
Overtuning in Hyperparameter Optimization

Lennart Schneider1,2 Bernd Bischl1,2 Matthias Feurer1,2

1
Department of Statistics, LMU Munich

2
Munich Center for Machine Learning (MCML)

Abstract Hyperparameter optimization (HPO) aims to identify an optimal hyperparameter configura-

tion (HPC) such that the resulting model generalizes well to unseen data. As the expected

generalization error cannot be optimized directly, it is estimated with a resampling strategy,

such as holdout or cross-validation. This approach implicitly assumes that minimizing the

validation error leads to improved generalization. However, since validation error estimates

are inherently stochastic and depend on the resampling strategy, a natural question arises:

Can excessive optimization of the validation error lead to overfitting at the HPO level, akin

to overfitting in model training based on empirical risk minimization? In this paper, we

investigate this phenomenon, which we term overtuning, a form of overfitting specific to

HPO. Despite its practical relevance, overtuning has received limited attention in the HPO

and AutoML literature. We provide a formal definition of overtuning and distinguish it from

related concepts such as meta-overfitting. We then conduct a large-scale reanalysis of HPO

benchmark data to assess the prevalence and severity of overtuning. Our results show that

overtuning is more common than previously assumed, typically mild but occasionally severe.

In approximately 10% of cases, overtuning leads to the selection of a seemingly optimal HPC

with worse generalization error than the default or first configuration tried. We further

analyze how factors such as performance metric, resampling strategy, dataset size, learning

algorithm, and HPO method affect overtuning and discuss mitigation strategies. Our results

highlight the need to raise awareness of overtuning, particularly in the small-data regime,

indicating that further mitigation strategies should be studied.

1 Introduction

Hyperparameter optimization (HPO) is a fundamental technique in modern machine learning (ML)

and allows ML models and complex pipelines to be adapted to different datasets and scenarios

(Feurer and Hutter, 2019; Bischl et al., 2023), with pipelines being popular to create full AutoML

systems. While resampling-based estimates, such as holdout or cross-validation (CV), are commonly

used to construct the objective function in HPO, their stochastic nature can lead to surprising effects

on unseen test data (Figure 1). In particular, aggressive optimization of noisy validation scores

may result in choosing a hyperparameter configuration (HPC) that performs worse on unseen

test data (Ng, 1997; Cawley and Talbot, 2010; Makarova et al., 2021) – a phenomenon we refer

to as overtuning. Despite its potentially adverse consequences, and although some authors have

touched upon this topic in the last 25 years, overtuning has received limited attention in the HPO

and AutoML literature and is somewhat underexplored. This paper aims to fill this gap by formally

defining overtuning and empirically investigating its prevalence and impact.

Our contributions are as follows: 1) We provide a formal definition of overtuning in HPO,

distinguishing it from related concepts such as meta-overfitting and test regret. 2) We reanalyze

large-scale HPO benchmark data to quantify how frequently overtuning occurs and assess its

practical significance. 3) Through mixed model analyses, we examine how overtuning is influenced

by the choice of performance metric, resampling strategy, dataset size, learning algorithm, and

HPO method. 4) Finally, we discuss potential mitigation strategies to reduce the risk of overtuning

and its extent.

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:lennart.schneider@stat.uni-muenchen.de
mailto:bernd.bischl@stat.uni-muenchen.de
mailto:matthias.feurer@stat.uni-muenchen.de
https://creativecommons.org/licenses/by/4.0/

0 100 200 300 400 500 600
Iteration

0.20

0.22

0.24

0.26
Er

ro
r

SAINT covertype
validation
test

0 100 200 300 400 500
Iteration

0.35

0.36

0.37

0.38

0.39

0.40

0.41
GradientBoostingTree eye_movements

0 50 100 150 200 250
Iteration

0.190

0.195

0.200

0.205

0.210

0.215
FT_Transformer bank-marketing

0 50 100 150 200 250 300
Iteration

0.3075

0.3100

0.3125

0.3150

0.3175

0.3200

MLP compas-two-years

Figure 1: HPO curves based on the data from Grinsztajn et al. (2022). Validation performance of

incumbents is given in blue, test performance in orange. From left to right: Ideal, meta-

overfitting, benign overtuning, severe overtuning. Ribbons represent standard errors.

2 Problem Statement
Background and notation follow Bischl et al. (2023). The goal of supervised ML is to fit a model

given n observations, each sampled from a data generating process Pxy , so that it generalizes well

to new observations from the same data generating process. An ML learning algorithm or inducer

I configured by an HPC λ ∈ Λ maps a data set D to a model f̂

I : D×Λ → H, (D,λ) 7→ f̂ ,

where D :=
⋃

n∈N(X × Y)n is the set of all data sets. The search space Λ = Λ1 × . . . × Λl

contains all hyperparameters for optimization and their ranges, where Λi is a bounded subset of

the domain of the ith hyperparameter. Hyperparameters can be numeric, integer, and categorical.

Hierarchical search spaces can arise when the validity of certain hyperparameters depends on the

values of others.

In the following, we are concerned with the generalization error (GE) of an inducer I configured

by an HPC λ ∈ Λ defined as

EDtrain∼Pn
xy ,(x,y)∼Pxy

[L(y, Iλ(Dtrain)(x))] , (1)

given a training set Dtrain of size ntrain and a loss function L with expectation over data set

Dtrain sampled from Pn
xy and test sample (x, y) sampled from Pxy . To estimate the GE, we

make use of a resampling strategy that is denoted as a vector of corresponding splits, i.e.,

J = ((Jtrain,1, Jtest,1), . . . , (Jtrain,B, Jtest,B)), where Jtrain,i, Jtest,i are index vectors and B is

the number of splits. We then estimate the GE via:

ĜE(I,λ,J , L) =

= agr
(
ĜEJtrain,1,Jtest,1(I,λ, |Jtrain,1|, L), . . . , ĜEJtrain,B ,Jtest,B (I,λ, |Jtrain,B|, L)

)
.

(2)

with the aggregator agr often being chosen as the mean.

Having defined the objective function, we can now state the general HPO problem:

λ∗ ∈ argmin
λ∈Λ

ĜE(I,λ,J , L). (3)

An optimizer sequentially evaluates the ordered sequence of HPCs (λ1, . . .λT) with a total

budget T –we call such a sequence a “trajectory”.
1
The ordered incumbent sequence is (λ∗

1, . . . ,λ
∗
T).

Here, each λ∗
t is the validation optimal HPC of a trajectory (λ1, . . .λt) up to time point t:

λ∗
t := argmin

λ∈{λ1,...λt}
ĜE(I,λ,J , L).

1

We use brackets (. . .) to denote an ordered sequence, whereas {. . .} denotes an unordered set.

2

We denote the validation error of an incumbent λ∗
t as v̂al(λ

∗
t) := ĜE(I,λ∗

t ,J , L). We can further

denote the true GE of such an optimal λ∗
t (fixing the concrete data set Dtrain at hand) as:

test(λ∗
t) := GE(I,λ∗

t ,Dtrain, L) := E(x,y)∼Pxy

[
L(y, Iλ∗

t
(Dtrain)(x))

]
.

We can estimate the true GE unbiasedly via another holdout test set or in a nested resampling

manner, which we denote by t̂est(λ∗
t).

In this paper we investigate how to quantify the effect that overoptimizing on the validation

error may decrease true generalization performance of the incumbent, which we will refer to as

the overtuning effect.

3 Characterizing the Overtuning Effect
Given a sequence of incumbents, (λ∗

1, . . . ,λ
∗
t), we are interested in whether there exists a previous

incumbent λ∗
t′ ∈ {λ∗

1, . . . ,λ
∗
t }, for which test(λ∗

t′) < test(λ∗
t) and, by construction, v̂al(λ∗

t′) ≥
v̂al(λ∗

t). In other words, have we already observed an incumbent λ∗
t′ that has lower true GE than

the actual incumbent λ∗
t at time point t? And would stopping the HPO process early or choosing

the incumbent differently have resulted in lower GE? Based on these questions, we introduce the

following definition of overtuning and contrast it with meta-overfitting, trajectory test regret and

oracle test regret.

Definition 3.1. Given a trajectory (λ1, . . . ,λT), we define for each time point 1 ≤ t ≤ T :

overtuning: ott(λ1, . . . ,λt, . . . ,λT) = test(λ∗
t)− min

λ∗
t′∈{λ

∗
1,...,λ

∗
t }
test(λ∗

t′) (4)

meta-overfitting: oft(λ1, . . . ,λt, . . . ,λT) = test(λ∗
t)− v̂al(λ∗

t) (5)

trajectory test regret: trt(λ1, . . . ,λt, . . . ,λT) = test(λ∗
t)− test(λ†

t) (6)

oracle test regret: trt(λ1, . . . ,λt, . . . ,λT) = test(λ∗
t)− test(λ††

t) (7)

where λ†
t := argmin

λ∈{λ1,...,λt}
test(λ) and λ††

t := argmin
λ∈Λ

test(λ).

Overtuning quantifies how much worse the current incumbent performs on true test error

compared to the best test-performing incumbent observed so far. In contrast, trajectory test regret

compares the current incumbent to all HPCs seen during the search, not just past incumbents.

Oracle test regret, on the other hand, quantifies the gap between the current incumbent and the best

possible HPC in the entire search space. Since oracle test regret is generally impractical to compute,

we refer to trajectory test regret simply as test regret throughout the remainder of the paper. Lastly,

meta-overfitting captures the discrepancy between the observed validation error and the true GE,

akin to the generalization gap observable on the first level (Hardt and Recht, 2022, Chapter 6). It

directly follows that nonzero meta-overfitting is necessary but not sufficient to observe overtuning

(see Appendix B), which can also be observed in Figure 1. While investigating meta-overfitting

may seem appealing, it is not central to HPO for the following reasons: 1) Validation-test gaps

are expected due to finite data and resampling variability. 2) Validation error is mainly used to

rank HPCs – its absolute value does not matter. 3) The selected HPC’s validation error is a biased

estimate of generalization performance anyways. 4) The actual concern in HPO is whether we

have selected a seemingly strong HPC that underperforms in true generalization, missing out on

a previous better alternative. While overtuning and relative overtuning (Definitions (3.1)–(3.2))

quantify inefficiencies of HPO due to misleading validation signals during optimization, they do not

allow for statements regarding absolute generalization performance across different HPO protocols.

We illustrate this limitation in Appendix A.

3

To facilitate comparisons across different tasks, performance metrics, and learning algorithms,

we introduce a normalizedmeasure of overtuning. This relative overtuning expresses the overtuning

magnitude as a fraction of the maximum possible improvement in test error (with respect toλ∗
1 = λ1

or an explicit default HPC) achieved during the HPO run.

Definition 3.2. Given a sequence of HPC evaluations (λ1, . . . ,λt, . . .λT), the relative overtuning
effect at time point t is defined as

õtt(λ1, . . . ,λt, . . .λT) =
ott(λ1, . . . ,λt, . . . ,λT)

test(λ∗
1)−minλ∗

t′∈{λ
∗
1,...,λ

∗
t } test(λ

∗
t′)

(8)

Relative overtuning indicates how much worse the current test error is compared to the maximum

possible improvement in true generalization performance achieved by HPO. For example, a value

of 0 implies no overtuning, while a value of 0.1 indicates a 10% loss in test performance made

during HPO due to overtuning. Values of 1 and above imply that overtuning has resulted in no

improvement over the initial test error, and we lost all HPO progress and HPO even degraded

generalization performance. While relative overtuning quantifies the missed relative improvement

due to overtuning, it can overstate the severity of generalization issues when performance gains of

HPO are intrinsically small. We discuss this limitation in Appendix A.

4 Related Work
We now discuss related work concerned with notions of overtuning in HPO. Appendix C provides

an extended discussion and we discuss mitigation strategies in Section 7.

Cawley and Talbot (2010) explore overfitting in model selection, highlighting that criteria like

CV estimates of GE have a bias and variance due to finite data. High-variance selection criteria can

lead to models that excel on validation data but fail to generalize, an observation consistent with

our definition of overtuning, although Cawley and Talbot (2010) do not formally define or quantify

it. Their experiments using synthetic data show that validation performance can improve while

test performance deteriorates. In contrast, evidence is limited in real-world settings where they

observe that a more flexible kernel in kernel ridge regression may overfit validation data compared

to a simpler alternative.

Ng (1997) critiques the common practice of selecting models based solely on validation error,

noting that the model with the lowest validation error may not have the lowest true GE. This

mismatch arises from the variance in the validation error estimator and the sensitivity of the true

GE’s conditional posterior distribution to the observed validation error conditioned on. This aligns

with our definition of overtuning, where validation error may improve while true GE worsens. To

address this, Ng (1997) proposes LOOCVCV, which estimates the GE of the best-of-n models for

varying n to determine how many models can be considered before overfitting to validation data

occurs. The final model is then chosen based on a validation performance percentile k derived

from the optimal n. On noisy synthetic data, LOOCVCV outperforms naïve selection, but it can be

overly conservative in lower-noise settings.

Makarova et al. (2022) propose an early stopping criterion for Bayesian Optimization (BO) in

HPO. We refer to Garnett (2023) for a general introduction to BO and to Feurer and Hutter (2019);

Bischl et al. (2023) for an introduction in the context of HPO. The early stopping criterion for

BO introduced in Makarova et al. (2022) combines a confidence bound on the surrogate model’s

prediction and the variance of the CV estimator. This approach reduces computational costs with

small impact on generalization performance. They also touch on what we define as overtuning,

noting that gains in validation performance might not translate to test improvements due to weak

validation-test correlations. A prior workshop version (Makarova et al., 2021) highlighted this more

explicitly, observing test performance drops in Elastic Net models trained via SGD despite ongoing

validation gains.

4

Lévesque (2018) addresses what we define as overtuning in HPO, showing empirically that

validation performance can improve while test performance deteriorates. In a large-scale HPO

study tuning support vector machines on 118 datasets using classification error as performance

metric, they explore potential mitigation strategies: reshuffling resampling splits, selecting the

incumbent on an outer test set (Dos Santos et al., 2009; Koch et al., 2010; Igel, 2013), and selecting

the incumbent via the posterior mean in BO. They find that reshuffling improves generalization –

especially with holdout as resampling – and that posterior mean selection can further enhance

performance. In contrast, additionally holding out a separate selection set harms generalization.

While these results support the effectiveness of these strategies, overtuning itself is not formally

quantified – its presence is implicitly inferred from improvements in generalization. Nagler et al.

(2024) extend this work by demonstrating that reshuffling improves generalization even for a simple

random search (RS; Bergstra and Bengio 2012), analyzing its effect on the validation loss surface

and deriving regret bounds in the asymptotic regime.

Fabris and Freitas (2019) investigate overfitting in the context of AutoML, conducting experi-

ments with Auto-sklearn (Feurer et al., 2015) on 17 datasets using ROC AUC as the performance

metric. They analyze discrepancies across three data partitions: training vs. internal validation,

training vs. external test, and internal validation vs. external test – the latter aligning with what

we term meta-overfitting. Meta-overfitting is prevalent on smaller datasets (1000 observations or

fewer). While validation and test scores are generally well-correlated, the number of HPO iterations

by SMAC (Hutter et al., 2011) shows no significant correlation with the extent of meta-overfitting.

In similar spirit, Schröder et al. (2025) focus on the Combined Algorithm Selection and Hy-

perparameter Optimization (CASH; Thornton et al. 2013) problem and whether meta-overfitting

can be observed. They compare RS to BO (SMAC3; Lindauer et al. 2022) on a collection of 64

datasets (binary classification, multiclass classification and regression) and use either holdout or

10-fold CV as the resampling. They differentiate between selection-based meta-overfitting (due

to the selection of the final incumbent) and adaptive meta-overfitting (due to the optimizer, such

as BO, adapting to the validation loss). They observe that multiclass classification and regression

datasets are less affected and that larger validation sets reduce selection-based meta-overfitting but

adaptive meta-overfitting can persists on larger sets. Moreover, 10-fold CV reduces meta-overfitting

compared to holdout, whereas BO shows higher meta-overfitting than RS with slightly better

performance on the outer test set. Moreover, in contrast to Fabris and Freitas (2019) they do observe

that the number of HPO iterations correlates positively with adaptive meta-overfitting of BO.

Roelofs et al. (2019) conduct a large-scale empirical study of adaptive overfitting due to test

set reuse in Kaggle competitions, finding little evidence of substantial overfitting despite repeated

evaluation of models against the public test set. While their setting differs from our explicit focus

on HPO, the adaptive dynamics they analyze are related to what we define as meta-overfitting and

the resulting optimality gap is implicitly related to what we defined as overtuning.

5 An Empirical Analysis of Overtuning
To evaluate the prevalence and practical significance of overtuning in HPO, we re-analyzed several

recent, large-scale studies, where the HPO trajectories are publicly available. Specifically, we

considered HPO data from the following works: FCNet (Klein and Hutter, 2019), LCBench (Zimmer

et al., 2021), WDTB (Grinsztajn et al., 2022), TabZilla (McElfresh et al., 2023), TabRepo (Salinas and
Erickson, 2024), reshuffling (Nagler et al., 2024) and PD1 (Wang et al., 2024). We selected these

studies because they include multiple learning algorithms, datasets, and performance metrics.

Importantly, each study provides both validation and test performance (estimated on an outer

test set), enabling an assessment of overtuning. Each study comprises the evaluation of multiple

HPCs for a given combination of learning algorithm, dataset, and performance metric. All studies

employed either random search (RS; Bergstra and Bengio 2012) or a fixed grid of HPCs, the latter

allowing for simulating a RS. The reshuffling study additionally includes BO runs, and runs where

5

the resampling was reshuffled, and runs where models were not retrained prior to evaluating on

the outer test set, which are excluded from the present analysis and revisited in detail in Section 6.

Our empirical analysis aims to answer the questions: 1) How often does overtuning in HPO

occur? 2) How strong is the effect? For each HPO run, defined by a unique tuple of learning algo-

rithm, dataset, performance metric, evaluation protocol, and potentially random seed, we computed

the relative overtuning as defined in Definition (3.2). Note that the denominator in Equation (8)

can cause numerical instabilities. If the default HPC achieves the best test performance over all

incumbents or the improvement is small, the denominator will be zero or close to zero, rendering the

metric numerically unstable or undefined. Therefore, when quantifying the overtuning effect at a

time point t, it is reasonable to only consider and average over HPO runs where some improvement

over the default can be observed with respect to test performance. We use a threshold of ϵ = 0.001
(with the scale of metrics for, e.g., accuracy and ROC AUC ranging from 0 to 1). This procedure

yields a distribution of relative overtuning values per study. Approximately 38.5% of HPO runs

yield test performance improvements smaller than this threshold.

We visualize the empirical cumulative distribution function (ECDF) over these values in Figure 2

(solid black line). The analysis reveals that in approximately 60% of HPO runs, no overtuning is

observed. Furthermore, 70% of runs exhibit relative overtuning less than 0.1, while 90% remain

below 1.0. Conversely, this implies that in 10% of HPO runs, we observe what we refer to as “severe”

overtuning (i.e., relative overtuning greater than 1.0). Due to the large variation in the number of

HPO runs across studies, we also provide per-study ECDFs in Figure 2. These show substantial

heterogeneity: some studies, such as FCNet, display almost no overtuning, whereas others, notably

reshuffling and TabRepo, exhibit overtuning in over 50% of runs and severe overtuning in more

than 15%. We provide additional ECDFs, stratified by learning algorithm, performance metric, and

evaluation protocol, for each study in Appendix D and now give a brief summary of key findings.

For reshuffling (Figure 3), we observe that across all learning algorithms and performance

metrics, overtuning is substantially mitigated when using 5x 5-fold CV, compared to a simple

holdout. HPO based on accuracy and ROC AUC tends to result in higher overtuning, whereas

log loss is generally more robust. Among the learning algorithms, the Elastic Net displays the

lowest sensitivity to overtuning. In contrast, more flexible models as the Funnel MLP, XGBoost

and especially CatBoost show substantial overtuning under holdout, although this can be largely

alleviated with more sophisticated resamplings. For WDTB (Figure 4), we observed that overtuning

is most pronounced for classification tasks evaluated using accuracy, particularly on the categorical

classification benchmarks. In contrast, numerical regression tasks using R2
exhibit substantially

lower overtuning. Among learning algorithms, tree-basedmodels such as GradientBoostingTree and

HistGradientBoostingTree demonstrate the greatest robustness. Neural architectures, particularly

the ResNet and MLP show higher overtuning, especially on classification tasks. Looking at TabZilla
(Figures 5, 6, 7, 8), we observed that the tree-based gradient boosting algorithms are relatively robust

to overtuning, particularly on multiclass classification. Neural architectures including the ResNet

and especially the MLPs are more prone to overtuning. In general, binary classification (ROC AUC)

is more sensitive to overtuning than multiclass classification (log loss). This is consistent with

theoretical results showing that overfitting due to test set reuse is harder in multiclass settings

with many classes (Feldman et al., 2019). For TabRepo (Figure 9), we observed the similar trend

that binary classification (ROC AUC) is more sensitive to overtuning than multiclass classification

(log loss) or regression (RMSE). Moreover, CatBoost and the two neural architectures are more

prone to overtuning than the other learning algorithms. For LCBench (Figure 10), PD1 (Figure 11),

and FCNet (Figure 12), we observed minimal overtuning but noticed that accuracy or classification

error are more sensitive to overtuning than cross-entropy, i.e., log loss.

6

0 1 2 3 4 5
Relative Overtuning

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n Study
(all)
reshuffling
WDTB
TabZilla
TabRepo
LCBench
FCNet
PD1

Figure 2: ECDFs of relative overtuning over different HPO studies. y-axis starts at 0.3.

6 Modeling the Determinants of Overtuning

To directly investigate overtuning in HPO and identify influential factors, such as learning algo-

rithms, performance metrics, evaluation protocols, and optimizers, we analyze the reshuffling HPO

data (Nagler et al., 2024) in more detail. In that study, the authors systematically varied the learning

algorithm (Elastic Net (Zou and Hastie, 2005), Funnel MLP (Zimmer et al., 2021), XGBoost (Chen

and Guestrin, 2016), CatBoost (Prokhorenkova et al., 2018)), performance metric (accuracy, log

loss, ROC AUC), dataset size (n = 500, 1000, or 5000 observations, with a fixed outer test set of

size 5000), and resampling strategy (80/20 holdout, 5-fold CV, 5x 80/20 holdout, 5x 5-fold CV) in a

full factorial design, repeating each HPO run on ten binary classification datasets (treated as data

generating processes) ten times. For our analysis, we focus on results from RS with a budget of 500

HPC evaluations under default non-reshuffled resampling, comprising 14400 HPO runs in total.

Test performance was determined by retraining the inducer configured by a given HPC on all data

and evaluating on the outer holdout set. For more details, see Nagler et al. (2024).

We investigate how overtuning is influenced by the number of HPO iterations, performance

metric, learning algorithm (classifier), resampling strategy, and dataset size. Rather than testing

strict hypotheses, our analysis is exploratory (Herrmann et al., 2024). Overtuning and relative

overtuning are computed per HPO run as defined in Definitions (3.1)–(3.2). Since many runs show

no overtuning, we first fit a generalized linear mixed-effects model (GLMM) to predict the probability

of nonzero overtuning. The model includes random intercepts for dataset and seed, and fixed effects

for the performance metric, classifier, resampling strategy, dataset size, and a scaled HPO budget

(0 to 1), including a quadratic term for the budget to capture nonlinearity. We omit interaction

terms to keep the model simple. Results are shown in Table 1a. We observe that longer tuning

increases the odds of overtuning (positive main effect), but the negative quadratic term indicates

a diminishing effect at higher iteration counts, forming a plateau similar to an inverted U-shape.

A likelihood ratio test confirms the necessity of the quadratic term (χ2(1) = 1913.90, p < 0.001).
Compared to the reference levels (accuracy for metric and Elastic Net for classifier), both log loss

and ROC AUC increase the odds of overtuning, and all classifiers increase these odds. In contrast,

employing more sophisticated resampling strategies (especially 5x 5-fold CV compared to holdout)

and using more data (n = 1000 or n = 5000 observations instead of n = 500) reduces the odds.
As a follow up, we fitted a linear mixed-effects model (LMM) to predict the relative overtuning

as in Definition (3.2) on a logarithmic scale (to counter skewness) for cases with nonzero overtuning.

The LMM uses the same random and fixed effects as the GLMM, and a likelihood ratio test again

confirm the need for a quadratic budget term (χ2(1) = 31.361, p < 0.001). Table 1b summarizes

these results. The conclusions largely remain the same as for the GLMM, i.e., using a more

sophisticated resampling strategy and more data reduces the extent of overtuning although ROC

AUC and log loss now overall show less nonzero relative overtuning compared to accuracy. As

before, longer tuning increases relative overtuning (positive main effect), but the negative quadratic

7

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -1.408569 0.096734 -14.560 < 0.001
budget 2.262315 0.035965 62.900 < 0.001
budget

2
-1.495099 0.034100 -43.840 < 0.001

metric (ROC AUC) 0.724608 0.006277 115.440 < 0.001
metric (log loss) 0.222283 0.006186 35.930 < 0.001
classifier (CatBoost) 1.609866 0.007494 214.810 < 0.001
classifier (Funnel MLP) 1.200907 0.007357 163.230 < 0.001
classifier (XGBoost) 1.336699 0.007390 180.890 < 0.001
resampling (5x Holdout) -0.264233 0.007202 -36.690 < 0.001
resampling (5-fold CV) -0.290060 0.007202 -40.270 < 0.001
resampling (5x 5-fold CV) -0.481657 0.007214 -66.770 < 0.001
dataset size (1000) -0.275075 0.006229 -44.160 < 0.001
dataset size (5000) -0.640027 0.006261 -102.230 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.962e+00 1.465e-01 1.809e+01 -13.389 < 0.001
budget 3.955e-01 4.089e-02 2.616e+05 9.672 < 0.001
budget

2
-2.093e-01 3.737e-02 2.616e+05 -5.600 < 0.001

metric (ROC AUC) -2.178e-01 6.922e-03 2.616e+05 -31.463 < 0.001
metric (log loss) -7.852e-01 7.167e-03 2.616e+05 -109.548 < 0.001
classifier (CatBoost) 2.693e+00 8.887e-03 2.616e+05 302.994 < 0.001
classifier (Funnel MLP) 1.218e+00 8.855e-03 2.616e+05 137.563 < 0.001
classifier (XGBoost) 2.176e+00 9.235e-03 2.616e+05 235.615 < 0.001
resampling (5x Holdout) -3.165e-01 7.390e-03 2.616e+05 -42.831 < 0.001
resampling (5-fold CV) -3.081e-01 7.371e-03 2.616e+05 -41.793 < 0.001
resampling (5x 5-fold CV) -4.927e-01 7.530e-03 2.616e+05 -65.437 < 0.001
dataset size (1000) -1.291e-01 6.285e-03 2.616e+05 -20.549 < 0.001
dataset size (5000) -4.136e-01 6.658e-03 2.616e+05 -62.129 < 0.001

Table 1: Fixed effects results of mixed models used to analyze overtuning. RS runs, no reshuffling, test

performance of the model retrained on all data. Reference levels: accuracy (metric), Elastic

Net (classifier), holdout (resampling), 500 (dataset size).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(intercept) 3.016e-02 3.803e-03 1.076e+01 7.931 < 0.001
metric (ROC AUC) 2.148e-02 7.691e-04 1.437e+04 27.930 < 0.001
metric (log loss) -3.619e-03 7.691e-04 1.437e+04 -4.705 < 0.001
classifier (CatBoost) 2.064e-02 8.880e-04 1.437e+04 23.242 < 0.001
classifier (Funnel MLP) 1.736e-02 8.880e-04 1.437e+04 19.545 < 0.001
classifier (XGBoost) 1.154e-02 8.880e-04 1.437e+04 12.998 < 0.001
resampling (5x Holdout) -1.733e-02 8.880e-04 1.437e+04 -19.514 < 0.001
resampling (5-fold CV) -2.022e-02 8.880e-04 1.437e+04 -22.769 < 0.001
resampling (5x 5-fold CV) -2.830e-02 8.880e-04 1.437e+04 -31.868 < 0.001
dataset size (1000) -1.281e-02 7.691e-04 1.437e+04 -16.661 < 0.001
dataset size (5000) -2.562e-02 7.691e-04 1.437e+04 -33.317 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 1.082e-02 1.333e-03 1.305e+01 8.120 < 0.001
metric (ROC AUC) 1.154e-02 4.157e-04 1.437e+04 27.754 < 0.001
metric (log loss) -1.240e-04 4.157e-04 1.437e+04 -0.298 < 0.001
classifier (CatBoost) 6.822e-03 4.800e-04 1.437e+04 14.212 < 0.001
classifier (Funnel MLP) 1.215e-02 4.800e-04 1.437e+04 25.321 < 0.001
classifier (XGBoost) 4.122e-03 4.800e-04 1.437e+04 8.587 < 0.001
resampling (5x Holdout) -5.437e-03 4.800e-04 1.437e+04 -11.327 < 0.001
resampling (5-fold CV) -5.839e-03 4.800e-04 1.437e+04 -12.164 < 0.001
resampling (5x 5-fold CV) -7.362e-03 4.800e-04 1.437e+04 -15.338 < 0.001
dataset size (1000) -5.352e-03 4.157e-04 1.437e+04 -12.876 < 0.001
dataset size (5000) -1.027e-02 4.157e-04 1.437e+04 -24.696 < 0.001

Table 2: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret. RS

runs, no reshuffling, test performance of the model retrained on all data. Reference levels of

factors are: accuracy (metric), Elastic Net (classifier), holdout (resampling), 500 (dataset size).

term indicates a diminishing effect. Finally, we fitted LMMs to predict the final meta-overfitting

and final test regret after 500 HPO iterations. Results in Table 2a and Table 2b show that employing

more sophisticated resampling strategies and using larger datasets reduce both meta-overfitting

and test regret. These findings suggest that practitioners should prefer CV (repeated if possible)

over holdout validation whenever possible, particularly with small datasets.

To assess the effect of the optimizer (RS vs. HEBO, see Cowen-Rivers et al. 2022 vs. SMAC3, see

Lindauer et al. 2022), we conduct anothermixedmodel analysis on the reshuffling data subset, limited

to 250 iterations (the BO budget), using ROC AUC as the performance metric (the only one tracked

in BO experiments). The choice of optimizer is included as a fixed effect and other random and

fixed effects remain the same as in the previous modeling approach. A likelihood ratio test reveals a

significant effect of the optimizer for both theGLMMmodeling the probability of nonzero overtuning

and the LMM modeling the nonzero relative overtuning on log scale: χ2(2) = 416.14, p < 0.001
for the GLMM, and χ2(2) = 1509.7, p < 0.001 for the LMM. In the GLMM (Table 3a), we observed

small but significant positive coefficients for both HEBO (0.0833, z = 9.049, p < 0.001) and SMAC3

(0.1881, z = 20.347, p < 0.001), compared to RS, suggesting that both BOmethods slightly increase

the odds of nonzero overtuning. Conversely, the LMM analysis of the magnitude of overtuning

(Table 3b) shows significant negative coefficients for HEBO (−0.3011, t(154200) = −36.363,
p < 0.001) and SMAC (−0.2581, t(154200) = −30.956, p < 0.001), indicating that while BO

slightly increases the likelihood of any overtuning, it substantially reduces its magnitude compared

to RS. Finally, based on an LMMmodeling final test regret with optimizer as a fixed factor (Table 4b),

we find that HEBO significantly reduces test regret relative to RS (−0.0021, t(14370) = −5.167,
p < 0.001), suggesting that HEBO tends to identify HPCs that generalize better. SMAC3 also

shows a small negative coefficient (−0.0003, t(14370) = −0.691, p = 0.489), but this effect is not
statistically significant.

8

We also investigate the effect of early stopping in BO (Makarova et al., 2021, 2022) by comparing

HEBO with HEBO using early stopping on the data subset up to 250 iterations (the BO budget),

using 5-fold CV as the resampling strategy (the only setting where early stopping à la Makarova

et al. (2022) is directly applicable), and ROC AUC as the performance metric (the only one tracked

in BO experiments). We apply the same mixed model analysis framework as before. Likelihood

ratio tests reveal a significant effect of early stopping for both the probability of nonzero overtuning

(GLMM: χ2(1) = 36.077, p < 0.001) and the extent of nonzero relative overtuning on log scale

(LMM: χ2(1) = 10.720, p = 0.001). When including early stopping as a fixed factor (Table 5b), we

observed a negative coefficient (−0.27531, t(980.555) = −3.272, p = 0.001) for nonzero relative

overtuning on log scale indicating a mitigating effect, albeit comparably small. One reason can be

that this analysis is restricted to HPO runs using 5-fold CV, where we have seen that overtuning is

rather mild, when compared to holdout runs. Moreover, since HEBO already reduces overtuning

compared to RS, the additional benefit from applying early stopping can be rather incremental.

Last but not least, we turn to the core idea behind the reshuffling data: reshuffling the resampling

splits during HPO, a strategy shown to improve generalization performance, particularly in the

case of holdout resampling (Nagler et al., 2024). We conduct a mixed model analysis as before on

the reshuffling data, focusing on the larger subset of RS runs (500 iterations). A likelihood ratio

test indicates a significant effect of reshuffling for both the GLMM modeling the probability of

nonzero overtuning (χ2(1) = 152.54, p < 0.001) and the LMM modeling the nonzero relative

overtuning on log scale (χ2(1) = 181.10, p < 0.001). Specifically, we find that, overall, reshuffling

slightly increases the odds of overtuning (0.0439, z = 12.351, p < 0.001, Table 6a) as well as
its extent (0.0515, t(537900) = 13.458, p < 0.001, Table 6b). Nagler et al. (2024) demonstrated

that reshuffling can improve generalization especially when holdout is used as a resampling with

ROC AUC as the performance metric. When we restrict our analysis to this particular setting,

we observed a clear shift: For both the GLMM (Table 8a) and LMM (Table 8b), reshuffling has a

significant negative effect on overtuning: it strongly decreases the odds of overtuning (−0.2645,
z = −20.054, p < 0.001) and its extent (−0.2693, t(55480) = −23.236, p < 0.001). Moreover,

reshuffling significantly reduces final test regret in this setting, as shown by an LMM analysis

(−0.0057, t(2375) = −5.990, p < 0.001, Table 9b), indicating that it leads to the identification

of HPCs with better true generalization performance. We find that reshuffling actually increases

final meta-overfitting (0.0548, t(2375) = 25.382, p < 0.001, Table 9a). However, meta-overfitting

does not necessarily imply worse HPO generalization. In fact, the “hedging”’ effect of reshuffling

described by Nagler et al. (2024) appears strong enough to reduce both overtuning and test regret.

7 Mitigation Strategies
While the primary contribution of this paper is to highlight the issue of overtuning in HPO, we now

turn to a discussion of potential mitigation strategies, drawing from both Section 6 and existing

literature. Broadly, these strategies fall into three categories: 1) Modifying the objective function,

2) adjusting incumbent selection (either already during optimization or only as a simple post-hoc

step), and 3) modifying the optimizer producing the HPC trajectory. The first category includes

methods that reduce variance (e.g., by using a more sophisticated resampling strategy) or add

regularization. The second category includes early stopping and avoiding naïve selection of the

validation-optimal HPC. The third category is naturally broader and includes any changes to the

optimizer that produces the HPC trajectory.

We have seen in our analysis of the data from Nagler et al. (2024) that larger datasets generally

reduce both the likelihood and severity of overtuning. While this is expected, we note that

increasing dataset size is often infeasible in practice. As such, overtuning remains to a large extent

a primary concern in small-data regimes. Moreover, more advanced resampling strategies such

as CV or repeated CV substantially reduce both the frequency and extent of overtuning. These

strategies, along with larger datasets, also help mitigate meta-overfitting and decrease test regret,

9

enabling HPO to more reliably identify configurations that generalize well. Additionally, our

findings suggest that BO results in less overtuning than RS, although it may slightly increase

meta-overfitting. This trade-off deserves further study. One possible explanation is that BO more

effectively identifies configurations with exceptionally strong validation performance that also

generalize well. Besides, BO’s use of a surrogate model may help smooth over noise in validation

estimates, guiding the search toward more robust well-performing regions. In noisy BO, one can

select the (final) incumbent based on the surrogate’s posterior predictive distribution rather than

the empirically best configuration (Picheny et al., 2013). While this was not implemented in the

BO runs of Nagler et al. (2024), incorporating such noise-aware techniques may further reduce

overtuning as briefly touched upon by Lévesque (2018). Finally, reshuffling resampling splits as

done in Lévesque (2018); Nagler et al. (2024) can help mitigate overtuning, although its effectiveness

varies across performance metrics, algorithms, and resampling strategies.

Prior work has touched on several strategies to mitigate overtuning. Cawley and Talbot (2010)

briefly mention regularization, early stopping, and model averaging. For example, Cawley and

Talbot (2007) show that incorporating L2 regularization on lengthscale parameters in kernel methods

can improve generalization. However, in modern tabular learning settings, applying regularization

during HPO is challenging, as it requires a clear mapping between hyperparameters and model

complexity – something not always available. Early stopping, explored by Makarova et al. (2021,

2022), shows promise, but in our analysis, it did not strongly reduce overtuning. One reason could

be that stopping too early may prevent discovering genuinely better configurations. Another issue

lies in the reliability of the variance estimator used for the stopping criterion, where we know

that no unbiased variance estimator exists for CV performance estimates (Bengio and Grandvalet,

2004). Finally, a fully Bayesian treatment of hyperparameters, as presented in Williams and Barber

(1998) and discussed by Cawley and Talbot (2010), appears impractical for modern models due to

computational and modeling complexity.

Other mitigation strategies focus on more cautious incumbent selection, such as using a

dedicated selection set or applying conservative selection criteria. Several works (Dos Santos

et al., 2009; Koch et al., 2010; Igel, 2013; Lévesque, 2018) have explored selecting the final HPC

based on a separate test set. However, Lévesque (2018) report that a dedicated test set can degrade

generalization performance, as it reduces the data available for HPO. Similarly, ML-Plan (Mohr

et al., 2018) adopts a two-phase strategy: It first explores candidates using one cross-validation on

a subset of the training data split, and then re-evaluates the best HPCs on the full training data

set (after shuffling it once). LOOCVCV (Ng, 1997) proposes selecting the incumbent not with the

best validation error, but at an adaptively chosen percentile, based on how many configurations

can be evaluated before overtuning occurs. While effective in noisy settings, it tends to be overly

conservative in low-noise regimes and is limited to decomposable point-wise metrics and i.i.d.

configurations, restricting it to RS while adding computational overhead.

We have seen that an effective and simple mitigation strategy against overtuning is using more

robust resampling strategies like repeated CV. However, this comes with increased computational

cost. To balance robustness and efficiency, it may be worthwhile to revisit adaptive resampling

techniques (Thornton et al., 2013; Zheng and Bilenko, 2013; Bergman et al., 2024; Buczak et al., 2024),

racing (Birattari et al., 2002; Lang et al., 2015) or optimal computing budget allocation strategies

(Bartz-Beielstein et al., 2011) that all stop the evaluation of likely poor-performing HPCs early.

8 Broader Impact Statement

This work presents no notable negative impacts to society or the environment.

Acknowledgements. We thank Ricardo Knauer for pointers to applied work on overtuning of

linear models.

10

References

Arlot, S. and Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics
Surveys, 4:40–79.

Arora, S. and Zhang, Y. (2021). Rip van Winkle’s razor: A simple estimate of overfit to test data.

arXiv:2102.13189 [cs.LG].

Austern, M. and Zhou, W. (2020). Asymptotics of cross-validation. arXiv:2001.11111 [math.ST].

Barros, R. C., de Carvalho, A. C. P. L. F., and Freitas, A. A. (2015). Automatic Design of Decision-Tree
Induction Algorithms. Springer International Publishing, Cham.

Bartz-Beielstein, T., Friese, M., Zaefferer, M., Naujoks, B., Flasch, O., Konen, W., and Koch, P. (2011).

Noisy optimization with sequential parameter optimization and optimal computational budget

allocation. In Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation, page 119–120.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using

lme4. Journal of Statistical Software, 67(1):1—-48.

Bates, S., Hastie, T., and Tibshirani, R. (2024). Cross-validation: What does it estimate and how

well does it do it? Journal of the American Statistical Association, 119(546):1434–1445.

Bayle, P., Bayle, A., Janson, L., and Mackey, L. (2020). Cross-validation confidence intervals

for test error. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., and Lin, H., editors,

Proceedings of the 33rd International Conference on Advances in Neural Information Processing
Systems (NeurIPS’20), pages 16339–16350. Curran Associates.

Bengio, Y. and Grandvalet, Y. (2004). No unbiased estimator of the variance of k-fold cross-validation.

Journal of Machine Learning Research, 4:1089–1105.

Bergman, E., Purucker, L., and Hutter, F. (2024). Don’t waste your time: Early stopping cross-

validation. In Lindauer et al. (2024), pages 9/1–31.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305.

Birattari, M. (2004). The Problem of TuningMetaheuristics as Seen from aMachine Learning Perspective.
PhD thesis, Université Libre de Bruxelles.

Birattari, M. (2009). Some considerations on the experimental methodology. In Birattari, M.,

editor, Tuning Metaheuristics: A Machine Learning Perspective, pages 171–195. Springer, Berlin,
Heidelberg.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm for configuring

metaheuristics. In Langdon, W., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrish-

nan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke,

E., and Jonoska, N., editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’02), pages 11–18. Morgan Kaufmann Publishers.

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M.,

Boulesteix, A., Deng, D., and Lindauer, M. (2023). Hyperparameter optimization: Foundations,

algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, page e1484.

11

Blum, A. and Hardt, M. (2015). The ladder: A reliable leaderboard for machine learning competitions.

In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on Machine
Learning (ICML’15), volume 37, pages 1006–1014. Omnipress.

Breiman, L. (1984). Classification and regression trees. Routledge.

Buczak, P., Groll, A., Pauly, M., Rehof, J., and Horn, D. (2024). Using sequential statistical tests for

efficient hyperparameter tuning. AStA Advances in Statistical Analysis, 108(2):441–460.

Cawley, G. and Talbot, N. (2010). On Overfitting in Model Selection and Subsequent Selection Bias

in Performance Evaluation. Journal of Machine Learning Research, 11:2079–2107.

Cawley, G. C. and Talbot, N. L. C. (2007). Preventing over-fitting during model selection via Bayesian

regularisation of the hyper-parameters. Journal of Machine Learning Research, 8(31):841–861.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Krishnapuram,

B., Shah, M., Smola, A., Aggarwal, C., Shen, D., and Rastogi, R., editors, Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), pages
785–794. ACM Press.

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Pham, H., Dong, X., Luong, T., Hsieh, C.-J., Lu, Y.,

and Le, Q. V. (2023). Symbolic discovery of optimization algorithms. In Oh et al. (2023).

Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Griffiths, R., Maraval, A., Jianye,

H., Wang, J., Peters, J., and Ammar, H. (2022). HEBO: Pushing the limits of sample-efficient

hyper-parameter optimisation. Journal of Artificial Intelligence Research, 74:1269–1349.

Dos Santos, E. M., Sabourin, R., and Maupin, P. (2009). Overfitting cautious selection of classifier

ensembles with genetic algorithms. Information Fusion, 10(2):150–162.

Dunias, Z. S., van Calster, B., Timmerman, D., Boulesteix, A.-L., and van Smeden, M. (2024). A

comparison of hyperparameter tuning procedures for clinical prediction models: A simulation

study. Statistics in Medicine, 43(6):1119–1134.

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., and Roth, A. (2015). Generalization in

adaptive data analysis and holdout reuse. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and

Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28.

Efron, B. and Tibshirani, R. (1997). Improvements on cross-validation: The 632+ bootstrap method.

Journal of the American Statistical Association, 92(438):548–560.

Eggensperger, K., Lindauer, M., and Hutter, F. (2019). Pitfalls and best practices in algorithm

configuration. Journal of Artificial Intelligence Research, pages 861–893.

Eimer, T., Lindauer, M., and Raileanu, R. (2023). Hyperparameters in reinforcement learning and

how to tune them. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J.,

editors, Proceedings of the 40th International Conference on Machine Learning (ICML’23), volume

202 of Proceedings of Machine Learning Research. PMLR.

Escalante, H., Montes, M., and Sucar, E. (2009). Particle Swarm Model Selection. Journal of Machine
Learning Research, 10:405–440.

Fabris, F. and Freitas, A. (2019). Analysing the overfit of the auto-sklearn automated machine

learning tool. In Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., and Sciacca, V., editors,

Machine Learning, Optimization, and Data Science, volume 11943 of Lecture Notes in Computer
Science, pages 508–520.

12

Feldman, V., Frostig, R., and Hardt, M. (2019). The advantages of multiple classes for reducing

overfitting from test set reuse. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learning (ICML’19), volume 97, pages 1892–1900.

Proceedings of Machine Learning Research.

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2022). Auto-Sklearn 2.0:

Hands-free automl via meta-learning. Journal of Machine Learning Research, 23(261):1–61.

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization. In Hutter, F., Kotthoff, L., and

Vanschoren, J., editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 1,
pages 3 – 38. Springer. Available for free at http://automl.org/book.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F. (2015). Efficient

and robust automated machine learning. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,

and Garnett, R., editors, Proceedings of the 29th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’15), pages 2962–2970. Curran Associates.

Garnett, R. (2023). Bayesian Optimization. Cambridge University Press. Available for free at

https://bayesoptbook.com/.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why do tree-based models still outperform

deep learning on typical tabular data? In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho,

K., and Oh, A., editors, Proceedings of the 35th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’22). Curran Associates.

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T. K., Macià, N., Ray, B., Saeed,

M., Statnikov, A., and Viegas, E. (2015). Design of the 2015 ChaLearn AutoML challenge. In 2015
International Joint Conference on Neural Networks (IJCNN’15), pages 1–8. International Neural
Network Society and IEEE Computational Intelligence Society, IEEE.

Guyon, I., Saffari, A., Dror, G., and Cawley, G. (2010). Model selection: Beyond the

Bayesian/Frequentist divide. Journal of Machine Learning Research, 11:61–87.

Hardt, M. (2017). Climbing a shaky ladder: Better adaptive risk estimation. arXiv:1706.02733 [cs.LG].

Hardt, M. and Recht, B. (2022). Patterns, Predictions, and Actions: Foundations of Machine Learning.
Princeton University Press.

Herrmann, M., Lange, F., Eggensperger, K., Casalicchio, G., Wever, M., Feurer, M., Rügamer, D.,

Hüllermeier, E., Boulesteix, A.-L., and Bischl, B. (2024). Position: Why we must rethink empirical

research in machine learning. In Salakhutdinov et al. (2024), pages 18228–18247.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2021). Meta-learning in neural networks:

A survey. In Lee, K. M., editor, IEEE Transactions on Pattern Analysis and Machine Intelligence’21).
IEEE Computer Society.

Huisman, M., van Rijn, J., and Plaat, A. (2021). A survey of deep meta-learning. Artificial Intelligence
Review, 54:4483–4541.

Hutter, F., Hoos, H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general

algorithm configuration. In Coello, C., editor, Proceedings of the Fifth International Conference
on Learning and Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer
Science, pages 507–523. Springer.

13

http://automl.org/book
https://bayesoptbook.com/

Hutter, F., Hoos, H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: An automatic algorithm

configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

Hutter, F., Hoos, H., and Stützle, T. (2007). Automatic algorithm configuration based on local search.

In Holte, R. and Howe, A., editors, Proceedings of the Twenty-second AAAI Conference on Artificial
Intelligence (AAAI’07), pages 1152–1157. AAAI Press.

Igel, C. (2013). A note on generalization loss when evolving adaptive pattern recognition systems.

IEEE Transactions on Evolutionary Computation, 17(3):345–352.

Ishibashi, H., Karasuyama, M., Takeuchi, I., and Hino, H. (2023). A stopping criterion for Bayesian

optimization by the gap of expected minimum simple regrets. In Ruiz, F., Dy, J., and van de

Meent, J.-W., editors, Proceedings of The 26th International Conference on Artificial Intelligence
and Statistics, volume 206, pages 6463–6497.

Klein, A. and Hutter, F. (2019). Tabular benchmarks for Joint Architecture and Hyperparameter

optimization. arXiv:1905.04970[cs.LG].

Koch, P., Konen, W., Flasch, O., and Bartz-Beielstein, T. (2010). Optimizing support vector machines

for stormwater prediction. Technical Report TR10-2-007, Technische Universität Dortmund.

Proceedings of Workshop on Experimental Methods for the Assessment of Computational

Systems joint to PPSN2010.

Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., and Bischl, B. (2015). Automatic

model selection for high-dimensional survival analysis. Journal of Statistical Computation and
Simulation, 85:62–76.

Larcher, C. and Barbosa, H. (2022). Evaluating models with dynamic sampling holdout in auto-ml.

SN Computer Science, 3(506).

Li, S., Li, K., and Li, W. (2023). “Why not looking backward?” A robust two-step method to

automatically terminate Bayesian optimization. In Oh, A., Naumann, T., Globerson, A., Saenko,

K., Hardt, M., and Levine, S., editors,Advances in Neural Information Processing Systems, volume 36,

pages 43435–43446.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf,

T., Sass, R., and Hutter, F. (2022). SMAC3: A versatile bayesian optimization package for

Hyperparameter Optimization. Journal of Machine Learning Research, 23(54):1–9.

Lindauer, M., Eggensperger, K., Garnett, R., Vanschoren, J., and Gardner, J., editors (2024). Pro-
ceedings of the Third International Conference on Automated Machine Learning. Proceedings of
Machine Learning Research.

Lorenz, R., Monti, R. P., Violante, I. R., Faisal, A. A., Anagnostopoulos, C., Leech, R., and Montana,

G. (2016). Stopping criteria for boosting automatic experimental design using real-time fMRI

with Bayesian optimization. arXiv:1511.07827 [q-bio.NC].

Loughrey, J. and Cunningham, P. (2005). Overfitting in wrapper-based feature subset selection: The

harder you try the worse it gets. In Bramer, M., Coenen, F., and Allen, T., editors, Research and
Development in Intelligent Systems XXI, pages 33–43, London. Springer London.

Loya, H., Łukasz Dudziak, Mehrotra, A., Lee, R., Fernandez-Marques, J., Lane, N. D., and Wen, H.

(2023). How much is hidden in the NAS benchmarks? few-shot adaptation of a NAS predictor.

arXiv:2311.18451 [cs.LG].

14

Lévesque, J. (2018). Bayesian Hyperparameter Optimization: Overfitting, Ensembles and Conditional
Spaces. PhD thesis, Université Laval.

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J., Krause, A., Seeger, M., and Archambeau,

C. (2021). Overfitting in Bayesian Optimization: An empirical study and early-stopping solution.

In ICLR 2021 Workshop on Neural Architecture Search.

Makarova, A., Shen, H., Perrone, V., Klein, A., Faddoul, J., Krause, A., Seeger, M., and Archambeau,

C. (2022). Automatic termination for hyperparameter optimization. In Guyon, I., Lindauer,

M., van der Schaar, M., Hutter, F., and Garnett, R., editors, Proceedings of the First International
Conference on Automated Machine Learning. Proceedings of Machine Learning Research.

McCulloch, C. E., Searle, S. R., and Neuhaus, J. M. (2008). Generalized, Linear, and Mixed Models.
Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ, 2 edition.

McElfresh, D., Khandagale, S., Valverde, J., Prasad C, V., Ramakrishnan, G., Goldblum, M., and

White, C. (2023). When do neural nets outperform boosted trees on tabular data? In Oh et al.

(2023), pages 76336–76369.

Mohr, F., Wever, M., and Hüllermeier, E. (2018). ML-Plan: Automated machine learning via

hierarchical planning. Machine Learning, 107(8-10):1495–1515.

Molinaro, A. M., Simon, R., and Pfeiffer, R. M. (2005). Prediction error estimation: A comparison of

resampling methods. Bioinformatics, 21(15):3301–3307.

Nagler, T., Schneider, L., Bischl, B., and Feurer, M. (2024). Reshuffling resampling splits can improve

generalization of hyperparameter optimization. In Globerson, A., Mackey, L., Belgrave, D., Fan,

A., Paquet, U., Tomczak, J., and Zhang, C., editors, Proceedings of the 37th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’24). Curran Associates.

Neto, E. C., Hoff, B. R., Bare, C., Bot, B. M., Yu, T., Magravite, L., Trister, A. D., Norman, T., Meyer,

P., Saez-Rodrigues, J., Costello, J. C., Guinney, J., and Stolovitzky, G. (2016). Reducing overfitting

in challenge-based competitions. arXiv:1607.00091 [stat.AP].

Ng, A. (1997). Preventing “overfitting”’ of cross-validation data. In Fisher, D., editor, Proceedings of
the Fourteenth International Conference on Machine Learning (ICML’97), pages 245–253. Morgan

Kaufmann Publishers.

Nguyen, T., Gupta, S., Rana, S., and Venkatesh, S. (2018). Stable bayesian optimization. International
Journal of Data Science and Analytics, 6:327–339.

Nguyen, V., Gupta, S., Rana, S., Li, C., and Venkatesh, S. (2017). Regret for expected improvement

over the best-observed value and stopping condition. In Zhang, M.-L. and Noh, Y.-K., editors,

Proceedings of the Ninth Asian Conference on Machine Learning, volume 77, pages 279–294.

Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors (2023). Proceed-
ings of the 36th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’23). Curran Associates.

Paraschakis, K., Castellani, A., Borboudakis, G., and Tsamardinos, I. (2024). Confidence interval

estimation of predictive performance in the context of AutoML. In Eggensperger, K., Garnett, R.,

Vanschoren, J., Lindauer, M., and Gardner, J. R., editors, Proceedings of the Third International
Conference on Automated Machine Learning, volume 256, pages 4/1–14.

15

Picheny, V., Wagner, T., and Ginsbourger, D. (2013). A benchmark of Kriging-based infill criteria

for noisy optimization. Structural and Multidisciplinary Optimization, 48:607–626.

Probst, P., Boulesteix, A., and Bischl, B. (2019). Tunability: Importance of hyperparameters of

machine learning algorithms. Journal of Machine Learning Research, 20(53):1–32.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A., and Gulin, A. (2018). Catboost: Unbiased

boosting with categorical features. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-

Bianchi, N., and Garnett, R., editors, Proceedings of the 31st International Conference on Advances
in Neural Information Processing Systems (NeurIPS’18), page 6639–6649. Curran Associates.

Quinlan, J. and Cameron-Jones, R. (1995). Oversearching and layered search in empirical learning.

In Mellish, C., editor, Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI’95), page 1019–1024. Morgan Kaufmann Publishers.

Reunanen, J. (2003). Overfitting in making comparisons between variable selection methods. Journal
of Machine Learning Research, 3:1371–1382.

Reunanen, J. (2007). Model selection and assessment using cross-indexing. In Proceedings of the
2007 International Joint Conference on Neural Networks, pages 2581–2585.

Riley, R. D., Snell, K. I. E., Martin, G. P., Whittle, R., Archer, L., Sperrin, M., and Collins, G. S. (2021).

Penalization and shrinkage methods produced unreliable clinical prediction models especially

when sample size was small. Journal of Clinical Epidemiology, 132:88–96.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., and Schmidt, L. (2019). A

meta-analysis of overfitting in machine learning. In Wallach, H., Larochelle, H., Beygelzimer, A.,

d’Alche Buc, F., Fox, E., and Garnett, R., editors, Proceedings of the 32nd International Conference
on Advances in Neural Information Processing Systems (NeurIPS’19). Curran Associates.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,

Bernstein, M., Berg, A., and Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252.

Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors

(2024). Proceedings of the 41st International Conference on Machine Learning (ICML’24), volume

251 of Proceedings of Machine Learning Research. PMLR.

Salinas, D. and Erickson, N. (2024). TabRepo: A large scale repository of tabular model evaluations

and its AutoML applications. In Lindauer et al. (2024), pages 19/1–30.

Schröder, S., Baratchi, M., and van Rijn, J. N. (2025). Overfitting in combined algorithm selection

and hyperparameter optimization. In Krempl, G., Puolamäki, K., and Miliou, I., editors, Advances
in Intelligent Data Analysis XXIII, pages 181–194.

Schulz-Kümpel, H., Fischer, S., Hornung, R., Boulesteix, A.-L., Nagler, T., and Bischl, B. (2025).

Constructing confidence intervals for ’the’ generalization error – a comprehensive benchmark

study. arXiv:2409.18836 [stat.ML].

Song, X., Tian, Y., Lange, R. T., Lee, C., Tang, Y., and Chen, Y. (2024). Position: Leverage foundational

models for black-box optimization. In Salakhutdinov et al. (2024), pages 46168–46180.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the
Royal Statistical Society: Series B (Methodological), 36(2):111–133.

16

Thornton, C., Hutter, F., Hoos, H., and Leyton-Brown, K. (2013). Auto-WEKA: combined selection

and Hyperparameter Optimization of classification algorithms. In Dhillon, I., Koren, Y., Ghani,

R., Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., and Uthurusamy, R., editors, The 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13), pages
847–855. ACM Press.

Tschalzev, A., Purucker, L., Lüdtke, S., Hutter, F., Bartelt, C., and Stuckenschmidt, H. (2025). Un-

reflected use of tabular data repositories can undermine research quality. arXiv:2503.09159
[cs.LG].

van Calster, B., van Smeden, M., De Cock, B., and Steyerberg, E. W. (2020). Regression shrinkage

methods for clinical prediction models do not guarantee improved performance: Simulation

study. Statistical Methods in Medical Research, 29(11):3166–3178.

van Rijn, J. and Hutter, F. (2018). Hyperparameter importance across datasets. In Guo, Y. and

Farooq, F., editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’18), pages 2367–2376. ACM Press.

Wainer, J. and Cawley, G. (2017). Empirical Evaluation of Resampling Procedures for Optimising

SVM Hyperparameters. Journal of Machine Learning Research, 18:1–35.

Wang, Z., Dahl, G. E., Swersky, K., Lee, C., Nado, Z., Gilmer, J., Snoek, J., and Ghahramani, Z. (2024).

Pre-trained Gaussian processes for Bayesian optimization. Journal of Machine Learning Research,
25(212):1–83.

Williams, C. K. I. and Barber, D. (1998). Bayesian classification with Gaussian processes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(12):13420–1351.

Wilson, J. T. (2024). Stopping Bayesian optimization with probabilistic regret bounds. In Globerson,

A., Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Advances in
Neural Information Processing Systems, volume 37, pages 98264–98296.

Yang, C., Akimoto, J., Kim, D., and Udell, M. (2019). OBOE: Collaborative filtering for AutoML

model selection. In Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., and Karypis, G., editors,

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD’19), pages 1173–1183. ACM Press.

Yang, C., Fan, J., Wu, Z., and Udell, M. (2020). AutoML pipeline selection: Efficiently navigating the

combinatorial space. In Tang, J. and Prakash, B., editors, Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’20). ACM Press.

Yao, H., Huang, L.-K., Zhang, L., Wei, Y., Tian, L., Zou, J., Huang, J., and Li, Z. . (2021). Improving

generalization in meta-learning via task augmentation. In Meila, M. and Zhang, T., editors,

Proceedings of the 38th International Conference on Machine Learning (ICML’21), volume 139 of

Proceedings of Machine Learning Research, pages 11887–11897. PMLR.

Zheng, A. and Bilenko, M. (2013). Lazy paired hyper-parameter tuning. In Rossi, F., editor,

Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), pages
1924–1931.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-Pytorch: Multi-fidelity metalearning for

efficient and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43:3079–3090.

17

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320.

Šinkovec, H., Heinze, G., Blagus, R., and Geroldinger, A. (2021). To tune or not to tune, a case

study of ridge logistic regression in small or sparse datasets. BMC Medical Research Methodology,
21(1):199.

18

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] [Definitions are provided in Section 3, the empirical analysis

in Section 5, the modeling of determinants in Section 6 and mitigation strategies are

discussed in Section 7].

(b) Did you describe the limitations of your work? [Yes] [As this paper does not introduce a new

algorithm or method but instead focuses on establishing formal definitions and reanalyzing

existing HPO studies, we did not include a dedicated limitation section but instead discuss

limitations directly where applicable, e.g., in Section 6 we state that we did not include

interaction effects in the mixed models. Regarding our definition of overtuning, we discuss

limitations in Appendix A.]

(c) Did you discuss any potential negative societal impacts of your work? [Yes] [See Section 8].

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] [The paper conforms to them.]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench-

marks, data (sub)sets, available resources)? [N/A] [We rely on data of various, published

works that conducted HPO runs and published this data. We do not compare methods.]

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [N/A] [We rely on data of various, published works

that conducted HPO runs and published this data. Our analyses of this data does not require

data splits, pre-processing, or hyperparameter tuning]

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [N/A] [We rely on data of various,

published works that conducted HPO runs and published this data. With the exception of

additional runs for Section 6 we did not run any experiments but relied on the experiments

of existing published work.]

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] [Mixed model analyses include standard error estimates of coefficients.]

(e) Did you report the statistical significance of your results? [Yes] [Mixed model analyses

include measures of statistical significance.]

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] [We rely on

data of various, published works that conducted HPO runs and published this data.]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [N/A] [We perform an analysis of the overtuning found in HPO runs of various

published works. The authors of these works determined the overall HPO budget which we

cannot influence in hindsight. In Section 6 we model overtuning as an anytime metric.]

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] [See Appendix F.]

(i) Did you run ablation studies to assess the impact of different components of your approach?

[N/A] [We rely on data of various, published works that conducted HPO runs and published

this data. We do not introduce a new algorithm or method.]

19

https://2022.automl.cc/ethics-accessibility/

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] [See Appendix F.]

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] [See Appendix F.]

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] [See Appendix F.]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] [See Appendix F.]

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] [See Appendix F.]

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] [We cite the creators of used assets where

applicable in Section 5 and Section 6.]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [Yes] [Used existing assets are leased under licenses

that permit usage.]

(c) Did you discuss whether the data you are using/curating contains personally identifiable in-

formation or offensive content? [N/A] [Used existing assets do not contain such information

or content.]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

[See Appendix F.]

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] [See Appendix F.]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] [We did not use crowdsourcing or conducted research with human subjects.]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] [We did not use crowdsourcing or conducted research

with human subjects.]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] [We did not use crowdsourcing or conducted research

with human subjects.]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] [We do not include

theoretical results.]

20

(b) Did you include complete proofs of all theoretical results? [N/A] [We do not include

theoretical results.]

21

A Limitations

Overtuning and relative overtuning, as defined in Definition (3.1) and Definition (3.2), quantify

how much better HPO could have performed if no decisions had been made based on misleading

validation error throughout the trajectory of evaluated HPCs. However, these metrics are not

designed to assess or compare the absolute generalization performance of different HPO protocols.

While this may seem evident, we state it explicitly for clarity. Consider two hypothetical HPO

protocols:

• Protocol A evaluates only a single configuration, λA,1 = λ∗
A,1, achieving v̂al(λ∗

A,1) = 0.3 and

test(λ∗
A,1) = 0.35.

• Protocol B in contrast evaluates T = 10 configurations, with the final incumbent λ∗
B,10 achieving

v̂al(λ∗
B,10) = 0.18 and test(λ∗

B,10) = 0.22.

Suppose Protocol B exhibits a final overtuning of ot10 = 0.02, implying that an earlier incumbent

had a true GE of 0.20. Protocol A, by definition, cannot exhibit overtuning since it only evaluates a

single configuration. Nevertheless, Protocol B clearly leads to better generalization performance

(0.22 vs. 0.35), and should be preferred when the primary concern is generalization – even though

it exhibits overtuning. However, the presence of overtuning in Protocol B is still informative, as it

indicates that even better generalization performance was theoretically achievable.

Furthermore, relative overtuning (Definition (3.2)) can be sensitive to the scale of possible

performance improvements. If the test error difference between the default or first evaluated HPC

and the best observed incumbent is small, the relative overtuning may appear disproportionately

large. This reflects the metric’s design – to measure the relative gain missed due to overtuning

– but it can lead to inflated values in scenarios where HPO yields only marginal improvements.

We do not investigate in this work in detail why such marginal improvements might occur and

how improvements on the validation set can better generalize to improvements on an outer test

set but note that meta-overfitting (Definition (3.1)) can be a suitable metric to assess this. Possible

explanations include low tunability (Probst et al., 2019; van Rijn and Hutter, 2018) of the learning

algorithm, or overly constrained search spaces where all configurations perform similarly. In such

cases, high relative overtuning may simply reflect the limited room for improvement rather than

poor HPO generalization.

A direct practical implication is that overtuning alone is not sufficient to evaluate or compare

HPO protocols. When analyzing mitigation strategies for overtuning, it is essential to consider their

impact on absolute generalization performance. In specific settings – such as the RS runs in Nagler

et al. (2024), where all protocols use the same fixed trajectory of HPCs – trajectory test regret

(Definition (3.1)) may suffice, as it directly measures how well a protocol identifies a near-optimal

configuration within the same trajectory. However, when HPO protocols differ in their search

trajectories (and their length) – due to early stopping, different optimizers, or resource budgets – we

must also compare the final test performance of their incumbents. Only then can we draw reliable

conclusions about which protocol performs better overall with respect to generalization. For the

HEBO vs. HEBO with early stopping à la Makarova et al. (2022) analyses reported in Section 6, we

therefore provide a follow-up analysis concerned with the test performance of the final incumbent

in Appendix E.1.

22

B Overtuning vs. Meta-Overfitting

Proposition B.1. Given a sequence of HPC evaluations (λ1, . . . ,λt, . . .λT), if overtuning exists at a
time point t, i.e., ott(λ1, . . . ,λt, . . .λT) > 0, there must exist some nonzero meta-overfitting for the
current incumbent λ∗

t or some previous incumbent λ∗
t′ (t

′ < t), i.e., oft(λ1, . . . ,λt, . . .λT) ̸= 0 or
oft′(λ1, . . . ,λt, . . .λT) ̸= 0.

We can easily see this by contradiction. Assume that overtuning exists at time point t. By Defini-

tion (3.1) this means (test(λ∗
t)−minλ∗

t′∈{λ
∗
1,...,λ

∗
t } test(λ

∗
t′)) > 0. Since the minimum is strictly

less than test(λ∗
t) there must exist a previous incumbent λ∗

t′ such that test(λ∗
t′) < test(λ∗

t). By

definition of incumbents, we know: v̂al(λ∗
t) ≤ v̂al(λ∗

t′) since t
′ < t. Assume that meta-overfitting

is zero for both λ∗
t and λ∗

t′ , i.e., test(λ
∗
t) = v̂al(λ∗

t) and test(λ∗
t′) = v̂al(λ∗

t′). Substituting in

test(λ∗
t′) < test(λ∗

t) gives v̂al(λ
∗
t′) = test(λ∗

t′) < test(λ∗
t) = v̂al(λ∗

t), from which follows

v̂al(λ∗
t′) < v̂al(λ∗

t) contradicting the established relation v̂al(λ∗
t) ≤ v̂al(λ∗

t′).
Note that nonzero meta-overfitting, however, is not sufficient to observe overtuning. Assume

the following performance values of HPCs λ1,λ2: v̂al(λ1) = 0.3, v̂al(λ2) = 0.2, test(λ1) =
0.4, test(λ2) = 0.35. we observed meta-overfitting of of1(λ1,λ2) = 0.4 − 0.3 = 0.1 and

of2(λ1,λ2) = 0.35 − 0.2 = 0.15. Still, overtuning is zero as neither for t = 1 nor t = 2
there exists a previous incumbent with better test performance. In this sense, we correctly identi-

fied the best HPC performing with respect to true GE. This relationship of meta-overfitting and

overtuning is also depicted in Figure 1. Naturally, if meta-overfitting is simply a gap between

validation and test error that is (roughly) the same for all incumbents or HPCs, there cannot be any

overtuning.

23

C Extended Related Work

A foundational study by Cawley and Talbot (2010) shows that any model selection criterion (for

instance, CV) inherently has both bias and variance because it relies on a finite data sample. As

they illustrate with synthetic data, extensive optimization on the validation set can cause the

chosen model to excel on validation performance but fail to generalize to unseen test data. Their

real-data experiments focus on comparing final configurations chosen by different model-selection

schemes (e.g., a single-parameter RBF kernel vs. an ARD kernel for kernel ridge regression). They

do not define a formal metric of overfitting for model selection but empirically demonstrate that

more flexible setups, such as ARD, can outperform on validation yet yield worse performance on a

held-out test set. Their work is best known for emphasizing nested CV (or nested resampling in

general) as essential for unbiased performance estimation once model selection is performed.

Ng (1997) propose an approach closely aligned with the idea of overtuning, although their work

has not been widely recognized in contemporary AutoML and HPO research. They critique the

practice of selecting models solely by their CV (in actuality, simple holdout; earlier works used

the term CV for holdout, and k-fold CV for what is nowadays meant by CV) performance, noting

that the variance of the validation error estimate can skew the posterior distribution of the true

GE. To address this, Ng (1997) suggests selecting not the lowest validation error, but rather the

hypothesis at the k-th percentile of validation performance, where k is chosen adaptively. This

adaptation relies on LOOCVCV: it estimates how many candidate hypotheses can be evaluated

before overfitting to the validation error. Although effective under high noise and limited samples

(e.g., in synthetic classification with decision trees), this LOOCVCV approach can become overly

conservative with lower noise, sometimes underperforming simpler selection strategies.

Guyon et al. (2010) further formalize model selection through a multi-level inference framework

that brings together Bayesian, frequentist, and hybrid viewpoints (see also Bischl et al. 2023). They

underscore the risk of overfitting in hyperparameter selection – citing Cawley and Talbot (2010) –

and advocate for bound-based selection, ensemble methods, and other regularization techniques

to mitigate it. Likewise, Guyon et al. (2015) view model selection as a bi-level optimization prob-

lem, arguing that one must introduce regularization and robust data-splitting practices to avoid

overfitting to empirical criteria like the CV error. Auto-sklearn 2.0 (Feurer et al., 2022) demonstrate

that it is also possible to meta-learn the model selection criterion rather than treating it as a static

heuristic.

Makarova et al. (2022) address the challenge of deciding when to stop BO in HPO by proposing

a new termination criterion. This criterion combines a confidence bound on the surrogate model’s

regret with a variance estimate of the CV estimator. Their rule halts BO once the maximum plausible

improvement from the surrogate falls below the standard deviation of the incumbent’s validation

error. They report that this avoids many unnecessary function evaluations and saves computational

resources, at only a small cost in final test performance. While they briefly acknowledge that the

discrepancy between validation and test performance can persist, it is attributed mainly to low

validation–test correlation.

An earlier workshop version (Makarova et al., 2021) puts stronger emphasis on “overfitting” in

BO, showing that in tuning an Elastic Net, XGBoost, and a random forest across 19 datasets, Elastic

Net (trained via SGD) performance on the test set often declined after prolonged validation-driven

optimization. Their explanation again points to weak validation–test correlations, though they

do not discuss deeper causes (dataset traits, algorithms, metrics, or resampling choices). In their

analyses, they employ the Relative Test Error Change (RYC) to compare test errors in early-stopped

vs. full-budget runs, and the Relative Time Change (RTC) to quantify computational savings.

Positive RYC implies that early stopping helped avert overtuning, whereas negative values mean

the run was halted prematurely.

24

Nguyen et al. (2018) also study overfitting in BO-based HPO, focusing on how to detect “stable”

solutions. Their notion of stability involves low “extra variance”, defined as the change in predictive

mean and variance under small Gaussian perturbations of the hyperparameters. A high extra

variance signals a rapidly varying objective function that may lead to overtuning. They propose

two stability-aware acquisition functions, Stable-UCB and Stable-EI, which penalize instability to

encourage more robust HPCs.

Other works on early stopping in BO include Lorenz et al. (2016); Nguyen et al. (2017); Ishibashi

et al. (2023); Li et al. (2023); Wilson (2024), although Ishibashi et al. (2023) is among the few that also

directly considers overfitting in HPO. Their stopping criterion focuses on changes in the expected

minimum simple regret, i.e., how much the estimated best objective improves with an additional

function evaluation. As with Makarova et al. (2021, 2022), they measure outcomes using RYC and

RTC but observe inconsistent results, indicating that while their method can cut computation time,

it does not always prevent overtuning.

Fabris and Freitas (2019) conduct experiments with Auto-sklearn (Feurer et al., 2015) across

17 datasets, optimizing the area under the ROC curve. They distinguish among training, internal

validation, and external test performance and frequently observe deteriorations from validation to

test – phenomena they refer to as “meta-overfitting”, especially when datasets are small (around

1000 or fewer observations). Although the validation–test correlation is generally high, the number

of SMAC (Hutter et al., 2011) optimization iterations does not correlate with how severe this

meta-overfitting is.

Earlier, Escalante et al. (2009) studied a particle swarm optimization (PSO)-based approach to

full model selection, including preprocessing, feature selection, learner choice, and hyperparameter

tuning. They note that while CV is the main safeguard against overfitting in their experiments,

PSO’s stochastic exploration can also mitigate the risk of pushing too hard on the validation error.

Nonetheless, they acknowledge that repeated exploitation of CV estimates can cause validation

improvements not always reflected on a held-out test set.

Lévesque (2018) undertook a large-scale support vector machine (SVM) HPO study with 118

datasets and identify overtuning as a serious problem, especially in small-data scenarios. They test

solutions like reshuffling, using an outer test set, and adopting posterior-mean-based selection in BO.

Reshuffling helps in small-data regimes – particularly with holdout resampling – while choosing

hyperparameters by posterior mean also yields better generalization. Selecting configurations on

a separate selection set (Dos Santos et al., 2009; Koch et al., 2010; Igel, 2013), however, can hurt

performance because it reduces the data available for HPO. Extending these findings, Nagler et al.

(2024) provide a more rigorous analysis of reshuffling, demonstrating its benefits even for simple

RS. They further analyze how reshuffling affects the validation loss landscape and derive regret

bounds in the asymptotic regime.

Similarly, Larcher and Barbosa (2022) propose dynamic sampling holdout as a faster alternative

to CV for AutoML when using population-based algorithms that operate in generations. By

reshuffling training and validation partitions at each generation, they reduce the variance and bias

inherent in using the same splits repeatedly. Their empirical results show improvements in test

performance and lower computational overhead.

Several foundational studies examine the estimation of GE and the variance of GE estimators.

A thorough survey by Schulz-Kümpel et al. (2025) benchmarks a broad array of GE confidence-

interval construction methods, while earlier and more recent contributions (Stone, 1974; Efron and

Tibshirani, 1997; Bengio and Grandvalet, 2004; Austern and Zhou, 2020; Bayle et al., 2020; Bates

et al., 2024; Paraschakis et al., 2024) provide theoretical and practical guidance on error estimation.

A complementary survey on CV in model selection is offered by Arlot and Celisse (2010).

Empirical comparisons of resampling strategies include Molinaro et al. (2005), who find that in

small-sample, high-dimensional genomic studies, naive resubstitution estimates are highly biased,

but LOOCV, 10-fold CV, and the .632+ bootstrap can be more reliable. At the same time, the .632+

25

bootstrap may become biased if the signal-to-noise ratio is high. Further, Wainer and Cawley (2017)

systematically evaluate 15 resampling-based HPO techniques for SVMs (with RBF kernels) and

suggest that 2-fold or 3-fold CV is often a viable substitute for standard 5-fold CV, providing similar

generalization at reduced computational cost. A recent study however finds that current machine

learning benchmarks might report the performance of underfitted models due to using an internal

holdout procedure instead of cross-validation (Tschalzev et al., 2025), potentially questioning the

outcomes of such studies. In clinical prediction models, Dunias et al. (2024) show that standard

5-fold or 10-fold CV tends to yield robust out-of-sample discrimination and calibration, whereas the

widely used 1SE rule (Breiman, 1984) can severely miscalibrate predictions in small or low-event-rate

samples.

Blum and Hardt (2015) address overfitting to public leaderboards, where participants repeatedly

adapt to holdout feedback. They propose the Ladder mechanism, which only reports improvements

deemed statistically significant, reducing information leakage and therefore mitigating overfitting.

Extending this approach, Hardt (2017) introduce the Shaky Ladder, which adds randomized privacy

guarantees so that participants cannot game small improvements. Neto et al. (2016) propose

LadderBoot, which injects bootstrap noise to limit the sensitivity of public scores to repeated

queries.

Another influential line of work in the context of overfitting in leaderboards leverages differen-

tial privacy. Dwork et al. (2015) present Thresholdout and SparseValidate, which provide theoretical

generalization guarantees even after multiple adaptive queries to a holdout. Feldman et al. (2019)

investigate how easily one can overfit a fixed test set in multiclass settings via adaptively chosen

queries. While more classes raise the barrier to overfitting, it remains feasible with relatively few

queries. In practice, Roelofs et al. (2019) analyze Kaggle competitions and, surprisingly, detect little

evidence of large-scale overfitting, attributing poor generalization more to distribution shifts than

to test set overuse.

Arora and Zhang (2021) explore this notion of “meta-overfitting” where continual reuse of

a public benchmark – like ImageNet (Russakovsky et al., 2015) – gradually contaminates that

benchmark. Researchers copy hyperparameters, architectures, or training procedures that appear

to work well on the widely shared test set, therefore implicitly optimizing on it. They propose an

information-theoretic approach to quantify how much the test set is effectively “consumed” by

repeated usage, suggesting that measuring a model’s description length relative to a “pre-test-set”

referee can help bound overfitting in such adaptive processes.

Quinlan and Cameron-Jones (1995) point out that more exhaustive searches during rule learn-

ing can degrade generalization – a phenomenon they term “oversearching”. By fitting random

idiosyncrasies in data, broader searches can lead to complex rules that fit the validation set but fail

on new data. They propose a layered search strategy that expands search breadth incrementally

and stops based on a probabilistic criterion, thereby avoiding the poor test performance often seen

with exhaustive strategies.

Similarly, Reunanen (2003) shows that performing CV within variable selection can become

self-defeating, because the repeated use of the same data splits to pick features leads to validation

overfitting. Following up on this, Reunanen (2007) proposed cross-indexing to avoid overfitting in

model selection. Meanwhile, Loughrey and Cunningham (2005) note that aggressive search-based

feature selection using methods like genetic algorithms can cause severe overfitting to the validation

set, substantially harming test accuracy. They propose an early-stopping mechanism based on CV

signals to limit the search depth before overfitting occurs.

Outside of the usage here, the phrase “meta-overfitting” often appears in meta-learning to

indicate that knowledge acquired on source tasks may fail to generalize to new, target tasks (Yao

et al., 2021; Hospedales et al., 2021; Huisman et al., 2021). It has also been discussed in the context

of neural networks (Hospedales et al., 2021), AutoML systems (Yang et al., 2019, 2020), performance

prediction (Loya et al., 2023), and other “learning to learn” settings (Barros et al., 2015; Chen

26

et al., 2023; Song et al., 2024). This differs from the notion of meta-overfitting as used to describe

consistent deterioration of test performance relative to validation performance within a single

study or single dataset.

In the context of algorithm configuration, which is closely related to HPO, Eggensperger et al.

(2019) outline best practices and highlight common pitfalls. They caution that evaluations which are

insufficiently diverse, or overly reliant on a small set of training instances, can lead to overtuning,

referencing concerns raised in earlier work (Birattari, 2004; Hutter et al., 2007; Birattari, 2009;

Hutter et al., 2009). While this prior literature on overtuning in algorithm configuration does not

offer a precise formal definition, the phenomenon is generally understood in a manner consistent

with our definition in the HPO setting: Overoptimization with respect to few training instances,

few random seeds, or specific hardware setups can eventually result in degraded generalization

performance on new, unseen test scenarios.

Related, Eimer et al. (2023) point to limited reproducibility in reinforcement learning HPO.

Optimizing hyperparameters on very few random seeds often causes severe overfitting, as configu-

rations subsequently do poorly on unseen seeds. The authors advocate for adopting AutoML best

practices, such as clear separation of tuning and evaluation seeds and employing systematic HPO

strategies.

Many additional studies merely note overtuning or caution against it, especially in small, noisy

data (as in certain linear or clinical models (van Calster et al., 2020; Šinkovec et al., 2021; Riley et al.,

2021)). While they do not directly measure overtuning, they nonetheless highlight the vulnerability

of HPO to misleading improvements when sample sizes are too limited.

Finally, two survey works – Feurer and Hutter (2019) and Bischl et al. (2023) – explicitly

identify overtuning as a core problem in HPO. They summarize various strategies for mitigating

over-optimization of validation error, referencing much of the research above.

27

D Details on an Empirical Analysis of Overtuning

FCNet (Klein and Hutter, 2019) is based on exhaustive evaluations of fully connected feed-forward

neural networks on four UCI regression datasets: Protein Structure, Slice Localization, Naval

Propulsion, and Parkinsons Telemonitoring. Each dataset is randomly split into 60% training, 20%

validation, and 20% test sets. The model architecture consists of two hidden layers followed by a

linear output layer. For the search space and additional information, see Klein and Hutter (2019).

Each configuration (a combination of architectural and training hyperparameters) is trained using

the Adam optimizer for 100 epochs, minimizing the mean squared error (MSE), which is also used

as the evaluation metric. To account for stochasticity in training, each configuration is repeated

four times using different random seeds. This yields a tabular benchmark dataset with complete

learning curves and performance statistics for all configurations. We use the final (with respect to

the number of epochs trained) validation and test MSE in our analyses. For each replication and

dataset combination, we computed the relative overtuning as defined in Definition (3.1) based on

an HPC trajectory of all evaluated HPCs (T = 62208).
LCBench (Zimmer et al., 2021) is based on evaluating 2000 HPCs, sampled uniformly at random,

for a funnel-shaped MLP on 35 classification datasets. For the search space and additional informa-

tion, see Zimmer et al. (2021). Each dataset reserves 33% as a test set, and the remaining data is split

into training and validation sets, with the validation set comprising 33%. Models are trained using

SGD with cosine annealing (without restarts) and evaluated using accuracy and cross-entropy. We

use the final (with respect to the number of epochs trained) validation and test performance values

in our analyses. For each dataset and metric combination, we computed the relative overtuning as

defined in Definition (3.1) based on an HPC trajectory of all evaluated HPCs (T = 2000).
WDTB (Grinsztajn et al., 2022) includes different learning algorithms evaluated on a curated

benchmark of 45 datasets, categorized into four groups: categorical classification, numerical

classification, categorical regression, and numerical regression, where categorical/numerical refers

to the feature types. Learning algorithms include Random Forest, XGBoost, Gradient Boosting

Tree, ResNet, FT Transformer, SAINT, MLP, and HistGradientBoostingTree. For the search spaces

and additional information, see Grinsztajn et al. (2022). For each learning algorithm, RS with

approximately 400 HPC evaluations is performed, beginning with a default HPC. The data splitting

and evaluation protocol is designed to ensure fair and efficient comparison across datasets: 70%

of samples are allocated to the training set (unless this exceeds a predefined maximum), and the

remaining 30% is split into 30% validation and 70% test sets, both capped at 50000 samples. The

validation set is used exclusively for selecting the best configuration during RS and is distinct from

the internal validation set used for early stopping. To adjust for dataset size variability, the number

of evaluation folds depends on the number of test samples: one fold for >6000 samples, two for

3000–6000, three for 1000–3000, and five for <1000. All models are evaluated on the same folds

to ensure comparability. Performance is measured using accuracy (for classification) and R2
(for

regression). In our analyses, we exclude default HPCs and use only the random HPCs. For each

learning algorithm and dataset combination, we computed the relative overtuning as defined in

Definition (3.1) based on an HPC trajectory of all evaluated HPCs (T ≈ 400). Figure 1 was created
by postprocessing the raw data through a resampling-based simulation. For each dataset-model

pair, 100 HPO trajectory replicates were created by subsampling 50% of the (originally drawn

uniformly at random) configurations without replacement. Within each replicate, the sequence

of validation incumbents was extracted to emulate iterative model selection. These incumbent

trajectories were aligned by iteration index and aggregated across replicates. At each iteration, the

mean and standard error of both validation and test error were computed, yielding the depicted

performance curves with corresponding confidence bands.

TabZilla (McElfresh et al., 2023) includes evaluations of various learning algorithms on a total

of 176 classification datasets. Learning algorithms include CatBoost, XGBoost, LightGBM, DeepFM,

28

DANet, FT Transformer, TabTransformer, two MLP variants, NODE, ResNet, SAINT, STG, TabNet,

TabPFN (no HPO), VIME, NAM, Decision Tree, KNN, Logistic Regression (Linear Model, no HPO),

Random Forest, and SVM. For the search spaces and additional information, see McElfresh et al.

(2023). Each dataset uses the ten train/test folds provided by OpenML. Within each training fold, a

further split is used to construct a validation set for HPO. The best configuration is selected based

on validation performance, and final performance is reported on the test set without retraining.

Models are evaluated using accuracy, F1, log loss, and ROC AUC. In our analyses, we exclude runs

with fewer than 30 HPC evaluations and exclude the default HPCs, retaining only the random HPCs

to be consistent with the other studies that generally rely on configurations sampled uniformly

at random. For each learning algorithm, dataset, fold, and metric combination, we computed the

relative overtuning as defined in Definition (3.1) based on an HPC trajectory of all evaluated HPCs

(T ≈ 29).
TabRepo (Salinas and Erickson, 2024) includes evaluations of 1530 learning algorithm and HPC

combinations across 211 classification and regression datasets. We use the “D244_F3_C1530_175”

context, restricted to 175 datasets. Learning algorithms include Random Forest, Extra Trees,

LightGBM, XGBoost, CatBoost, Linear Model, KNN, and two neural network architectures. For the

search spaces and additional information, see Salinas and Erickson (2024). Models are evaluated

using 3-fold CV. For each fold, data is split into 90% training and 10% test. All models are trained with

bagging, generating out-of-fold predictions for estimating generalization performance. Performance

is measured using ROC AUC (for binary classification), log loss (for multi-class classification),

and RMSE (for regression). Each algorithm has one default HPC and 200 configurations sampled

uniformly at random. In our analyses, we exclude runs with fewer than 30 HPCs. For each learning

algorithm, dataset, and fold combination, we computed the relative overtuning as defined in

Definition (3.1) based on an HPC trajectory of all evaluated HPCs (T ≥ 30).
reshuffling (Nagler et al., 2024) evaluates four learning algorithms (Elastic Net, Funnel MLP,

XGBoost, CatBoost) on ten binary classification tasks, varying the dataset size, resampling strategy,

usage of reshuffling, and optimizer. For the search spaces and additional information, see Nagler

et al. (2024). A fixed outer test set of 5000 samples is held out and never used during HPO. For

HPO, subsets of the remaining data are drawn with training-validation sizes n ∈ {500, 1000, 5000}.
Resampling strategies include: 80/20 holdout, 5-fold CV, 5x 80/20 holdout, and 5x 5-fold CV, ensuring

constant train/validation sizes but varying the splits. Performance is measured via accuracy, log

loss, and ROC AUC (BO uses ROC AUC only). The best configuration is retrained on the full HPO

data and evaluated on the outer test set. RS is performed with 500 fixed HPCs per replication (ten

in total). In our analyses, we use only the RS runs without reshuffled resampling. We revisit BO

(HEBO and SMAC for a budget of 250 HPCs) and reshuffling the resampling splits in Section 6. For

each learning algorithm, dataset, dataset size, repetition, resampling, and metric combination, we

computed the relative overtuning as defined in Definition (3.1) based on an HPC trajectory of all

evaluated HPCs (T = 500).
PD1 (Wang et al., 2024) is a large-scale HPO dataset developed for evaluating BO algorithms

in deep learning. It consists of 24 tasks, each defined by a dataset (e.g., CIFAR10, ImageNet), a

model (e.g., ResNet50, Transformer), and a batch size (determined by hardware). For each task,

approximately 500 “matched” and 1500 “unmatched” HPCs are evaluated from a shared four-

dimensional search space: learning rate (log scale), momentum (log scale), polynomial decay power,

and decay fraction. All tasks use Nesterov momentum with fixed pipelines, varying only optimizer

hyperparameters. Each configuration is fully trained and logged with learning curves, including

validation cross-entropy loss, error rate, and divergence status. Performance metrics are given by

error rate and cross-entropy. We use the “phase1” data (both “matched” and “unmatched”). We

exclude ImageNet ResNet50 (all batch sizes), LM1B Transformer (2048), WMT15 German-English

xformer (64), and UniRef50 Transformer (128), leaving 18 tasks due to failed/incomplete runs

or insufficient full-epoch HPCs or runs where test performance was not available. We use the

29

final validation and test performances for each task in our analyses. For each task and metric

combination, we computed the relative overtuning as defined in Definition (3.1) based on an HPC

trajectory of all evaluated HPCs (T ≥ 1300).

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

CatBoost

Resampling, Metric
Holdout, Accuracy
Holdout, ROC AUC
Holdout, Log loss
5x Holdout, Accuracy
5x Holdout, ROC AUC
5x Holdout, Log loss
5-fold CV, Accuracy
5-fold CV, ROC AUC
5-fold CV, Log loss
5x 5-fold CV, Accuracy
5x 5-fold CV, ROC AUC
5x 5-fold CV, Log loss

0 1 2 3 4 5
Relative Overtuning

XGBoost

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Funnel MLP

0 1 2 3 4 5
Relative Overtuning

Elastic Net

Figure 3: ECDFs of relative overtuning for reshuffling (Nagler et al., 2024). Stratified for the learning

algorithm, resampling strategy and performance metric but not dataset sizes.

30

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

GradientBoostingTree
Benchmark, Metric

Categorical Classification, Accuracy
Numerical Classification, Accuracy
Categorical Regression, R2
Numerical Regression, R2

0 1 2 3 4 5
Relative Overtuning

Resnet

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

FT_Transformer

0 1 2 3 4 5
Relative Overtuning

SAINT

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

RandomForest

0 1 2 3 4 5
Relative Overtuning

MLP

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

XGBoost

0 1 2 3 4 5
Relative Overtuning

HistGradientBoostingTree

Figure 4: ECDFs of relative overtuning forWDTB (Grinsztajn et al., 2022). Stratified for the learning

algorithm, benchmark type and performance metric.

31

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Learning Algorithm, Benchmark
XGBoost, Binary
XGBoost, Multiclass
LightGBM, Binary
LightGBM, Multiclass
CatBoost, Binary
CatBoost, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
STG, Binary
STG, Multiclass
DANet, Binary
DANet, Multiclass
FT_Transformer, Binary
FT_Transformer, Multiclass
ResNet, Binary
ResNet, Multiclass
SAINT, Binary
SAINT, Multiclass

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Learning Algorithm, Benchmark
VIME, Binary
VIME, Multiclass
MLP, Binary
MLP, Multiclass
NODE, Binary
NODE, Multiclass
TabNet, Binary
TabNet, Multiclass
MLP-rtdl, Binary
MLP-rtdl, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
DecisionTree, Binary
DecisionTree, Multiclass
KNN, Binary
KNN, Multiclass
SVM, Binary
SVM, Multiclass
RandomForest, Binary
RandomForest, Multiclass

Figure 5: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric

accuracy. Stratified for the learning algorithm, and benchmark type.

32

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Learning Algorithm, Benchmark
XGBoost, Binary
XGBoost, Multiclass
LightGBM, Binary
LightGBM, Multiclass
CatBoost, Binary
CatBoost, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
STG, Binary
STG, Multiclass
DANet, Binary
DANet, Multiclass
FT_Transformer, Binary
FT_Transformer, Multiclass
ResNet, Binary
ResNet, Multiclass
SAINT, Binary
SAINT, Multiclass

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Learning Algorithm, Benchmark
VIME, Binary
VIME, Multiclass
MLP, Binary
MLP, Multiclass
NODE, Binary
NODE, Multiclass
TabNet, Binary
TabNet, Multiclass
MLP-rtdl, Binary
MLP-rtdl, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
DecisionTree, Binary
DecisionTree, Multiclass
KNN, Binary
KNN, Multiclass
SVM, Binary
SVM, Multiclass
RandomForest, Binary
RandomForest, Multiclass

Figure 6: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric F1.

Stratified for the learning algorithm, and benchmark type.

33

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Learning Algorithm, Benchmark
XGBoost, Binary
XGBoost, Multiclass
LightGBM, Binary
LightGBM, Multiclass
CatBoost, Binary
CatBoost, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
STG, Binary
STG, Multiclass
DANet, Binary
DANet, Multiclass
FT_Transformer, Binary
FT_Transformer, Multiclass
ResNet, Binary
ResNet, Multiclass
SAINT, Binary
SAINT, Multiclass

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Learning Algorithm, Benchmark
VIME, Binary
VIME, Multiclass
MLP, Binary
MLP, Multiclass
NODE, Binary
NODE, Multiclass
TabNet, Binary
TabNet, Multiclass
MLP-rtdl, Binary
MLP-rtdl, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
DecisionTree, Binary
DecisionTree, Multiclass
KNN, Binary
KNN, Multiclass
SVM, Binary
SVM, Multiclass
RandomForest, Binary
RandomForest, Multiclass

Figure 7: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric log

loss. Stratified for the learning algorithm, and benchmark type.

34

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Learning Algorithm, Benchmark
XGBoost, Binary
XGBoost, Multiclass
LightGBM, Binary
LightGBM, Multiclass
CatBoost, Binary
CatBoost, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
STG, Binary
STG, Multiclass
DANet, Binary
DANet, Multiclass
FT_Transformer, Binary
FT_Transformer, Multiclass
ResNet, Binary
ResNet, Multiclass
SAINT, Binary
SAINT, Multiclass

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Learning Algorithm, Benchmark
VIME, Binary
VIME, Multiclass
MLP, Binary
MLP, Multiclass
NODE, Binary
NODE, Multiclass
TabNet, Binary
TabNet, Multiclass
MLP-rtdl, Binary
MLP-rtdl, Multiclass

0 1 2 3 4 5
Relative Overtuning

Learning Algorithm, Benchmark
DecisionTree, Binary
DecisionTree, Multiclass
KNN, Binary
KNN, Multiclass
SVM, Binary
SVM, Multiclass
RandomForest, Binary
RandomForest, Multiclass

Figure 8: ECDFs of relative overtuning for TabZilla (McElfresh et al., 2023). Performance metric ROC

AUC. Stratified for the learning algorithm, and benchmark type.

35

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

XGBoost

Benchmark, Metric
Binary, ROC AUC
Multiclass, Log loss
Regression, RMSE

0 1 2 3 4 5
Relative Overtuning

NeuralNetFastAI

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

LightGBM

0 1 2 3 4 5
Relative Overtuning

RandomForest

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

KNeighbors

0 1 2 3 4 5
Relative Overtuning

NeuralNetTorch

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

CatBoost

0 1 2 3 4 5
Relative Overtuning

ExtraTrees

Figure 9: ECDFs of relative overtuning for TabRepo (Salinas and Erickson, 2024). Stratified for the

learning algorithm, benchmark type and performance metric.

36

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Metric
Accuracy
Cross-Entropy

Figure 10: ECDFs of relative overtuning for LCBench (Zimmer et al., 2021). Stratified for the perfor-

mance metric.

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Metric
Error
Cross-Entropy

Figure 11: ECDFs of relative overtuning for PD1 (Wang et al., 2024). Stratified for the performance

metric.

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Figure 12: ECDFs of relative overtuning for FCNet (Klein and Hutter, 2019).

37

E Details on Modeling the Determinants of Overtuning

For an introduction to general linear mixed-effects models, we refer the reader to McCulloch

et al. (2008) and Bates et al. (2015). All statistical analyses are interpreted at a significance level of

α = 0.05. However, we emphasize that we perform many analyses and many of these analyses are

conducted on large datasets. As such, statistical significance should be interpreted with caution,

as even negligible effects do appear significant due to the large sample sizes. Nonetheless, the

magnitude of coefficients as well as associated z- and t-statistics can still provide meaningful

insights into potentially relevant determinants. Finally, we stress that our analysis is exploratory in

nature and does not involve the confirmation of pre-specified hypotheses (Herrmann et al., 2024).

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -1.161680 0.170379 -6.818 < 0.001
budget 3.073490 0.054291 56.612 < 0.001
budget

2
-2.034155 0.050771 -40.065 < 0.001

classifier (CatBoost) 1.939010 0.011118 174.395 < 0.001
classifier (Funnel MLP) 1.458479 0.010659 136.827 < 0.001
classifier (XGBoost) 1.606069 0.010774 149.066 < 0.001
resampling (5x holdout) -0.300831 0.010779 -27.908 < 0.001
resampling (5-fold CV) -0.374434 0.010762 -34.793 < 0.001
resampling (5x 5-fold CV) -0.467436 0.010747 -43.493 < 0.001
dataset size (1000) -0.290248 0.009386 -30.924 < 0.001
dataset size (5000) -0.981109 0.009358 -104.839 < 0.001
optimizer (HEBO) 0.083319 0.009208 9.049 < 0.001
optimizer (SMAC) 0.188119 0.009245 20.347 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.757e+00 1.654e-01 1.534e+01 -10.622 < 0.001
budget 3.274e-01 5.351e-02 1.542e+05 6.119 < 0.001
budget

2
-1.681e-01 4.782e-02 1.542e+05 -3.515 < 0.001

classifier (CatBoost) 2.151e+00 1.136e-02 1.542e+05 189.408 < 0.001
classifier (Funnel MLP) 1.061e+00 1.125e-02 1.542e+05 94.266 < 0.001
classifier (XGBoost) 1.554e+00 1.143e-02 1.542e+05 135.941 < 0.001
resampling (5x Holdout) -3.350e-01 9.392e-03 1.542e+05 -35.666 < 0.001
resampling (5-fold CV) -3.544e-01 9.428e-03 1.542e+05 -37.594 < 0.001
resampling (5x 5-fold CV) -4.969e-01 9.478e-03 1.542e+05 -52.423 < 0.001
dataset size (1000) -1.973e-01 7.924e-03 1.542e+05 -24.905 < 0.001
dataset size (5000) -5.188e-01 8.519e-03 1.542e+05 -60.901 < 0.001
optimizer (HEBO) -3.011e-01 8.281e-03 1.542e+05 -36.363 < 0.001
optimizer (SMAC) -2.581e-01 8.336e-03 1.542e+05 -30.956 < 0.001

Table 3: Fixed effects results of mixed models used to analyze overtuning. BO and RS runs, no

reshuffling, test performance of the model retrained on all data. Reference levels: Elastic Net

(classifier), holdout (resampling), 500 (dataset size), RS (optimizer).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(intercept) 5.915e-02 1.083e-02 9.387e+00 5.462 < 0.001
classifier (CatBoost) 3.767e-02 1.049e-03 1.437e+04 35.892 < 0.001
classifier (Funnel MLP) 2.839e-02 1.049e-03 1.437e+04 27.052 < 0.001
classifier (XGBoost) 1.908e-02 1.049e-03 1.437e+04 18.182 < 0.001
resampling (5x Holdout) -2.929e-02 1.049e-03 1.437e+04 -27.905 < 0.001
resampling (5-fold CV) -3.115e-02 1.049e-03 1.437e+04 -29.685 < 0.001
resampling (5x 5-fold CV) -4.445e-02 1.049e-03 1.437e+04 -42.355 < 0.001
dataset size (1000) -2.122e-02 9.089e-04 1.437e+04 -23.351 < 0.001
dataset size (1000) -4.519e-02 9.089e-04 1.437e+04 -49.718 < 0.001
optimizer (HEBO) 1.623e-03 9.089e-04 1.437e+04 1.786 0.074
optimizer (SMAC) 3.793e-03 9.089e-04 1.437e+04 4.173 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 2.215e-02 4.050e-03 9.417e+00 5.468 < 0.001
classifier (CatBoost) 1.048e-02 4.633e-04 1.437e+04 22.624 < 0.001
classifier (Funnel MLP) 1.739e-02 4.633e-04 1.437e+04 37.544 < 0.001
classifier (XGBoost) 5.410e-03 4.633e-04 1.437e+04 11.679 < 0.001
resampling (5x Holdout) -6.310e-03 4.633e-04 1.437e+04 -13.621 < 0.001
resampling (5-fold CV) -7.283e-03 4.633e-04 1.437e+04 -15.722 < 0.001
resampling (5x 5-fold CV) -8.857e-03 4.633e-04 1.437e+04 -19.118 < 0.001
dataset size (1000) -6.841e-03 4.012e-04 1.437e+04 -17.053 < 0.001
dataset size (5000) -1.636e-02 4.012e-04 1.437e+04 -40.782 < 0.001
optimizer (HEBO) -2.073e-03 4.012e-04 1.437e+04 -5.167 < 0.001
optimizer (SMAC) -2.773e-04 4.012e-04 1.437e+04 -0.691 0.489

Table 4: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret.

BO and RS runs, no reshuffling, test performance of the model retrained on all data. Reference

levels of factors are: Elastic Net (classifier), holdout (resampling), 500 (dataset size), RS

(optimizer).

38

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -0.368810 0.206555 -1.786 0.074
classifier (CatBoost) 1.740219 0.133810 13.005 < 0.001
classifier (Funnel MLP) 1.813526 0.134520 13.481 < 0.001
classifier (XGBoost) 1.716060 0.133593 12.845 < 0.001
dataset size (1000) -0.376622 0.113395 -3.321 < 0.001
dataset size (5000) -1.066268 0.114042 -9.350 < 0.001
optimizer (HEBO + ES) -0.549139 0.092045 -5.966 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.866e+00 2.047e-01 3.707e+01 -9.117 < 0.001
classifier (CatBoost) 1.794e+00 1.493e-01 9.905e+02 12.017 < 0.001
classifier (Funnel MLP) 6.331e-01 1.427e-01 9.859e+02 4.436 < 0.001
classifier (XGBoost) 1.197e+00 1.447e-01 9.872e+02 8.275 < 0.001
dataset size (1000) -1.760e-01 9.711e-02 9.823e+02 -1.812 0.070
dataset size (5000) -4.765e-01 1.065e-01 9.870e+02 -4.475 < 0.001
optimizer (HEBO + ES) -2.753e-01 8.414e-02 9.806e+02 -3.272 0.001

Table 5: Fixed effects results of mixed models used to analyze overtuning. BO runs (only HEBO and

HEBO with early stopping on 5-fold CV and ROC AUC as performance metric), no reshuffling,

test performance of the model retrained on all data. Reference levels: Elastic Net (classifier),

500 (dataset size), HEBO (optimizer). Analyses performed for the final time point which may

differ between HEBO and HEBO with early stopping.

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -1.271737 0.082493 -15.416 < 0.001
budget 2.239491 0.025025 89.489 < 0.001
budget

2
-1.481421 0.023734 -62.418 < 0.001

metric (ROC AUC) 0.650435 0.004382 148.433 < 0.001
metric (log loss) 0.295035 0.004336 68.050 < 0.001
classifier (CatBoost) 1.390966 0.005180 268.533 < 0.001
classifier (Funnel MLP) 1.111329 0.005116 217.220 < 0.001
classifier (XGBoost) 1.183944 0.005128 230.857 < 0.001
resampling (5x Holdout) -0.256786 0.005042 -50.934 < 0.001
resampling (5-fold CV) -0.302036 0.005041 -59.920 < 0.001
resampling (5x 5-fold CV) -0.491480 0.005048 -97.353 < 0.001
dataset size (500) -0.256418 0.004357 -58.845 < 0.001
dataset size (1000) -0.682647 0.004381 -155.814 < 0.001
reshuffled (TRUE) 0.043902 0.003555 12.351 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.563e+00 1.375e-01 1.689e+01 -11.367 < 0.001
budget 2.604e-01 2.952e-02 5.379e+05 8.819 < 0.001
budget

2
-1.293e-01 2.695e-02 5.379e+05 -4.796 < 0.001

metric (ROC AUC) -2.200e-01 4.978e-03 5.379e+05 -44.189 < 0.001
metric (log loss) -6.831e-01 5.118e-03 5.379e+05 -133.462 < 0.001
classifier (CatBoost) 2.118e+00 6.156e-03 5.379e+05 344.120 < 0.001
classifier (Funnel MLP) 7.089e-01 6.082e-03 5.379e+05 116.555 < 0.001
classifier (XGBoost) 1.691e+00 6.355e-03 5.379e+05 266.063 < 0.001
resampling (5x Holdout) -2.494e-01 5.305e-03 5.379e+05 -47.000 < 0.001
resampling (5-fold CV) -2.614e-01 5.319e-03 5.379e+05 -49.135 < 0.001
resampling (5x 5-fold CV) -4.582e-01 5.440e-03 5.379e+05 -84.232 < 0.001
dataset size (500) -1.048e-01 4.518e-03 5.379e+05 -23.193 < 0.001
dataset size (1000) -3.331e-01 4.803e-03 5.379e+05 -69.363 < 0.001
reshuffled (TRUE) 5.150e-02 3.827e-03 5.379e+05 13.458 < 0.001

Table 6: Fixed effects results of mixed models used to analyze overtuning. RS runs, test performance

of the model retrained on all data. Reference levels: accuracy (metric) Elastic Net (classifier),

holdout (resampling), 500 (dataset size), FALSE (reshuffled).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(intercept) 4.463e-02 3.665e-03 1.048e+01 12.178 < 0.001
metric (ROC AUC) 2.973e-02 5.864e-04 2.877e+04 50.697 < 0.001
metric (log loss) 1.699e-04 5.864e-04 2.877e+04 0.290 0.772
classifier (CatBoost) 1.398e-02 6.771e-04 2.877e+04 20.648 < 0.001
classifier (Funnel MLP) 1.051e-02 6.771e-04 2.877e+04 15.517 < 0.001
classifier (XGBoost) 9.060e-03 6.771e-04 2.877e+04 13.381 < 0.001
resampling (5x Holdout) -2.839e-02 6.771e-04 2.877e+04 -41.928 < 0.001
resampling (5-fold CV) -3.596e-02 6.771e-04 2.877e+04 -53.119 < 0.001
resampling (5x 5-fold CV -4.633e-02 6.771e-04 2.877e+04 -68.421 < 0.001
dataset size (500) -1.540e-02 5.864e-04 2.877e+04 -26.264 < 0.001
dataset size (1000) -3.287e-02 5.864e-04 2.877e+04 -56.050 < 0.001
reshuffled (TRUE) 1.672e-02 4.788e-04 2.877e+04 34.916 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 1.119e-02 1.362e-03 1.066e+01 8.217 < 0.001
metric (ROC AUC) 1.095e-02 2.742e-04 2.877e+04 39.950 < 0.001
metric (log loss) 1.022e-03 2.742e-04 2.877e+04 3.726 < 0.001
classifier (CatBoost) 5.123e-03 3.166e-04 2.877e+04 16.181 < 0.001
classifier (Funnel MLP) 1.058e-02 3.166e-04 2.877e+04 33.418 < 0.001
classifier (XGBoost) 3.237e-03 3.166e-04 2.877e+04 10.225 < 0.001
resampling (5x Holdout) -4.994e-03 3.166e-04 2.877e+04 -15.772 < 0.001
resampling (5-fold CV) -5.131e-03 3.166e-04 2.877e+04 -16.205 < 0.001
resampling (5x 5-fold CV -6.882e-03 3.166e-04 2.877e+04 -21.736 < 0.001
dataset size (500) -5.088e-03 2.742e-04 2.877e+04 -18.554 < 0.001
dataset size (500) -1.030e-02 2.742e-04 2.877e+04 -37.571 < 0.001
reshuffled (TRUE) -1.529e-04 2.239e-04 2.877e+04 -0.683 0.495

Table 7: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret. RS

runs, test performance of the model retrained on all data. Reference levels: accuracy (metric)

Elastic Net (classifier), holdout (resampling), 500 (dataset size), FALSE (reshuffled).

39

(a) Fixed effects results from a GLMM predicting

probability of nonzero overtuning.

Predictor Estimate Std. Error z value p-value

(intercept) -0.903880 0.153342 -5.895 < 0.001
budget 2.495057 0.092010 27.117 < 0.001
budget

2
-1.626134 0.088101 -18.458 < 0.001

classifier (CatBoost) 1.799761 0.018983 94.808 < 0.001
classifier (Funnel MLP) 1.426324 0.018159 78.545 < 0.001
classifier (XGBoost) 1.552415 0.018403 84.356 < 0.001
dataset size (500) -0.049298 0.016481 -2.991 0.003
dataset size (1000) -0.664234 0.016094 -41.272 < 0.001
reshuffled (TRUE) -0.264457 0.013187 -20.054 < 0.001

(b) Fixed effects results from an LMM predicting

nonzero relative overtuning on log scale.

Predictor Estimate Std. Error df t value p-value

(intercept) -1.884e+00 1.472e-01 1.758e+01 -12.792 < 0.001
budget 2.229e-01 8.841e-02 5.548e+04 2.521 0.012
budget

2
-1.417e-01 8.109e-02 5.548e+04 -1.748 0.081

classifier (CatBoost) 2.080e+00 1.842e-02 5.549e+04 112.902 < 0.001
classifier (Funnel MLP) 1.492e+00 1.861e-02 5.549e+04 80.164 < 0.001
classifier (XGBoost) 1.710e+00 1.920e-02 5.549e+04 89.042 < 0.001
dataset size (500) -6.258e-02 1.376e-02 5.548e+04 -4.549 < 0.001
dataset size (1000) -3.982e-01 1.462e-02 5.548e+04 -27.232 < 0.001
reshuffled (TRUE) -2.693e-01 1.159e-02 5.548e+04 -23.236 < 0.001

Table 8: Fixed effects results of mixed models used to analyze overtuning. RS runs, subset of runs with

holdout and ROC AUC as performance metric, test performance of the model retrained on all

data. Reference levels: Elastic Net (classifier), 500 (dataset size), FALSE (reshuffled).

(a) Fixed effects results from an LMM predicting

final meta-overfitting.

Predictor Estimate Std. Error df t value p-value

(Intercept) 8.699e-02 2.010e-02 9.338e+00 4.329 0.002
classifier (CatBoost) 3.000e-02 3.055e-03 2.375e+03 9.820 < 0.001
classifier (Funnel MLP) 4.230e-02 3.055e-03 2.375e+03 13.845 < 0.001
classifier (XGBoost) 2.066e-02 3.055e-03 2.375e+03 6.761 < 0.001
dataset size (500) -4.254e-02 2.646e-03 2.375e+03 -16.077 < 0.001
dataset size (1000) -9.853e-02 2.646e-03 2.375e+03 -37.241 < 0.001
reshuffled (TRUE) 5.483e-02 2.160e-03 2.375e+03 25.382 < 0.001

(b) Fixed effects results from an LMM predicting

final test regret.

Predictor Estimate Std. Error df t value p-value

(intercept) 2.330e-02 4.770e-03 1.022e+01 4.885 < 0.001
classifier (CatBoost) 9.145e-03 1.335e-03 2.375e+03 6.849 < 0.001
classifier (Funnel MLP) 2.310e-02 1.335e-03 2.375e+03 17.303 < 0.001
classifier (XGBoost) 7.782e-03 1.335e-03 2.375e+03 5.828 < 0.001
dataset size (500) -7.634e-03 1.156e-03 2.375e+03 -6.602 < 0.001
dataset size (1000) -1.915e-02 1.156e-03 2.375e+03 -16.562 < 0.001
reshuffled (TRUE) -5.656e-03 9.442e-04 2.375e+03 -5.990 < 0.001

Table 9: Fixed effects results of mixed models used to analyze final meta-overfitting and test regret. RS

runs, subset of runs with holdout and ROC AUC as performance metric, test performance of

the model retrained on all data. Reference levels: Elastic Net (classifier), 500 (dataset size),

FALSE (reshuffled).

40

E.1 HEBO vs. HEBO with Early Stopping

As mentioned in Appendix A, when HPO protocols follow different search trajectories – due to

factors like early stopping, choice of optimizer, or resource constraints – it is necessary to compare

the test performance of their incumbents to assess generalization properly since overtuning cannot

capture this performance aspect. In Section 6 we have seen that HEBO with early stopping à la

Makarova et al. (2022) reduces overtuning in the reshuffling study (Nagler et al., 2024) based on

5-fold CV and ROCAUC as performance metric (other factors left at their default, i.e., non-reshuffled

resampling and test performance assessed via retraining the inducer configured by a given HPC on

all data and evaluating on the outer holdout set). We also visualize this (over all learning algorithms

but stratified) for the dataset size in Figure 13 where we observed that HEBO with early stopping

indeed exhibits less overtuning.

0 1 2 3 4 5
Relative Overtuning

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Optimizer, n
HEBO, 500
HEBO, 1000
HEBO, 5000
HEBO + ES, 500
HEBO + ES, 1000
HEBO + ES, 5000

Figure 13: ECDF of relative overtuning for HEBO vs. HEBOwith early stopping based on the reshuffling
study (Nagler et al., 2024). 5-fold CV as resampling. ROC AUC as performance metric.

However, looking at the difference in test performance of the final incumbent returned by

HEBO vs. HEBO with early stopping (Figure 14), we observed that HEBO with early stopping

does not consistently improve generalization performance. As shown in Figure 14a, HEBO with

early stopping yields worse test performance (positive ∆) nearly as often as it yields better test

performance (negative ∆) compared to HEBO without early stopping.

To further understand the impact of early stopping on generalization, we analyze the rela-

tionship between changes in overtuning and corresponding changes in test performance when

comparing HEBO with and without early stopping (Figure 14b). Each point in the scatter plot

represents a single HPO run, with the x-axis denoting the change in overtuning and the y-axis the
change in test performance – both computed such that positive values indicate worse outcomes for

HEBO with early stopping. We observed a clear positive correlation between the two quantities,

suggesting that reductions in overtuning achieved through early stopping tend to coincide with

improved test performance. However, this relationship is not uniformly beneficial. While a sub-

stantial number of runs fall into the lower-left quadrant, indicating that early stopping reduces

overtuning and improves test performance, there are also numerous instances in the upper-right

quadrant where early stopping could not decrease overtuning yet harmed generalization (because

we stopped too early). Moreover, the majority of points are concentrated near the origin, indicating

that early stopping often has only a minor effect. These results confirm that early stopping can

mitigate overtuning in some cases, leading to better generalization, but it does not consistently

yield improvements and sometimes may even be detrimental.

41

0.15 0.10 0.05 0.00 0.05 0.10 0.15
 Test of Incumbent (HEBO + ES vs. HEBO)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

n
500
1000
5000

(a) ECDF of the difference in test performance of

the final incumbent for HEBO vs. HEBO with

early stopping.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
 Overtuning (HEBO + ES vs. HEBO)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

 Te
st

 o
f I

nc
um

be
nt

 (H
EB

O
+

ES
 v

s.
HE

BO
)

(b) Scatter plot of the difference in test perfor-

mance of the final incumbent and the differ-

ences in final overtuning for HEBO vs. HEBO

with early stopping.

Figure 14: Visualizations of the differences in test performance of the final incumbent and the differ-

ences in final overtuning for HEBO vs. HEBO with early stopping based on the reshuffling
study (Nagler et al., 2024). 5-fold CV with ROC AUC as performance metric.

42

F Computational Details

As stated in Section 5 and Section 6, we rely on various published works that conducted HPO

runs and published this data. With the exception of the HEBO runs with early stopping à la

Makarova et al. (2022) as analyzed in Section 6, we did not run any new experiments. For these

HEBO runs we used the code base of the reshuffling study (Nagler et al., 2024) released under

MIT License. Early stopping à la Makarova et al. (2022) was implemented as described in the

original paper. We use a patience of 20 HPCs before early stopping can be triggered and use 2000
quasi-random candidate points sampled from the search space to compute the lower confidence

bound. We estimate our total compute time for the HEBO with early stopping experiments

to be roughly 0.63 CPU years. Benchmark experiments were run on an internal HPC cluster

equipped with a mix of Intel Xeon E5-2670, Intel Xeon E5-2683 and Intel Xeon Gold 6330 instances.

Jobs were scheduled to use a single CPU core and were allowed to use up to 16GB RAM. Total

emissions are estimated to be an equivalent of roughly 345.96 kg CO2. The analyses reported

in Section 5 and Section 6 require little computational power and were conducted on a personal

computer. We release all our code to perform the analyses reported in Section 5 and Section 6 via

https://github.com/slds-lmu/paper_2025_overtuning under MIT License.

43

https://github.com/slds-lmu/paper_2025_overtuning

	Introduction
	Problem Statement
	Characterizing the Overtuning Effect
	Related Work
	An Empirical Analysis of Overtuning
	Modeling the Determinants of Overtuning
	Mitigation Strategies
	Broader Impact Statement
	Limitations
	Overtuning vs. Meta-Overfitting
	Extended Related Work
	Details on an Empirical Analysis of Overtuning
	Details on Modeling the Determinants of Overtuning
	HEBO vs. HEBO with Early Stopping

	Computational Details

