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ABSTRACT

The digital industry demands high-quality, diverse modular 3D assets, especially
for user-generated content (UGC). In this work, we introduce AssetFormer, an
autoregressive Transformer-based model designed to generate modular 3D assets
from textual descriptions. Our pilot study leverages real-world modular assets
collected from online platforms. AssetFormer tackles the challenge of creating
assets composed of primitives that adhere to constrained design parameters for
various applications. By innovatively adapting module sequencing and decoding
techniques inspired by language models, our approach enhances asset generation
quality through autoregressive modeling. Initial results indicate the effectiveness of
AssetFormer in streamlining asset creation for professional development and UGC
scenarios. This work presents a flexible framework extendable to various types of
modular 3D assets, contributing to the broader field of 3D content generation. We
will make this work open-sourced.

1 INTRODUCTION

Modular Asset

(     , 𝑟0, 𝒙0 )

…

(     , 𝑟𝑘 , 𝒙𝑘 )
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Compose Render

3D Deployment

Figure 1: Illustration of modular 3D assets. Modu-
lar assets can be decomposed into primitives, each
possessing its own attributes, e.g., the orientation r
and the position x. The modular asset can be ren-
dered with configurations to enable 3D deployment.

3D asset generation has garnered significant
attention due to its potential impact on digi-
tal creativity across various domains. Recent
advancements have explored a variety of rep-
resentations, including voxels (Brock et al.,
2016; Wu et al., 2016), point clouds (Luo
and Hu, 2021; Vahdat et al., 2022), neural
fields (Gao et al., 2022; Chen and Zhang,
2019), and meshes (Siddiqui et al., 2024; Nash
et al., 2020). However, despite progress in so-
phisticated geometry and texture, these tradi-
tional representations face critical limitations
in real-world applications, particularly within
the game industry. In professional game development, existing methods often struggle to meet the
high-quality standards demanded by modern games, resulting in a time-intensive workflow for artists
who may spend hundreds of hours meticulously designing and refining each asset. Meanwhile, in
user-generated content (UGC) scenarios (Epic, 2017; Duan et al., 2022) and online gaming, these
representations frequently yield large file sizes, which present substantial challenges for storage
and transmission in efficiency-driven environments. Such issues can strain server infrastructure and
hinder seamless sharing and real-time interaction—crucial elements in UGC platforms and multi-
player online games. Furthermore, the inherent complexity of these representations often restricts
non-professional users from easily creating, modifying, and sharing their content, thereby limiting
the potential for diverse and engaging user-generated game assets.

In digital production, artists frequently employ modules and constrained design spaces as foundational
elements for complex assets. This approach, drawing concepts from Constructive Solid Geome-
try (CSG) (Voelcker and Requicha, 1977; Laidlaw et al., 1986) in Computer-Aided Design (CAD),
offers several advantages. It facilitates rapid prototyping, ensures asset consistency, and enables
seamless integration into game engines. Utilizing CSG principles, artists can efficiently combine and
manipulate basic shapes to create intricate forms with precision. This modular methodology not only
streamlines the asset creation process but also lowers the barrier to entry for non-professional users,
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fostering broader participation (Krumm et al., 2008; Rymaszewski, 2007) and enhanced scalability in
content creation. Moreover, this approach enables transmission efficiency in user-generated content
(UGC) and online gaming environments.

While other 3D modalities benefit from the availability of growing public datasets (Deitke et al.,
2023; Wu et al., 2023), modular 3D assets suffer from a significant scarcity of publicly available
training data, leaving automatic modular asset generation an understudied field. This deficiency stems
from the proprietary nature of most modular asset libraries, which are often closely guarded by game
studios and content creators. To address this challenge, our research leverages modules and data
collected from an online user generated content (UGC) platform, where players create intricate 3D
homestead assets by manually arranging pre-defined construction materials.

Illustrated in Fig. 1, modular representation of 3D assets exemplifies the potential for complex asset
creation from basic components but also highlights the demand for tools that can automate and
enhance creation. Building on these insights, our study aims to develop a model capable of generating
diverse modular 3D assets with customization on textual descriptions.

In this work, we propose a novel framework that leverages autoregressive modeling with modular 3D
assets. Composed of primitive elements, each asset can be viewed as a series of modules, as well as
proper decisions about their placement and orientation. This sequential nature aligns perfectly with
autoregressive models, which excel at capturing and generating ordered sequences. Meanwhile, it
mirrors the step-by-step process of human construction, leading to more intuitive and controllable
asset generation. Unlike text or image generation, where the sequence order is often inherent (left-to-
right for text, pixel-by-pixel for images), 3D assets pose a unique challenge in determining the optimal
order of modular components. This ordering is crucial as it affects both the coherence of the generated
structure and the model’s ability to capture complex spatial relationships. By carefully analyzing the
connectivity among primitives, we design improved tokenization algorithms and decoding strategies
that capture the hierarchical and spatial relationships within assets. In summary, our contributions are
as follows:

• We propose an autoregressive generation framework for modular 3D asset generation, which
shows promising results compared to other 3D modalities.

• We introduce a large-scale dataset of modular 3D assets, collected and cleaned from the
UGC platform of an online game. To our knowledge, this is the only real-world modular 3D
dataset of high quality.

• We analyze the impact of module tokenization order and decoding strategies on the quality
and diversity of generated assets, offering insights that can be extended to other 3D sequential
generation tasks.

• Our model demonstrates the ability to generate high-quality, contextually appropriate 3D
assets, providing a practical guide for the application of 3D generation.

2 RELATED WORK

Generative Visual Modeling. The recent years have seen a continuous pursuit of advanced generative
models, including generative adversarial networks (GANs), autoregressive models (ARs), flows, and
variational autoencoders (VAEs), and their crown battle for visual creation in image, video, and 3D
applications (Goodfellow et al., 2014; Ho et al., 2020; Van Den Oord et al., 2016; Vaswani, 2017;
Rombach et al., 2022; Chang et al., 2022; 2023; Kingma and Dhariwal, 2018; Kingma, 2013; Singer
et al., 2022; Hong et al., 2022; Poole et al., 2022; Hong et al., 2023). Inspired by the scalability
demonstrated by autoregressive models in language modeling (Achiam et al., 2023; Brown, 2020;
Chowdhery et al., 2023), recent efforts have focused on extending the capabilities of AR models to
mixed-modal modeling or challenging the dominance of diffusion models in visual generation (Zhu
et al., 2023; Liu et al., 2024b; Team, 2024; Driess et al., 2023; Liu et al., 2024a; Wang et al., 2024;
Sun et al., 2024). For instance, Emu3 (Wang et al., 2024) posits that next-token prediction is all you
need for achieving state-of-the-art performances in multimodal tasks, demonstrating robust results in
the understanding and generation of images, text, and videos. Built upon autoregressive transformers,
our work delves deeper into design rationales tailored to downstream visual creation for 3D assets,
e.g., modular 3D generation.
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Figure 2: Overview of the AssetFormer Framework. Given the modular assets, e.g., the building,
we first render the assets in digital engines and produce the images for querying GPT-4o. The cleaned
captions, pre-filled with a re-ordered token set, serve as input for the autoregressive modeling. After
training, AssetFormer autoregressively produces modular assets that are ready to be integrated into
industrial environments, with model-based enhancement and application-driven deployment.

3D Generation. Recent advancements in 3D generation have demonstrated significant progress,
creating complex 3D representations from textual descriptions or sparse images (Gao et al., 2022; Lin
et al., 2023; Poole et al., 2022; Tang et al., 2023; Zhang et al., 2024; Liu et al., 2023b; Long et al., 2024).
These methods have explored various 3D representations, including voxels, point clouds, neural
fields, and meshes. Notably, autoregressive Transformer-based models for mesh generation (Nash
et al., 2020; Siddiqui et al., 2024; Chen et al., 2024b;a; Tang et al., 2024) have garnered attention
due to their potential to synthesize detailed 3D structures. Despite these breakthroughs, existing
methods face several challenges in real-world applications, including meeting high-quality standards,
managing large file sizes, and providing accessibility for non-professional users. Some studies have
adapted generative models for specific applications like CAD models (Wu et al., 2021; Li et al., 2022;
Xu et al., 2024b; Ritchie et al., 2023) and human garments (Korosteleva and Lee, 2022; Liu et al.,
2023a; He et al., 2024), aiming to address domain-specific challenges. Our work builds upon these
advancements while specifically targeting the challenges of modular 3D asset generation, aiming to
address the limitations of existing methods in terms of quality, efficiency, and accessibility.

Autoregressive Modeling. Autoregressive transformers have demonstrated remarkable success in
language modeling and visual generation (Achiam et al., 2023; Liu et al., 2024b; Team, 2024; Liu
et al., 2024a), benefiting from their scalability and ability to capture complex dependencies. However,
adapting these models to visual and 3D domains presents unique challenges, particularly in data
tokenization and sequence ordering. For instance, VQGAN (Esser et al., 2021) employs a codebook
for images, while MAR (Li et al., 2024b) learns a continuous-valued space using diffusion-based
probability distribution modeling. In the 3D domain, methods for mesh generation (Tang et al., 2024;
Chen et al., 2024c) have explored compact mesh tokenization to effectively represent complex 3D
structures. A recent work (Ye et al., 2025) uses AR model for decomposing complex shapes into 3D
primitive, with part-level understanding (Mo et al., 2019; Gao et al., 2021; Hertz et al., 2022; Li et al.,
2024a). Furthermore, decoding strategies (Holtzman et al., 2019; Leviathan et al., 2023; Chen et al.,
2023a; Teng et al., 2024) for improving generation quality and inference speed remain an active area
of research in visual models.

3 METHOD

3.1 PROBLEM FORMULATION

We collect the intricate 3D assets from an online UGC platform, which the users manually create with
the provided modular materials. As the data represents distinctive homesteads, each asset comprises
a sequence of building primitives, e.g., roof and floor patches, where the building primitive has its
attributes including class c ∈ C, rotation r ∈ R (vertical axis), and position x ∈ X 3, with their finite
sets of discrete values. To be specific, i-th sample can be characterized as Ni primitives {Pj}Ni

j=1 and
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Pj = (cj , rj ,xj). Our goal is to learn a generative model G capable of synthesizing samples from
textual description t: G : t → {P}Ni=1.

The dataset source is obtained and cleaned from real user-created assets, which are of high complexity
and variety. One advantage of the modular 3D representation is its easy compatibility with traditional
Procedural Content Generation (PCG) methods. To better study the influence of different data sources,
we formed another data source with PCG in addition to the real data we collected. Building on
procedural generation (Short and Adams, 2017; Raistrick et al., 2023), we use random generators
for attributes such as the number of storeys and the positions of key modules. The details of the
Algorithm can be found in Appendix. To prepare the text prompt, we use GPT-4o (OpenAI, 2024) to
produce phrase bundles such as (apartment, multi-story, flat roof, few windows), characterizing the
global features of the asset based on the rendered images.

3.2 AUTOREGRESSIVE TRANSFORMER MODELING

To model the sequence distribution of tokens, our AssetFormer is built on a Decoder-only Transformer,
using standard cross-entropy loss for next-token prediction:

L = CrossEntropy(Shift(Ŝ),Tokenize({P})), (1)

where Shift(Ŝ) denotes shifted result of predicted tokens sequence Ŝ and {P} represents the asset
comprising primitives. We adopt Llama (Touvron et al., 2023) as the Transformer backbone and
use 1D rotary positional embeddings (Su et al., 2024). The text features are projected to tokens and
pre-filled to the token sequence during training and inference.

Discrete Tokenization. Modular 3D assets typically consist of primitives with discrete attributes and
fixed decision spaces. This inherent discreteness allows us to leverage a more efficient representation
without resorting to complex graph encoders like those used in MeshGPT (Siddiqui et al., 2024). Our
approach utilizes finite sets of discrete values, directly modeling pre-defined vocabularies for each
attribute type in a lossless manner. Each asset is represented as a sequence of token tuples, where
the i-th sample has a primitive length of Ni and a token length of 5Ni, reflecting the five parameters
required for each attribute tuple. Following common practice (Team, 2024; Liu et al., 2024a; Wu
et al., 2021; He et al., 2024), these sequences are padded with <EOS> tokens to indicate the end of
the prediction.

Token Set Modeling. Each primitive is defined by 5 parameters and jointly modeled with a trans-
former, necessitating the maintenance of distinct vocabularies for different attributes. The combined
set of attribute vocabularies, along with the <EOS> token, forms the token vocabulary V:

V = C ∨ R ∨ X0 ∨ X1 ∨ X2 ∨ {< EOS >},
|V| = |C|+ |R|+ |X0|+ |X1|+ |X2|+ 1,

(2)

where C,R,X0,X1,X2 denote the vocabulary of primitive class, rotation, and 3D positions, respec-
tively. Consequently, the raw token sequence T is expressed as:

T = {c0, r0, x0
0, x

0
1, x

0
2, . . . , c

n−1, rn−1, xn−1
0 , xn−1

1 , xn−1
2 ,EOS}, (3)

where n denotes the number of primitives. While this joint vocabulary approach does not affect
training, as we can naively treat the periodic token sequences conventionally for next-token prediction,
it requires special consideration during inference. To achieve diversity and randomness, we sample
from the logits distribution for each token. However, this can potentially produce tokens that do not
belong to the current attribute’s vocabulary. For instance, after generating a token c ∈ C (primitive
class), the next token should be drawn from R (rotation). To ensure valid token set decoding, we
filter out unwanted logits and re-normalize the remaining non-zero distribution.

Token Re-Ordering. Token order plays a crucial role, as emphasized by recent studies in Transformer-
based visual models (Yu et al., 2024; Tang et al., 2024; Chang et al., 2022; Chen et al., 2024c). 3D
assets contain rich structural information both globally and locally. To capture this hierarchical and
spatial relationship, we design traversal methods based on depth-first search (DFS) and breadth-first
search (BFS). These methods ensure modular connectivity locally while maintaining a first-to-end
sequential order globally. In industrial practice, the graph traversal is often used in validation check
where the key nodes are checked with designed connectivity rules. This scenario is eligible for
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checking the validity of the generated building in post-processing, where the popped nodes of the
stack in DFS are required to follow certain rules with the neighborhood nodes.

In practice, we start at the lower corner of the asset and traverse all primitives using a graph searching
method. This produce a permutation order A = {τ0, τ1, ..., τn−1} for a primitive set of length n,
where τi denotes the original index of the i-th element in the raw primitive sequence. Consequently,
the re-ordered token sequence T ′ is given by:

T ′ = ReOrder(T ) = {cτ0 , rτ0 , xτ0
0 , xτ0

1 , xτ0
2 , . . . , cτn−1 , rτn−1 , x

τn−1

0 , x
τn−1

1 , x
τn−1

2 ,EOS}. (4)

While both DFS and BFS can capture local features with modular connectivity, it is not immediately
clear which method leads to better data normalization. Empirically, we have found that DFS performs
slightly better as the primitive re-ordering method. This re-ordering facilitates the training of the
token set modeling, and remains agnostic to asset deployment in rendering.

Classifier-Free Guidance. Inspired by the widely used Classifier-Free Guidance (CFG) (Ho and
Salimans, 2022) in text-to-image diffusion models (Saharia et al., 2022; Xue et al., 2024; Chen et al.,
2023b), which enhances generation fidelity and text alignment, recent research on generative visual
Transformers has also adopted it to achieve similar goals. We follow the methodology outlined
in (Liu et al., 2024a; Sun et al., 2024), randomly dropping control signals in training and utilizing
unconditional logits additionally during inference. The decoding process is based on logits calculation:
lcfg = l′ + s · (l − l′), where l and l′ denote the conditional and unconditional logits, and s denotes
the CFG scale.

3.3 AUTOREGRESSIVE TRANSFORMER DECODING

As large language models advance, generative visual Transformers can significantly benefit from
shared techniques adapted for visual tasks. We aim to present a preliminary analysis of sampling
techniques that affect AssetFormer’s quality. Furthermore, since our modular representation allows
for seamless integration into game engines or rendering pipelines, without the necessity for post-
processing steps like vertex merging as required in MeshGPT (Siddiqui et al., 2024), we implement
decoding techniques to significantly enhance on-the-fly asset generation.

Sampling Strategies. Once trained, AssetFormer generates modules sequentially to form complete
assets, starting with pre-filled text tokens and continuing until the <EOS> token is generated. While
we’ve explored various sampling strategies including greedy search, beam search, and top-k sam-
pling (Fan et al., 2018), we find that top-k sampling offers a good balance between asset quality and
diversity.

SlowFast Decoding. To address the computational challenges of autoregressive decoding, we
introduce SlowFast decoding, our adaptation of speculative decoding (Leviathan et al., 2023; Chen
et al., 2023a) for 3D asset generation which accelerates decoding without compromising quality and
requires minimal additional training. Our SlowFast decoding employs two models:

• The draft model with smaller capacity to quickly predict easy tokens.

• The target model with larger capacity to handle more complex token predictions.

The effectiveness of SlowFast decoding in modular 3D asset generation stems from the varying
complexity of different parts of the asset. Many modular locations, especially those following
common patterns or simple structures, can be accurately predicted by the smaller, faster model.
The larger, slower model is then used to decode more challenging tokens that require a deeper
understanding of context or complex spatial relationships. This approach is particularly suited to
our modular representation, as it allows for efficient prediction of common or simple components
while ensuring accurate generation of more intricate or context-dependent parts of the asset. Our
implementation includes modifications to filter out unwanted logits of other token types (Nash et al.,
2020) during reject sampling, similar to our token set modeling approach. The detailed SlowFast
decoding algorithm is presented in Algorithm 2 in the Appendix.
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Ours
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apartment, multi-story, 

flat roof, lots of windows
castle, multi-story, 

pitched roof, lots of windows

warehouse, multi-story, 

pitched roof, few windows
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Figure 3: Qualitative comparison with comparison methods. (a) While PCG can synthesize
high-quality building models, it requires meticulous algorithm design for complex buildings and can
only produce simple assets that are difficult to control with text. (b) Compared with 3D generation
methods, which typically yield dense meshes, struggle to accurately capture intricate geometries
(the internal structure of buildings), and produce imperfect textures, our methods follow the design
rationales of preferred rules (e.g., with standard primitives of plain faces) and deliver precise texture
in real-world pipelines with primitive-texture mapping.

4 EXPERIMENTS

4.1 DATASET

Our dataset is derived from two sources: procedurally-synthesized data using PCG (detailed in
Algorithm 1 in the Appendix) and real user-created 3D assets collected from the game. We streamlined
the user data by removing extraneous long-tail information and mapping the assets to a set of 25 basic
primitives. To ensure dataset quality, we employed a combination of automatic GPT-4o (OpenAI,
2024) queries and manual review to filter out overly simple and duplicate samples. This process
resulted in a high-quality dataset comprising 16,000 real samples and 4,000 synthesized samples.
The average token length of the data sample is larger than 4,000. For different token ordering,
like DFS and BFS, we pre-process the dataset to output the unique result with a definite order for
each data sample. Note that our focus is on learning the modular arrangement of 3D assets, with
texture considerations typically left for post-processing during production. We employ a total of 25
primitives, which can be broadly categorized into three types: roof primitives, wall primitives, and
other component primitives.

To enable text control over asset generation, we utilize GPT-4o to generate phrase bundles that
indicate the global type of assets and highlight key features. It’s worth noting rendering data exhibits
a significant domain gap compared to natural images, making it challenging to caption discriminative
global types for buildings using multimodal language models. Nevertheless, the generated captions
provide probabilistic guidance for our model. Detailed information about the modular primitives,
prompt templates, and phrase statistics can be found in the Appendix.

4.2 IMPLEMENTATION DETAILS

The joint vocabulary serves as the discrete token space for our Transformer model, with a total
vocabulary size |V| of 214. This comprises |C| = 25 (primitive classes), |R| = 4 (rotations),
|X0| = 59, |X1| = 44, and |X2| = 81 (3D positions). Complex data samples contain up to 1,000
primitives each. To enable text control, we follow (Sun et al., 2024) to use FLAN-T5 XL (Chung
et al., 2024) as the encoder and project the features through an MLP (Chen et al., 2023b). To
support CFG, we implement a condition dropout ratio of 0.1 during training. Our primary model,
AssetFormer-B (312M), uses a Llama-based backbone consisting of 24 Transformer layers. To
facilitate SlowFast decoding, we additionally train a smaller draft model, AssetFormer-S (87M) with
12 Transformer layers. For inference, we employ a CFG scale of 2.0 and a temperature of 0.7, using
top-k sampling with k=10 for all comparisons.

4.3 COMPARISON WITH THE BASELINES

PCG techniques have long been the cornerstone of game production pipelines, creating assets using
PCG. While these methods are well-established, they lack more free-form control with challenges
from generative methods. In this section, we include a procedural generation method as a baseline,
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Figure 4: Qualitative ablation analysis. (a) Ablation on token orders. With improper token order,
the model struggles to fit and generate the distribution accurately. (b) Ablation on data sources. The
models fail to cover a wide range of diverse building types and exhibits a higher ratio of failure cases
when trained on a single data source. The artifacts are indicated in red rectangles.

using the same algorithm employed in our data synthesis stage. This baseline randomizes modular
features such as orientation and position but lacks complex modeling and textual control. Fig. 3(a)
demonstrates AssetFormer’s ability to generate a variety of assets in a data-driven manner, controlled
by text conditions, which is not present in the PCG method.

We also compare our method with state-of-the-art general 3D generation approaches, specifically
SF3D (Boss et al., 2024), Tripo 2.0 (Tripo, 2024), Trellis (Xiang et al., 2024), and Hunyuan3D
2.0 (Zhao et al., 2025) which are designed to generate dense meshes for open-domain objects. We use
the prompt "A high-quality 3D model of a building". We use flux 1.1 [pro] 1 or their official image
generation integration to generate images for image-to-3D pipelines. Fig. 3(b) highlights the visual
results of these methods alongside our approach. By adopting a primitive-based representation, Asset
avoids the generation of low-quality, dense meshes that are difficult to integrate into industry pipelines.
Although recent 3D generation methods have achieved significant improvements in producing high-
quality geometry, they continue to exhibit noticeable texturing artifacts. These issues primarily
stem from the suboptimal performance of current texturing techniques (Zhao et al., 2025; Zhu et al.,
2025; Youwang et al., 2024). In contrast, primitive-based generation methods benefit from the
more advanced development of primitive-texture mapping, which results in more refined texturing
outcomes.

Table 1: Quantitative results compared with baselines. We show comparison results on generation
quality, indicated by FID and CLIP score.

Methods FID ↓ CLIP ↑
True Data / 0.322
PCG (Algorithm 1) 108.476 0.319

AssetFormer + Greedy Search 63.351 0.319
AssetFormer + Beam Search 63.333 0.321
AssetFormer + Top-K Sampling 55.186 0.320

To perform a quantitative evaluation, we assess generation quality using Fréchet Inception Distance
(FID) (Heusel et al., 2017; Parmar et al., 2022) and CLIP score (Radford et al., 2021). Our evaluation
procedure involves synthesizing 500 assets using sampled test prompts and rendering 500 images
from a fixed viewpoint that properly captures the global structure. FID is computed between these
rendered images and the full training set, with clean-FID (Parmar et al., 2022), which indicates the
visual quality of generated assets. Due to the difficulties of large-scale rendering, the FID values are
much higher than those typically seen in text-to-image works (Liu et al., 2024a; Chang et al., 2023) as
they are computed with the smaller sets, but the relative values faithfully indicate similarity and thus
the quality of the generated buildings since the numbers are large enough and controlled the same.
CLIP score is computed between rendered image features and the text feature of a fixed prompt,
i.e., "A high-quality 3D model of a building". We opt not to use CLIP scores between images and
generation prompts due to challenges in obtaining informative results (originated from the domain

1https://blackforestlabs.ai
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gap) in our unusual image and text domains, e.g., all settings produce fluctuating results near 0.29,
yet these relative performances poorly align with human validation.

Table 1 presents the quantitative results. While the PCG method can synthesize compact modular
assets, it struggles to cover the full breadth of the data distribution and generate richly detailed outputs
with sophisticated structures. This is reflected in the FID scores, given that our training data includes
both simple and complex assets. Regarding sampling strategies, our quantitative results indicate that
top-k sampling outperforms both greedy search and beam search.

We further compare our method with MeshGPT (Siddiqui et al., 2024), which utilizes mesh represen-
tation and leverages a Transformer as the decoder. Please check the detailed analysis and discussion
in the Appendix.

4.4 ABLATION STUDIES

4.4.1 ABLATION STUDY ON TOKEN ORDERS

The ablation study on token orders demonstrates the effectiveness of our proposed primitive token
re-ordering method. Table 2 presents a comparison of different ordering operations. The results
clearly indicate that re-ordering methods, specifically DFS and BFS, yield superior results compared
to learning sequences in their raw order.

Table 2: Quantitative ablation analysis on token orders. We compare the results of models trained
on different token orders and we also implement a recent token randomized training method design
for autoregressive modeling of image generation.

Ordering Techniques FID ↓ CLIP ↑
Raw Order 65.215 0.318
RAR (Yu et al., 2024) 83.561 0.313
Breadth-First-Search 61.620 0.319
Depth-First-Search 55.186 0.320

We also implement RAR (Yu et al., 2024), a recent work focusing on token randomization in
training text-to-image autoregressive models. RAR employs an annealing strategy and tailored
positional embedding to outperform standard raster-order-based AR image generator training. To
adapt RAR to our setting, we use a hierarchical operation to re-order tokens in an annealing manner,
accommodating our token set modeling for building primitives. Specifically, given primitives in
DFS order, we randomly permute them while freezing the second-stage permutation, maintaining
the original order of attribute tokens within each primitive. Interestingly, our results indicate that
RAR does not perform well in our task. We hypothesize that, unlike images which benefit from
token disturbance for better bidirectional learning, the challenges in leveraging local details of 3D
structures hinder the efficient learning capabilities.

Note that while CLIP scores may be similar in absolute values, the visual results of the baselines can
be poor, as illustrated in Fig. 4(a). Clear artifacts, highlighted in red rectangles, can be observed.
A notable phenomenon is the presence of isolated generated parts in results obtained with raw
order, reinforcing our conclusion that re-ordering helps grasp local structures and ensure modular
connectivity.

4.4.2 ABLATION STUDY ON DATA SOURCES

Our method incorporates data from both procedural generation and human creation. Table 3 presents
metrics for models trained with different data sources, revealing an intriguing phenomenon. Models
trained solely on collected data show substantial improvement over those using only synthesized data,
with FID scores of 63.381 and 113.560, respectively. However, the most striking result emerges from
the combination of both data sources, yielding a superior FID of 55.186. This improvement likely
stems from the complementary nature of the two data types. Synthesized assets, generated through
PCG, tend to be more compact and structured. While they may perform poorly in isolation due to
limited diversity, they provide a beneficial scaffolding for the model’s learning process. In contrast,
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user-created data offers greater diversity and randomness, which, when combined with the structured
synthesized data, enhances the model’s ability to generalize.

Table 3: Ablation analysis on data sources. We train models on different configurations of data
sources, and show the distribution difference of data generation.

Training Data Types FID ↓ CLIP ↑
Synthesized Data Only 113.560 0.320
Collected Data Only 63.381 0.321
Synthesized Data + Collected Data 55.186 0.320

Fig. 4(b) illustrates this synergy, showcasing rendered results from various generated assets. The
visualization highlights how the integration of both data sources enables the model to capture a wider
spectrum of architectural styles and structures, overcoming the limitations observed when relying on
a single data type. Our findings underscore the importance of leveraging multiple, complementary
data sources in training generative models for modular assets. The structured nature of synthesized
data provides a solid foundation, while the diversity of collected data expands the model’s creative
range. This balanced approach not only improves the quality and variety of generated buildings but
also enhances the model’s robustness in meeting diverse user preferences.

4.4.3 ANALYSIS ON SLOWFAST DECODING

We implement SlowFast decoding for autoregressive asset generation, which required training an
additional draft model. This draft model, with its smaller capacity and reduced number of parameters,
enables accelerated decoding through meticulously designed algorithms (Leviathan et al., 2023;
Chen et al., 2023a). Table 4 presents the generation quality and decoding speed for models with
varying parameters, controlled by the number of Transformer layers, heads, and feature dimensions.
AssetFormer-B is the base model we have trained and the smaller AssetFormer-S is the draft model.
These results demonstrate that our tailored SlowFast decoding method successfully accelerates the
generation process without sacrificing performance.

The SlowFast decoding is particularly effective for modular 3D asset generation, where prediction
difficulty varies significantly. Simple primitives and standard components are swiftly handled by the
draft model, while complex, context-dependent elements benefit from the larger model’s nuanced
predictions.

Table 4: Analysis on SlowFast Decoding. We train models of different parameters and perform
SlowFast decoding. The generation quality and decoding speed are evaluated.

Model Configurations FID ↓ Speed (token/s) ↑
AssetFormer-S (87M) 60.420 151.31
AssetFormer-B (312M) 55.186 80.62

SlowFast Decoding 55.831 119.02

5 CONCLUSION

In this work, we introduce AssetFormer, a novel autoregressive Transformer-based framework
designed for modular 3D asset generation. Our approach emphasizes the modeling of assets from
primitives and the learning of their distribution for generative applications. The framework is
meticulously tailored to accommodate both potential applications and user-generated content (UGC),
ensuring versatility and adaptability in various contexts. We innovatively adapt token sequencing and
decoding techniques inspired by language models, achieving high-fidelity asset generation through
autoregressive modeling. We anticipate that AssetFormer will contribute significantly to the evolving
landscape of 3D content creation and enable widespread real-world applications.

Limitations. Currently, AssetFormer is designed to accept only text input for asset generation.
The ability to incorporate image-based conditioning remains uncertain and unexplored. Meanwhile,
our model relies on fixed discrete vocabularies, necessitating additional design considerations to
accommodate varing design spaces.
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A APPENDIX

A.1 USER STUDY

We conducted a user study to better validate the qualitative performance of our method. The study
involved 6 participants aged between 22 and 28 years. The participants were asked to grade the
buildings based on four criteria: compactness, diversity, aesthetic, and complexity. The grading
was done in batches, each consisting of six building samples. We included ground truth data, PCG
generated data, and the synthetic data from AssetFormer. The results, shown in Table 5, are rated on
a scale of 1 to 5, with 5 being the highest. Our participants widely acknowledged that our method
produces high-fidelity results in terms of diversity, aesthetic, and complexity. It is worth noting
that the PCG method, which generates buildings with simpler structures, received higher grades for
compactness from participants, even surpassing the ground truth due to the different domains.

Table 5: User study results. The ratings of compactness, diversity, aesthetic, and complexity, are on
a scale of 1-5.

Method Compactness Diversity Aesthetic Complexity
Ground Truth 3.83 4.00 3.67 4.42

PCG 4.47 2.42 3.33 2.08
AssetFormer 3.42 3.50 3.50 3.92

A.2 COMPARISON WITH MESHGPT

We select MeshGPT (Siddiqui et al., 2024), which utilizes mesh representation and leverages a
Transformer as the decoder, as a baseline for qualitative comparison. We further discuss the charac-
teristics of both mesh representation and modular representation, shown in Table 6. Additionally, we
attempted to directly fine-tune language models with supervised fine-tuning on our building JSON
data. Given that the building data can comprise up to 1000 primitives, requiring more than 3K tokens
when tokenized from the raw JSON data which includes the primitives types and attributes, we
adopted LongLoRa (Chen et al., 2023c) to fine-tune Llama-2 (Touvron et al., 2023). However, we
were unable to decode reasonable results that could be parsed as correct building JSON. Therefore,
we have omitted this naive baseline from our discussion.

We present the comparison results with MeshGPT in Fig. 5. Although we generate results in modules
with AssetFormer, it is important to note that these results can be seamlessly converted to triangle
meshes if needed, as the modules are compact, as shown in Fig. 5. For this comparison, we first
converted all building data to triangle meshes and extracted the vertex and face information required
by MeshGPT. We then trained the autoencoder and Transformer on our data using MeshGPT. We
present both non-transparent and transparent rendered results. While MeshGPT encodes faces and
vertices and learns mesh generation based on face and vertex representation, it becomes evident
that as the task complexity increases, i.e., generating complex buildings with numerous vertices and
faces, the training becomes challenging and the decoding often fails. We do not include subsequent
works like MeshAnything (Chen et al., 2024b) and MeshXL (Chen et al., 2024a) as they adopt the
same representation. Additionally, since modules can be decomposed into triangle meshes, modular
representation is more efficient and requires fewer tokens compared to mesh-based generation
methods. Even recent works focusing on compact tokenization of meshes, such as EdgeRunner (Tang
et al., 2024), typically handle meshes with fewer than 4K faces, whereas our data can comprise more
than 30K faces in triangle meshes.

Table 6: Comparison of mesh representation and modular representation.

Representation Lossless Ready for Engines Triangle Meshes Efficient No Post-Processing User-Friendly

Mesh " " " % % %

Modular " " " " " "

Table 6 presents the characteristics of mesh-based and modular representations. Meshes benefit from
not requiring representation conversion in 3D generation methods that adopt Triplane and implicit
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Figure 5: Qualitative comparison with MeshGPT. We present the non-transparent and transparent
results of MeshGPT and ours. Our method can produce compact arrangement of primitives, as
demonstrated by the transparent rendering images and the viewpoint from the inside.

representations (Xu et al., 2024a; Poole et al., 2022), which has recently increased their popularity.
It is worth noting that modular representation also inherits the crucial strengths of meshes. Built
upon primitive modules, the representation is lossless, ready for game engines, and can be directly
converted into triangle meshes.

Furthermore, Fig. 6 showcases the X-Ray results, revealing internal structures of buildings. The
results demonstrate that AssetFormer is capable of synthesizing buildings with not only impressive
appearances but also intricate internal structures. It is important to note that the internal structure
of game assets is crucial for real-world applications. While AssetFormer excludes explicit texture
information, the modular nature of our generated geometry allows for versatile streamlined applica-
tions. We showcase the versatility of modular representation in Fig. 7, by mapping the primitives to a
diverse set of textured intricate modules. This flexibility aligns with industry practices and enables
seamless integration with specific scenes or game aesthetics. Moreover, such modular representation
supports both procedural and generative texture rendering techniques, allowing for dynamic and
diverse visual outcomes.

Mesh representation can hardly compete on special needs in real-world scenarios. Using mesh
representation to train generative models presents a key issue: the token length can be extremely
long, especially for real-world objects with details. Additionally, after decoding, mesh representa-
tion requires post-processing to merge close points in 3D space, whereas modules are compactly
connected. Furthermore, although mesh representation is ready for artists, it is not yet user-friendly.
In contrast, modular representation-based generation serves as a powerful technology integrated for
user-generated content (UGC), thanks to its user-friendly manipulation.

A.3 ALGORITHM DESCRIPTION

Procedural Content Generation. PCG is effective for quickly synthesizing simple buildings and
can produce data samples without artifacts. However, this method struggles to adapt to a variety of
complex buildings, resulting in a mismatch with user preferences and a gap in representing intricate
building distributions. We randomly set attributes such as width, length, and floor height. Using roof
primitives, wall primitives, and component primitives, we can randomly generate walls, floors, and
roofs, and decorate each aspect with special primitives, such as doors and stairs.
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Figure 6: X-Ray results of the generated buildings. We further present transparent results that
highlight the complex and compact structures of the generated samples. For supplementary illustration,
we provide results from different viewpoints of the buildings in Fig. 3.
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Figure 7: Visualization of generated buildings with textured intricate modules mapping. Our
generated assets can be seamlessly integrated into engine runtime, mapped with different textured
modules of Level-of-details. We show various viewpoints for reference.

Algorithm 1 Procedural Content Generation

1: width = Randint(1,MAX_WIDTH)
2: length = Randint(1,MAX_LENGTH)
3: floorHeight = Randint(1,MAX_FLOOR_HEIGHT )
4: // Decorate with floor primitives and stair primitives
5: SetWall(width, length, floorHeight)
6: // Decorate with floor primitives and stair primitives
7: for floor_id in Range(MAX_FLOOR_HEIGHT) do
8: SetPlane(width, length, floor_id)
9: end for

10: // Decorate with roof primitives
11: SetRoof(width, length, floorHeight)
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Algorithm 2 SlowFast Decoding

1: Require the target model AssetFormer-B which produces q(·|·), the draft model AssetFormer-S
which produces p(·|·)

2: Input the text prompt, which gives pre-filled tokens prefix, the lookahead K, and target
sequence length T

3: Set token number n = 0
4: while n < T do
5: // Sample from draft model
6: for t in Range(K) do
7: x̂t ∼ p(x|prefix, x0, . . . , xn−1, x̂0, . . . , x̂t−1)
8: end for
9: // Forward target model

10: Compute logits q(x|prefix, x0, . . . , xn−1, x̂0, . . . , x̂t), t = 0, . . . ,K − 1
11: // Drop with a probability of 1-q/p
12: reject_pos = RandomDrop(p_logits, q_logits)
13: // Get the primitive types for the rejected tokens
14: reject_type = GetTokenType(n, reject_pos)
15: // Draw from q-p as Speculative Sampling with primitive token type awareness
16: resampled_tokens = Sample(reject_pos, reject_type, q_logits, p_logits)
17: Sample xn+K from q if needed
18: Update n
19: end while
20: Return [x0, · · · , xT−1]

SlowFast Decoding. The SlowFast Decoding method, is adapted from Speculative Decoding (Chen
et al., 2023a; Leviathan et al., 2023), which utilizes two models of different sizes to accelerate the
sampling of large language models. Following this key insight, we train a draft model, AssetFormer-B,
to quickly produce draft tokens. After decoding with the draft model, the target model processes the
token sequences to obtain logits, which are used to reject existing tokens with a defined probability.
Notably, since our modular representation requires meaningful token orders, we also need to track
the vocabulary types for each token. With the tracked types, we filter out the logits that do not belong
to the current token and sample within the re-normalized distribution. Experiments have clearly
demonstrated the effectiveness of SlowFast Decoding, achieving acceleration without compromising
performance.

A.4 MORE INFORMATION ON THE DATA

Modular Primitives. Fig. 8 illustrates the primitives utilized in our data. These categories are
displayed in three separate columns.

Concave Roof

Low Concave Roof

Convex Roof

Low Convex Roof

Sloped Roof

Low Sloped Roof

Triangular Roof

Low Triangular Roof

Wall

Window Wall

Inverted Right-Angle Wall

Low Wall

Low Right-Angle Wall

Triangular Wall

Door

Wide Door

High Sloped Roof

Right-Angle Wall

Floor

Beam

Rectangular Column

Railing

Sloped Ladder

Low Sloped Ladder

Straight Ladder

Figure 8: Descriptions of primitives in building data. We showcases roof primitives, wall primitives,
and other component primitives in three columns.

Prompt Curation. To prepare the text conditions for the building samples, we use GPT-4o (OpenAI,
2024) to generate text descriptions based on rendered images from a fixed viewpoint. To control the
flexibility of the text conditions, we use curated prompts, as presented in Table 7. Additionally, we
provide statistics of the generated phrases in Fig 9.
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Table 7: The prompt of querying GPT-4o.

I will provide an image of a building and you should generate one string, which comprises of several
phrases.

The first phrase describes the building type:
Example phrases and rules:
‘castle’: often with features like towers or battlements.
‘skyscraper’: tall, rectangular building.
‘courtyard’: not high, often with an open space in the middle.
‘mansion’: large, impressive, featuring multiple stories and high-end architectural details.
‘townhouse’: usually multi-story, often in a row with similar houses.
‘apartment’: multi-story, often with lots of windows.
If all the above types are not precise, you can use other types.

The second phrase should describe the height of the building in terms of floors:
Example phrases: ‘single-story’, ‘multi-story’, ‘high-rise’.
If the building is higher that 5 stories, it can be classified as ‘high-rise’.

The remaining two phrases, giving the most precise features of the building. You do not need to always
use some phrases if they are ambiguous. For example, if there are more than 15 windows, then you can
use ‘lots of windows’ but do not treat doors as windows.
Example phrases: ‘pitched roof’, ‘flat roof’, ‘lots of windows’, ‘magnificent’, ‘dull’, ‘weird’, etc.

The First Phase The Second Phase The Remaining Phases

Figure 9: Phrases statistics of text prompts. We show the three histograms of the first phrases, the
second phrases, and the remaining phrases, used in our dataset.

A.5 VIDEO VISUALIZATION

We include a video demo of AssetFormer in our supplementary materials, including the generation
process of the method, the comparison of token orders, and the integration of generated game assets
into game engines.

To further compare the token order, which is a key factor in our methodology design, we present
the video visualization demonstrating the construction sequence of results generated by different
token orders. We construct the building primitives according to the decoding sequence and show the
construction videos for raw orders, BFS, and DFS.

Additionally, we demonstrate the seamless integration of modular representation-based generated
building data into game engines. To this end, we develop a lightweight software on Unreal Engine,
a mature game engine in the gaming industry. By placing the modular building in a scene, we can
control a digital human to traverse the scene, surrounding the building and entering it, as if the
building is part of the normal environment in games. This is especially appealing when we map the
building assets to have complex geometry and texture details with asset mapping. The video demo
clearly demonstrates that our generated game assets are effective, convenient, clean, and ready for
integration into game engines.
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A.6 LLM USAGE DISCLOSURE

We used GPT-4o exclusively for grammar checks and light editing. The LLM acted as a writing aid
and was not involved in generating ideas or content, thus not qualifying as an author.
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