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Abstract Hyperparameter optimization (HPO) aims to identify an optimal hyperparameter configu- 4

ration (HPC) such that the resulting model generalizes well to unseen data. Since directly 5

optimizing the expected generalization error is impossible, resampling techniques like 6

holdout validation or cross-validation are used as proxy measures in HPO. However, this 7

implicitly assumes that the HPC minimizing validation error will also yield the best true 8

generalization performance. Given that our inner validation error estimate is inherently 9

stochastic and depends on the resampling, we study: Can excessive optimization of the vali- 10

dation error lead to a similarly detrimental effect as excessive optimization of the empirical 11

risk of an ML model? This phenomenon, which we refer to as overtuning, represents a form 12

of overfitting at the HPO level. Despite its potential impact, overtuning has received limited 13

attention in the HPO and automated machine learning (AutoML) literature. We first formally 14

define overtuning and distinguish it from related concepts such as meta-overfitting. We then 15

reanalyze large-scale HPO benchmark data, assessing how frequently overtuning occurs and 16

its practical relevance. Our findings suggest that overtuning is more common than expected, 17

although often mild. However, in 10% of cases, severe overtuning results in selecting an HPC 18

whose generalization performance is worse than the default HPC. We further examine how 19

factors such as the chosen performance metric, resampling method, dataset size, learning 20

algorithm, and optimization strategy influence overtuning and discuss potential mitigation 21

strategies. Our results highlight the need to raise awareness of overtuning, particularly in 22

the small-data regime, indicating that further mitigation strategies should be studied. 23

1 Introduction 24

Hyperparameter optimization (HPO) is a fundamental concept in modern machine learning (ML) 25

to efficiently optimize the predictive performance of ML models and complex pipelines (Feurer and 26

Hutter, 2019; Bischl et al., 2023), the latter being popular to create full AutoML systems. While 27

resampling-based estimates, such as validation-set-holdout or cross-validation (CV), are commonly 28

used to construct the objective function in HPO, their stochastic nature can lead to surprising effects 29

on unseen test data (Figure 1). In particular, aggressive optimization of noisy validation scores 30

may result in choosing a hyperparameter configuration (HPC) that performs worse on unseen 31

data (Ng, 1997; Cawley and Talbot, 2010; Makarova et al., 2021) – a phenomenon we refer to as 32

overtuning. Despite its potential adverse consequences, and although some authors have touched 33

upon this topic in the last 25 years, overtuning has received limited attention in the HPO and 34

AutoML literature and is somewhat underexplored. This paper aims to fill this gap by formally 35

defining overtuning and empirically investigating its prevalence and impact. 36

Our contributions are as follows: 1) We provide a formal definition of overtuning in HPO, 37

distinguishing it from related concepts such as meta-overfitting and test regret. 2) We reanalyze 38

large-scale HPO benchmark data to quantify how frequently overtuning occurs and assess its 39

practical significance. 3) Through mixed model analyses, we examine how overtuning is influenced 40

by the choice of performance metric, resampling method, dataset size, learning algorithm, and 41

optimization strategy. 4) Finally, we propose and discuss potential mitigation strategies to reduce 42

the risk of overtuning and its extent. 43
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Figure 1: HPO curves from Grinsztajn et al. (2022). Validation performance of incumbents in blue, test

performance in orange. From left to right: Ideal, meta-overfitting, benign overtuning, severe

overtuning. Ribbons represent standard errors.

2 Problem Statement 44

Background and notation follows Bischl et al. (2023). The goal of supervised ML is to fit a model 45

given n observations, each sampled from a data generating process Pxy , so that it generalizes well 46

to new observations from the same data generating process. An ML learning algorithm or inducer 47

I configured by a hyperparameter configuration λ ∈ Λ maps a data set D to a model f̂ 48

I : D×Λ → H, (D,λ) 7→ f̂ ,

where D :=
⋃

n∈N(X × Y)n is the set of all data sets. In the following, we are concerned with the 49

generalization error (GE) of an inducer I configured by a HPC λ ∈ Λ defined as 50

EDtrain∼Pn
xy ,(x,y)∼Pxy

[L(y, Iλ(Dtrain)(x))] , (1)

given a training set Dtrain of size ntrain and a loss function L with expectation over data set Dtrain 51

sampled fromPn
xy and test sample (x, y) sampled fromPxy . We estimate the GE via ĜE(I,λ,J , L) 52

based on a resampling J = ((Jtrain,1, Jval,1), . . . , (Jtrain,B, Jval,B)) with B splits, which leads to 53

the general HPO problem: 54

λ∗ ∈ argmin
λ∈Λ

ĜE(I,λ,J , L). (2)

Here Λ = Λ1 × . . .×Λl is the search space containing all hyperparameters for optimization and 55

their ranges where Λi is a bounded subset of the domain of the ith hyperparameter. The search 56

space may include numeric, integer, and categorical hyperparameters. Hierarchical search spaces 57

can arise when the validity of certain hyperparameters depends on the values of others. 58

An optimizer sequentially evaluates the ordered sequence of HPCs (λ1, . . .λT )with total budget 59

T – we call such a sequence a “trajectory”.
1
The ordered incumbent sequence is (λ∗

1, . . . ,λ
∗
T ). 60

Here, each λ∗
t is the validation optimal HPC, if we restrict the selection to the trajectory (λ1, . . .λt) 61

up to time point t: 62

λ∗
t := argmin

λ∈{λ1,...λt}
ĜE(I,λ,J , L).

We denote the validation error of an incumbent λ∗
t as v̂al(λ

∗
t ) := ĜE(I,λ∗

t ,J , L). We can further 63

denote the true GE of such an optimal λ∗
t (fixing the concrete data set Dtrain at hand) as: 64

test(λ∗
t ) := GE(I,λ∗

t ,Dtrain, L) := E(x,y)∼Pxy

[
L(y, Iλ∗

t
(Dtrain)(x))

]
.

We can estimate true GE unbiasedly via another holdout test set or in a nested resampling manner: 65

t̂est(λ∗
t ) := ĜEunbiased(I,λ∗

t ,Jtest, L). 66

In this paper we are concerned how we can quantify the effect that overoptimizing on the 67

validation error may decrease true generalization performance of the incumbent, which we will 68

refer to as the overtuning effect. 69

1

We use brackets (. . .) to denote an ordered sequence, whereas {. . .} denotes an unordered set.
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3 Characterizing the Overtuning Effect 70

Given a sequence of incumbents, (λ∗
1, . . . ,λ

∗
t ), we are interested in whether there exists a previous 71

incumbent λ∗
t′ ∈ {λ∗

1, . . . ,λ
∗
t }, for which test(λ∗

t′) < test(λ∗
t ) and, by construction, v̂al(λ∗

t′) ≥ 72

v̂al(λ∗
t ). In other words, have we already observed an incumbent λ∗

t′ that has lower true GE than 73

the actual incumbent λ∗
t at time point t? And would stopping the HPO process early or choosing 74

the incumbent differently have resulted in lower GE? Based on these questions, we introduce the 75

following definition of overtuning and contrast it with meta-overfitting and test regret. 76

Definition 3.1. Given a trajectory (λ1, . . . ,λT ), we define for each time point 1 ≤ t ≤ T : 77

overtuning: ott(λ1, . . . ,λt, . . . ,λT ) = test(λ∗
t )− min

λ∗
t′∈{λ

∗
1,...,λ

∗
t }
test(λ∗

t′) (3)

meta-overfitting: oft(λ1, . . . ,λt, . . . ,λT ) = test(λ∗
t )− v̂al(λ∗

t ) (4)

trajectory test regret: trt(λ1, . . . ,λt, . . . ,λT ) = test(λ∗
t )− test(λ†

t) (5)

oracle test regret: trt(λ1, . . . ,λt, . . . ,λT ) = test(λ∗
t )− test(λ††

t ) (6)

where λ†
t := argmin

λ∈{λ1,...,λt}
test(λ) and λ††

t := argmin
λ∈Λ

test(λ).

Overtuning measures the maximum increase in test error between the current incumbent at 78

time point t and any earlier incumbent. In contrast, trajectory test regret compares the current 79

incumbent to all HPCs seen during the search, not just past incumbents. Oracle test regret, on 80

the other hand, quantifies the gap between the current incumbent and the best possible HPC 81

in the entire search space. Since oracle test regret is generally impractical to compute, we refer 82

to trajectory test regret simply as test regret throughout. Lastly, meta-overfitting captures the 83

discrepancy between the observed validation error and the true GE. It directly follows that non-zero 84

meta-overfitting is necessary but not sufficient to observe overtuning (see Appendix B). This is also 85

visualized in Figure 1. While meta-overfitting may seem interesting, it is not central to HPO for 86

several reasons: 1) Validation-test gaps are expected due to finite data and resampling variability. 2) 87

Validation error is mainly used to rank HPCs – its absolute value does not matter. 3) The selected 88

HPC’s validation error is a biased estimate of generalization performance anyways. 4) The real 89

concern in HPO is whether we have selected a seemingly strong HPC that underperforms in true 90

generalization, missing out on a previous better alternative. 91

To make the overtuning measure commensurable across different HPO runs, potentially involv- 92

ing different tasks, performance metrics, and learning algorithms, as well as easier interpretable, it 93

is useful to scale it by the difference of the default test error (this can for example be the test error 94

of λ∗
1 = λ1 or an explicit default HPC) and the best test error observed over incumbents. 95

Definition 3.2. Given a sequence of HPC evaluations (λ1, . . . ,λt, . . .λT ), the relative overtuning 96

effect at time point t is defined as 97

õtt(λ1, . . . ,λt, . . .λT ) =
ott(λ1, . . . ,λt, . . . ,λT )

test(λ∗
1)−minλ∗

t′∈{λ
∗
1,...,λ

∗
t } test(λ

∗
t′)

(7)

This relative overtuning indicates how much worse the current test error is compared to the 98

maximum possible improvement in true generalization performance achieved by HPO. For example, 99

a value of 0 implies no overtuning, while value of 0.1 indicates a 10% loss in test performance 100

made during HPO due to overtuning. In other words, without overtuning, our test performance 101

could have been 10% better compared to this reference of potential test performance improvement. 102

Values of 1 and above imply that overtuning has resulted in no improvement over the initial test 103

error, and we lost all HPO progress and HPO even degraded generalization performance. 104
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4 Related Work 105

We discuss related work concerned with notions of overtuning in HPO. An extended discussion 106

is available in Appendix C. Mitigation strategies are discussed in Section 7. Cawley and Talbot 107

(2010) explore overfitting in model selection, highlighting that criteria like CV estimates of GE 108

have a bias and variance due to finite data. High-variance selection criteria can lead to models that 109

excel on validation data but fail to generalize – an observation consistent with our definition of 110

overtuning, although Cawley and Talbot (2010) do not formally define or quantify it. Their synthetic 111

experiments show that validation performance can improve while test performance deteriorates. 112

In real-world settings evidence is limited and they note that a more flexible kernel in kernel ridge 113

regression may overfit validation data compared to a simpler alternative. 114

Ng (1997) critiques the common practice of selecting models based solely on validation error, 115

noting that the model with the lowest validation error may not have the lowest true GE. This 116

mismatch arises from the variance in the validation error estimator and the sensitivity of the true 117

GE’s conditional posterior distribution to the observed validation error conditioned on. This aligns 118

with our definition of overtuning, where validation error may improve while true GE worsens. To 119

address this, Ng (1997) proposes LOOCVCV, which estimates the GE of the best-of-n models for 120

varying n to determine how many models can be considered before overfitting to validation data 121

occurs. The final model is then chosen based on a validation performance percentile k derived 122

from the optimal n. On noisy synthetic data, LOOCVCV outperforms naïve selection, but it can be 123

overly conservative in lower-noise settings. 124

Makarova et al. (2022) propose an early stopping criterion for Bayesian Optimization (BO) in 125

HPO. We refer to Garnett (2023) for a general introduction to BO and to Feurer and Hutter (2019); 126

Bischl et al. (2023) for an introduction in the context of HPO. Their method combines a confidence 127

bound on the surrogate model’s regret and the variance of the CV estimator. This approach reduces 128

computational costs with small impact on generalization performance. They also touch on what 129

we define as overtuning, noting that gains in validation performance might not translate to test 130

improvements due to weak validation-test correlations. A prior workshop version (Makarova et al., 131

2021) highlighted this more explicitly, observing test performance drops in Elastic Net models 132

trained via SGD despite ongoing validation gains. 133

Lévesque (2018) addresses what we define as overtuning in HPO, showing empirically that 134

validation performance can improve while test performance deteriorates. In a large-scale support 135

vector machine HPO study on 118 datasets using classification error as performance metric, they 136

explore potential mitigation strategies: reshuffling resampling splits, selecting the incumbent on an 137

outer test set (Dos Santos et al., 2009; Koch et al., 2010; Igel, 2012), and selecting the incumbent 138

via the posterior mean in BO. They find that reshuffling improves generalization – especially 139

with holdout as resampling – and that posterior mean selection can further enhance performance. 140

In contrast, additionally holding out a separate selection set harms generalization. While these 141

results support the effectiveness of these strategies, overtuning itself is not formally quantified – its 142

presence is implicitly inferred from improvements in generalization. Nagler et al. (2024) extend this 143

work by demonstrating that reshuffling improves generalization even for a simple RS, analyzing its 144

effect on the validation loss surface and deriving regret bounds in the asymptotic regime. 145

Fabris and Freitas (2019) investigate overfitting in the context of AutoML, conducting experi- 146

ments with Auto-sklearn (Feurer et al., 2015) on 17 datasets using ROC AUC as the performance 147

metric. They analyze discrepancies across three data partitions: training vs. internal validation, 148

training vs. external test, and internal validation vs. external test – the latter aligning with what 149

we term meta-overfitting. Meta-overfitting is prevalent on smaller datasets (1000 observations or 150

fewer). While validation and test scores are generally well-correlated, the number of HPO iterations 151

by SMAC (Hutter et al., 2011) shows no significant correlation with the extent of meta-overfitting. 152
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5 An Empirical Analysis of Overtuning 153

To evaluate the prevalence and practical significance of overtuning in HPO, we re-analyze several 154

recent, large-scale studies, where the HPO trajectories are publicly available. Specifically, we 155

consider HPO data from the following works: FCNet (Klein and Hutter, 2019), LCBench (Zimmer 156

et al., 2021), WDTB (Grinsztajn et al., 2022), TabZilla (McElfresh et al., 2023), TabRepo (Salinas and 157

Erickson, 2024), reshuffling (Nagler et al., 2024) and PD1 (Wang et al., 2024). We selected these 158

studies because they include multiple learning algorithms, datasets, and performance metrics. 159

Importantly, each study provides both validation and test performance (estimated on an outer 160

test set), enabling an assessment of overtuning. Each study comprises the evaluation of multiple 161

HPCs for a given combination of learning algorithm, dataset, and performance metric. All studies 162

employed either random search (RS; Bergstra and Bengio 2012) or a fixed grid of HPCs, the latter 163

allowing for simulation of RS. The reshuffling study additionally includes BO runs, and runs where 164

the resampling was reshuffled and runs where models were not retrained prior to evaluating on 165

the outer test set, which are excluded from the present analysis and revisited in detail in Section 6. 166

Our empirical analysis aims to answer the questions: 1) How often does overtuning in HPO 167

occur? 2) How strong is the effect? For each HPO run, defined by a unique tuple of learning 168

algorithm, dataset, performance metric, evaluation protocol, and potentially random seed, we 169

compute the relative overtuning as defined in Definition (3.2). Note that the denominator in 170

Equation (7) can cause numerical instabilities. If the default HPC achieves the best test performance 171

over all incumbents or the improvement is small, the denominator will be zero or close to zero, 172

resulting in the fraction approaching infinity or being undefined. Therefore, when quantifying the 173

overtuning effect at a time point t, it is reasonable to only consider and average over HPO runs 174

where some improvement over the default can be observed with respect to test performance. We use 175

a threshold of ϵ = 0.001 (with the scale of metrics for, e.g., accuracy and ROC AUC ranging from 0 176

to 1). This procedure yields a distribution of relative overtuning values per study. Approximately 177

38.5% of HPO runs yield test performance improvements smaller than this threshold. 178

We visualize the empirical cumulative distribution function (ECDF) over these values in Figure 2 179

(solid black line). The analysis reveals that in approximately 60% of HPO runs, no overtuning is 180

observed. Furthermore, 70% of runs exhibit relative overtuning less than 0.1, while 90% remain 181

below 1.0. Conversely, this implies that in 10% of HPO runs, we observe severe overtuning (i.e., 182

relative overtuning greater than 1.0). Due to the large variation in the number of HPO runs across 183

studies, we also provide per-study ECDFs in Figure 2. These show substantial heterogeneity: 184

some studies, such as FCNet, display almost no overtuning, whereas others, notably reshuffling 185

and TabRepo, exhibit overtuning in over 50% of runs and severe overtuning in more than 15%. 186

Additional ECDFs stratified by learning algorithm, performance metric, and evaluation protocol 187

for each study are provided in Appendix D. A brief summary of key findings is presented below. 188

For reshuffling (Figure 3) we observe that across all learning algorithms and performance metrics, 189

overtuning is substantially mitigated when using 5x 5-fold CV, compared to a simple holdout. 190

HPO based on accuracy and ROC AUC tend to result in higher overtuning, whereas log loss 191

is generally more robust. Among the learning algorithms, the Elastic Net displays the lowest 192

sensitivity to overtuning. In contrast, more flexible models as the Funnel MLP, XGBoost and 193

especially CatBoost show substantial overtuning under holdout, although this can be largely 194

alleviated with more sophisticated resamplings. For WDTB (Figure 4), we observe that overtuning 195

is most pronounced for classification tasks evaluated using accuracy, particularly on the categorical 196

classification benchmarks. In contrast, numerical regression tasks using R2
exhibit substantially 197

lower overtuning. Among learning algorithms, tree-basedmodels such as GradientBoostingTree and 198

HistGradientBoostingTree demonstrate the greatest robustness. Neural architectures, particularly 199

the ResNet and MLP show higher overtuning, especially on classification tasks. Looking at TabZilla 200

(Figures 5, 6 7, 8), we observe that the tree-based gradient boosting algorithms are relatively robust 201
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Figure 2: ECDFs of relative overtuning over different HPO studies. y-axis starts at 0.3.

to overtuning, particularly on multiclass classification. Neural architectures including the ResNet 202

and especially the MLPs are more prone to overtuning. In general, binary classification (ROC AUC) 203

is more sensitive to overtuning than multiclass classification (log loss). For TabRepo (Figure 9), 204

we observe the similar trend that binary classification (ROC AUC) is more sensitive to overtuning 205

than multiclass classification (log loss) or regression (RMSE). Moreover, CatBoost and the two 206

neural architectures are more prone to overtuning than the other learning algorithms. For LCBench 207

(Figure 10), PD1 (Figure 11) and FCNet (Figure 12) we observe minimal overtuning but notice that 208

accuracy or classification error are more sensitive to overtuning than cross-entropy, i.e. log loss. 209

6 Modeling the Determinants of Overtuning 210

To directly investigate overtuning in HPO and identify influential factors, such as learning algo- 211

rithms, performance metrics, evaluation protocols, and optimizers, we analyzed the reshuffling 212

HPO data reported in Nagler et al. (2024) in more detail. In that study, the authors systematically 213

varied the learning algorithm (Elastic Net, Funnel MLP, XGBoost, CatBoost), performance metric 214

(accuracy, log loss, ROC AUC), dataset size (n = 500, 1000, or 5000 observations, with a fixed 215

outer test set of size 5000), and resampling method (80/20 holdout, 5-fold CV, 5x 80/20 holdout, 5x 216

5-fold CV) in a full factorial design, repeating each HPO run on ten binary classification datasets 217

(treated as data generating processes) ten times. For our analysis, we focus on results from RS with 218

a budget of 500 HPC evaluations under default non-reshuffled resampling, comprising 14400 HPO 219

runs in total. Test performance was determined by retraining the inducer configured by a given 220

HPC on all data and evaluating on the outer holdout set. For more details, see Nagler et al. (2024). 221

We investigate how overtuning is influenced by the number of HPO iterations, performance 222

metric, learning algorithm (classifier), resampling method, and dataset size. Rather than testing 223

strict hypotheses, our analysis is exploratory (Herrmann et al., 2024). Overtuning and relative 224

overtuning are computed per HPO run as defined in Definition (3.1). Since many runs show no 225

overtuning, we first fit a generalized linear mixed-effects model (GLMM) to predict the probability 226

of nonzero overtuning. The model includes random intercepts for dataset and seed, and fixed effects 227

for the performance metric, classifier, resampling method, dataset size, and a scaled HPO budget 228

(0 to 1), including a quadratic term for the budget to capture nonlinearity. We omit interaction 229

terms to keep the model simple. Results are shown in Table 1a. We observe that longer tuning 230

increases the odds of overtuning (positive main effect), but the negative quadratic term indicates a 231

diminishing effect at higher iteration counts, forming a plateau similar to an inverted U-shape. A 232

likelihood ratio test confirmed the necessity of the quadratic term (χ2(1) = 1913.90, p < 0.001). 233

Compared to the reference levels (accuracy for metric and Elastic Net for classifier), both log loss 234

and ROC AUC increase the odds of overtuning, and all classifiers increase these odds. In contrast, 235

employing more sophisticated resampling methods (especially 5x 5-fold CV compared to holdout) 236

and using more data (n = 1000 or n = 5000 observations instead of n = 500) reduces the odds. 237
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(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -1.408569 0.096734 -14.560 < 0.001
budget 2.262315 0.035965 62.900 < 0.001
budget

2
-1.495099 0.034100 -43.840 < 0.001

metric (ROC AUC) 0.724608 0.006277 115.440 < 0.001
metric (log loss) 0.222283 0.006186 35.930 < 0.001
classifier (CatBoost) 1.609866 0.007494 214.810 < 0.001
classifier (Funnel MLP) 1.200907 0.007357 163.230 < 0.001
classifier (XGBoost) 1.336699 0.007390 180.890 < 0.001
resampling (5x Holdout) -0.264233 0.007202 -36.690 < 0.001
resampling (5-fold CV) -0.290060 0.007202 -40.270 < 0.001
resampling (5x 5-fold CV) -0.481657 0.007214 -66.770 < 0.001
dataset size (1000) -0.275075 0.006229 -44.160 < 0.001
dataset size (5000) -0.640027 0.006261 -102.230 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.962e+00 1.465e-01 1.809e+01 -13.389 < 0.001
budget 3.955e-01 4.089e-02 2.616e+05 9.672 < 0.001
budget

2
-2.093e-01 3.737e-02 2.616e+05 -5.600 < 0.001

metric (ROC AUC) -2.178e-01 6.922e-03 2.616e+05 -31.463 < 0.001
metric (log loss) -7.852e-01 7.167e-03 2.616e+05 -109.548 < 0.001
classifier (CatBoost) 2.693e+00 8.887e-03 2.616e+05 302.994 < 0.001
classifier (Funnel MLP) 1.218e+00 8.855e-03 2.616e+05 137.563 < 0.001
classifier (XGBoost) 2.176e+00 9.235e-03 2.616e+05 235.615 < 0.001
resampling (5x Holdout) -3.165e-01 7.390e-03 2.616e+05 -42.831 < 0.001
resampling (5-fold CV) -3.081e-01 7.371e-03 2.616e+05 -41.793 < 0.001
resampling (5x 5-fold CV) -4.927e-01 7.530e-03 2.616e+05 -65.437 < 0.001
dataset size (1000) -1.291e-01 6.285e-03 2.616e+05 -20.549 < 0.001
dataset size (5000) -4.136e-01 6.658e-03 2.616e+05 -62.129 < 0.001

Table 1: Fixed effects results of mixed models used to analyze overtuning. RS runs, no reshuffling, test

performance of the model retrained on all data. Reference levels: accuracy (metric), Elastic

Net (classifier), holdout (resampling), 500 (dataset size).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(intercept) 3.016e-02 3.803e-03 1.076e+01 7.931 < 0.001
metric (ROC AUC) 2.148e-02 7.691e-04 1.437e+04 27.930 < 0.001
metric (log loss) -3.619e-03 7.691e-04 1.437e+04 -4.705 < 0.001
classifier (CatBoost) 2.064e-02 8.880e-04 1.437e+04 23.242 < 0.001
classifier (Funnel MLP) 1.736e-02 8.880e-04 1.437e+04 19.545 < 0.001
classifier (XGBoost) 1.154e-02 8.880e-04 1.437e+04 12.998 < 0.001
resampling (5x Holdout) -1.733e-02 8.880e-04 1.437e+04 -19.514 < 0.001
resampling (5-fold CV) -2.022e-02 8.880e-04 1.437e+04 -22.769 < 0.001
resampling (5x 5-fold CV) -2.830e-02 8.880e-04 1.437e+04 -31.868 < 0.001
dataset size (1000) -1.281e-02 7.691e-04 1.437e+04 -16.661 < 0.001
dataset size (5000) -2.562e-02 7.691e-04 1.437e+04 -33.317 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 1.082e-02 1.333e-03 1.305e+01 8.120 < 0.001
metric (ROC AUC) 1.154e-02 4.157e-04 1.437e+04 27.754 < 0.001
metric (log loss) -1.240e-04 4.157e-04 1.437e+04 -0.298 < 0.001
classifier (CatBoost) 6.822e-03 4.800e-04 1.437e+04 14.212 < 0.001
classifier (Funnel MLP) 1.215e-02 4.800e-04 1.437e+04 25.321 < 0.001
classifier (XGBoost) 4.122e-03 4.800e-04 1.437e+04 8.587 < 0.001
resampling (5x Holdout) -5.437e-03 4.800e-04 1.437e+04 -11.327 < 0.001
resampling (5-fold CV) -5.839e-03 4.800e-04 1.437e+04 -12.164 < 0.001
resampling (5x 5-fold CV) -7.362e-03 4.800e-04 1.437e+04 -15.338 < 0.001
dataset size (1000) -5.352e-03 4.157e-04 1.437e+04 -12.876 < 0.001
dataset size (5000) -1.027e-02 4.157e-04 1.437e+04 -24.696 < 0.001

Table 2: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret. RS

runs, no reshuffling, test performance of the model retrained on all data. Reference levels of

factors are: accuracy (metric), Elastic Net (classifier), holdout (resampling), 500 (dataset size).

As a follow up, we fitted a linear mixed-effects model (LMM) to predict the relative overtuning 238

as in Definition (3.2) on a logarithmic scale (to counter skewness) for cases with nonzero overtuning. 239

The LMM uses the same random and fixed effects as the GLMM, and a likelihood ratio test again 240

confirmed the need for a quadratic budget term (χ2(1) = 31.361, p < 0.001). Table 1b summarizes 241

these results. Conclusions largely remain the same as for the GLMM, i.e., using a more sophisticated 242

resampling method and more data reduces the extent of overtuning although ROC AUC and log loss 243

now overall show less nonzero relative overtuning compared to accuracy. As before, we observe 244

that longer tuning increases relative overtuning (positive main effect), but the negative quadratic 245

term indicates a diminishing effect. Finally, we fitted LLMs to predict the final meta-overfitting and 246

final test regret after 500 HPO iterations. Results in Table 2a and Table 2b show that employing 247

more sophisticated resampling methods and using larger datasets reduce both meta-overfitting and 248

test regret. These findings suggest that practitioners should prefer CV (repeated if possible) over 249

holdout validation whenever possible, particularly with small datasets. 250

To assess the effect of the optimizer (RS vs. HEBO, see Cowen-Rivers et al. 2022 vs. SMAC3, see 251

Lindauer et al. 2022), we conducted another mixed model analysis on the reshuffling data subset, 252

limited to 250 iterations (the BO budget), using ROC AUC as the performance metric (the only one 253

tracked in BO experiments). The choice of optimizer was included as a fixed effect and other random 254

and fixed effects remained the same as in the previous modeling approach. A likelihood ratio 255

test revealed a significant effect of the optimizer for both the GLMM modeling the probability of 256

nonzero overtuning and the LMM modeling the nonzero relative overtuning on log scale: χ2(2) = 257

416.14, p < 0.001 for the GLMM, and χ2(2) = 1509.7, p < 0.001 for the LMM. In the GLMM 258

(Table 3a), we observed small but significant positive coefficients for both HEBO (0.0833, z = 9.049, 259

p < 0.001) and SMAC3 (0.1881, z = 20.347, p < 0.001), compared to RS, suggesting that both BO 260

methods slightly increase the odds of nonzero overtuning. Conversely, the LMM analysis of the 261
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magnitude of overtuning (Table 3b) showed significant negative coefficients for HEBO (−0.3011, 262

t(154200) = −36.363, p < 0.001) and SMAC (−0.2581, t(154200) = −30.956, p < 0.001), 263

indicating that while BO slightly increases the likelihood of any overtuning, it substantially reduces 264

its magnitude compared to RS. Finally, based on an LMM modeling final test regret with optimizer 265

as a fixed factor (Table 4b), we found that HEBO significantly reduces test regret relative to RS 266

(−0.0021, t(14370) = −5.167, p < 0.001), suggesting that HEBO tends to identify HPCs that 267

generalize better. SMAC3 also showed a small negative coefficient (−0.0003, t(14370) = −0.691, 268

p = 0.489), but this effect is not statistically significant. 269

We also investigated the effect of early stopping in BO (Makarova et al., 2021, 2022) by comparing 270

HEBO with HEBO using early stopping on the data subset up to 250 iterations (the BO budget), 271

using 5-fold CV as the resampling method (the only setting where early stopping à la Makarova 272

et al. (2022) is directly applicable), and ROC AUC as the performance metric (the only one tracked in 273

BO experiments). We applied the same mixed model analysis framework as before. Likelihood ratio 274

tests revealed a significant effect of early stopping for both the probability of nonzero overtuning 275

(GLMM: χ2(1) = 36.077, p < 0.001) and the extent of nonzero relative overtuning on log scale 276

(LMM: χ2(1) = 10.720, p = 0.001). When including early stopping as a fixed factor (Table 5b), we 277

observed a negative coefficient (−0.27531, t(980.555) = −3.272, p = 0.001) for nonzero relative 278

overtuning on log scale indicating a mitigating effect, albeit comparably small. One reason can be 279

that this analysis is restricted to HPO runs using 5-fold CV, where we have seen that overtuning is 280

rather mild, when compared to holdout runs. Moreover, since HEBO already reduces overtuning 281

compared to RS, the additional benefit from applying early stopping can be rather incremental. 282

Last but not least, we turn to the core idea behind the reshuffling data: reshuffling the resampling 283

splits during HPO, a strategy shown to improve generalization performance, particularly in the 284

case of holdout resampling (Nagler et al., 2024). We conducted a mixed model analysis as before on 285

the reshuffling data, focusing on the larger subset of RS runs (500 iterations). A likelihood ratio 286

test indicated a significant effect of reshuffling for both the GLMM modeling the probability of 287

nonzero overtuning (χ2(1) = 152.54, p < 0.001) and the LMM modeling the nonzero relative 288

overtuning on log scale (χ2(1) = 181.10, p < 0.001). Specifically, we find that, overall, reshuffling 289

slightly increases the odds of overtuning (0.0439, z = 12.351, p < 0.001, Table 6a) as well as 290

its extent (0.0515, t(537900) = 13.458, p < 0.001, Table 6b). Nagler et al. (2024) demonstrated 291

that reshuffling can improve generalization especially when holdout is used as a resampling with 292

ROC AUC as the performance metric. When we restrict our analysis to this particular setting, 293

we observe a clear shift. For both the GLMM (Table 8a) and LMM (Table 8b), reshuffling has a 294

significant negative effect on overtuning: it strongly decreases the odds of overtuning (−0.2645, 295

z = −20.054, p < 0.001) and its extent (−0.2693, t(55480) = −23.236, p < 0.001). Moreover, 296

reshuffling significantly reduces final test regret in this setting, as shown by an LMM analysis 297

(−0.0057, t(2375) = −5.990, p < 0.001, Table 9b), indicating that it leads to the identification 298

of HPCs with better true generalization performance. We find that reshuffling actually increases 299

final meta-overfitting (0.0548, t(2375) = 25.382, p < 0.001, Table 9a). However, meta-overfitting 300

does not necessarily imply worse HPO generalization. In fact, the “hedging”’ effect of reshuffling 301

described by Nagler et al. (2024) appears strong enough to reduce both overtuning and test regret. 302

7 Mitigation Strategies 303

While the primary contribution of this paper is to highlight the issue of overtuning in HPO, we now 304

turn to a discussion of potential mitigation strategies, drawing from both Section 6 and existing 305

literature. Broadly, these strategies fall into three categories: 1) Modifying the objective function, 306

2) adjusting incumbent selection, and 3) modifying the optimizer producing the HPC trajectory. 307

The first includes methods that reduce variance or add regularization. The second includes early 308

stopping and avoiding naïve selection of the validation-optimal HPC. The third is broader and 309

includes any changes to the optimizer that produces the HPC trajectory. 310
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We have seen in our analysis of the data from Nagler et al. (2024) that larger datasets generally 311

reduce both the likelihood and severity of overtuning. While this is expected, we note that increasing 312

dataset size is often infeasible in practice. As such, overtuning remains a primary concern in small- 313

data regimes. Second, more advanced resampling strategies such as CV or repeated CV substantially 314

reduce both the frequency and extent of overtuning. These strategies, along with larger datasets, 315

also help mitigate meta-overfitting and decrease test regret, enabling HPO to more reliably identify 316

configurations that generalize well. Third, our findings suggest that BO results in less overtuning 317

than RS, although it may slightly increase meta-overfitting. This trade-off deserves further study. 318

One possible explanation is that BO more effectively identifies configurations with exceptionally 319

strong validation performance that also generalize well. Additionally, BO’s use of a surrogate 320

model may help smooth over noise in validation estimates, guiding the search toward more robust 321

regions. In noisy BO, one can select the incumbent based on the surrogate’s posterior predictive 322

distribution rather than the empirically best configuration (Picheny et al., 2013). While this was 323

not implemented in the BO runs of Nagler et al. (2024), incorporating such noise-aware techniques 324

may further reduce overtuning as briefly touched upon by Lévesque (2018). Finally, reshuffling 325

resampling splits as done in Lévesque (2018); Nagler et al. (2024) can help mitigate overtuning, 326

although its effectiveness varies across performance metrics, algorithms, and resampling methods. 327

Prior work has touched on several strategies to mitigate overtuning. Cawley and Talbot (2010) 328

briefly mention regularization, early stopping, and model averaging. For example, Cawley and 329

Talbot (2007) show that incorporating L2 regularization on lengthscale parameters in kernel methods 330

can improve generalization. However, in modern tabular learning settings, applying regularization 331

during HPO is challenging, as it requires a clear mapping between hyperparameters and model 332

complexity – something not always available. Early stopping, explored by Makarova et al. (2021, 333

2022), shows promise, but in our analysis, it did not strongly reduce overtuning. One reason could 334

be that stopping too early may prevent discovering genuinely better configurations. Another issue 335

lies in the reliability of the variance estimator used for the stopping criterion, where we know 336

that no unbiased variance estimator exists for CV performance estimates (Bengio and Grandvalet, 337

2004). Finally, a fully Bayesian treatment of hyperparameters, as presented in Williams and Barber 338

(1998) and discussed by Cawley and Talbot (2010), appears impractical for modern models due to 339

computational and modeling complexity. 340

Other mitigation strategies focus on more cautious incumbent selection, such as using a 341

dedicated selection set or applying conservative selection criteria. Several works (Dos Santos 342

et al., 2009; Koch et al., 2010; Igel, 2012; Lévesque, 2018) have explored selecting the final HPC 343

based on a separate test set. However, Lévesque (2018) report that a dedicated test set can degrade 344

generalization performance, as it reduces the data available for HPO. Similarly, ML-Plan (Mohr 345

et al., 2018) adopts a two-phase strategy: It first explores candidates using one data split and then 346

selects the most robust model via conservative GE estimates on a held-out subset. LOOCVCV (Ng, 347

1997) proposes selecting the incumbent not with the best validation error, but at an adaptively 348

chosen percentile, based on how many configurations can be evaluated before overtuning occurs. 349

While effective in noisy settings, it tends to be overly conservative in low-noise regimes and is 350

limited to decomposable pointwise metrics and i.i.d. configurations, restricting it to RS while adding 351

computational overhead. 352

We have seen that an effective and simple mitigation strategy against overtuning is using more 353

robust resampling methods like repeated CV. However, this comes with increased computational 354

cost. To balance robustness and efficiency, it may be worthwhile to revisit adaptive resampling 355

techniques (Thornton et al., 2013; Zheng and Bilenko, 2013; Bergman et al., 2024), racing (Birattari 356

et al., 2002; Lang et al., 2015) or optimal budget allocation strategies (Bartz-Beielstein et al., 2011). 357

8 Broader Impact Statement 358
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9



References 360

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics 361

Surveys, 4:40–79. 362

Arora, S. and Zhang, Y. (2021). Rip van Winkle’s razor: A simple estimate of overfit to test data. 363

Austern, M. and Zhou, W. (2020). Asymptotics of cross-validation. 364

Barros, R. C., de Carvalho, A. C. P. L. F., and Freitas, A. A. (2015). Automatic Design of Decision-Tree 365

Induction Algorithms. Springer International Publishing, Cham. 366

Bartz-Beielstein, T., Friese, M., Zaefferer, M., Naujoks, B., Flasch, O., Konen, W., and Koch, P. (2011). 367

Noisy optimization with sequential parameter optimization and optimal computational budget 368

allocation. In Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary 369

Computation, page 119–120. 370

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using 371

lme4. Journal of Statistical Software, 67(1):1—-48. 372

Bates, S., Hastie, T., and Tibshirani, R. (2024). Cross-validation: what does it estimate and how well 373

does it do it? Journal of the American Statistical Association, 119(546):1434–1445. 374

Bayle, P., Bayle, A., Janson, L., and Mackey, L. (2020). Cross-validation confidence intervals 375

for test error. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, H., editors, 376

Proceedings of the 33rd International Conference on Advances in Neural Information Processing 377

Systems (NeurIPS’20), pages 16339–16350. Curran Associates. 378

Bengio, Y. and Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation. 379

Journal of Machine Learning Research, 4:1089–1105. 380

Bergman, E., Purucker, L., and Hutter, F. (2024). Don’t waste your time: Early stopping cross- 381

validation. In Lindauer et al. (2024), pages 9/1–31. 382

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of 383

Machine Learning Research, 13:281–305. 384

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring 385

metaheuristics. In Langdon, W., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrish- 386

nan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, 387

E., and Jonoska, N., editors, Proceedings of the Genetic and Evolutionary Computation Conference 388

(GECCO’02), pages 11–18. Morgan Kaufmann Publishers. 389

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., 390

Boulesteix, A., Deng, D., and Lindauer, M. (2023). Hyperparameter optimization: Foundations, 391

algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining 392

and Knowledge Discovery, page e1484. 393

Blum, A. and Hardt, M. (2015). The ladder: A reliable leaderboard for machine learning competitions. 394

In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on Machine 395

Learning (ICML’15), volume 37, pages 1006–1014. Omnipress. 396

Breiman, L. (1984). Classification and regression trees. Routledge. 397

Cawley, G. and Talbot, N. (2010). On Overfitting in Model Selection and Subsequent Selection Bias 398

in Performance Evaluation. Journal of Machine Learning Research, 11:2079–2107. 399

10



Cawley, G. C. and Talbot, N. L. C. (2007). Preventing over-fitting during model selection via Bayesian 400

regularisation of the hyper-parameters. Journal of Machine Learning Research, 8(31):841–861. 401

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Pham, H., Dong, X., Luong, T., Hsieh, C.-J., Lu, Y., 402

and Le, Q. V. (2023). Symbolic discovery of optimization algorithms. In Oh et al. (2023). 403

Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Griffiths, R., Maraval, A., Jianye, 404

H., Wang, J., Peters, J., and Ammar, H. (2022). HEBO: Pushing the limits of sample-efficient 405

hyper-parameter optimisation. Journal of Artificial Intelligence Research, 74:1269–1349. 406

Dos Santos, E. M., Sabourin, R., and Maupin, P. (2009). Overfitting cautious selection of classifier 407

ensembles with genetic algorithms. Information Fusion, 10(2):150–162. 408

Dunias, Z. S., van Calster, B., Timmerman, D., Boulesteix, A.-L., and van Smeden, M. (2024). A 409

comparison of hyperparameter tuning procedures for clinical prediction models: A simulation 410

study. Statistics in Medicine, 43(6):1119–1134. 411

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., and Roth, A. (2015). Generalization in 412

adaptive data analysis and holdout reuse. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and 413

Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28. 414

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: The 632+ bootstrap method. 415

Journal of the American Statistical Association, 92(438):548–560. 416

Eggensperger, K., Lindauer, M., and Hutter, F. (2019). Pitfalls and best practices in algorithm 417

configuration. Journal of Artificial Intelligence Research, pages 861–893. 418

Eimer, T., Lindauer, M., and Raileanu, R. (2023). Hyperparameters in reinforcement learning and 419

how to tune them. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J., 420

editors, Proceedings of the 40th International Conference on Machine Learning (ICML’23), volume 421

202 of Proceedings of Machine Learning Research. PMLR. 422

Escalante, H., Montes, M., and Sucar, E. (2009). Particle Swarm Model Selection. Journal of Machine 423

Learning Research, 10:405–440. 424

Fabris, F. and Freitas, A. (2019). Analysing the overfit of the auto-sklearn automated machine 425

learning tool. In Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., and Sciacca, V., editors, 426

Machine Learning, Optimization, and Data Science, volume 11943 of Lecture Notes in Computer 427

Science, pages 508–520. 428

Feldman, V., Frostig, R., and Hardt, M. (2019). The advantages of multiple classes for reducing 429

overfitting from test set reuse. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of 430

the 36th International Conference on Machine Learning (ICML’19), volume 97, pages 1892–1900. 431

Proceedings of Machine Learning Research. 432

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2022). Auto-Sklearn 2.0: 433

Hands-free automl via meta-learning. Journal of Machine Learning Research, 23(261):1–61. 434

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization. In Hutter, F., Kotthoff, L., and 435

Vanschoren, J., editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 1, 436

pages 3 – 38. Springer. Available for free at http://automl.org/book. 437

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015). Efficient 438

and robust automated machine learning. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., 439

and Garnett, R., editors, Proceedings of the 29th International Conference on Advances in Neural 440

Information Processing Systems (NeurIPS’15), pages 2962–2970. Curran Associates. 441

11

http://automl.org/book


Garnett, R. (2023). Bayesian Optimization. Cambridge University Press. Available for free at 442

https://bayesoptbook.com/. 443

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outperform 444

deep learning on typical tabular data? In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, 445

K., and Oh, A., editors, Proceedings of the 35th International Conference on Advances in Neural 446

Information Processing Systems (NeurIPS’22). Curran Associates. 447

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T. K., Macià, N., Ray, B., Saeed, 448

M., Statnikov, A., and Viegas, E. (2015). Design of the 2015 ChaLearn AutoML challenge. In 2015 449

International Joint Conference on Neural Networks (IJCNN’15), pages 1–8. International Neural 450

Network Society and IEEE Computational Intelligence Society, IEEE. 451

Guyon, I., Saffari, A., Dror, G., and Cawley, G. (2010). Model selection: Beyond the 452

Bayesian/Frequentist divide. Journal of Machine Learning Research, 11:61–87. 453

Hardt, M. (2017). Climbing a shaky ladder: Better adaptive risk estimation. 454

Herrmann, M., Lange, F., Eggensperger, K., Casalicchio, G., Wever, M., Feurer, M., Rügamer, D., 455

Hüllermeier, E., Boulesteix, A.-L., and Bischl, B. (2024). Position: Why we must rethink empirical 456

research in machine learning. In Salakhutdinov et al. (2024), pages 18228–18247. 457

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2021). Meta-learning in neural networks: 458

A survey. In Lee, K. M., editor, IEEE Transactions on Pattern Analysis and Machine Intelligence’21). 459

IEEE Computer Society. 460

Huisman, M., van Rijn, J., and Plaat, A. (2021). A survey of deep meta-learning. Artificial Intelligence 461

Review, 54:4483–4541. 462

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general 463

algorithm configuration. In Coello, C., editor, Proceedings of the Fifth International Conference 464

on Learning and Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer 465

Science, pages 507–523. Springer. 466

Igel, C. (2012). A note on generalization loss when evolving adaptive pattern recognition systems. 467

IEEE Transactions on Evolutionary Computation, 17(3):345–352. 468

Ishibashi, H., Karasuyama, M., Takeuchi, I., and Hino, H. (2023). A stopping criterion for Bayesian 469

optimization by the gap of expected minimum simple regrets. In Ruiz, F., Dy, J., and van de 470

Meent, J.-W., editors, Proceedings of The 26th International Conference on Artificial Intelligence 471

and Statistics, volume 206, pages 6463–6497. 472

Klein, A. and Hutter, F. (2019). Tabular benchmarks for Joint Architecture and Hyperparameter 473

optimization. arXiv:1905.04970[cs.LG]. 474

Koch, P., Konen, W., Flasch, O., and Bartz-Beielstein, T. (2010). Optimizing support vector machines 475

for stormwater prediction. Technical Report TR10-2-007, Technische Universität Dortmund. 476

Proceedings of Workshop on Experimental Methods for the Assessment of Computational 477

Systems joint to PPSN2010. 478

Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., and Bischl, B. (2015). Automatic 479

model selection for high-dimensional survival analysis. Journal of Statistical Computation and 480

Simulation, 85:62–76. 481

12

https://bayesoptbook.com/


Larcher, C. and Barbosa, H. (2022). Evaluating models with dynamic sampling holdout in auto-ml. 482

SN Computer Science, 3(506). 483

Li, S., Li, K., and Li, W. (2023). “Why not looking backward?” A robust two-step method to 484

automatically terminate Bayesian optimization. In Oh, A., Naumann, T., Globerson, A., Saenko, 485

K., Hardt, M., and Levine, S., editors,Advances in Neural Information Processing Systems, volume 36, 486

pages 43435–43446. 487

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, 488

T., Sass, R., and Hutter, F. (2022). SMAC3: A versatile bayesian optimization package for 489

Hyperparameter Optimization. Journal of Machine Learning Research, 23(54):1–9. 490

Lindauer, M., Eggensperger, K., Garnett, R., Vanschoren, J., and Gardner, J., editors (2024). Pro- 491

ceedings of the Third International Conference on Automated Machine Learning. Proceedings of 492

Machine Learning Research. 493

Lorenz, R., Monti, R. P., Violante, I. R., Faisal, A. A., Anagnostopoulos, C., Leech, R., and Montana, 494

G. (2016). Stopping criteria for boosting automatic experimental design using real-time fMRI 495

with Bayesian optimization. 496

Loughrey, J. and Cunningham, P. (2005). Overfitting in wrapper-based feature subset selection: The 497

harder you try the worse it gets. In Bramer, M., Coenen, F., and Allen, T., editors, Research and 498

Development in Intelligent Systems XXI, pages 33–43, London. Springer London. 499

Loya, H., Łukasz Dudziak, Mehrotra, A., Lee, R., Fernandez-Marques, J., Lane, N. D., and Wen, H. 500

(2023). How much is hidden in the NAS benchmarks? few-shot adaptation of a NAS predictor. 501

arXiv:2311.18451 [cs.LG]. 502

Lévesque, J. (2018). Bayesian Hyperparameter Optimization: Overfitting, Ensembles and Conditional 503

Spaces. PhD thesis, Université Laval. 504

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J., Krause, A., Seeger, M., and Archambeau, 505

C. (2021). Overfitting in Bayesian Optimization: An empirical study and early-stopping solution. 506

In ICLR 2021 Workshop on Neural Architecture Search. 507

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J., Krause, A., Seeger, M., and Archambeau, 508

C. (2022). Automatic termination for hyperparameter optimization. In Guyon, I., Lindauer, 509

M., van der Schaar, M., Hutter, F., and Garnett, R., editors, Proceedings of the First International 510

Conference on Automated Machine Learning. Proceedings of Machine Learning Research. 511

McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2008). Generalized, Linear, and Mixed Models. 512

Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ, 2 edition. 513

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V., Ramakrishnan, G., Goldblum, M., and 514

White, C. (2023). When do neural nets outperform boosted trees on tabular data? In Oh et al. 515

(2023), pages 76336–76369. 516

Mohr, F., Wever, M., and Hüllermeier, E. (2018). ML-Plan: Automated machine learning via 517

hierarchical planning. Machine Learning, 107(8-10):1495–1515. 518

Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of 519

resampling methods. Bioinformatics, 21(15):3301–3307. 520

13



Nagler, T., Schneider, L., Bischl, B., and Feurer, M. (2024). Reshuffling resampling splits can improve 521

generalization of hyperparameter optimization. In Proceedings of the 37th International Conference 522

on Advances in Neural Information Processing Systems (NeurIPS’24). Curran Associates. 523

Neto, E. C., Hoff, B. R., Bare, C., Bot, B. M., Yu, T., Magravite, L., Trister, A. D., Norman, T., Meyer, 524

P., Saez-Rodrigues, J., Costello, J. C., Guinney, J., and Stolovitzky, G. (2016). Reducing overfitting 525

in challenge-based competitions. 526

Ng, A. (1997). Preventing “overfitting”’ of cross-validation data. In Fisher, D., editor, Proceedings of 527

the Fourteenth International Conference on Machine Learning (ICML’97), pages 245–253. Morgan 528

Kaufmann Publishers. 529

Nguyen, T., Gupta, S., Rana, S., and Venkatesh, S. (2018). Stable bayesian optimization. International 530

Journal of Data Science and Analytics, 6:327–339. 531

Nguyen, V., Gupta, S., Rana, S., Li, C., and Venkatesh, S. (2017). Regret for expected improvement 532

over the best-observed value and stopping condition. In Zhang, M.-L. and Noh, Y.-K., editors, 533

Proceedings of the Ninth Asian Conference on Machine Learning, volume 77, pages 279–294. 534

Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors (2023). Proceed- 535

ings of the 36th International Conference on Advances in Neural Information Processing Systems 536

(NeurIPS’23). Curran Associates. 537

Paraschakis, K., Castellani, A., Borboudakis, G., and Tsamardinos, I. (2024). Confidence interval 538

estimation of predictive performance in the context of AutoML. In Eggensperger, K., Garnett, R., 539

Vanschoren, J., Lindauer, M., and Gardner, J. R., editors, Proceedings of the Third International 540

Conference on Automated Machine Learning, volume 256, pages 4/1–14. 541

Picheny, V., Wagner, T., and Ginsbourger, D. (2013). A benchmark of Kriging-based infill criteria 542

for noisy optimization. Structural and Multidisciplinary Optimization, 48:607–626. 543

Probst, P., Boulesteix, A., and Bischl, B. (2019). Tunability: Importance of hyperparameters of 544

machine learning algorithms. Journal of Machine Learning Research, 20(53):1–32. 545

Quinlan, J. and Cameron-Jones, R. (1995). Oversearching and layered search in empirical learning. 546

In Mellish, C., editor, Proceedings of the 14th International Joint Conference on Artificial Intelligence 547

(IJCAI’95), page 1019–1024. Morgan Kaufmann Publishers. 548

Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. Journal 549

of Machine Learning Research, 3:1371–1382. 550

Riley, R. D., Snell, K. I. E., Martin, G. P., Whittle, R., Archer, L., Sperrin, M., and Collins, G. S. (2021). 551

Penalization and shrinkage methods produced unreliable clinical prediction models especially 552

when sample size was small. Journal of Clinical Epidemiology, 132:88–96. 553

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and Schmidt, L. (2019). A 554

meta-analysis of overfitting in machine learning. In Wallach, H., Larochelle, H., Beygelzimer, A., 555

d’Alche Buc, F., Fox, E., and Garnett, R., editors, Proceedings of the 32nd International Conference 556

on Advances in Neural Information Processing Systems (NeurIPS’19). Curran Associates. 557

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., 558

Bernstein, M., Berg, A., and Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. 559

International Journal of Computer Vision, 115(3):211–252. 560

14



Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors 561

(2024). Proceedings of the 41st International Conference on Machine Learning (ICML’24), volume 562

251 of Proceedings of Machine Learning Research. PMLR. 563

Salinas, D. and Erickson, N. (2024). TabRepo: A large scale repository of tabular model evaluations 564

and its AutoML applications. In Lindauer et al. (2024), pages 19/1–30. 565

Schulz-Kümpel, H., Fischer, S., Hornung, R., Boulesteix, A.-L., Nagler, T., and Bischl, B. (2025). 566

Constructing confidence intervals for ’the’ generalization error – a comprehensive benchmark 567

study. 568

Song, X., Tian, Y., Lange, R. T., Lee, C., Tang, Y., and Chen, Y. (2024). Position: Leverage foundational 569

models for black-box optimization. In Salakhutdinov et al. (2024), pages 46168–46180. 570

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the 571

Royal Statistical Society: Series B (Methodological), 36(2):111–133. 572

Thornton, C., Hutter, F., Hoos, H., and Leyton-Brown, K. (2013). Auto-WEKA: combined selection 573

and Hyperparameter Optimization of classification algorithms. In Dhillon, I., Koren, Y., Ghani, 574

R., Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., and Uthurusamy, R., editors, The 19th 575

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13), pages 576

847–855. ACM Press. 577

Van Calster, B., van Smeden, M., De Cock, B., and Steyerberg, E. W. (2020). Regression shrinkage 578

methods for clinical prediction models do not guarantee improved performance: Simulation 579

study. Statistical Methods in Medical Research, 29(11):3166–3178. 580

van Rijn, J. and Hutter, F. (2018). Hyperparameter importance across datasets. In Guo, Y. and 581

Farooq, F., editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge 582

Discovery and Data Mining (KDD’18), pages 2367–2376. ACM Press. 583

Wainer, J. and Cawley, G. (2017). Empirical Evaluation of Resampling Procedures for Optimising 584

SVM Hyperparameters. Journal of Machine Learning Research, 18:1–35. 585

Wang, Z., Dahl, G. E., Swersky, K., Lee, C., Nado, Z., Gilmer, J., Snoek, J., and Ghahramani, Z. (2024). 586

Pre-trained Gaussian processes for Bayesian optimization. Journal of Machine Learning Research, 587

25(212):1–83. 588

Williams, C. K. I. and Barber, D. (1998). Bayesian classification with Gaussian processes. IEEE 589

Transactions on Pattern Analysis and Machine Intelligence, 20(12):13420–1351. 590

Wilson, J. T. (2024). Stopping Bayesian optimization with probabilistic regret bounds. In Globerson, 591

A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Advances in 592

Neural Information Processing Systems, volume 37, pages 98264–98296. 593

Yang, C., Akimoto, J., Kim, D., and Udell, M. (2019). OBOE: Collaborative filtering for AutoML 594

model selection. In Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., and Karypis, G., editors, 595

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data 596

Mining (KDD’19), pages 1173–1183. ACM Press. 597

Yang, C., Fan, J., Wu, Z., and Udell, M. (2020). AutoML pipeline selection: Efficiently navigating the 598

combinatorial space. In Tang, J. and Prakash, B., editors, Proceedings of the 26th ACM SIGKDD 599

International Conference on Knowledge Discovery and Data Mining (KDD’20). ACM Press. 600

15



Yao, H., Huang, L.-K., Zhang, L., Wei, Y., Tian, L., Zou, J., Huang, J., and Li, Z. . (2021). Improving 601

generalization in meta-learning via task augmentation. In Meila, M. and Zhang, T., editors, 602

Proceedings of the 38th International Conference on Machine Learning (ICML’21), volume 139 of 603

Proceedings of Machine Learning Research, pages 11887–11897. PMLR. 604

Zheng, A. and Bilenko, M. (2013). Lazy paired hyper-parameter tuning. In Rossi, F., editor, 605

Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), pages 606

1924–1931. 607

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-Pytorch: Multi-fidelity metalearning for 608

efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 609

43:3079–3090. 610

Šinkovec, H., Heinze, G., Blagus, R., and Geroldinger, A. (2021). To tune or not to tune, a case 611

study of ridge logistic regression in small or sparse datasets. BMC Medical Research Methodology, 612

21(1):199. 613

16



Submission Checklist 614

1. For all authors. . . 615

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 616

contributions and scope? [Yes] [Definitions are provided in Section 3, the empirical analysis 617

in Section 5, the modeling of determinants in Section 6 and mitigation strategies are 618

discussed in Section 7]. 619

(b) Did you describe the limitations of your work? [Yes] [As this paper does not introduce a new 620

algorithm or method but instead focuses on establishing formal definitions and reanalyzing 621

existing HPO studies, we did not include a dedicated limitation section but instead discuss 622

limitations directly where applicable, e.g., in Section 6 we state that we did not include 623

interaction effects in the mixed models. Regarding our definition of overtuning, we discuss 624

limitations in Appendix A.] 625

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Section 8]. 626

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 627

https://2022.automl.cc/ethics-accessibility/ [Yes] [The paper conforms to them.] 628

2. If you ran experiments. . . 629

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench- 630

marks, data (sub)sets, available resources)? [N/A] [We rely on data of various, published 631

works that conducted HPO runs and published this data. We do not compare methods.] 632

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 633

search spaces, hyperparameter tuning)? [N/A] [We rely on data of various, published works 634

that conducted HPO runs and published this data. Our analyses of this data does not require 635

data splits, pre-processing, or hyperparameter tuning] 636

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 637

for the impact of randomness in your methods or data? [N/A] [We rely on data of various, 638

published works that conducted HPO runs and published this data. With the exception of 639

additional runs for Section 6 we did not run any experiments but relied on the experiments 640

of existing published work.] 641

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or 642

splits)? [Yes] [Mixed model analyses include standard error estimates of coefficients.] 643

(e) Did you report the statistical significance of your results? [Yes] [Mixed model analyses 644

include measures of statistical significance.] 645

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] [We rely on 646

data of various, published works that conducted HPO runs and published this data.] 647

(g) Did you compare performance over time and describe how you selected the maximum 648

duration? [N/A] [We perform an analysis of the overtuning found in HPO runs of various 649

published works. The authors of these works determined the overall HPO budget which we 650

cannot influence in hindsight. In Section 6 we model overtuning as an anytime metric.] 651

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 652

gpus, internal cluster, or cloud provider)? [Yes] [See Appendix F.] 653

(i) Did you run ablation studies to assess the impact of different components of your approach? 654

[N/A] [We rely on data of various, published works that conducted HPO runs and published 655

this data. We do not introduce a new algorithm or method.] 656

17

https://2022.automl.cc/ethics-accessibility/


3. With respect to the code used to obtain your results. . . 657

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 658

results, including all requirements (e.g., requirements.txt with explicit versions), random 659

seeds, an instructive README with installation, and execution commands (either in the 660

supplemental material or as a url)? [Yes] [See Appendix F.] 661

(b) Did you include a minimal example to replicate results on a small subset of the experiments 662

or on toy data? [Yes] [See Appendix F.] 663

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 664

and understand your code? [Yes] [See Appendix F.] 665

(d) Did you include the raw results of running your experiments with the given code, data, and 666

instructions? [Yes] [See Appendix F.] 667

(e) Did you include the code, additional data, and instructions needed to generate the figures 668

and tables in your paper based on the raw results? [Yes] [See Appendix F.] 669

4. If you used existing assets (e.g., code, data, models). . . 670

(a) Did you cite the creators of used assets? [Yes] [We cite the creators of used assets where 671

applicable in Section 5 and Section 6.] 672

(b) Did you discuss whether and how consent was obtained from people whose data you’re 673

using/curating if the license requires it? [Yes] [Used existing assets are leased under licenses 674

that permit usage.] 675

(c) Did you discuss whether the data you are using/curating contains personally identifiable in- 676

formation or offensive content? [N/A] [Used existing assets do not contain such information 677

or content.] 678

5. If you created/released new assets (e.g., code, data, models). . . 679

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes] 680

[See Appendix F.] 681

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 682

GitHub or Hugging Face)? [Yes] [See Appendix F.] 683

6. If you used crowdsourcing or conducted research with human subjects. . . 684

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 685

cable? [N/A] [We did not use crowdsourcing or conducted research with human subjects.] 686

(b) Did you describe any potential participant risks, with links to Institutional Review Board 687

(irb) approvals, if applicable? [N/A] [We did not use crowdsourcing or conducted research 688

with human subjects.] 689

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 690

on participant compensation? [N/A] [We did not use crowdsourcing or conducted research 691

with human subjects.] 692

7. If you included theoretical results. . . 693

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We do not include 694

theoretical results.] 695

18



(b) Did you include complete proofs of all theoretical results? [N/A] [We do not include 696

theoretical results.] 697

19



A Limitations 698

Overtuning and relative overtuning, as defined in Definition 3.1 and Definition 3.2, quantify how 699

much better HPO could have performed if no decisions had been made based on misleading 700

validation error throughout the trajectory of evaluated HPCs. However, these metrics are not 701

designed to assess or compare the absolute generalization performance of different HPO protocols. 702

While this may seem evident, we state it explicitly for clarity. Consider two hypothetical HPO 703

protocols: 704

• Protocol A evaluates only a single configuration, λA,1 = λ∗
A,1, achieving v̂al(λ∗

A,1) = 0.3 and 705

test(λ∗
A,1) = 0.35. 706

• Protocol B in contrast evaluates t = 10 configurations, with the final incumbent λ∗
B,10 achieving 707

v̂al(λ∗
B,10) = 0.18 and test(λ∗

B,10) = 0.22. 708

Suppose Protocol B exhibits a final overtuning of ot10 = 0.02, implying that an earlier incumbent 709

had a true GE of 0.20. Protocol A, by definition, cannot exhibit overtuning since it only evaluates a 710

single configuration. Nevertheless, Protocol B clearly leads to better generalization performance 711

(0.22 vs. 0.35), and should be preferred when the primary concern is generalization – even though 712

it exhibits overtuning. However, the presence of overtuning in Protocol B is still informative, as it 713

indicates that even better generalization performance was theoretically achievable. 714

Furthermore, relative overtuning (Definition 3.2) can be sensitive to the scale of possible 715

performance improvements. If the test error difference between the default or first evaluated HPC 716

and the best observed incumbent is small, the relative overtuning may appear disproportionately 717

large. This reflects the metric’s design – to measure the relative gain missed due to overtuning – but 718

it can lead to inflated values in scenarios where HPO yields only marginal improvements. We do not 719

investigate in this work why such marginal improvements might occur and how improvements on 720

the validation set can generalize to improvements on an outer test set but note that meta-overfitting 721

(Definition 3.1) is a suitable metric to assess this. Possible explanations include low tunability 722

(Probst et al., 2019; van Rijn and Hutter, 2018) of the learning algorithm, or overly constrained 723

search spaces where all configurations perform similarly. In such cases, high relative overtuning 724

may simply reflect the limited room for improvement rather than poor HPO generalization. 725

A direct practical implication is that overtuning alone is not sufficient to evaluate or compare 726

HPO protocols. When analyzing mitigation strategies for overtuning, it is essential to consider their 727

impact on absolute generalization performance. In specific settings – such as the RS runs in Nagler 728

et al. (2024), where all protocols use the same fixed trajectory of HPCs – trajectory test regret 729

(Definition 3.1) may suffice, as it directly measures how well a protocol identifies a near-optimal 730

configuration within the same trajectory. 731

However, when HPO protocols differ in their search trajectories – due to early stopping, 732

different optimizers, or resource budgets – we must also compare the final test performance of their 733

incumbents. Only then can we draw reliable conclusions about which protocol performs better 734

overall with respect to generalization. For the HEBO vs. HEBO with early stopping à la Makarova 735

et al. (2022) analyses reported in Section 6, we therefore provide a follow-up analysis concerned 736

with the test performance of the final incumbent in Appendix E.1. 737
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B Overtuning vs. Meta-Overfitting 738

Proposition B.1. Given a sequence of HPC evaluations (λ1, . . . ,λt, . . .λT ), if overtuning exists at a 739

time point t, i.e., ott(λ1, . . . ,λt, . . .λT ) > 0, there must exist some non-zero meta-overfitting for the 740

current incumbent λ∗
t or some previous incumbent λ∗

t′ (t
′ < t), i.e., oft(λ1, . . . ,λt, . . .λT ) ̸= 0 or 741

oft′(λ1, . . . ,λt, . . .λT ) ̸= 0. 742

We can easily see this by contradiction. Assume that overtuning exists at time point t. By Defini- 743

tion (3.1) this means (test(λ∗
t )−minλ∗

t′∈{λ
∗
1,...,λ

∗
t } test(λ

∗
t′)) > 0. Since the minimum is strictly 744

less than test(λ∗
t ) there must exist a previous incumbent λ∗

t′ such that test(λ∗
t′) < test(λ∗

t ). By 745

definition of incumbents, we know: v̂al(λ∗
t ) ≤ v̂al(λ∗

t′) since t
′ < t. Assume that meta-overfitting 746

is zero for both λ∗
t and λ∗

t′ , i.e., test(λ
∗
t ) = v̂al(λ∗

t ) and test(λ∗
t′) = v̂al(λ∗

t′). Substituting in 747

test(λ∗
t′) < test(λ∗

t ) gives v̂al(λ
∗
t′) = test(λ∗

t′) < test(λ∗
t ) = v̂al(λ∗

t ), from which follows 748

v̂al(λ∗
t′) < v̂al(λ∗

t ) contradicting the established relation v̂al(λ∗
t ) ≤ v̂al(λ∗

t′). 749

Note that non-zero meta-overfitting, however, is not sufficient to observe overtuning. Assume 750

the following performance values of HPCs λ1,λ2: v̂al(λ1) = 0.3, v̂al(λ2) = 0.2, test(λ1) = 751

0.4, test(λ2) = 0.35. We observe meta-overfitting of of1(λ1,λ2) = 0.4 − 0.3 = 0.1 and 752

of2(λ1,λ2) = 0.35 − 0.2 = 0.15. Still, overtuning is zero as neither for t = 1 nor t = 2 753

there exists a previous incumbent with better test performance. In this sense, we correctly identi- 754

fied the best HPC performing with respect to true GE. This relationship of meta-overfitting and 755

overtuning is also depicted in Figure 1. 756
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C Extended Related Work 757

A foundational study by Cawley and Talbot (2010) shows that any model selection criterion (for 758

instance, CV) inherently has both bias and variance because it relies on a finite data sample. As 759

they illustrate with synthetic data, extensive optimization on the validation set can cause the 760

chosen model to excel on validation performance but fail to generalize to unseen test data. Their 761

real-data experiments focus on comparing final configurations chosen by different model-selection 762

schemes (e.g., a single-parameter RBF kernel vs. an ARD kernel for kernel ridge regression). They 763

do not define a formal metric of overfitting for model selection but empirically demonstrate that 764

more flexible setups, such as ARD, can outperform on validation yet yield worse performance on a 765

held-out test set. Their work is best known for emphasizing nested CV (or nested resampling in 766

general) as essential for unbiased performance estimation once model selection is performed. 767

Ng (1997) propose an approach closely aligned with the idea of overtuning, although their work 768

has not been widely recognized in contemporary AutoML and HPO research. They critique the 769

practice of selecting models solely by their CV (in actuality, simple holdout) performance, noting 770

that the variance of the validation error estimate can skew the posterior distribution of the true 771

GE. To address this, Ng (1997) suggest selecting not the lowest validation error, but rather the 772

hypothesis at the k-th percentile of validation performance, where k is chosen adaptively. This 773

adaptation relies on LOOCVCV: it estimates how many candidate hypotheses can be evaluated 774

before overfitting the validation error. Although effective under high noise and limited samples 775

(e.g., in synthetic classification with decision trees), this LOOCVCV approach can become overly 776

conservative with lower noise, sometimes underperforming simpler selection strategies. 777

Guyon et al. (2010) further formalize model selection through a multi-level inference framework 778

that brings together Bayesian, frequentist, and hybrid viewpoints (see also Bischl et al. 2023). They 779

underscore the risk of overfitting in hyperparameter selection – citing Cawley and Talbot (2010) – 780

and advocate for bound-based selection, ensemble methods, and other regularization techniques 781

to mitigate it. Likewise, Guyon et al. (2015) view model selection as a bi-level optimization prob- 782

lem, arguing that one must introduce regularization and robust data-splitting practices to avoid 783

overfitting to empirical criteria like the CV error. Auto-sklearn 2.0 (Feurer et al., 2022) demonstrate 784

that it is also possible to meta-learn the model selection criterion rather than treating it as a static 785

heuristic. 786

Makarova et al. (2022) address the challenge of deciding when to stop BO in HPO by proposing 787

a new termination criterion. This criterion combines a confidence bound on the surrogate model’s 788

regret with a variance estimate of the CV estimator. Their rule halts BO once the maximum plausible 789

improvement from the surrogate falls below the standard deviation of the incumbent’s validation 790

error. They report that this avoids many unnecessary function evaluations and saves computational 791

resources, at only a small cost in final test performance. While they briefly acknowledge that the 792

discrepancy between validation and test performance can persist, it is attributed mainly to low 793

validation–test correlation. 794

An earlier workshop version (Makarova et al., 2021) puts stronger emphasis on “overfitting” in 795

BO, showing that in tuning an Elastic Net, XGBoost, and a random forest across 19 datasets, Elastic 796

Net (trained via SGD) performance on the test set often declined after prolonged validation-driven 797

optimization. Their explanation again points to weak validation–test correlations, though they 798

do not discuss deeper causes (dataset traits, algorithms, metrics, or resampling choices). In their 799

analyses, they employ the Relative Test Error Change (RYC) to compare test errors in early-stopped 800

vs. full-budget runs, and the Relative Time Change (RTC) to quantify computational savings. 801

Positive RYC implies that early stopping helped avert overtuning, whereas negative values mean 802

the run was halted prematurely. 803

Nguyen et al. (2018) also study overfitting in BO-based HPO, focusing on how to detect “stable” 804

solutions. Their notion of stability involves low “extra variance”, defined as the change in predictive 805
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mean and variance under small Gaussian perturbations of the hyperparameters. A high extra 806

variance signals a rapidly varying objective function that may lead to overtuning. They propose 807

two stability-aware acquisition functions, Stable-UCB and Stable-EI, which penalize instability to 808

encourage more robust HPCs. 809

Other works on early stopping in BO include Lorenz et al. (2016); Nguyen et al. (2017); Ishibashi 810

et al. (2023); Li et al. (2023); Wilson (2024), although Ishibashi et al. (2023) is among the few that also 811

directly considers overfitting in HPO. Their stopping criterion focuses on changes in the expected 812

minimum simple regret, i.e., how much the estimated best objective improves with an additional 813

function evaluation. As with Makarova et al. (2022, 2021), they measure outcomes using RYC and 814

RTC but observe inconsistent results, indicating that while their method can cut computation time, 815

it does not always prevent overtuning. 816

Fabris and Freitas (2019) conduct experiments with Auto-sklearn (Feurer et al., 2015) across 817

17 datasets, optimizing the area under the ROC curve. They distinguish among training, internal 818

validation, and external test performance and frequently observe deteriorations from validation to 819

test – phenomena they refer to as “meta-overfitting”, especially when datasets are small (around 820

1000 or fewer observations). Although the validation–test correlation is generally high, the number 821

of SMAC (Hutter et al., 2011) optimization iterations does not correlate with how severe this 822

meta-overfitting is. 823

Earlier, Escalante et al. (2009) studied a particle swarm optimization (PSO)-based approach to 824

full model selection, including preprocessing, feature selection, learner choice, and hyperparameter 825

tuning. They note that while CV is the main safeguard against overfitting in their experiments, 826

PSO’s stochastic exploration can also mitigate the risk of pushing too hard on the validation error. 827

Nonetheless, they acknowledge that repeated exploitation of CV estimates can cause validation 828

improvements not always reflected on a held-out test set. 829

Lévesque (2018) undertook a large-scale support vector machine (SVM) HPO study with 118 830

datasets and identify overtuning as a serious limitation, especially in small-data scenarios. They test 831

solutions like reshuffling, using an outer test set, and adopting posterior-mean-based selection in BO. 832

Reshuffling helps in small-data regimes – particularly with holdout resampling – while choosing 833

hyperparameters by posterior mean also yields better generalization. Selecting configurations on 834

a separate selection set (Dos Santos et al., 2009; Koch et al., 2010; Igel, 2012), however, can hurt 835

performance because it reduces the data available for HPO. Extending these findings, Nagler et al. 836

(2024) provide a more rigorous analysis of reshuffling, demonstrating its benefits even for simple 837

RS. They further analyze how reshuffling affects the validation loss landscape and derive regret 838

bounds in the asymptotic regime. 839

Similarly, Larcher and Barbosa (2022) propose dynamic sampling holdout as a faster alternative 840

to CV for AutoML. By reshuffling training and validation partitions at each generation, they reduce 841

the variance and bias inherent in using the same splits repeatedly. Their empirical results show 842

improvements in test performance and lower computational overhead. 843

Several foundational studies examine the estimation of GE and the variance of GE estimators. 844

A thorough survey by Schulz-Kümpel et al. (2025) benchmarks a broad array of GE confidence- 845

interval construction methods, while earlier and more recent contributions (Stone, 1974; Efron and 846

Tibshirani, 1997; Bengio and Grandvalet, 2004; Austern and Zhou, 2020; Bayle et al., 2020; Bates 847

et al., 2024; Paraschakis et al., 2024) provide theoretical and practical guidance on error estimation. 848

A complementary survey on CV in model selection is offered by Arlot and Celisse (2010). 849

Empirical comparisons of resampling strategies include Molinaro et al. (2005), who find that in 850

small-sample, high-dimensional genomic studies, naive resubstitution estimates are highly biased, 851

but LOOCV, 10-fold CV, and the .632+ bootstrap can be more reliable. At the same time, the .632+ 852

bootstrap may become biased if the signal-to-noise ratio is high. Further, Wainer and Cawley (2017) 853

systematically evaluate 15 resampling-based HPO techniques for SVMs (with RBF kernels) and 854

suggest that 2-fold or 3-fold CV is often a viable substitute for standard 5-fold CV, providing similar 855

23



generalization at reduced computational cost. In clinical prediction models, Dunias et al. (2024) 856

show that standard 5-fold or 10-fold CV tends to yield robust out-of-sample discrimination and 857

calibration, whereas the widely used 1SE rule (Breiman, 1984) can severely miscalibrate predictions 858

in small or low-event-rate samples. 859

Blum and Hardt (2015) address overfitting to public leaderboards, where participants repeatedly 860

adapt to holdout feedback. They propose the Ladder mechanism, which only reports improvements 861

deemed statistically significant, reducing information leakage and thus mitigating overfitting. 862

Extending this approach, Hardt (2017) introduce the Shaky Ladder, which adds randomized privacy 863

guarantees so that participants cannot game small improvements. Neto et al. (2016) propose 864

LadderBoot, which injects bootstrap noise to limit the sensitivity of public scores to repeated 865

queries. 866

Another influential line of work in the context of overfitting in leaderboards leverages differen- 867

tial privacy. Dwork et al. (2015) present Thresholdout and SparseValidate, which provide theoretical 868

generalization guarantees even after multiple adaptive queries to a holdout. Feldman et al. (2019) 869

investigate how easily one can overfit a fixed test set in multiclass settings via adaptively chosen 870

queries. While more classes raise the barrier to overfitting, it remains feasible with relatively few 871

queries. In practice, Roelofs et al. (2019) analyze Kaggle competitions and, surprisingly, detect little 872

evidence of large-scale overfitting, attributing poor generalization more to distribution shifts than 873

to test set overuse. 874

Arora and Zhang (2021) explore this notion of “meta-overfitting” where continual reuse of 875

a public benchmark – like ImageNet (Russakovsky et al., 2015) – gradually contaminates that 876

benchmark. Researchers copy hyperparameters, architectures, or training procedures that appear 877

to work well on the widely shared test set, thus implicitly optimizing on it. They propose an 878

information-theoretic approach to quantify how much the test set is effectively “consumed” by 879

repeated usage, suggesting that measuring a model’s description length relative to a “pre-test-set” 880

referee can help bound overfitting in such adaptive processes. 881

Quinlan and Cameron-Jones (1995) point out that more exhaustive searches during rule learn- 882

ing can degrade generalization – a phenomenon they term “oversearching”. By fitting random 883

idiosyncrasies in data, broader searches can lead to complex rules that fit the validation set but fail 884

on new data. They propose a layered search strategy that expands search breadth incrementally 885

and stops based on a probabilistic criterion, thereby avoiding the poor test performance often seen 886

with exhaustive strategies. 887

Similarly, Reunanen (2003) shows that performing CV within variable selection can become 888

self-defeating, because the repeated use of the same data splits to pick features leads to validation 889

overfitting. Meanwhile, Loughrey and Cunningham (2005) note that aggressive search-based feature 890

selection using methods like genetic algorithms can cause severe overfitting to the validation set, 891

substantially harming test accuracy. They propose an early-stopping mechanism based on CV 892

signals to limit the search depth before overfitting occurs. 893

Outside of the usage here, the phrase “meta-overfitting” often appears in meta-learning to 894

indicate that knowledge acquired on source tasks may fail to generalize to new, target tasks (Yao 895

et al., 2021; Hospedales et al., 2021; Huisman et al., 2021). It has also been discussed in the context 896

of neural networks (Hospedales et al., 2021), AutoML systems (Yang et al., 2019, 2020), performance 897

prediction (Loya et al., 2023), and other “learning to learn” settings (Barros et al., 2015; Chen 898

et al., 2023; Song et al., 2024). This differs from the notion of meta-overfitting as used to describe 899

consistent deterioration of test performance relative to validation performance within a single 900

study or single dataset. 901

In the closely related field of algorithm configuration, Eggensperger et al. (2019) outline best 902

practices and potential pitfalls, such as resource mismanagement, skewed evaluation metrics, 903

or insufficient random seeds for robust performance assessment. They warn that insufficiently 904

diverse evaluations – or evaluations that rely too heavily on a small set of training instances – risk 905
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overtuning. They thus recommend strict train/test partitioning, averaging over multiple seeds, and 906

using representative benchmarks. 907

Likewise, Eimer et al. (2023) point to limited reproducibility in reinforcement learning HPO. 908

Optimizing hyperparameters on very few random seeds often causes severe overfitting, as configu- 909

rations subsequently do poorly on unseen seeds. The authors advocate for adopting AutoML best 910

practices, such as clear separation of tuning and evaluation seeds and employing systematic HPO 911

strategies. 912

Many additional studies merely note overtuning or caution against it, especially in small, noisy 913

data (as in certain linear or clinical models (Van Calster et al., 2020; Šinkovec et al., 2021; Riley et al., 914

2021)). While they do not directly measure overtuning, they nonetheless highlight the vulnerability 915

of HPO to misleading improvements when sample sizes are too limited. 916

Finally, two survey works – Feurer and Hutter (2019) and Bischl et al. (2023) – explicitly 917

identify overtuning as a core problem in HPO. They summarize various strategies for mitigating 918

over-optimization of validation error, referencing much of the research above. 919
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D Details on an Empirical Analysis of Overtuning 920

FCNet (Klein and Hutter, 2019) is based on exhaustive evaluations of fully connected feed-forward 921

neural networks on four UCI regression datasets: Protein Structure, Slice Localization, Naval 922

Propulsion, and Parkinsons Telemonitoring. Each dataset is randomly split into 60% training, 20% 923

validation, and 20% test sets. The model architecture consists of two hidden layers followed by a 924

linear output layer. For the search space and additional information, see Klein and Hutter (2019). 925

Each configuration (a combination of architectural and training hyperparameters) is trained using 926

the Adam optimizer for 100 epochs, minimizing the mean squared error (MSE), which is also used 927

as the evaluation metric. To account for stochasticity in training, each configuration is repeated 928

four times using different random seeds. This yields a tabular benchmark dataset with complete 929

learning curves and performance statistics for all configurations. We use the final (with respect to 930

the number of epochs trained) validation and test MSE in our analyses. For each replication and 931

dataset combination, we compute the relative overtuning as defined in Definition 3.1 based on an 932

HPC trajectory of all evaluated HPCs (T = 62208). 933

LCBench (Zimmer et al., 2021) is based on evaluating 2000 HPCs, sampled uniformly at random, 934

for a funnel-shaped MLP on 35 classification datasets. For the search space and additional informa- 935

tion, see Zimmer et al. (2021). Each dataset reserves 33% as a test set, and the remaining data is split 936

into training and validation sets, with the validation set comprising 33%. Models are trained using 937

SGD with cosine annealing (without restarts) and evaluated using accuracy and cross-entropy. We 938

use the final (with respect to the number of epochs trained) validation and test performance values 939

in our analyses. For each dataset and metric combination, we compute the relative overtuning as 940

defined in Definition 3.1 based on an HPC trajectory of all evaluated HPCs (T = 2000). 941

WDTB (Grinsztajn et al., 2022) includes different learning algorithms evaluated on a curated 942

benchmark of 45 datasets, categorized into four groups: categorical classification, numerical 943

classification, categorical regression, and numerical regression, where categorical/numerical refers 944

to the feature types. Learning algorithms include Random Forest, XGBoost, Gradient Boosting 945

Tree, ResNet, FT Transformer, SAINT, MLP, and HistGradientBoostingTree. For the search spaces 946

and additional information, see Grinsztajn et al. (2022). For each learning algorithm, RS with 947

approximately 400 HPC evaluations is performed, beginning with a default HPC. The data splitting 948

and evaluation protocol is designed to ensure fair and efficient comparison across datasets: 70% 949

of samples are allocated to the training set (unless this exceeds a predefined maximum), and the 950

remaining 30% is split into 30% validation and 70% test sets, both capped at 50000 samples. The 951

validation set is used exclusively for selecting the best configuration during RS and is distinct from 952

the internal validation set used for early stopping. To adjust for dataset size variability, the number 953

of evaluation folds depends on the number of test samples: one fold for >6000 samples, two for 954

3000–6000, three for 1000–3000, and five for <1000. All models are evaluated on the same folds 955

to ensure comparability. Performance is measured using accuracy (for classification) and R2
(for 956

regression). In our analyses, we exclude default HPCs and use only the random HPCs. For each 957

learning algorithm and dataset combination, we compute the relative overtuning as defined in 958

Definition 3.1 based on an HPC trajectory of all evaluated HPCs (T ≈ 400). 959

TabZilla (McElfresh et al., 2023) includes evaluations of various learning algorithms on a total 960

of 176 classification datasets. Learning algorithms include CatBoost, XGBoost, LightGBM, DeepFM, 961

DANet, FT Transformer, TabTransformer, two MLP variants, NODE, ResNet, SAINT, STG, TabNet, 962

TabPFN (no HPO), VIME, NAM, Decision Tree, KNN, Logistic Regression (Linear Model, no HPO), 963

Random Forest, and SVM. For the search spaces and additional information, see McElfresh et al. 964

(2023). Each dataset uses the 10 train/test folds provided by OpenML. Within each training fold, a 965

further split is used to construct a validation set for HPO. The best configuration is selected based 966

on validation performance, and final performance is reported on the test set without retraining. 967

Models are evaluated using accuracy, F1, log loss, and ROC AUC. In our analyses, we exclude runs 968
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with fewer than 30 HPC evaluations and exclude the default HPCs, retaining only the random 969

HPCs. For each learning algorithm, dataset, fold, and metric combination, we compute the relative 970

overtuning as defined in Definition 3.1 based on an HPC trajectory of all evaluated HPCs (T ≈ 29). 971

TabRepo (Salinas and Erickson, 2024) includes evaluations of 1530 learning algorithm and HPC 972

combinations across 211 classification and regression datasets. We use the “D244_F3_C1530_175” 973

context, restricted to 175 datasets. Learning algorithms include Random Forest, Extra Trees, 974

LightGBM, XGBoost, CatBoost, Linear Model, KNN, and two neural architectures. For the search 975

spaces and additional information, see Salinas and Erickson (2024). Models are evaluated using 976

3-fold CV. For each fold, data is split into 90% training and 10% test. All models are trained with 977

bagging, generating out-of-fold predictions for estimating generalization performance. Performance 978

is measured using ROC AUC (for binary classification), log loss (for multi-class classification), 979

and RMSE (for regression). Each algorithm has one default HPC and 200 configurations sampled 980

uniformly at random. In our analyses, we exclude runs with fewer than 30 HPCs. For each 981

learning algorithm, dataset, and fold combination, we compute the relative overtuning as defined 982

in Definition 3.1 based on an HPC trajectory of all evaluated HPCs (T ≥ 30). 983

reshuffling (Nagler et al., 2024) evaluates four learning algorithms (Elastic Net, Funnel MLP, 984

XGBoost, CatBoost) on ten binary classification tasks, varying the dataset size, resampling strategy, 985

reshuffling status, and optimizer. For the search spaces and additional information, see Nagler 986

et al. (2024). A fixed outer test set of 5000 samples is held out and never used during HPO. For 987

HPO, subsets of the remaining data are drawn with training-validation sizes n ∈ {500, 1000, 5000}. 988

Resampling strategies include: 80/20 holdout, 5-fold CV, 5x 80/20 holdout, and 5x 5-fold CV, ensuring 989

constant train/validation sizes but varying the splits. Performance is measured via accuracy, log 990

loss, and ROC AUC (BO uses ROC AUC only). The best configuration is retrained on the full HPO 991

data and evaluated on the outer test set. RS is performed with 500 fixed HPCs per replication (10 992

total). In our analyses, we use only the RS runs without reshuffled resampling. We revisit BO 993

(HEBO and SMAC for a budget of 250 HPCs) and reshuffling the resampling splits in Section 6. 994

For each learning algorithm, dataset, dataset size, repetition, resampling, and metric combination, 995

we compute the relative overtuning as defined in Definition 3.1 based on an HPC trajectory of all 996

evaluated HPCs (T = 500). 997

PD1 (Wang et al., 2024) is a large-scale HPO dataset developed for evaluating BO algorithms 998

in deep learning. It consists of 24 tasks, each defined by a dataset (e.g., CIFAR10, ImageNet), a 999

model (e.g., ResNet50, Transformer), and a batch size (determined by hardware). For each task, 1000

approximately 500 “matched” and 1500 “unmatched” HPCs are evaluated from a shared four- 1001

dimensional search space: learning rate (log scale), momentum (log scale), polynomial decay power, 1002

and decay fraction. All tasks use Nesterov momentum with fixed pipelines, varying only optimizer 1003

hyperparameters. Each configuration is fully trained and logged with learning curves, including 1004

validation cross-entropy loss, error rate, and divergence status. Performance metrics are given by 1005

error rate and cross-entropy. We use the “phase1” data (both “matched” and “unmatched”). We 1006

exclude ImageNet ResNet50 (all batch sizes), LM1B Transformer (2048), WMT15 German-English 1007

xformer (64), and UniRef50 Transformer (128), leaving 18 tasks due to failed/incomplete runs 1008

or insufficient full-epoch HPCs or runs where test performance was not available. We use the 1009

final validation and test performances for each task in our analyses. For each task and metric 1010

combination, we compute the relative overtuning as defined in Definition 3.1 based on an HPC 1011

trajectory of all evaluated HPCs (T ≥ 1300). 1012
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Figure 3: ECDFs of relative overtuning for reshuffling (Nagler et al., 2024). Stratified for the learning

algorithm, resampling method and performance metric but not dataset sizes.
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Figure 4: ECDFs of relative overtuning forWDTB (Grinsztajn et al., 2022). Stratified for the learning

algorithm, benchmark type and performance metric.
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Figure 5: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric

accuracy. Stratified for the learning algorithm, and benchmark type.
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Figure 6: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric F1.

Stratified for the learning algorithm, and benchmark type.
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Figure 7: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric log

loss. Stratified for the learning algorithm, and benchmark type.
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Figure 8: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric ROC

AUC. Stratified for the learning algorithm, and benchmark type.
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Figure 9: ECDFs of relative overtuning for TabRepo (Salinas and Erickson, 2024). Stratified for the

learning algorithm, benchmark type and performance metric.
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Figure 10: ECDFs of relative overtuning for LCBench (Zimmer et al., 2021). Stratified for the perfor-

mance metric.
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Figure 11: ECDFs of relative overtuning for PD1 (Wang et al., 2024). Stratified for the performance

metric.
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Figure 12: ECDFs of relative overtuning for FCNet (Klein and Hutter, 2019).
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E Details on Modeling the Determinants of Overtuning 1013

For an introduction to general linear mixed-effects models, we refer the reader to McCulloch 1014

et al. (2008) and Bates et al. (2015). All statistical analyses are interpreted at a significance level of 1015

α = 0.05 However, we emphasize that we perform many analyses and many of these analyses are 1016

conducted on large datasets. As such, statistical significance should be interpreted with caution, 1017

as even negligible effects may appear significant due to the large sample sizes. Nonetheless, the 1018

magnitude of coefficients as well as associated z- and t-statistics can still provide meaningful 1019

insights into potentially relevant determinants. Finally, we stress that our analysis is exploratory in 1020

nature and does not involve the confirmation of pre-specified hypotheses (Herrmann et al., 2024). 1021

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -1.161680 0.170379 -6.818 < 0.001
budget 3.073490 0.054291 56.612 < 0.001
budget

2
-2.034155 0.050771 -40.065 < 0.001

classifier (CatBoost) 1.939010 0.011118 174.395 < 0.001
classifier (Funnel MLP) 1.458479 0.010659 136.827 < 0.001
classifier (XGBoost) 1.606069 0.010774 149.066 < 0.001
resampling (5x holdout) -0.300831 0.010779 -27.908 < 0.001
resampling (5-fold CV) -0.374434 0.010762 -34.793 < 0.001
resampling (5x 5-fold CV) -0.467436 0.010747 -43.493 < 0.001
dataset size (1000) -0.290248 0.009386 -30.924 < 0.001
dataset size (5000) -0.981109 0.009358 -104.839 < 0.001
optimizer (HEBO) 0.083319 0.009208 9.049 < 0.001
optimizer (SMAC) 0.188119 0.009245 20.347 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.757e+00 1.654e-01 1.534e+01 -10.622 < 0.001
budget 3.274e-01 5.351e-02 1.542e+05 6.119 < 0.001
budget

2
-1.681e-01 4.782e-02 1.542e+05 -3.515 < 0.001

classifier (CatBoost) 2.151e+00 1.136e-02 1.542e+05 189.408 < 0.001
classifier (Funnel MLP) 1.061e+00 1.125e-02 1.542e+05 94.266 < 0.001
classifier (XGBoost) 1.554e+00 1.143e-02 1.542e+05 135.941 < 0.001
resampling (5x Holdout) -3.350e-01 9.392e-03 1.542e+05 -35.666 < 0.001
resampling (5-fold CV) -3.544e-01 9.428e-03 1.542e+05 -37.594 < 0.001
resampling (5x 5-fold CV) -4.969e-01 9.478e-03 1.542e+05 -52.423 < 0.001
dataset size (1000) -1.973e-01 7.924e-03 1.542e+05 -24.905 < 0.001
dataset size (5000) -5.188e-01 8.519e-03 1.542e+05 -60.901 < 0.001
optimizer (HEBO) -3.011e-01 8.281e-03 1.542e+05 -36.363 < 0.001
optimizer (SMAC) -2.581e-01 8.336e-03 1.542e+05 -30.956 < 0.001

Table 3: Fixed effects results of mixed models used to analyze overtuning. BO and RS runs, no

reshuffling, test performance of the model retrained on all data. Reference levels: Elastic Net

(classifier), holdout (resampling), 500 (dataset size), RS (optimizer).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(intercept) 5.915e-02 1.083e-02 9.387e+00 5.462 < 0.001
classifier (CatBoost) 3.767e-02 1.049e-03 1.437e+04 35.892 < 0.001
classifier (Funnel MLP) 2.839e-02 1.049e-03 1.437e+04 27.052 < 0.001
classifier (XGBoost) 1.908e-02 1.049e-03 1.437e+04 18.182 < 0.001
resampling (5x Holdout) -2.929e-02 1.049e-03 1.437e+04 -27.905 < 0.001
resampling (5-fold CV) -3.115e-02 1.049e-03 1.437e+04 -29.685 < 0.001
resampling (5x 5-fold CV) -4.445e-02 1.049e-03 1.437e+04 -42.355 < 0.001
dataset size (1000) -2.122e-02 9.089e-04 1.437e+04 -23.351 < 0.001
dataset size (1000) -4.519e-02 9.089e-04 1.437e+04 -49.718 < 0.001
optimizer (HEBO) 1.623e-03 9.089e-04 1.437e+04 1.786 0.074
optimizer (SMAC) 3.793e-03 9.089e-04 1.437e+04 4.173 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 2.215e-02 4.050e-03 9.417e+00 5.468 < 0.001
classifier (CatBoost) 1.048e-02 4.633e-04 1.437e+04 22.624 < 0.001
classifier (Funnel MLP) 1.739e-02 4.633e-04 1.437e+04 37.544 < 0.001
classifier (XGBoost) 5.410e-03 4.633e-04 1.437e+04 11.679 < 0.001
resampling (5x Holdout) -6.310e-03 4.633e-04 1.437e+04 -13.621 < 0.001
resampling (5-fold CV) -7.283e-03 4.633e-04 1.437e+04 -15.722 < 0.001
resampling (5x 5-fold CV) -8.857e-03 4.633e-04 1.437e+04 -19.118 < 0.001
dataset size (1000) -6.841e-03 4.012e-04 1.437e+04 -17.053 < 0.001
dataset size (5000) -1.636e-02 4.012e-04 1.437e+04 -40.782 < 0.001
optimizer (HEBO) -2.073e-03 4.012e-04 1.437e+04 -5.167 < 0.001
optimizer (SMAC) -2.773e-04 4.012e-04 1.437e+04 -0.691 0.489

Table 4: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret.

BO and RS runs, no reshuffling, test performance of the model retrained on all data. Reference

levels of factors are: Elastic Net (classifier), holdout (resampling), 500 (dataset size), RS

(optimizer).
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(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -0.368810 0.206555 -1.786 0.074
classifier (CatBoost) 1.740219 0.133810 13.005 < 0.001
classifier (Funnel MLP) 1.813526 0.134520 13.481 < 0.001
classifier (XGBoost) 1.716060 0.133593 12.845 < 0.001
dataset size (1000) -0.376622 0.113395 -3.321 < 0.001
dataset size (5000) -1.066268 0.114042 -9.350 < 0.001
optimizer (HEBO + ES) -0.549139 0.092045 -5.966 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.866e+00 2.047e-01 3.707e+01 -9.117 < 0.001
classifier (CatBoost) 1.794e+00 1.493e-01 9.905e+02 12.017 < 0.001
classifier (Funnel MLP) 6.331e-01 1.427e-01 9.859e+02 4.436 < 0.001
classifier (XGBoost) 1.197e+00 1.447e-01 9.872e+02 8.275 < 0.001
dataset size (1000) -1.760e-01 9.711e-02 9.823e+02 -1.812 0.070
dataset size (5000) -4.765e-01 1.065e-01 9.870e+02 -4.475 < 0.001
optimizer (HEBO + ES) -2.753e-01 8.414e-02 9.806e+02 -3.272 0.001

Table 5: Fixed effects results of mixed models used to analyze overtuning. BO runs (only HEBO and

HEBO with early stopping on 5-fold CV and ROC AUC as performance metric), no reshuffling,

test performance of the model retrained on all data. Reference levels: Elastic Net (classifier),

500 (dataset size), HEBO (optimizer). Analyses performed for the final time point which may

differ between HEBO and HEBO with early stopping.

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -1.271737 0.082493 -15.416 < 0.001
budget 2.239491 0.025025 89.489 < 0.001
budget

2
-1.481421 0.023734 -62.418 < 0.001

metric (ROC AUC) 0.650435 0.004382 148.433 < 0.001
metric (log loss) 0.295035 0.004336 68.050 < 0.001
classifier (CatBoost) 1.390966 0.005180 268.533 < 0.001
classifier (Funnel MLP) 1.111329 0.005116 217.220 < 0.001
classifier (XGBoost) 1.183944 0.005128 230.857 < 0.001
resampling (5x Holdout) -0.256786 0.005042 -50.934 < 0.001
resampling (5-fold CV) -0.302036 0.005041 -59.920 < 0.001
resampling (5x 5-fold CV) -0.491480 0.005048 -97.353 < 0.001
dataset size (500) -0.256418 0.004357 -58.845 < 0.001
dataset size (1000) -0.682647 0.004381 -155.814 < 0.001
reshuffled (TRUE) 0.043902 0.003555 12.351 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.563e+00 1.375e-01 1.689e+01 -11.367 < 0.001
budget 2.604e-01 2.952e-02 5.379e+05 8.819 < 0.001
budget

2
-1.293e-01 2.695e-02 5.379e+05 -4.796 < 0.001

metric (ROC AUC) -2.200e-01 4.978e-03 5.379e+05 -44.189 < 0.001
metric (log loss) -6.831e-01 5.118e-03 5.379e+05 -133.462 < 0.001
classifier (CatBoost) 2.118e+00 6.156e-03 5.379e+05 344.120 < 0.001
classifier (Funnel MLP) 7.089e-01 6.082e-03 5.379e+05 116.555 < 0.001
classifier (XGBoost) 1.691e+00 6.355e-03 5.379e+05 266.063 < 0.001
resampling (5x Holdout) -2.494e-01 5.305e-03 5.379e+05 -47.000 < 0.001
resampling (5-fold CV) -2.614e-01 5.319e-03 5.379e+05 -49.135 < 0.001
resampling (5x 5-fold CV) -4.582e-01 5.440e-03 5.379e+05 -84.232 < 0.001
dataset size (500) -1.048e-01 4.518e-03 5.379e+05 -23.193 < 0.001
dataset size (1000) -3.331e-01 4.803e-03 5.379e+05 -69.363 < 0.001
reshuffled (TRUE) 5.150e-02 3.827e-03 5.379e+05 13.458 < 0.001

Table 6: Fixed effects results of mixed models used to analyze overtuning. RS runs, test performance

of the model retrained on all data. Reference levels: accuracy (metric) Elastic Net (classifier),

holdout (resampling), 500 (dataset size), FALSE (reshuffled).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(intercept) 4.463e-02 3.665e-03 1.048e+01 12.178 < 0.001
metric (ROC AUC) 2.973e-02 5.864e-04 2.877e+04 50.697 < 0.001
metric (log loss) 1.699e-04 5.864e-04 2.877e+04 0.290 0.772
classifier (CatBoost) 1.398e-02 6.771e-04 2.877e+04 20.648 < 0.001
classifier (Funnel MLP) 1.051e-02 6.771e-04 2.877e+04 15.517 < 0.001
classifier (XGBoost) 9.060e-03 6.771e-04 2.877e+04 13.381 < 0.001
resampling (5x Holdout) -2.839e-02 6.771e-04 2.877e+04 -41.928 < 0.001
resampling (5-fold CV) -3.596e-02 6.771e-04 2.877e+04 -53.119 < 0.001
resampling (5x 5-fold CV -4.633e-02 6.771e-04 2.877e+04 -68.421 < 0.001
dataset size (500) -1.540e-02 5.864e-04 2.877e+04 -26.264 < 0.001
dataset size (1000) -3.287e-02 5.864e-04 2.877e+04 -56.050 < 0.001
reshuffled (TRUE) 1.672e-02 4.788e-04 2.877e+04 34.916 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 1.119e-02 1.362e-03 1.066e+01 8.217 < 0.001
metric (ROC AUC) 1.095e-02 2.742e-04 2.877e+04 39.950 < 0.001
metric (log loss) 1.022e-03 2.742e-04 2.877e+04 3.726 < 0.001
classifier (CatBoost) 5.123e-03 3.166e-04 2.877e+04 16.181 < 0.001
classifier (Funnel MLP) 1.058e-02 3.166e-04 2.877e+04 33.418 < 0.001
classifier (XGBoost) 3.237e-03 3.166e-04 2.877e+04 10.225 < 0.001
resampling (5x Holdout) -4.994e-03 3.166e-04 2.877e+04 -15.772 < 0.001
resampling (5-fold CV) -5.131e-03 3.166e-04 2.877e+04 -16.205 < 0.001
resampling (5x 5-fold CV -6.882e-03 3.166e-04 2.877e+04 -21.736 < 0.001
dataset size (500) -5.088e-03 2.742e-04 2.877e+04 -18.554 < 0.001
dataset size (500) -1.030e-02 2.742e-04 2.877e+04 -37.571 < 0.001
reshuffled (TRUE) -1.529e-04 2.239e-04 2.877e+04 -0.683 0.495

Table 7: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret. RS

runs, test performance of the model retrained on all data. Reference levels: accuracy (metric)

Elastic Net (classifier), holdout (resampling), 500 (dataset size), FALSE (reshuffled).
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(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -0.903880 0.153342 -5.895 < 0.001
budget 2.495057 0.092010 27.117 < 0.001
budget

2
-1.626134 0.088101 -18.458 < 0.001

classifier (CatBoost) 1.799761 0.018983 94.808 < 0.001
classifier (Funnel MLP) 1.426324 0.018159 78.545 < 0.001
classifier (XGBoost) 1.552415 0.018403 84.356 < 0.001
dataset size (500) -0.049298 0.016481 -2.991 0.003
dataset size (1000) -0.664234 0.016094 -41.272 < 0.001
reshuffled (TRUE) -0.264457 0.013187 -20.054 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.884e+00 1.472e-01 1.758e+01 -12.792 < 0.001
budget 2.229e-01 8.841e-02 5.548e+04 2.521 0.012
budget

2
-1.417e-01 8.109e-02 5.548e+04 -1.748 0.081

classifier (CatBoost) 2.080e+00 1.842e-02 5.549e+04 112.902 < 0.001
classifier (Funnel MLP) 1.492e+00 1.861e-02 5.549e+04 80.164 < 0.001
classifier (XGBoost) 1.710e+00 1.920e-02 5.549e+04 89.042 < 0.001
dataset size (500) -6.258e-02 1.376e-02 5.548e+04 -4.549 < 0.001
dataset size (1000) -3.982e-01 1.462e-02 5.548e+04 -27.232 < 0.001
reshuffled (TRUE) -2.693e-01 1.159e-02 5.548e+04 -23.236 < 0.001

Table 8: Fixed effects results of mixed models used to analyze overtuning. RS runs, subset of runs with

holdout and ROC AUC as performance metric, test performance of the model retrained on all

data. Reference levels: Elastic Net (classifier), 500 (dataset size), FALSE (reshuffled).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(Intercept) 8.699e-02 2.010e-02 9.338e+00 4.329 0.002
classifier (CatBoost) 3.000e-02 3.055e-03 2.375e+03 9.820 < 0.001
classifier (Funnel MLP) 4.230e-02 3.055e-03 2.375e+03 13.845 < 0.001
classifier (XGBoost) 2.066e-02 3.055e-03 2.375e+03 6.761 < 0.001
dataset size (500) -4.254e-02 2.646e-03 2.375e+03 -16.077 < 0.001
dataset size (1000) -9.853e-02 2.646e-03 2.375e+03 -37.241 < 0.001
reshuffled (TRUE) 5.483e-02 2.160e-03 2.375e+03 25.382 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 2.330e-02 4.770e-03 1.022e+01 4.885 < 0.001
classifier (CatBoost) 9.145e-03 1.335e-03 2.375e+03 6.849 < 0.001
classifier (Funnel MLP) 2.310e-02 1.335e-03 2.375e+03 17.303 < 0.001
classifier (XGBoost) 7.782e-03 1.335e-03 2.375e+03 5.828 < 0.001
dataset size (500) -7.634e-03 1.156e-03 2.375e+03 -6.602 < 0.001
dataset size (1000) -1.915e-02 1.156e-03 2.375e+03 -16.562 < 0.001
reshuffled (TRUE) -5.656e-03 9.442e-04 2.375e+03 -5.990 < 0.001

Table 9: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret. RS

runs, subset of runs with holdout and ROC AUC as performance metric, test performance of

the model retrained on all data. Reference levels: Elastic Net (classifier), 500 (dataset size),

FALSE (reshuffled).
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E.1 HEBO vs. HEBO with Early Stopping 1022

As mentioned in Appendix A, when HPO protocols follow different search trajectories – due to 1023

factors like early stopping, choice of optimizer, or resource constraints – it is necessary to compare 1024

the test performance of their incumbents to assess generalization properly since overtuning cannot 1025

capture this performance aspect. In Section 6 we have seen that HEBO with early stopping à la 1026

Makarova et al. (2022) reduces overtuning in the reshuffling study (Nagler et al., 2024) based on 1027

5-fold CV and ROCAUC as performance metric (other factors left at their default, i.e., non-reshuffled 1028

resampling and test performance assessed via retraining the inducer configured by a given HPC on 1029

all data and evaluating on the outer holdout set). We also visualize this (over all learning algorithms 1030

but stratified) for the dataset size in Figure 13 where we observe that HEBO with early stopping 1031

indeed exhibits less overtuning. 1032
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Figure 13: ECDF of relative overtuning for HEBO vs. HEBOwith early stopping based on the reshuffling
study (Nagler et al., 2024). 5-fold CV as resampling. ROC AUC as performance metric.

However, looking at the difference in test performance of the final incumbent returned by 1033

HEBO vs. HEBO with early stopping (Figure 14), we observe that HEBO with early stopping 1034

does not consistently improve generalization performance. As shown in Figure 14a, HEBO with 1035

early stopping yields worse test performance (positive ∆) nearly as often as it yields better test 1036

performance (negative ∆) compared to HEBO without early stopping. 1037

To further understand the impact of early stopping on generalization, we analyze the rela- 1038

tionship between changes in overtuning and corresponding changes in test performance when 1039

comparing HEBO with and without early stopping (Figure 14b). Each point in the scatter plot 1040

represents a single HPO run, with the x-axis denoting the change in overtuning and the y-axis the 1041

change in test performance – both computed such that positive values indicate worse outcomes for 1042

HEBO with early stopping. We observe a clear positive correlation between the two quantities, 1043

suggesting that reductions in overtuning achieved through early stopping tend to coincide with 1044

improved test performance. However, this relationship is not uniformly beneficial. While a sub- 1045

stantial number of runs fall into the lower-left quadrant, indicating that early stopping reduces 1046

overtuning and improves test performance, there are also numerous instances in the upper-right 1047

quadrant where early stopping could not decrease overtuning yet harmed generalization (because 1048

we stopped too early). Moreover, the majority of points are concentrated near the origin, indicating 1049

that early stopping often has only a minor effect. These results confirm that early stopping can 1050

mitigate overtuning in some cases, leading to better generalization, but it does not consistently 1051

yield improvements and may even be detrimental. 1052
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(a) ECDF of the difference in test performance of

the final incumbent for HEBO vs. HEBO with

early stopping.
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(b) Scatter plot of the difference in test perfor-

mance of the final incumbent and the differ-

ences in final overtuning for HEBO vs. HEBO

with early stopping.

Figure 14: Visualizations of the differences in test performance of the final incumbent and the differ-

ences in final overtuning for HEBO vs. HEBO with early stopping based on the reshuffling
study (Nagler et al., 2024). 5-fold CV with ROC AUC as performance metric.
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F Computational Details 1053

As stated in Section 5 and Section 6 we rely on various published works that conducted HPO runs 1054

and published this data. With the exception of the HEBO runs with early stopping à la Makarova 1055

et al. (2022) as analyzed in Section 6 we did not run any new experiments. For these HEBO runs we 1056

used the code base of the reshuffling study (Nagler et al., 2024) released under MIT License. We 1057

estimate our total compute time for the HEBO with early stopping experiments to be roughly 0.63 1058

CPU years. Benchmark experiments were run on an internal HPC cluster equipped with a mix of 1059

Intel Xeon E5-2670, Intel Xeon E5-2683 and Intel Xeon Gold 6330 instances. Jobs were scheduled to 1060

use a single CPU core and were allowed to use up to 16GB RAM. Total emissions are estimated 1061

to be an equivalent of roughly 345.96 kg CO2. The analyses reported in Section 5 and Section 6 1062

require little computational power and were conducted on a personal computer. 1063

We release all our code to perform the analyses reported in Section 5 and Section 6 via https: 1064

//anonymous.4open.science/r/paper_2025_overtuning-39CC/ under MIT License. 1065
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