifierQ
model is more memory-intensive and computationally expensive than the PRM method. It requires
Qθ, Vψ to be fine-tuned while Qθ̂ for a soft update. Compared to the SFT approach, VerfierQ needs
at least 2.25 times of more VRAM for full fine-tuning due to the need to update weights, gradients,
and optimizer states. Future research should focus on reducing these requirements to enhance the
model’s efficiency and scalability.

9 CONCLUSION

This work introduces VerifierQ, a novel approach integrating classical reinforcement learning tech-
niques with language models to enhance multi-step reasoning capabilities. Our key contributions
include: (1). A flexible architecture for applying Q-learning to utterance-level MDPs in language
models. It can estimate multiple utterances level Q values with large action spaces, and easy to
extend Q learning, IQL, and CQL. (2). An innovative formulation of Conservative Q-learning tai-
lored for large action spaces in language tasks. It helps to reduce the overestimation in offline Q
learning. (3). Empirical evidence demonstrating VerifierQ’s effectiveness in mathematical reason-
ing tasks. These results highlight the potential for extending this approach to larger language models
and improving test-time compute.

VerifierQ validates the integration of RL into verifier models and demonstrates its potential to en-
hance test-time compute results. Moreover, it bridges the gap between classic critic models in RL
and verifier models in language tasks. It serves as an addition for applying RL in verifier LLMs and
paves the way for actor-critic models to achieve more sophisticated artificial intelligence. As we
continue to refine and expand upon this approach, VerifierQ opens up new avenues for developing
more capable and robust AI systems across a wide range of complex reasoning tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the following details:

Implementation Details: The complete implementation details are available in Appendix B.1. The
code and data will be made publicly available upon acceptance of this paper.

Hardware Requirements:

• VerifierQ experiments: Conducted on a single NVIDIA A100 GPU with 40GB memory.
• Other models (Q Learning and PRM): Can be trained on an NVIDIA RTX 4090 GPU.

Training Time:

• VerifierQ: Approximately 10 hours for 1 epoch.
• PRM: Approximately 4 hours for 1 epoch.

Datasets: We use the following publicly available datasets:

• MetaMath: https://huggingface.co/datasets/meta-math/MetaMathQA
• GSM8K: https://huggingface.co/datasets/openai/gsm8k
• MathShepherd: https://huggingface.co/datasets/peiyi9979/
Math-Shepherd

• MATH (test subset): We use the same dataset as Lightman et al. (2024), available at
https://github.com/openai/prm800k

Model: All experiments were conducted using the TinyLlama-1.1B model.

Hyperparameters: Key hyperparameters include:

• Learning rate: 2e-5 (constant for all training phases)
• Batch size: 64
• Discount factor (γ): 0.99
• CQL coefficient (α): 1
• Soft update coefficient (αsoft): 0.01
• IQL coefficients:

– For GSM8K: τ1 = 0.3, τ2 = 0.9

– For MATH: τ1 = 0.5, τ2 = 0.9

Training Process: The model is initialized with MetaMath pretraining, followed by 1 epoch of
PRM training before VerifierQ training begins.

For any additional details or clarifications needed to reproduce our results, please refer to the code
and documentation that will be made available upon acceptance.

11

https://huggingface.co/datasets/meta-math/MetaMathQA
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/peiyi9979/Math-Shepherd
https://huggingface.co/datasets/peiyi9979/Math-Shepherd
https://github.com/openai/prm800k

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: Process supervision
without process. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=VaXnxQ3UKo.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In Neural Information Processing
Systems, 1999. URL https://api.semanticscholar.org/CorpusID:207779694.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for of-
fline reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1179–1191. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=AP1MKT37rJ.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, September 2024. Accessed: 2024-09-13.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529:484–489, 01 2016. doi: 10.1038/nature16961.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

12

https://openreview.net/forum?id=VaXnxQ3UKo
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2001.08361
https://api.semanticscholar.org/CorpusID:207779694
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d2b2061826a5df3221116a5085a6052-Paper.pdf
https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.1137/0330046
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Charlie Victor Snell, Ilya Kostrikov, Yi Su, Sherry Yang, and Sergey Levine. Offline RL for natural
language generation with implicit language q learning. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=aBH_
DydEvoH.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback, 2022.

Siddharth Verma, Justin Fu, Mengjiao Yang, and Sergey Levine. Chai: A chatbot ai for task-
oriented dialogue with offline reinforcement learning, 2022. URL https://arxiv.org/
abs/2204.08426.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An. Q*:
Improving multi-step reasoning for llms with deliberative planning, 2024a. URL https://
arxiv.org/abs/2406.14283.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/
v1/2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8N0hgNDRt.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing gpt-4 level
mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b, 2024a. URL
https://arxiv.org/abs/2406.07394.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024b. URL https://arxiv.org/abs/2401.02385.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. ArCHer: Training lan-
guage model agents via hierarchical multi-turn RL. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=b6rA0kAHT1.

13

https://openreview.net/forum?id=aBH_DydEvoH
https://openreview.net/forum?id=aBH_DydEvoH
https://arxiv.org/abs/2204.08426
https://arxiv.org/abs/2204.08426
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283
https://aclanthology.org/2024.acl-long.510
https://openreview.net/forum?id=N8N0hgNDRt
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2401.02385
https://openreview.net/forum?id=b6rA0kAHT1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ARCHITECTURE DETAILS

To apply Offline Q-learning to LLMs at the utterance level, we propose a flexible architecture that
integrates with language modeling tasks. Following Wang et al. (2024b) and Lightman et al. (2024),
we utilize two tokens + and − to represent correct and incorrect states, with a tag token indicating
estimation. The probability of the correct token can be interpreted as Q-values ranging from 0 to
1, aligning with the reward structure in the MCTS-generated dataset from Wang et al. (2024b). We
compute the Q-value for each step as:

Q(s, a) = p(+) = softmax(logit+) = σ(logit+ − logit−) (8)

It is flexible to choose either softmax or sigmoid function to compute the Q-value. We use the
sigmoid function in our experiments for more effficiency. The Q-value is computed for each step in
the solution sequence, estimating a numerical value in the range of (0, 1).

This formulation offers several advantages:

1. It allows flexible integration for Q-value estimation of utterances of arbitrary length since
we can insert the step tag anywhere in the sequence.

2. It enables parallel estimation of multiple Q-values for multiple steps in a single forward
pass, significantly reducing computation time.

3. This approach seamlessly integrates with existing language modeling tasks.

A.2 CONVERGENCE OF MODIFIED BELLMAN UPDATE

We first prove that our modified Bellman update converges to a fixed point.
Theorem 1 (Convergence of Modified Bellman Update). Let Q∗ be the optimal Q-function. The
modified Bellman update

Q∗(s, a) =
1

2
(r(s, a) + γmax

a′
Q∗(s′, a′)) (9)

converges to a unique fixed point.

Proof. Let T be the operator defined by our modified Bellman equation:

T Q(s, a) =
1

2
(r(s, a) + γmax

a′
Q(s′, a′)) (10)

We need to show that T is a contraction mapping in the sup-norm ∥ · ∥∞. For any two Q-functions
Q1 and Q2:

∥T Q1 − T Q2∥∞ = sup
s,a
|T Q1(s, a)− T Q2(s, a)| (11)

= sup
s,a

∣∣∣∣12γ (max
a′

Q1(s
′, a′)−max

a′
Q2(s

′, a′)
)∣∣∣∣ (12)

≤ 1

2
γ sup
s,a

∣∣∣max
a′

Q1(s
′, a′)−max

a′
Q2(s

′, a′)
∣∣∣ (13)

≤ 1

2
γ sup
s′,a′
|Q1(s

′, a′)−Q2(s
′, a′)| (14)

=
1

2
γ∥Q1 −Q2∥∞ (15)

Since 0 < γ < 1, it follows that 0 < 1
2γ < 1. Therefore, T is a contraction mapping with

contraction factor L = 1
2γ. By the Banach fixed-point theorem, T has a unique fixed point, and the

Q-learning algorithm will converge to this fixed point.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 OPTIMALITY OF IQL IN LARGE ACTION SPACES

Next, we prove that IQL can effectively approximate the maximum and minimum Q-value in large
action spaces.
Theorem 2 (IQL Optimality). We can directly get the following result from the proof in (Kostrikov
et al., 2022). As the quantile level τ approaches 1, the IQL value function Vψ converges to the
maximum Q-value:

lim
τ→1

Vψ(s) = max
a∈A,πβ(a|s)>0

Q∗(s, a) (16)

Additionally, as τ → 0, the IQL value function Vψ converges to the minimum Q-value:

lim
τ→0

Vτ (s) = min
a∈A

Q∗(s, a) (17)

Proof Sketch. Following Lemma 1 of Kostrikov et al. (2022), we can show a modified Lemma. Let
X be a real-valued random variable with bounded support and infimum x∗. Since X is bounded
below and mτ approaches the lower bound as τ → 0, we have:

lim
τ→0

mτ = inf{x : FX(x) > 0} = x∗ (18)

For all τ1 and τ2 such that 0 < τ1 < τ2 < 1, we can get mτ1 ≤ mτ2 . Therefore, as τ → 0, the limit
of mτ converges to the infimum of the random variable X.

In addition, using Lemma 2 of Kostrikov et al. (2022), we can show that the IQL value function Vψ
converges to the minimum Q-value as τ → 0:

Lemma 3. For all s, τ1 and τ2 such that 0 < τ1 < τ2 < 1, we have Vτ1(s) ≤ Vτ2(s).

Since Q∗(s, a) is bounded below, the minimum Q-value exists and is finite. Therefore, as τ → 0,
the IQL value function Vψ converges to the minimum Q-value:

lim
τ→0

Vτ (s) = inf
a∈supp(πβ)

Q∗(s, a) (19)

So we have:
lim
τ→0

Vτ (s) = min
a∈A,πβ(a|s)>0

Q∗(s, a) (20)

A.4 CONSERVATIVE YET OPTIMISTIC Q-VALUES WITH MODIFIED CQL

Finally, we present a proposition about our modified CQL approach and its potential to lead to
conservative yet optimistic Q-values.
Proposition 4 (Modified CQL Bounds). The modified CQL objective with expectile levels τ1 (close
to 0) and τ2 (close to 1) aims to provide both lower and upper bounds on the true Q-function
Q∗(s, a):

max
a∼π̂β

Qθ(s, a) ≲ Q∗(s, a) ≲ min
a∼µ

Qθ̂(s, a) (21)

where ≲ denotes ”approximately less than or equal to”.
Remark 5 (Supporting Arguments and Intuitions). The original CQL objective is:

argmin
Q

α(Es∼D,a∼µ [Q(s, a)]− Es∼D,a∼π̂β
[Q(s, a)]) (22)

Where µ is the target policy distribution and π̂β is the data distribution. Intuitively, this term finds the
maximum Q-value under the target policy distribution Es∼D,a∼µ [Q(s, a)] and minimizes it since it
is usually overestimated. To get a tighter bound, it pushes the Q-value up under the data distribution
Es∼D,a∼π̂β

[Q(s, a)].

For large action spaces, CQL typically uses importance sampling to estimate Es∼D,a∼µ[Q(s, a)]
with log

∑
a exp(Q(s, a)) at every state (Kumar et al., 2020). However, unlike token-level ap-

proaches, we leverage IQL to approximate Q-values in the large action space. This mitigates the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

requirement to sample a set number of actions for each state and allows for more efficient Q-value
estimation for longer sequences.

We propose a novel formulation that directly approximates both the lower bound Q-function and
the upper bound of the data distribution using IQL with different τ values for each term in CQL
objective. The goal remains the same: finding the overestimated Q-value under the target policy to
minimize it and tighten the bound with the data distribution. However we want to give control on
the level of the tightening of the bound.

Our modified CQL objective is:

LCQL(ψ) = α(Es∼D,a∼µ[Lτ12 (Qθ̂(s, a)− Vψ(s))]
− Es∼D,a∼π̂β

[Lτ22 (Qθ(s, a)− Vψ(s))])
(23)

The first term, with τ1 close to 0, approximates the lower bound of Qθ̂. It acts as an upper bound on
the target policy which is typically overestimated. This suggests:

Vψ(s) ≲ min
a∼µ

Qθ̂(s, a) (24)

The second term, with τ2 close to 1, approximates an upper bound on Qθ. It acts as a lower bound
on the data distribution, indicating:

Vψ(s) ≳ max
a∼π̂β

Qθ(s, a) (25)

This approach allows for a more optimistic Q-value estimation within the CQL framework. The
lower bound of the target policy µ pushes the Q-value down less aggressively, while the upper
bound of the data distribution π̂β elevates the Q-value more, resulting in a more optimistic Q-value
under the CQL term. This approach maintains the benefits of CQL’s conservatism while allowing
for adaptable optimism through the adjustment of τ1 and τ2.

The modified CQL objective aims to minimize the difference between the lower bound of the over-
estimated Q-values (Qθ̂) and the upper bound of the true Q-values (Qθ). Minimizing this difference
may lead to a more accurate estimation of Q∗(s, a). We can express this as:

LCQL(ψ) ≈ min
a∼µ

Qθ̂(s, a)− max
a∼π̂β

Qθ(s, a) (26)

As this difference approaches zero, it suggests that the the lower bound of the overestimation of Q-
values is being reduced to the extent supported by the data, and we should have maxa∼π̂β

Qθ(s, a) ≲
mina∼µQθ̂(s, a). Adjusting τ1 we could have Qθ̂(s, a) approximately close to the optimal maxi-
mum.

This formulation allows us to balance conservatism with optimism in Q-value estimation. The lower
bound of the Q-value is pushed down less aggressively, while the upper bound is elevated more,
resulting in Q-values that approach the maximum Q-value under the data distribution more closely.
We can adjust τ1 and τ2 to fine-tune this balance, allowing for more adaptable Q-values under the
CQL term.

It is important to note that this difference can potentially become negative. A negative value would
imply that the estimated lower bound of Qθ̂ is smaller than the estimated upper bound of Qθ for
some state-action pairs. While this might seem counterintuitive given the general overestimation
tendency of Qθ̂, it can occur due to the approximations introduced by the Lτ2 loss functions or other
factors in the learning process. This suggests that the value function might be correctly valuing the
in-distribution actions more highly, which is desirable, although it might introduce some pessimism
in the value estimates.

This intuition provides insight into why our modified CQL approach might lead to a bit more op-
timistic Q-values. However, a rigorous mathematical proof would require further development and
analysis.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B APPENDIX

B.1 ALGORITHM AND IMPLEMENTATION DETAILS

Algorithm 1 VerifierQ

Input: DatasetD, Q-networkQθ, target Polyak-averaged Q-networkQθ̂ withαsoft, value network
Vψ , IQL coefficients τ1 and τ2, CQL coefficient α
Initialize Q-network Qθ, target Q-network Qθ̂, value network Vψ
Initialize target Q-network parameters θ̂ ← θ
for each training step do

Sample batch of state-action pairs S = (s1, s2, s3) ∼ D and rewards R = (r1, r2, r3) ∼ D
TD Target.
Compute target Q-values in parallel: y = 1

2 (r + γVψ(S
′)) ▷ Equation 2

TD Loss: LQ(θ) = 1
2 (Qθ(S)− y)

2 ▷ Equation 6
CQL Term.
Compute CQL µ with IQL: Lµ = Lτ12 (Qθ̂(S)− Vψ(S)) ▷ Equation 3
Compute CQL π̂β with IQL: Lπ̂ = Lτ22 (Qθ(S)− Vψ(S)) ▷ Equation 3
CQL Loss: LCQL(ψ) = α(Lµ − Lπ̂) ▷ Equation 5
Update networks
Update Q-network: θ ← θ −∇θLQ(θ)
Update value network: ψ ← ψ −∇ψLCQL(ψ)
Update target Q-network: θ̂ ← (1− αsoft)θ̂ + αsoftθ

end for

As described in Section 2, the state at step i is the concatenation of the problem statement and all
tokens generated up to that point: si = [p, a1, a2, . . . , ai]. As illustrated in Figure 1, s1 consists of
p and a1, s2 consists of p, a1, and a2, and so on. The reward ri is 1 if the token ai is correct and
0 otherwise. This approach leverages the decoder architecture’s ability to generate the next token
based on the previous tokens.

For the hyperparameters, we use the following settings:

• Discount factor: γ = 0.99

• CQL coefficient: α = 1

• Soft update coefficient: αsoft = 0.01

• Batch size: 64
• Optimizer: AdamW with a constant learning rate of 2e− 5 for all training phases
• IQL coefficients:

– For GSM8K: τ1 = 0.3, τ2 = 0.9

– For MATH: τ1 = 0.5, τ2 = 0.9

We initialize the model with MetaMath pretraining and train it with PRM for 1 epoch before starting
VerifierQ training. All experiments are conducted using the TinyLlama-1.1B model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C APPENDIX

C.1 COMPUTATIONAL EFFICIENCY ANALYSIS

VerifierQ’s architecture offers significant computational advantages over both BERT-style encoder
and traditional sequential decoder approaches.

For a solution sequence with n steps, where each step contains m tokens on average, let C(m)
denote the computational cost of a forward pass through m tokens. The self attention in transformer
in general has Big-O of O(L2d+ Ld2) where as L is the sequence Length and d is depth. Since we
have depth to be the same and varies of sequence length, we can view it in our case as O(L2). The
traditional sequential approach computes:

Qseq(si, ai) = fθ(concat(si, ai)) (27)

where fθ represents the model’s forward pass.

For example, consider a three-step solution:

Problem: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?

Step 1: It takes 2/2 =<< 2/2 = 1 >> 1 bolt of white fiber < tag > +

Step 2: So the total amount of fabric is 2 + 1 =<< 2 + 1 = 3 >> 3 bolts of fabric < tag > +

Step 3: The Answer is: 3 < tag > +

BERT-style Encoder Approach: For encoder architectures like BERT, Q-values are typically es-
timated through a [CLS] token. As shown in Zhou et al. (2024), they are using RoBERTa based
model to estimate the utterance level with ”[CLS]” token:

Qencoder(si, ai) = fθ([CLS] + concat(si, ai)) (28)

where the [CLS] token representation is used for value estimation.

As an example would estimate like this:

• Pass 1: Q(s1, a1) = fθ([CLS] + [p, a1])

• Pass 2: Q(s2, a2) = fθ([CLS] + [p, a1, a2])

• Pass 3: Q(s3, a3) = fθ([CLS] + [p, a1, a2, a3])

This requires separate encoding for each step since we can have only one [CLS] each time. Since we
have n steps, each step contains m tokens on average, and C(m) = O(L2), we can have following:

Costencoder =

n∑
i=1

C(im) =

n∑
i=1

(im)2 = m2
n∑
i=1

i2 = m2n(n+ 1)(2n+ 1)

6
= O(m2n3) (29)

Sequential Decoder Approach: Traditional decoder architectures estimate Q-values at sequence
endpoints by predicting the last embedding:

Qseq(si, ai) = fθ(concat(si, ai)) (30)

An example would be like this:

Sequential Decoder:

• Pass 1: Q(s1, a1) = fθ([p, a1])

• Pass 2: Q(s2, a2) = fθ([p, a1, a2])

• Pass 3: Q(s3, a3) = fθ([p, a1, a2, a3])

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Where as the Q value estimation is from the linear head of the last token embeddings.

Similarly requiring n separate computations:

Costseq =

n∑
i=1

C(im) =

n∑
i=1

(im)2 = O(m2n3) (31)

VerifierQ’s Parallel Approach: Following Wang et al. (2024b), VerifierQ uses decoder architecture
with strategically placed tag tokens enabling parallel estimation.

[Qparallel(s1, a1), ..., Qparallel(sn, an)] = fθ(concat(s1, tag, a1, ..., sn, tag, an)) (32)

As an example it would be like following: VerifierQ:

[Q(s1, a1), Q(s2, a2), Q(s3, a3)] = fθ([p, a1, tag, a2, tag, a3, tag]) (33)

It would require only a single forward pass:

Costparallel = C(nm) = O(n2m2) (34)

This parallelization provides several advantages:

• Reduced complexity: From O(n3m2) to O(n2m2)

• Parallel computation: Simultaneous Q-value estimation for all steps
• Decoder architecture benefits: Natural alignment with autoregressive generation

To quantify these benefits, consider our preliminary experiments using the MathShepherd dataset
(Wang et al., 2024b), where solutions average 6.2 steps per problem. The sequential approach
requires:

• Two forward passes per step (current Q and next Q) for Q-learning
• Total passes per problem = 6.2 steps× 2 passes = 12.4

In contrast, VerifierQ computes all Q-values in a single forward pass. This theoretical reduction
from approximately 12 passes to 1 aligns with our preliminary observations of approximately 10×
reduction in training time. This efficiency gain would become even more pronounced for longer
solution sequences where n is large, demonstrating the scalability of our approach.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C.2 QUALITATIVE OVERESTIMATION ANALYSIS

We conduct a qualitative study on overestimation between PRM and VerifierQ by replacing impor-
tant tokens in the solution sequence with incorrect ones. Figure 6 reveals that PRM generally assigns
higher Q-values to incorrect tokens, while VerifierQ assigns lower values.

This analysis compares three configurations: 1. PRM (baseline) 2. VerifierQ without CQL (ablation)
3.VerifierQ (full model). We want to see how well the correct value is differentiated from other
incorrect values, so we use ∆ = Correct −mean(Incorrect) to measure the difference between
the correct answer and the mean of the incorrect answers. Then we want to see how much this
value compared to mean to see whether it is a large differentiation or not, and we use Percentage as
∆/mean

Our analysis reveals several key patterns:

• PRM: Assigns relatively high Q-values (mean: 0.24) with average discrimination between
correct and incorrect tokens (∆ = 0.03). Percentage is 11.9%.

• VerifierQ without CQL: Shows higher overall Q-values (mean: 0.39) but slightly better
discrimination (∆ = 0.05). Percentage 12.6%.

• VerifierQ with CQL: Demonstrates: 1. Lower overall Q-values (mean: 0.20) 2. Stronger
discrimination between correct and incorrect tokens (∆ = 0.06) 3. More aggressive penal-
ization of incorrect tokens (Percentage: 30.6%)

The CQL term’s impact is twofold:

1. General Conservative Estimation: Reduces overall Q-values to mitigate general overes-
timation. We can see the without CQL term the Q learning has overestimated significantly,
and CQL term brought down overestimation. However adding CQL the correct value is
about the same as PRM but incorrect ones are lower. It penalizes the incorrect tokens
more.

2. Enhanced Discrimination: Increases the gap between correct and incorrect token esti-
mates. The Percentage gap of correct tokens has almost doubled compared to the PRM and
VerifierQ without CQL.

This analysis suggests that while CQL does lead to generally lower Q-values, its primary bene-
fit is the enhanced ability to distinguish between correct and incorrect solutions. The increased
gap between correct and incorrect Q-values (Percentage = 30.6% compared to 11.9% and 12.6%)
demonstrates that CQL improves the model’s discriminative capability while maintaining reasonable
estimates for valid solutions.

Janet\u2019s ducks lay 16 eggs per day. She eats 3 for breakfast every morning and bakes muffins for
her friends every day with 4. She sells the remainder at the farmers' market daily for $2 per fresh duck
egg. How much in dollars does she make every day at the farmers' market?

Step 1: Janet's ducks lay {number} eggs per day.

Step 2: She eats 3 for breakfast every morning, so she has 16 - 3 = 13 eggs left.

{numbe r} range from 0 to
19. The correct one is 16

Estimate the value

Problem and Steps

Figure 6: Overestimation case study: PRM (left) vs VerifierQ without CQL (middle) vs VerifierQ
(right). Orange indicates correct value, blue indicates incorrect value.

20

	Introduction
	Background
	Related Work
	Problem Statement
	Offline Q-learning vs Imitation Learning:
	Challenges in applying Offline Q-learning to LLMs:

	Verifier with Q-Learning (VerifierQ)
	Architecture of VerifierQ
	Algorithm of VerifierQ

	Experiments and Results
	Experimental Setup
	Results

	Ablation Study
	Computational Efficiency
	Impact of Adjustable CQL Term
	Component-wise Analysis

	Discussion, Ethics, and Limitations
	Conclusion
	Appendix
	Architecture Details
	Convergence of Modified Bellman Update
	Optimality of IQL in Large Action Spaces
	Conservative Yet Optimistic Q-values with Modified CQL

	Appendix
	Algorithm and Implementation Details

	Appendix
	Computational Efficiency Analysis
	Qualitative Overestimation Analysis

