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Abstract

Diffusion models have emerged as a powerful class of generative models across
various modalities, including image, video, and audio synthesis. However, their
deployment is often limited by significant inference latency, primarily due to the
inherently sequential nature of the denoising process. While existing paralleliza-
tion strategies attempt to accelerate inference by distributing computation across
multiple devices, they typically incur high communication overhead, hindering
deployment on commercial hardware. To address this challenge, we propose
ParaStep, a novel parallelization method based on a reuse-then-predict mecha-
nism that parallelizes diffusion inference by exploiting similarity between adjacent
denoising steps. Unlike prior approaches that rely on layer-wise or stage-wise
communication, ParaStep employs lightweight, step-wise communication, sub-
stantially reducing overhead. ParaStep achieves end-to-end speedups of up to
3.88x on SVD, 2.43x on CogVideoX-2b, and 6.56x on AudioLDM?2-large, while
maintaining generation quality. These results highlight ParaStep as a scalable and
communication-efficient solution for accelerating diffusion inference, particularly
in bandwidth-constrained environments.

1 Introduction

Benefiting from advances in deep learning and increasingly powerful hardware, diffusion models have
demonstrated remarkable performance in image generation [30} 131}, (33} |16} 19], video generation
[38L 15} 126} 2| 140], and audio generation [35} 11} 8, 24} 25]]. However, their widespread adoption is
severely limited by substantial inference latency. This issue becomes particularly critical in long-form
video generation, where producing a few minutes of video may require hours of GPU computation.
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Figure 1: Relative MAE (as defined in Equation (7)) between adjacent denoising steps ¢ and ¢ + 1 for
the noisy sample x; and the predicted noise €;. Here, 0% on the x-axis indicates the first step of the
denoising process, and 100% indicates the last.
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Figure 2: Dotted lines show the difference in noisy sample x; between the original model and direct
reuse process (stride = 2), while solid lines compare the original model with our reuse-then-predict
process (degree = 2). Results for predicted noise €; follow the same pattern. Reuse-then-predict
process results in smaller deviations from the original model compared to direct reuse process.

The latency primarily stems from two factors: the high computational cost of the noise predic-
tor—typically implemented using architectures such as DiT [29] or U-Net [32]—and the inherently
sequential nature of the denoising process, which invokes the noise predictor repeatedly across
dozens or even hundreds of timesteps. Notably, in DiT models with 3D attention, this cost scales
quadratically with both spatial resolution and temporal length.

To reduce the inference latency of diffusion models, researchers have proposed a variety of solutions.
Distillation techniques [27, 134] can reduce the computational and memory overhead of diffusion
models. Other works [[18 [36]] employ post-training quantization (PTQ) to compress full-precision
models into 8-bit or 4-bit representations without retraining, thereby reducing computation. Caching-
based methods have also been explored to eliminate redundant computation during the denoising
process [37, 11139, 142]. While effective, these approaches do not leverage the potential of distributed
computing, which has become a cornerstone of modern deep learning systems.

To address this, several works have proposed parallelization strategies that leverage distributed
infrastructure to accelerate diffusion models [[17} 13} 16, 15]. These methods perform operation-wise,
layer-wise, or stage-wise communication to exchange essential tensors, which incurs substantial
communication cost. Despite their effectiveness, the huge communication overhead makes them
impractical outside of high-bandwidth, data center—scale environments. Therefore, there remains a
pressing need for parallel approaches with minimal communication requirements to enable practical
deployment on commercial hardware.

We analyze the differences in noisy samples and predicted noise across adjacent denoising steps. As
illustrated in Figure[I} except for the initial and final few steps, the predicted noises across neighboring
steps exhibit high similarity. This observation suggests that it is possible to reuse the noise generated
in the previous step to skip the computation of the current step, as shown in Figure [3(b). However,
such direct reuse leads to noticeable degradation in generation quality.

To address this issue, we propose a reuse-then-predict mechanism. Specifically, the noise from the
previous step is reused to generate the noisy sample for the current step, and then a fresh noise
prediction is performed based on this sample. Owing to the robustness of noise predictors, the newly
predicted noise better approximates the original noise than direct reuse, as evidenced in Figure [2]
This procedure can be parallelized through careful scheduling, illustrated in Figure 3|c), enabling
acceleration without significant loss in generation quality. Communication is required only once per



denoising step, and only the samples and noises need to be transmitted. This low communication
overhead makes ParaStep highly suitable for low-bandwidth environments, such as systems connected
via PCle Gen3. A detailed analysis of the communication pattern is provided in Section #.2}

Since the difference between adjacent timesteps is large in the early stages, and errors introduced by
reuse can accumulate over multiple steps, it is necessary to perform the original denoising process
during this phase before switching to the reuse-then-predict mechanism. We refer to these initial steps
as warm-up steps. The number of warm-up steps is a critical hyperparameter: setting it too low may
cause significant performance degradation, while setting it too high can limit the achievable speedup.
We will analyze the impact of warm-up step selection in Section[5.5] Although the difference between
adjacent timesteps is also large in the final few steps, the errors introduced by reuse only accumulate
over a small number of steps and do not influence generation performance. Therefore, we continue to
apply the reuse-then-predict mechanism during this phase to maintain acceleration.

For non-compute-intensive models, such as audio diffusion models, distributed computing may be
unnecessary. In such cases, enabling ParaStep on a single device can achieve acceleration with lower
computational cost. Based on this insight, we develop a single-device variant of ParaStep, called
BatchStep, which performs adjacent noise predictions within a single batch rather than distributing
them across multiple devices. This design reduces computational overhead while preserving the
acceleration benefits of our approach for lightweight models. However, for compute-intensive models
such as image and video diffusion, BatchStep is not suitable due to their high resource demands. Our
code is available at https://github.com/sjtu-zhao-lab/ParaStep.

We summarize our key contributions as follows:

* We propose a reuse-then-predict mechanism that mitigates the quality degradation caused by
direct reuse. Building on this mechanism, we introduce a novel distributed sampling method,
termed ParaStep, which enables step-wise parallelization across devices for faster inference.

* We analyze the communication characteristics of ParaStep and demonstrate that it achieves
significant speedup even under low-bandwidth settings.

* We extend ParaStep to a single-device variant tailored for non-compute-intensive diffusion
models, enabling efficient adjacent-step prediction without cross-device communication.

* We perform comprehensive experiments in various diffusion-based models, demonstrating that
ParaStep is an effective and generalized method applicable to both vision and audio modalities.

2 Related works

Cache Several works utilize caching mechanisms to reduce the computational cost of the noise
predictor [37, [1]]. DeepCache [37] leverages the structural properties of the U-Net architecture,
specifically its skip connections between shallow and deep blocks. During less critical timesteps,
DeepCache skips the computation of deep blocks by directly forwarding the output of shallow blocks
to their corresponding counterparts in deeper layers. In a different direction, [[1] explores caching
based on prompt similarity. It constructs a cache that stores intermediate features of previously pro-
cessed prompts, enabling reuse when similar prompts are encountered. While both approaches reduce
the computation of the noise predictor, neither leverages the benefits of distributed computation.

Parallelism Conventional parallel strategies such as data parallelism, pipeline parallelism, and
tensor parallelism are generally unsuitable for reducing the latency of diffusion models. Data
parallelism and pipeline parallelism are primarily designed to improve throughput and provide little
benefit for latency reduction. While tensor parallelism is effective for accelerating large language
models (LLMs), it is less suitable for diffusion models due to their large activation sizes.

To fully exploit the computational power of distributed GPUs, several methods have been specifically
designed to leverage the intrinsic properties of diffusion models for acceleration [17} 1316, 15]. Given
a parallelism degree of p, DistriFusion [17]] partitions the input latent of the noise predictor into p
patches and employs all-to-all communication to merge them before each attention and convolution
operation. PipeFusion [6] reduces communication costs by reusing one-step stale feature maps
in patch-level parallelism. AsyncDiff [3] divides the noise predictor into p stages, assigning each
stage to a different device and employing pipeline parallelism to achieve speedup. xDiT [5] further
combines PipeFusion with Ring Attention [23]] to achieve significant acceleration. However, the high
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communication overhead associated with these methods restricts their effectiveness to high-bandwidth
environments, which are typically found only in expensive data center infrastructures. Moreover,
except for Ring Attention [23], all of these approaches rely on approximate parallelism methods,
which introduce noticeable deviations in the generated results compared to the original model.

Reuse TeaCache [22] proposes a selective mechanism to reuse the generated noise from the previous
timestep, thereby skipping the computation required for the relatively unimportant timesteps. It
achieves acceleration with only minor degradation in generation quality. The key difference between
TeaCache and our approach lies in their focus: TeaCache addresses the question of when to reuse,
while our method focuses on how to reuse. Specifically, our reuse-then-predict mechanism yields a
smaller performance drop by predicting a refined noise estimate rather than directly reusing previous
outputs. Moreover, we demonstrate that TeaCache can be seamlessly combined with our method to
further improve generation quality while maintaining the same level of acceleration.

3 Preliminaries

Diffusion models are a class of generative models that progressively transform data from the original
distribution into a Gaussian distribution through a forward diffusion process, and then reconstruct the
original data from Gaussian noise via a reverse (backward) denoising process.

Forward diffusion process Given a data sample xo ~ ¢(x) drawn from the original distribution,
Gaussian noise is gradually added over 7" steps to produce the final sample x7, which is a pure
Gaussian noise. To avoid simulating the full forward trajectory step by step, x; can be sampled via:

q(x¢ | x0) =N (Xt§ Vaxo, (1 — O_lt)I) (D
Backward diffusion process Given x;, the sample x;_1 is drawn from the conditional distribution:

po(xi—1 | x¢) = N (x¢—1; po (%, t), 071) 2

where o is either predefined or learned and the mean g (X, t) is computed as:

o 1 1— Qg
,L,Lg(Xt,t) - \/OTt <Xt - m6t> (3)

Denoising computation Given a condition ¢, a timestep ¢, and a noisy sample x;, the noise predictor
ep—typically implemented as a U-Net [32] or DiT [29]—estimates the noise €;. A scheduler then
uses this noise to sample x;_1:

€ = €9(x¢,t,¢), %x4—1 = Scheduler(x;,t,¢;) )

Training In DDPM [10], model parameters are optimized to minimize the squared error between
the true noise and the predicted noise:

Vo [le — eo (Vaxo + VT —aue, )| ®)

where & is derived from a predefined noise schedule {3;}. At each denoising step ¢, the model aims
to recover the noise originally added to xg to obtain x;. Since the differences between adjacent noisy
samples are often small, the predicted noise €, tends to vary only slightly across timesteps.

Flow Matching Flow Matching[21] is a generalization of diffusion[7]], sampling using the ordinary
differential equation. In Flow Matching, the generative process transforms sample z, from a simple
reference distribution into sample z; from the target distribution by integrating a learned velocity
field vy(z,t) over time. This process is discretized as:

Zepar = Z¢ + At - v (24, 1) (6)
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Figure 3: Illustration of the computation process of a diffusion model. (a) The original computation
process. (b) Reusing noise e from the previous timestep to skip the computation of noise prediction
in the current timestep 1" — 1. (c) ParaStep: adjacent-step noise prediction is distributed across
GPUs using reuse-then-predict, enabling parallel denoising with minimal communication. Since the
computational cost of scheduler operations is negligible, the noise predictor computations on GPUO,
GPU1, and GPU?2 are fully parallelized.

4 Methods

In conventional diffusion models, the reverse process is implemented as a sequential denoising
procedure. The noise predictor €y is invoked repeatedly to predict the noise €, given inputs x,, t, and
a conditioning signal c. For simplicity, we omit c in the remainder of this paper. The scheduler then
uses the predicted noise €; to compute the denoised sample x;_;. Since € is usually a deep neural
network with high computational complexity, whereas the scheduler only performs element-wise
additions and multiplications, the dominant source of computational cost and latency in diffusion
models lies in the repeated invocation of the noise predictor.

To transform the Gaussian noise xr into a clean sample xg, the noise predictor must be called
sequentially for tens or even hundreds of timesteps, resulting in significant latency during inference.
A naive approach to reduce this cost is to reuse the noise predicted in the previous timestep. However,
such direct reuse typically leads to a noticeable degradation in generation quality. To mitigate
this degradation while preserving efficiency, we propose a reuse-then-predict mechanism, termed
ParaStep. Our method first reuses the noise from the previous timestep to compute the current noisy
sample x;, and then predicts a refined noise estimate ¢; based on that sample. Through careful design,
this procedure allows the prediction of adjacent-step noises to be distributed across multiple devices,
effectively parallelizing the most expensive part of the computation. Given a parallelism degree of
p, the overall workload is divided such that each device only performs % of the noise prediction
steps. Before introducing the detailed implementation of ParaStep, we first analyze the similarity of
predicted noise across adjacent timesteps, and then describe how previously generated noise can be
efficiently reused in the denoising process.

4.1 Reuse-then-predict mechanism

Reusing noise In each denoising step, the noise predictor aims to estimate the total noise that was
added to x; to obtain x;. The predicted noise ¢; remains highly similar across adjacent timesteps,
as shown in Figure [l We use the Relative Mean Absolute Error (Relative MAE) to quantify the
similarity between noisy samples and predicted noise across steps. The metric is defined as:

LN e — el

%21;1 |4,

As illustrated in Figure[T] for models such as CogVideoX [38] and HunyuanVideo [15], the relative
MAE between adjacent noise predictions drops below 0.1 after the first 20% of the total steps. This
observation suggests that previously predicted noise can be reused to bypass less critical computations.

MAErel<Xta Xt+1) = (N
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Figure 4: Utilizing batching effect of audio diffusion models, parallel computation of noise predictor
can be transformed batching execution on single device.

In Figure[3|a), at timestep 7', the noise predictor generates e using xr, after which the scheduler
computes x7_1 based on ep, x7, and T'. At timestep T — 1, the noise predictor estimates ep_1,
which is then used to obtain x7_5. In contrast, Figure [3{b) illustrates a reuse strategy: the predictor
first estimates e from x7, which is used to obtain x7_1; then, instead of invoking the predictor
again, the model reuses e at timestep 7" — 1 to estimate the next noisy sample X7 _5. We refer to
this strategy as the direct reuse process.

Suppose the predicted noise is reused for s — 1 subsequent timesteps. In that case, the number of
predictor invocations is reduced by a factor of s, resulting in a corresponding % reduction in latency.
However, this aggressive reuse introduces a distributional mismatch from the original denoising
trajectory, which can lead to significant performance degradation. To mitigate this, we propose a
reuse-then-predict mechanism that combines reuse with predictive refinement, effectively reducing
the quality drop while retaining computational efficiency.

Parallel denoising via reuse-then-predict mechanism As shown in Figure[2] instead of directly
reusing the noise predicted in the previous step, a more accurate result can be achieved by first using
the reused noise to generate the noisy sample for the current step, and then feeding this sample
into the noise predictor to predict the refined noise for the next timestep, we call this mechanism
reuse-then-predict. Based on this mechanism, we propose a novel distributed sampling method,
ParaStep, which parallelizes inference by distributing adjacent-step noise prediction across devices.

As illustrated in Figure EKC), both the noise predictor and the scheduler are replicated on GPUO, GPU1,
and GPU2. During the initial warm-up steps, all GPUs follow the standard sequential denoising
process. After warm-up, GPUO predicts er_; from x7_; and timestep 7' — 1, and the scheduler
then computes x7_» accordingly. In parallel, GPU1 skips the computation of er_; and instead
reuses er from the previous step to compute an approximate noisy sample X7_o. It then uses
this sample and timestep 7' — 2 to predict a refined noise estimate éz_o. Simultaneously, GPU2
performs the same reuse-then-predict process, reusing e twice to compute X7._, and then predicting
ér_s3 from X/,_5 and T' — 3. Since the scheduler introduces negligible computational overhead,
the noise prediction steps on GPU1 and GPU2 are effectively parallelized with those on GPUO.
Once prediction is complete, GPU1 and GPU2 transmit their predicted noise values, é7_s and €p_3
respectively, to GPUO. GPUO then uses these values to compute the next set of noisy samples, X7_3
and x7_4. Finally, the newly generated sample X1 _4 is broadcast back to GPU1 and GPU2, and
all GPUs advance to timestep 7' — 4. This cycle is repeated for subsequent steps, enabling efficient
parallelization of adjacent-step noise prediction across multiple devices. We formalize ParaStep with
a round-based algorithm, presented in Appendix [A]

Assuming a parallelism degree of p, ParaStep operates in cycles of length p. Each GPU performs
one forward pass of the noise predictor per cycle. Since scheduler operations are negligible in cost,
noise prediction across all devices is effectively parallelized. Consequently, the total latency of the
denoising process is reduced by a factor of %, achieving a theoretical speedup of p.

4.2 Communication analysis

To evaluate the communication overhead in multi-GPU environments, we compare the total com-
munication volume of three representative methods: AsyncDiff 3] with stage-wise communication,
Ring Attention [23]] used in xDiT [5] which performs layer-wise communication, and our proposed
ParaStep which operates at the step level. For clarity, we assume that the intermediate feature tensors
remain of constant size M across all layers of the noise predictor, which is typically implemented
using DiT or U-Net. We also assume the model has L attention layers and the parallelism degree is p.



Ring Attention In each layer, every GPU must gather key and value tensors from all other GPUs.
The size of the keys/values from other devices is ”p;lM , and the total communication per GPU per

layer is therefore Q%M . Across all layers, the total communication Criye per step is:
Cring = 2L(p — 1) M.

AsyncDiff Each GPU handles a pipeline stage, performing a broadcast of (p — 1) M data per step.
Since this occurs for all p stages, the total communication Cagyncpitr Per step is:

Casynepift = p(p — 1) M.

ParaStep Each cycle (of length p) involves p — 1 send-receive operations and one broadcast. The
total communication volume per cycle is (p — 1)M + (p — 1)M = 2(p — 1)M. Since one cycle
covers p denoising steps, the average communication Cpyrasep Per step is:

2p — )M
CParaStep = T

These results suggest that ParaStep significantly reduces communication overhead compared to Ring
Attention and AsyncDiff, particularly under limited-bandwidth constraints. A detailed derivation of
the communication analysis is provided in Appendix [B]

4.3 Leveraging the batching effect for non-compute-intensive models

Image and video diffusion models are typically computationally intensive, where increasing the
batch size leads to a linear increase in latency. In contrast, audio diffusion models exhibit a more
favorable batching effect. As shown in Figure[5] increasing the batch size results in only a marginal
increase in latency. By leveraging this property, we can transform the parallel execution of the noise
predictor into a batched inference process on a single device, as illustrated in Figure f] We refer to
this single-device variant as BatchStep. The degree of parallelism p in ParaStep corresponds to the
cycle length s in BatchStep. This approach achieves a theoretical reduction in per-step computation
of approximately =1, while completely eliminating the need for multi-device parallelism.

S

4.4 Dynamic degree of parallelism via TeaCache

TeaCache [22] introduces a selective mechanism
for reusing previously generated noise, using a —— AudioLDM2 10| —— CogVideox
larger stride of reuse in less critical timesteps to
improve efficiency. We extend ParaStep by inte-
grating the computation schedule of TeaCache.
Specifically, the degree of parallelism at each
timestep is determined based on the TeaCache : ? | .
schedule. Since ParaStep has low communication Batch Size Batch Size
overhead, it can achieve similar speedups to Tea- (a) AudioLDM?2 (b) CogVideoX
Cache. 'Moreover, due to the reuse-thep-predlct Figure 5: Batching effect of AudioLDM2-large
m;chamsm, our method can offer superior gener- and CogVideoX-2b.

ation quality.
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S Experiments

5.1 Settings

Base models and compared methods Diffusion model is a special case of Flow Matching [21]],
where both perform a step-by-step computation process to reconstruct the target data distribution. To
demonstrate the versatility of our method, we evaluate it on both diffusion models and Flow Matching
model. For the Flow Matching model, we adopt Stable Diffusion 3 (SD3) [4] as a representative
text-to-image model. For diffusion models, we evaluate on CogVideoX-2b [38] and Latte [26],
which are text-to-video models, as well as SVD [2]], an image-to-video model. We also include
AudioLDM2-large [25] for audio generation. For comparison, we include three state-of-the-art



Efficiency Visual Quality

Method Speedup T Latency (s) | | FID] LPIPS| PSNRT SSIM 1
SD3 (T = 50) 1 18.75 - - - -

AsyncDiff (p = 2) 1.61 11.62 711 02141 1647  0.7290
xDiT-Pipe (p = 2) 1.50 12.50 620 01943 1668  0.7498
ParaStep (p = 2) 1.68 11.16 501 01362 18.61  0.8157

Table 1: Speedup and generation quality on image model SD3, with a resolution of 1440x1440. T is
the number of inference steps, and p is the degree of parallelism.

8 1.70

Method | Latency (s) | FAD | Speedup —e— FAD 6.56x

AudioLDM2 (T = 200) 34.80 1.6653 o° 1.69

ParaStep (p = 2) 18.86 1.6651 3 a

ParaStep (p = 4) 9.86 L6716 44 3.53x% 1.68 <

BatchStep (s = 2) 17.74 16671 & L a5 2.67x

BatchStep (s = 4) 9.45 1.6699 211 vox 167
Table 3: Generation latency and FAD on 0—3 3 3 a g 166

AudioLDM?2-large. p is the degree of paral-

lelism, s is the cycle length in BatchStep. Figure 6: FAD under varying degrees of paral-

lelism using ParaStep. Model: AudioLDM2-large.

parallel methods: AsyncDiff [3], PipeFusion [6]], and Ring Attention [23]]. The number of warm-up
steps for ParaStep is set to 1 for AudioLDM2-large, 5 for SD3, 5 for SVD, 13 for CogVideoX-2b,
and 18 for Latte. The number of inference steps is set to 200 for AudioLDM?2-large and 50 for all
other models.

Dataset and evaluation metrics We use the MS-COCO 2017 [20] validation set for text-to-image
model, VBench [[12]] for text-to-video and image-to-video models, and AudioCaps [14] for audio
model, AudioLDM?2-large. For text-to-image model, we evaluate performance using Peak Signal-to-
Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity (LPIPS) [41], Structural Similarity
Index Measure (SSIM), and Fréchet Inception Distance (FID) [9]]. For text-to-video and image-to-
video models, we use PSNR, LPIPS, SSIM, and VBench (t2v, i2v) score. For audio model, we utilize
Fréchet Audio Distance (FAD) [[13]], which measures the quality of generated audio.

Hardware All experiments are conducted on a machine equipped with 8 NVIDIA 4090 GPUs
(24GB each) [28]], connected via PCIe Gen3.

5.2 Quantitative comparison with baselines

xDiT implements PipeFusion [6] (xDiT-Pipe) and Ring Attention [23] (xDiT-Ring) to accelerate
the denoising process. We compare ParaStep with xDiT-Pipe on the image model SD3. Since xDiT
does not currently support PipeFusion for video generation models, we instead compare ParaStep
with xDiT-Ring for video generation. AsyncDiff is another recent parallel method, and we evaluate
ParaStep against AsyncDiff on SVD and SD3. Both xDiT-Pipe, AsyncDiff, and ParaStep rely on
approximate methods for parallelization, which introduce varying degrees of deviation from the
original model. Although xDiT-Ring is theoretically lossless, its computational logic differs from
that of the original model, potentially leading to minor discrepancies in generated outputs. As shown
in Table [T] and Table 2] our method achieves state-of-the-art performance compared to baseline
methods on both image and video generation models. For SD3, ParaStep demonstrates the highest
speedup while maintaining superior generation quality compared to AsyncDiff and xDiT-Pipe. With
a parallelism degree of 2, ParaStep achieves a 1.68 x speedup over the original denoising process,
with a FID of only 5.01. For video generation models, ParaStep also achieves the highest speedup
among all baseline methods while maintaining the best generation quality across different degrees
of parallelism on SVD and CogVideoX-2b. These results confirm that our method is both highly
efficient and introduces minimal impact on generation quality. It is worth noting that, due to the high
communication overhead of xDiT-Ring, it provides little to no speedup in our experimental setup.



Method Efficiency Visual Quality

Speedup T Latency (s) [ | VBench{ LPIPS| PSNR{ SSIM T

SVD (14 frames, 1024x576)
SVD (T = 50) 1 51.04 42.00 - - -
AsyncDiff (p = 2) 1.37 37.36 41.75 0.0790 25.99 0.8366
AsyncDiff (p = 4) 1.80 28.43 41.56 0.1285 23.13 0.7599
ParaStep (p = 2) 1.69 30.27 41.90 0.0278 33.35 0.9347
ParaStep (p = 4) 2.49 20.49 41.74 0.0732 26.99 0.8433
Latte (16 frames, 512x512)
Latte (T" = 50) 1 32.56 73.68 - - -
xDiT-Ring (p = 2) 1.01 32.18 73.87 0.0424 32.79 0.9273
xDiT-Ring (p = 4) 1.07 30.50 73.81 0.0431 32.80 0.9266
ParaStep (p = 2) 1.43 22.80 73.76 0.0432 32.51 0.9258
ParaStep (p = 4) 1.82 17.91 73.76 0.0533 31.10 09115
CogVideoX-2b (45 frames, 512x720)

CogVideoX (T' = 50) 1 91.89 76.95 - - -
xDiT-Ring (p = 2) 0.86 106.68 76.79 0.0570 32.24 0.9284
xDiT-Ring (p = 4) 0.98 93.44 76.66 0.0817 29.53 0.9028
ParaStep (p = 2) 1.47 62.50 76.97 0.0213 37.57 0.9642
ParaStep (p = 4) 1.93 47.66 76.74 0.0359 34.34 0.9505

Table 2: Comparison of speedup and generation quality across four video generation models using
different parallel methods.

Method | Latency (s) | PSNR T L 20 17ex Speedup e SSIM___— |10
TeaCache-slow 52.25 32.25 e L R T et
TeaCache-fast 36.19 24.42 Q1.0 08 R
ParaStep-slow 52.61 35.76 Dos 0.7
ParaStep-fast 37.27 25.59 0.0 06

2% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
Ratio of Warm-up Steps (%)

Table 4: Extend ParaStep by integrating the .
computation schedule of TeaCache to achieve ~ Figure 7: Impact of the number of warm-up steps
superior generation quality. on the speedup and generation quality of ParaStep.

Degree of parallelism: 2. Model: CogVideoX-2b.

5.3 Effect of BatchStep

We compare the generation latency and FAD of ParaStep and BatchStep on AudioLDM2-large,
with the number of warm-up steps set to 1. As shown in Table [3] both ParaStep and BatchStep
achieve acceleration with only a minor degradation in generation quality. Notably, since BatchStep
transforms the parallel execution of the noise predictor into a batched inference process on a single
device, it eliminates the need for inter-device communication. As a result, BatchStep achieves greater
acceleration than ParaStep.

5.4 Performance breakdown

To demonstrate that the observed speedup

achieved by ParaStep primarily stems from Method | Total (s) Comp. (s) Comm. (s)
improved communication efficiency, we con-  SVD 51.04 51.04 _
ducted performance breakdown on the SVD  AsyncDiff (p = 2) | 39.30 30.71 8.59
model. Specifically, we measured both the  PparaStep (p = 2) 30.52 30.42 0.10
total latency and the communication-related  AsyncDiff (p = 4) | 31.30 21.01 10.29
latency for AsyncDiff and our proposed  ParaStep (p =4) | 20.08 19.94 0.14

ParaStep. As shown in the Table[5] ParaStep
exhibits significantly lower communication la-
tency compared to AsyncDiff, which directly
contributes to its higher overall speedup.

Table 5: Comparison of total latency and breakdown
into computation and communication times across
different parallel settings.



5.5 Ablation studies

Scalability of our method We evaluate the scalability of ParaStep on AudioLDM2-large with a
warm-up step count of 1. As shown in Figure [6] ParaStep achieves a 6.56x speedup at a parallelism
degree of 8, with only a 0.02 increase in FAD, demonstrating that our method can effectively scale to
high degrees of parallelism on AudioLDM?2-large. Additional scalability evaluations on other models
are provided in Appendix [E.2}

Impact of warm-up steps The larger the number of warm-up steps, the fewer the number of
parallelizable steps. Due to Amdahl’s law, the overall speedup of ParaStep is limited by: ﬁ,

where m denotes the ratio of warm-up steps and p represents the degree of parallelism.

However, using too few warm-up steps leads to a degradation in generation quality, as the initial
denoising steps are more sensitive to prediction errors. As shown in Figure [/} setting the warm-
up ratio to 30% offers a favorable trade-off, achieving strong generation performance with only
a moderate reduction in speedup. Increasing the ratio from 30% to 100% yields only marginal
improvements in generation quality, but causes a substantial drop in acceleration.

Extending ParaStep with TeaCache By integrating the computation schedule of TeaCache into
ParaStep, our method achieves superior generation quality compared to TeaCache, with only a
small overhead from communication, as shown in Table E} Notably, TeaCache-fast adopts a more
aggressive reuse schedule than TeaCache-slow. Similarly, ParaStep-slow refers to the integration
of the TeaCache-slow schedule into ParaStep, while ParaStep-fast extends ParaStep with the more
aggressive TeaCache-fast schedule.

6 Conclusion

In this work, we propose ParaStep, a novel parallelization approach for accelerating diffusion
model inference. By leveraging a reuse-then-predict mechanism, ParaStep significantly reduces
communication overhead while preserving high generation quality. Our approach is grounded in
the observation that adjacent denoising steps often exhibit strong similarity, allowing us to bypass
costly computations without substantial performance degradation. We further extend this approach
with a single-device variant, BatchStep, which transforms parallel execution into efficient batched
inference for non-compute-intensive models, such as audio diffusion models. Extensive experimental
evaluations confirm that ParaStep delivers superior speedup across diverse modalities, including
image, video, and audio generation, while maintaining competitive quality metrics.
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Appendix

A Round-based implementation of ParaStep

Algorithm 1 Round-based implementation of ParaStep

Require: Number of inference steps T, degree of parallelism p, rank of GPU rank
Ensure: Final output x,

1: Initialize noisy sample: x7 ~ N'(0,T)

2: Initialize round counter: round < 0

3:fort=T,T—1,...,1do

4 if t € warmup_steps then > Perform the original computation process during warm-up steps
5 Compute noise: €¢; = eg(xy, )
6: Cache noise: €cache < €+
7 Update sample: x;_1 = Scheduler(xy, t, ¢;)
8 else > Perform the ParaStep computation process in non-warm-up steps
9: if rank = round then
10: Compute noise: €; = eg(x¢, t)
11: Cache noise: €cache < €¢
12: if rank # 0 then
13: Send ¢; to GPU 0
14: end if
15: else
16: Reuse cached noise: €; < €cache
17: if rank = 0 then
18: Receive ¢; from GPU round
19: end if
20: end if
21: Update sample: x;_1 = Scheduler(xy, t, ¢;)
22: if round = p — 1 then
23: Broadcast x;_; from GPU O to all GPUs
24: end if
25: Update round counter: round < (round + 1) mod p
26: end if
27: end for

28: return X

We formalize ParaStep with a round-based algorithm, presented in Algorithm [T} Each GPU is
assigned a unique identifier rank, and a variable round designates the current master GPU. Assuming
a parallelism degree of p, ParaStep operates in cycles of length p. The master GPU is the one whose
rank matches the current round, and the root GPU is designated as rank = 0.

In each round, the master GPU invokes the noise predictor €y to estimate ¢;, while all other GPUs
skip this computation. The predicted noise is then sent to the root GPU, which uses it to compute the
corresponding noisy sample via the scheduler. In the final round of each cycle (i.e., round = p — 1),
the root GPU obtains the last noisy sample and broadcasts it to all GPUs.

Each GPU performs one forward pass of the noise predictor per cycle. Since scheduler operations are
negligible in cost, noise prediction across all devices is effectively parallelized. Consequently, the
total latency of the denoising process is reduced by a factor of p, achieving a theoretical speedup of p.

B Detailed derivation of communication analysis

In this section, we provide a more detailed derivation of the communication volumes for the three
parallelism strategies discussed in Section Ring Attention, AsyncDiff, and ParaStep. We
assume that the intermediate feature tensors remain of constant size M across all layers of the noise
predictor, and that the model contains L attention layers. The parallelism degree is denoted as p.
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B.1 Ring Attention

In Ring Attention [23], the keys and values on each GPU are split into p partitions, each of size %M .

Before each attention operation, GPUs must gather the keys and values from all other GPUs in a
ring-style communication pattern to obtain the complete set of keys and values.

For each GPU, this process involves:

Gathering p — 1 partitions, each of size %M , for both keys and values. - The total communication
volume per GPU per layer is therefore:

—1 -1 20p—1
P m (keys) + P m (values) = MM
p p P

Since this communication occurs in every attention layer, the total communication volume per GPU
per step is:
2(p—1)

CRing, per GPU — M- L.

With p GPUs, the total communication volume across all GPUs per step is:

Cring = 2L(p — 1) M.

B.2 AsyncDiff

In AsyncDiff [3]], the model is divided into p pipeline stages, each assigned to a separate GPU. In each
step, every stage (or GPU) must broadcast its outputs to all other GPUs, resulting in a communication
volume of:

(p — 1) M (per GPU per step).

Since the model contains p stages, the total communication volume per step across all GPUs is:

CAsyncDiff = p(p - 1)M

B.3 ParaStep

ParaStep adopts a round-based communication pattern, where each cycle contains p steps. In each
cycle:

1. Noise transfer: Each GPU (except for GPU 0) sends its predicted noise € to GPU 0, resulting
in:
(p — 1) M (noise transfer per cycle).

2. Sample broadcast: In the final step of each cycle, GPU 0 broadcasts the predicted noisy
sample x to all other GPUs, leading to:

(p — 1) M (sample broadcast per cycle).

The total communication volume per cycle is therefore:

2(p—1)M.

Since one cycle covers p denoising steps, the average communication volume per step is:
20— )M
CParaSlep = - -
p
C Limitations

The main limitations of our method are as follows:

Firstly, ParaStep is a parallelization method, which requires additional computational resources to
achieve speedup, effectively trading compute for efficiency.
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Method \ Speedup T Latency (s) | \ VBench1 LPIPS] PSNR{ SSIM 1T

HunyuanVideo (T=50) 1 27.35 72.93 - - -

xDiT-Ring (p = 2) 1.08 25.22 72.89 0.0071 37.04 0.9629
xDiT-Ring (p = 4) 1.07 25.45 72.89 0.0071 37.04 0.9629
ParaStep (p = 2) 1.79 15.28 73.00 0.0175 34.24 0.9482
ParaStep (p = 4) 2.67 10.25 72.77 0.0468 30.11 0.9075

Table 6: Speedup and generation quality on HunyuanVideo.

Secondly, ParaStep replicates the entire noise predictor across all GPUs, which means it cannot
reduce the per-GPU memory consumption of the noise predictor. A typical diffusion pipeline consists
of several components, including a text encoder, a noise predictor (e.g., DiT or U-Net), and a VAE,
among others. Among these, the text encoder is often the primary memory bottleneck. Unlike
the noise predictor, the text encoder is not replicated; instead, it is partitioned into multiple stages
distributed across devices, thereby reducing memory usage on each GPU.

D Societal impacts

We propose ParaStep, a novel parallelization approach for accelerating diffusion model inference.
ParaStep achieves superior generation quality compared to state-of-the-art parallelization methods,
while delivering greater speedup through lightweight, step-wise communication.

ParaStep can be applied in commercial settings to accelerate compute-intensive diffusion models,
such as vision-based models, thereby making diffusion technologies more accessible to users and
researchers without access to expensive, data center—scale infrastructure. For non-compute-intensive
diffusion models, our proposed variant BatchStep enables speedup on a single device, offering a
nearly free performance gain with minimal hardware cost.

E Supplementary experiments

E.1 Using ParaStep to accelerate HunyuanVideo

We compare the speedup and generation quality of ParaStep and xDiT-Ring on HunyuanVideo. Since
HunyuanVideo requires more GPU memory than the 24GB capacity of an NVIDIA 4090, we apply
quantization to reduce memory consumption. In this experiment, each video contains 5 frames with a
resolution of 180x180.

As shown in Table [6] ParaStep achieves a 2.67x speedup compared to the original model, with a
PSNR of 30.01, indicating that the generated results are highly similar to those of the original model.
Notably, when the degree of parallelism is set to 2, the VBench score of ParaStep is even higher than
that of the original model.

Although xDiT-Ring is theoretically lossless, its computational logic differs from that of the original
model, potentially leading to minor discrepancies in generated outputs. As a result, the generation
quality of xDiT-Ring is generally better than that of ParaStep. However, the significant communication
overhead of xDiT-Ring severely limits its speedup, achieving only a 1.08x improvement, which is
substantially lower than that of ParaStep.
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E.2 Scalability of ParaStep on SD3, SVD, CogVideoX-2b, and Latte

We evaluate the speedup and generation quality of ParaStep under varying degrees of parallelism
on SD3, SVD, CogVideoX-2b, and Latte. The number of warm-up steps for ParaStep is set to 5 for
SD3, 5 for SVD, 13 for CogVideoX-2b, and 18 for Latte, with the number of inference steps fixed at
50. As shown in Figure[§|and Figure 0] with a parallelism degree of 8, ParaStep achieves a 4.08x
speedup on SD3 with a FID of only 11.08, and a 3.88x speedup on SVD with a minor VBench score
drop of less than 2. However, for CogVideoX-2b and Latte, the speedup is less significant, as shown
in Figure [I0]and Figure [T} due to the larger number of warm-up steps required for these models.

E.3 Comparison with single-device efficient inference approach

Single-device efficiency methods such as DeepCache can reduce the latency of diffusion models
without requiring additional computational resources. However, directly caching used in DeepCache
may cause a significant degradation in generation quality. In contrast, our ParaStep, based on the
Reuse-then-Predict mechanism, offers a balanced trade-off by leveraging additional computational
resources to achieve higher speedups with minimal quality loss.

To assess the efficiency of ParaStep, we compare it against both DeepCache and AsyncDiff on the
SVD model, which adopts the deterministic EulerDiscreteScheduler. We denote the cache interval in
DeepCache as s, and the degree of parallelism in AsyncDiff and ParaStep as p. As shown in Table
ParaStep consistently outperforms both baselines in terms of generation quality and latency.

E.4 Visualization

We visualize the outputs of AsyncDiff, xDiT-Pipe, and ParaStep on SD3. The number of inference
steps is set to 50, with a resolution of 1440x1440. As shown in Figure [I2] ParaStep demonstrates
superior generation quality compared to AsyncDiff and xDiT-Pipe.

In the first row of Figure[I2] compared to the original diffusion model, AsyncDiff generates an extra
hand, while xDiT-Pipe fails to generate a fork and a water cup. In the second row, the logo in the
right corner of the bus generated by AsyncDiff differs from that of the original model, and the bag
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Method | Latency (s) | | LPIPS| PSNRT SSIM 1t

SVD (T' = 50) 52.23 - - -

DeepCache (s = 2) 36.42 0.0399 32.7247 09155
DeepCache (s = 4) 26.90 0.0847 264912 0.8415
DeepCache (s = 6) 23.75 0.1397 23.1894  0.7728
DeepCache (s = 8) 2224 0.1973 19.9736  0.7160
AsyncDiff (p = 2) 39.28 0.0861 24.0769  0.8328
AsyncDiff (p = 4) 29.65 0.1306 21.1599  0.7505
ParaStep (p = 2) 30.61 0.0283 32.8624  0.9358
ParaStep (p = 4) 20.36 0.0751 24.9949  0.8448

Table 7: Comparison of latency and generation quality across different caching and parallelization
strategies.

Original AsyncDiff xDiT-Pipe ParaStep
PSNR=16.47 PSNR=16.68 PSNR=18.61

Figure 12: Comparison of generation quality on SD3 using competing methods. PSNR is used to
measure the similarity to the original model, with higher values indicating better quality.

generated by xDiT-Pipe is red, which is inconsistent with the original output. In the third row, both
AsyncDiff and xDiT-Pipe hallucinate an additional shower that does not appear in the original result.

In contrast, ParaStep achieves higher consistency with the original diffusion model across all exam-
ples.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions, analysis and important experiments results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix [C|
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We analyze the theoretical communication volumes of different methods, and
providing detailed derivation in Section4.2]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the experimental settings in Section[5.I] We provide the pseu-
docode of our methods in Section[Al

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The link of Anonymous repository for ParaStep is provided in Section [I]
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper specify the test details in Section[5.1} This paper does not include
training.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The test datasets in our setting is big enough (946 samples for VBench) to
perform evaluation, and we control the random seed for all of the models and methods used
in our experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the information on the computer resources in Section [5.1}
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss that our methods can be a scalable and high-performance solution
for acceleration diffusion model inference in practical environments in Appendix [D]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

12.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper provides a novel parallelism method for Diffusion models, does not
pose such risks.

Guidelines:

The answer NA means that the paper poses no such risks.

Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the works used in this paper.

Guidelines:

The answer NA means that the paper does not use existing assets.
The authors should cite the original paper that produced the code package or dataset.

The authors should state which version of the asset is used and, if possible, include a
URL.

The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The link of Anonymous repository for ParaStep is provided in Section[I} This
repository includes a README file, which provides instructions on installation, setup, and
usage.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM to assist writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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