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ABSTRACT

Diffusion models have emerged as powerful generators in text-to-image synthe-
sis, yet their extension to aerial imagery remains limited due to unique challenges
such as high object density and geometric distortions. In this paper, we propose
MIND, a MultI-scale discrepaNcy-centric latent Diffusion framework designed to
address these issues and enable high-fidelity, semantically coherent aerial image
synthesis. MIND introduces a theoretically justified method to estimate discrep-
ancy maps that identify semantic and structural inconsistencies during generation,
guiding both image synthesis and textual supervision. We incorporate these maps
into the generation pipeline via three complementary mechanisms: (1) actor-critic
visual reasoning to produce rationale-rich textual guidance using large language
models, (2) discrepancy-augmented latent representation learning for spatial re-
finement, and (3) adaptive denoising that dynamically attends to “hard-to-learn”
regions. Extensive experiments on VisDrone-DET and DroneRGBT demonstrate
that MIND significantly outperforms state-of-the-art baselines in terms of visual
quality, spatial alignment, and text-image consistency, establishing a strong foun-
dation for structured and controllable aerial image synthesis.

1 INTRODUCTION

Aerial imagery is increasingly critical for applications such as urban planning, disaster response,
and environmental monitoring (Zhang et al., 2022; Liu et al., 2022; Qu et al., 2024; Chang et al.,
2023), creating a growing demand for large-scale, diverse, and high-quality data. Existing public
aerial datasets (Cao et al., 2021; Xia et al., 2018), while valuable, suffer from limited geographic
diversity, fixed viewpoints, and restricted environmental variability. These constraints hinder robust
model training and simulation of dynamic real-world scenarios. As such, generating realistic and
contextually consistent aerial images under diverse conditions has emerged as an essential alternative
to fill coverage gaps, improve generalization, and support downstream vision tasks.

Diffusion models (Dhariwal & Nichol, 2021; Rombach et al., 2022) have recently advanced text-to-
image generation by reversing a noising process to synthesize high-fidelity and semantically aligned
outputs. Compared to generative adversarial networks (GANs) (Saxena & Cao, 2021), they offer
better image fidelity, diversity, and controllability, and have been successfully applied to transla-
tion (Gao et al., 2024a), inpainting (Zhu et al., 2024), and restoration (Xia et al., 2023), as well
as high-impact domains such as autonomous driving (Gao et al., 2024b; Chen et al., 2024b) and
medical imaging (Zhan et al., 2024; Takagi & Nishimoto, 2023). Despite these advances, extending
diffusion models to text-to-aerial image synthesis remains largely unexplored.

Direct adaptation of diffusion models to aerial imagery faces three key challenges: (1) aerial scenes
feature many small objects whose details are easily lost during downsampling (Zang et al., 2024);
(2) high object density and occlusion complicate spatial relationship modeling (Cao et al., 2021),
making it difficult to preserve positional accuracy; and (3) large-scale, top-down perspectives in-
troduce geometric distortions and scale variations that disrupt structural consistency. These factors
often result in spatial misalignment, visual artifacts, and the omission of fine-grained structures in
existing methods (Wang et al., 2023; Zhu et al., 2023; Ma et al., 2024). These challenges are further
compounded by the lack of paired text–aerial image data, hampering the training of text-conditioned
diffusion. While large language models (LLMs) (Wei et al., 2022b; Kojima et al., 2022) can produce
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descriptions in a zero-shot manner, their outputs for aerial scenes are often ambiguous or imprecise,
reducing their reliability as conditioning signals.

To address these challenges, we propose MIND, a MultI-scale discrepaNcy-centric latent Diffusion
framework for aerial image synthesis, aimed at enhancing its fidelity, consistency, and interpretabil-
ity. The core idea is to innovatively exploit discrepancy maps, which capture semantic and structural
inconsistencies between source images (or intermediate synthesis results) and their reconstructions,
and use them as corrective signals to systematically localize failure regions and refine outputs in a
targeted and informed manner. MIND proceeds with four complementary components: (1) discrep-
ancy modeling for spatial error localization, (2) discrepancy-aware visual reasoning that enriches
text conditioning with rationale-rich annotations highlighting generation gaps, (3) latent representa-
tion augmentation that injects spatially contextualized corrections, and (4) adaptive denoising that
dynamically attends to uncertain regions during later diffusion steps.

Specifically, discrepancy maps are estimated through a hierarchical, attention-modulated mechanism
grounded in reconstruction residuals, which we theoretically justify as a principled way to capture
global and local structured inconsistencies using multi-scale design. Within an actor-critic scheme,
the maps help LLMs produce descriptions and rationales that explicitly interpret regions where the
model struggles, thereby improving semantic grounding. During diffusion, the maps serve dual
roles: augmenting latent representations to recover missing details and dynamically adjusting con-
ditioning vectors to refine unresolved inconsistencies. By conditioning generation on integrated
image-text-discrepancy embeddings, MIND effectively enhances interpretability, preserves spatial
coherence, and achieves high-fidelity synthesis in complex aerial environments. Experiments on
VisDrone-DET (Cao et al., 2021) and DroneRGB-T (Peng et al., 2020) demonstrate consistent im-
provements over state-of-the-art baselines in fidelity, alignment, and text–image consistency. Our
major contributions are summarized as follows:

• A theoretically justified method to model discrepancy maps from reconstruction residuals, cap-
turing inconsistencies across multiple spatial scales.

• An actor-critic visual reasoning paradigm that uses discrepancy cues to elicit rationale-rich textual
guidance and address the lack of paired data for experimental evaluation and future research.

• An adaptive denoising strategy that dynamically corrects error-prone regions that improves spatial
fidelity and scene alignment.

• A unified discrepancy-centric diffusion framework MIND that integrates technic components for
interpretable, high-fidelity aerial image synthesis.

2 RELATED WORK

Text-guided image generation. Text-guided image generation has progressed rapidly, evolv-
ing from early retrieval and template-based methods to modern deep generative models capable
of producing semantically aligned, high-fidelity images. Early text-to-image methods relied on
optimization-based techniques, where pretrained vision-language models (e.g., CLIP (Radford et al.,
2021) and BLIP (Li et al., 2022)) guided pixel-level updates via handcrafted or learned losses (Liang
et al., 2024; Mahajan et al., 2024). These approaches often yielded low-detail or artifact-prone im-
ages due to the lack of a dedicated generative backbone. The advent of autoregressive (Pan et al.,
2024; Qi et al., 2023) and diffusion-based models (Ho et al., 2020; Rombach et al., 2022; Ma et al.,
2024; Karras et al., 2024; Meral et al., 2024) marked a major shift. Diffusion models enable image
generation with enhanced diversity, semantic alignment, and controllability. Latent diffusion (Rom-
bach et al., 2022) further improves efficiency by operating in a compressed latent space, allowing
high-resolution synthesis at reduced computational cost. While diffusion models have demonstrated
strong capabilities in generative vision tasks, existing research on aerial imagery has primarily fo-
cused on semantic segmentation (Liu et al., 2024), object detection (Li et al., 2023; Chen et al.,
2024a), and domain-specific translation tasks (e.g., aerial-to-map or map-to-aerial conversion)(Fu
et al., 2021). Although models such as CycleGAN (Zhu et al., 2017), Pix2Pix (Isola et al., 2017),
and Pix2PixHD (Wang et al., 2018) are effective in preserving structural integrity and semantic con-
tent, they remain limited by their reliance on fixed input–output mappings and lack the flexibility
needed for open-ended, text-guided aerial image synthesis.

Knowledge integration for visual reasoning. Enhancing the multi-modal reasoning capabilities
of LLMs has become an active area of research, with prompt-based techniques demonstrating ef-
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Figure 1: An overview of MIND that first estimates discrepancy map, which is used for visual
reasoning, augmenting representations, and modulating multi-modal conditioning for adaptive de-
noising to generate complex aerial images.

fectiveness in inducing structured reasoning across modalities. Existing approaches can be broadly
categorized into three types: (1) zero-shot and few-shot prompting, which introduce intermediate
reasoning steps (Wei et al., 2022b; Perez et al., 2021); (2) Chain-of-Thought (CoT) prompting,
which decomposes reasoning into step-wise semantic steps (Wei et al., 2022a; Zhang et al., 2024;
Zellers et al., 2019; Marino et al., 2019; Mao et al., 2023), demonstrating strong performance in
improving reasoning accuracy; and (3) Tree-of-Thought (ToT) prompting, which generalizes CoT
by enabling multi-path exploration (Yao et al., 2023). However, due to the unique characteristics of
aerial imagery such as dense object distributions, geometric distortions, and structural complexity,
language models often produce verbose and imprecise descriptions that fail to accurately capture the
underlying semantics when not guided by a carefully designed prompting.

3 DESIGN OF MIND

In this section, we present MIND with technical details, the architecture of which is illustrated in
Figure 1, providing a high-level overview of how discrepancy maps are estimated, interpreted, and
leveraged throughout the generation process.

3.1 DISCREPANCY MODELING

We define discrepancy as localized deviations between the reconstructed outputs and their expected
visual features, often manifesting as spatial misalignments, missing details, or unnatural artifacts.
Detecting and correcting such inconsistencies is essential for highlighting hard-to-learn regions and
producing high-fidelity images, especially in dense and fine-grained aerial scenes. To justify our
design, we first show that reconstruction residuals provide a principled signal for discrepancy:

Theorem 1 Let M be the manifold of valid images, and X̂ = D(E(X)) the autoencoder recon-
struction of X. If the residual R(X) = X − X̂, then under standard assumptions of manifold
projection and local linearity:
∥R(X)∥ = dist(X,M)+o(∥X−X0∥), R(X) = ΠTX0

M⊥(X−X0)+o(∥X−X0∥), (1)

where TX0
M is the tangent space of M at X0 and ΠTX0

M⊥ denotes orthogonal projection onto its
normal space. Thus, residuals R(X) suppress on-manifold (tangent-space) variations and empha-
size off-manifold (normal-space) structural deviations.

Theorem 1 implies that off-manifold inconsistencies (e.g., misalignments, missing objects, artifacts)
persist in R(X), while on-manifold variations (e.g., style, illumination) vanish to first order. This
justifies that R(X) serves as a principled discrepancy signal. Building on this, we argue that hierar-
chical modeling provides a natural way to capture discrepancies:
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Proposition 1 Let R(X) be decomposed into multi-scale components {Rs}Ss=0 by a Parseval frame
(e.g., wavelets or Laplacian pyramid). Then

∥R(X)∥22 =

S∑
s=0

∥Rs∥22, (2)

with coarse scales concentrating global layout errors and fine scales capturing local object omis-
sions. Moreover, subband energies are stable under small geometric deformations, ensuring robust
detection of discrepancies across scales.

Proposition 1 indicates that discrepancies manifest across both coarse and fine scales, while remain-
ing stable under small deformations. Proofs of Theorem 1 and Proposition 1 are provided in the
Appendix A.4 and A.5. Motivated by these analyses, we design a multi-scale discrepancy module,
we develop a multi-scale discrepancy estimation module (Figure 9) that jointly reasons over local
details and global layouts, ensuring spatial integrity and semantic consistency in aerial synthesis.

Multi-scale spatial feature extraction. Given an input image X, we first obtain its reconstruction
X̂ from a self-trained autoencoder, which serves as a contrastive reference for discrepancy modeling.
Both X and X̂ are processed by two parallel encoder–decoder networks with identical architecture,
extracting multi-scale spatial features while preserving structural integrity and contextual consis-
tency. Each encoder Ems(·) consists of five convolutional layers with downsampling by a factor of 2
per layer, producing feature maps at scales 1

2 to 1
32 of the original resolution:

Ems(X) = {F(l)
e }5l=1, F(l)

e ∈ RCl×H

2l
×W

2l . (3)
The decoder mirrors the encoder, progressively upsampling features with skip connections:

F
(l)
d = Upsample(F(l+1)

d ) + F(l)
e , ∀l ∈ {1, . . . , 4}, F(5)

d = F(5)
e . (4)

This yields two sets of features, F and F̂, representing X and X̂, respectively.

Discrepancy map estimation. To estimate discrepancies, we concatenate F and F̂ along the chan-
nel dimension and pass the result through a dedicated encoder–decoder network. During decoding,
multi-scale features F(l)

d (l ∈ [1, 4]) are injected into the corresponding layers to refine discrepancy-
sensitive features with contextual information. Instead of simple addition or concatenation, we adopt
an attention-based fusion (Woo et al., 2018), enabling adaptive integration of spatial and discrepancy
cues. Let F(l)

c be the discrepancy features at decoding layer l. Attention weights are computed as:
W(l) = σ

(
Conv

(
F(l)

c + Upsample(F(l)
d )

))
, (5)

and the fused features are
F(l−1)

c = Upsample
(
W(l) ⊙ Upsample(F(l)

d ) + F(l)
c

)
, (6)

where ⊙ denotes element-wise product. Finally, a convolution applied to F
(0)
c predicts the discrep-

ancy map D ∈ R3×H×W .

Optimization. We minimize a joint loss that encourages accurate localization and quantification of
spatial differences between X and X̂. Let Dgt = |X − X̂| be the ground-truth residual map and
δ = D−Dgt the estimation error. We define discrepancy loss and reconstruction loss as follows:

Lδ = ∥δ∥1, Lrec = ∥X− X̂∥22, (7)
The total loss is computed as their weighted combination:

Ldm = λδ Lδ + λrec Lrec, (8)
with λδ, λrec controlling the balance. This formulation enables spatially localized refinement of
discrepancy signals, preserves both global layout and fine details, and highlights error-prone regions
critical for aerial image synthesis.

3.2 ACTOR-CRITIC VISUAL REASONING

A core obstacle in text-to-aerial image synthesis is the lack of paired text-image datasets, which
prevents diffusion models from learning reliable semantic guidance. while LLMs with Chain-of-
Thought (CoT) prompting (Wei et al., 2022b; Kojima et al., 2022) can generate scene descriptions
in a zero-shot manner, the inherent complexity of aerial imagery often leads LLMs to produce am-
biguous or imprecise outputs. To mitigate this, we propose an actor-critic prompting paradigm that
integrates image description with discrepancy-aware refinement: the actor generates initial seman-
tic descriptions, and the critic refines them through localized visual reasoning to highlight uncertain
regions, correct omissions, and enhance textual grounding.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Actor (Scene-level describing). Givne an aerial image X ∈ X and its object list O, we define a
CoT prompt P desc to guide the LLM to generate a semantic description:

G = LLM(P desc;X,O) (9)
P desc is curated to elicit high-level scene overview, such as viewpoint, environmental conditions,
and spatial composition, serving as a global semantic prior for diffusion-based synthesis.

P desc: Analyze an [aerial image] with objects [o1, o2, ..., ok], and generate a precise yet rich description
that captures key visual elements, including both prominent and subtle visual details, time of day and
lighting conditions, and spatial layout. Consider their interactions within the scene to form a cohesive,
structured depiction that enhances spatial and contextual understanding.

• Critic (Localized reasoning). To refine under-specified or ambiguous regions in G, we form a
discrepancy-aware prompt P dm by combining the discrepancy map with the image X and coarse
description G to produce a rationale-rich refinement:

Ĝ = LLM(P dm;X,D, G) (10)
This emphasizes regions with high uncertainty, particularly those that are difficult to learn or
prone to generation errors, guiding the model toward more precise semantic grounding.

P dm: Generate a concise rationale that examines an [aerial image] and its [scene-level description]
and [discrepancy map] to uncover reconstruction inconsistencies, and analyze the spatial composition,
focusing on how discrepancies affect spatial coherence, interact across different areas, influencing depth
perception, structural continuity, and overall scene interpretation.

3.3 LATENT DIFFUSION USING ADAPTIVE DENOISING

Diffusion models (Appendix A.1) operate in latent space to improve efficiency. An input image
X ∈ X is encoded into a latent representation z0 via a VAE, then progressively corrupted into zt
over timesteps t ∈ [1, T ] by a fixed noise schedule. A denoising model ϵθ(zt, t, ct) is trained to
predict the injected noise ϵ given conditioning ct. In MIND, we enhance this process by injecting
discrepancy-driven corrections to improve spatial fidelity and semantic alignment.

Latent representation augmentation. Compression in latent space often suppresses fine-grained
details such as small objects or local alignments. To restore these, we design a spatial attention-
modulated fusion to inject corrective signals from the discrepancy map into latent representation.
Let zd be the latent features of X’s discrepancy map, a spatial attention weight α is computed as
α = σ(Conv(zd)). The augmented latent representation z̃ is then derived as:

z̃ = z+ zd ⊙α (11)
which ensures that discrepancy-sensitive regions are emphasized while preserving global coherence.

Conditioning vector construction. We initialize diffusion with z0 = z̃ and construct the condition-
ing vector c that fuses three complementary modalities: (1) the original image X for spatial priors
and layout; (2) the global semantic description G from the actor; and (3) the rationale Ĝ from the
critic. We employ BLIP (Li et al., 2022) to jointly embed (X, G) and (X, Ĝ), and further encode
G and Ĝ independently using CLIP (Radford et al., 2021) to preserve distinct and nuanced seman-
tics that may be diluted in a unified representation. The resulting embeddings are concatenated to
form the conditioning vector c, which integrates both global understanding and localized corrective
context for the initial denoising process.

Adaptive denoising. Standard diffusion ϵθ(zt, t, ct) follows a deterministic trajectory {zt}Tt=1,
where zt is obtained by reversing the forward noise process, limiting adaptation to emerging incon-
sistencies. To improve generative fidelity, our objective is to dynamically steer this trajectory using
discrepancy-guided signals. To this end, at each denoising timestep t, a partially denoised image Xt

decoded from zt is passed through our discrepancy estimation network to compute its discrepancy
map Dt, which serves as an adaptive calibration signal for denoising in the following ways:

• Latent correction. Dt is projected into latent space and injected into the current latent zt using
the spatial attention-modulated fusion, resulting in an updated latent vector z̃t that incorporates
spatial corrections before the next denoising step.

5
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• Conditioning update. The refined latent z̃t is used in place of the original when recomputing
cross-attention between visual-textual modalities:

ct = g(z̃t, G, Ĝ) (12)

where g(·) denotes the aforementioned multimodal fusion operator combining augmented latent
z̃t with static textsG and Ĝ. This dynamic conditioning ensures temporal consistency and enables
the model to incorporate recent visual feedback during generation.

By continuously refining both the latent features and semantic conditioning with discrepancy feed-
back, the model adaptively prioritizes uncertain or hard-to-learn regions, enabling the denoising
process to better restore spatial details throughout generation. To justify adaptive denoising, we
note that the reliability of discrepancy maps depends on the noise variance σ2

t at timestep t.

Proposition 2 Let Dt be the discrepancy estimated from a partially denoised image Xt. Assume
Dt has bias O(σt) and variance O(σ2

t ) with respect to the true residual. Then discrepancy-guided
updates of the latent zt decrease denoising error for all t such that σt ≤ σ⋆, for some threshold σ⋆.
For t with σt ≫ σ⋆, the updates may be dominated by estimation noise.

Proof of Proposition 2 is provided in the Appendix A.6. This implies that discrepancy maps provide
effective corrective signals primarily in later timesteps, where the noise level is low and reconstruc-
tions are reliable. Accordingly, MIND applies adaptive denoising only after t ≳ T/2.

3.4 TRAINING AND INFERENCE

MIND is trained end-to-end using the standard diffusion objective, extended to incorporate
discrepancy-driven updates of both latents and conditioning. The training loss is defined as:

LMIND = E
z0,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t, ct)∥22

]
(13)

where zt and ct are discrepancy-aware noisy latent and conditioning vector at timestep t. Both the
denoising parameters θ and the auxiliary modules for updating zt and ct are jointly optimized. At
inference time, MIND starts from Gaussian noise and iteratively predicts a clean latent ẑ0 under
adaptive denoising. The final output image is reconstructed via the VAE decoder D(ẑ0).

4 EXPERIMENTAL EVALUATION AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Datasets. We use two publicly available aerial datasets: (1) VisDrone-DET (Cao et al., 2021),
featuring high-density daytime urban scenes, and (2) DroneRGB-T (Peng et al., 2020), which in-
cludes challenging low-light and multimodal conditions. They provide complementary coverage for
assessing fidelity and semantic robustness.

Implementation. Images are resized to 512×512×3 and encoded into a latent space via a custom-
trained autoencoder. MIND is trained for 60 epochs on both datasets. Gaussian noise is injected
using the DDPM scheduler (Ho et al., 2020) with β linearly increasing from 0.001 to 0.012 over
1000 steps. Generation employs DDIM (Song et al., 2020) with 300 denoising steps and a guidance
scale of 8.0. GPT-4o is used for actor–critic reasoning. Discrepancy modeling is supervised with a
joint loss, where λrec = 1.2 and λδ = 1.0 balance reconstruction and discrepancy objectives.

Metrics. Visual quality is assessed with four standard metrics: (1) Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) for distributional similarity; (2) Peak Signal-to-Noise Ratio
(PSNR) (Wang et al., 2004) for pixel-level fidelity; (3) Kernel Inception Distance (KID) (Binkowski
et al., 2018) for unbiased feature distribution deviation, especially suitable for smaller datasets; and
(4) Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) for perceptual align-
ment with human vision. To evaluate actor-critic visual reasoning, we adopt a two-phase protocol:
(1) CLIP Score to measure text–image alignment between generated descriptions and aerial inputs,
and (2) FID/LPIPS to compare image quality under different prompting strategies.

6
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Table 1: Visual performance across VisDrone-DET (Cao et al., 2021) and DroneRGB-T (Peng et al.,
2020). Results are based on 3,300 generated samples for VisDrone-DET and 1,807 for DroneRGB-
T. Bold indicates the best results, while underline represents the second-best.

Models FID ↓ PSNR ↑ KID ↓ LPIPS ↓
VisDrone-DET DroneRGB-T VisDrone-DET DroneRGB-T VisDrone-DET DroneRGB-T VisDrone-DET DroneRGB-T

ARLDM (Pan et al., 2024) 106.30 199.51 6.60 6.77 0.06 0.21 0.60 0.64
Conform (Meral et al., 2024) 110.96 184.17 6.15 7.04 0.06 0.17 0.58 0.62
Make-a-Scene (Gafni et al., 2022) 139.81 212.29 5.70 5.88 0.07 0.24 0.64 0.68
Stable Diffusion (SD) (Rombach et al., 2022) 101.05 182.23 5.93 6.97 0.06 0.17 0.57 0.61
Versatile Diffusion (VD) (Xu et al., 2023) 102.18 188.16 5.77 6.26 0.07 0.19 0.58 0.62
DiffusionSAT (Khanna et al., 2024) 80.98 183.88 7.08 7.19 0.05 0.14 0.61 0.63
AeroGen (Tang et al., 2025) 86.94 184.03 7.01 7.06 0.05 0.16 0.62 0.63
Average 104.03 190.61 6.32 6.74 0.06 0.18 0.60 0.63
MIND (w/o AD) 83.76 172.22 6.92 7.07 0.05 0.16 0.51 0.57
MIND (ours) 78.02 (-24.9%) 158.18 (-17.0%) 7.03 (+11.2%) 7.14 (+5.9%) 0.05 (-16.7%) 0.16 (-12.6%) 0.47 (-21.7%) 0.53 (-16.3%)

Source Images Ours ARLDM ConformSD DiffusionSat

Figure 2: Visual performance comparison on VisDrone-DET.
Source Images Ours Make a scene VDSD DiffusionSat

Figure 3: Visual performance comparison on DroneRGB-T.

4.2 EVALUATION ON AERIAL IMAGE SYNTHESIS

Performance overview. Table 1 compares MIND with seven state-of-the-art baselines (five
general-purpose and two aerial-specific diffusion models) on VisDrone-DET (Cao et al., 2021) and
DroneRGB-T (Peng et al., 2020). MIND achieves consistent gains across FID, PSNR, KID, and
LPIPS, confirming its ability to generate high-fidelity, semantically aligned aerial imagery. The
ablation variant MIND (w/o AD) isolates the contribution of the adaptive denoising module.

Visualization comparison. Figures 2 and 3 present randomly sampled synthesized aerial images
from both datasets. Baselines often fail to preserve spatial layouts and coherence to the source im-
ages, showing blur or distort structures (e.g., radial gardens or roof patterns). In contrast, MIND
reconstructs them with higher fidelity. Under varied illumination, it robustly maintains scene geom-
etry and accurately models shadow boundaries and object contours, enhancing realism.

Qualitative analysis of visual fidelity. We further showcase diverse synthesized examples gener-
ated by MIND and conduct an in-depth qualitative analysis across three dimensions.

• Geometric structure, spatial layout, and object detail preservation. Figure 4 compares sparse-
object natural scenes and dense-object urban scenes. In cluttered natural settings, baselines often
produce over-smoothed or distorted textures, whereas MIND preserves fine structures such as
seasonal leaf variations. In dense urban layouts, it maintains small-object fidelity (e.g., pedes-
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      Complex Backgrounds & Sparse Objects High-Density Small Object Distributions(a) (b)
Figure 4: Qualitative analysis of geometric structure, spatial layout, and object detail preservation.

Figure 5: Capturing and modeling fine-grained illumination and shadow patterns.

(a) Nighttime Environments (b) Motion Blur Patterns
Figure 6: Image synthesis under high-noise conditions.

trians, vehicles) and directional consistency (e.g., cars oriented correctly on intersecting roads),
demonstrating robustness to occlusion and geometric distortion.

• Capturing and modeling fine-grained illumination and shadow patterns. As shown in Figure 5,
MIND captures localized lighting dynamics and produces directionally consistent shadows from
buildings and trees. This enhances photorealism and provides geometric cues essential for aerial
scene interpretation.

• Robust image synthesis under high-noise conditions: nighttime environments and motion blur.
Low-light and high-motion settings pose major challenges for aerial synthesis. In Figure 6, MIND
maintains structural fidelity while faithfully reproducing noise patterns and blur progression. This
robustness is particularly valuable for downstream tasks such as surveillance and navigation,
where realistic noise characteristics aid reliable scene understanding.

4.3 EVALUATION OF DISCREPANCY MAPS AND ACTOR-CRITIC REASONING

Discrepancy maps. We showcase a few random selected examples of generated discrepancy maps
in Figure 7(a), including challenging nighttime scenes. These visualizations demonstrate that the
maps not only localize structural misalignments and missing details but also remain effective under
challenging conditions, providing reliable guidance for targeted refinement during synthesis.

Table 2: Performance on different reasoning strategies.

Strategy VisDrone-DET DroneRGB-T
CLIP ↑FID ↓LPIPS ↓CLIP ↑FID ↓LPIPS ↓

Image Describing 34.06 89.13 0.58 23.17 177.40 0.60
Visual Reasoning 35.97 84.27 0.54 25.29 174.86 0.59
Actor-Critic 36.09 78.02 0.47 26.24 158.18 0.53

Actor-Critic reasoning. We eval-
uate the effectiveness of the pro-
posed actor-critic visual reasoning
in Table 2, where Image Describ-
ing (serving as the actor) employs a
CoT prompt (P desc introduced in Sec-
tion 3.2) to generate semantic-level
description, Visual Reasoning (P visual introduced in Appendix A.7) relies solely on the input im-
age and focuses on salient regions without capturing localized inconsistencies, and Actor-Critic
Reasoning (two-stage prompting P desc and P dm introduced in Section 3.2) leverages the predicted
discrepancy map to guide targeted refinement. As shown in Table 2, our actor–critic formulation
achieves the best overall scores on both datasets, confirming that discrepancy-guided refinement
provides complementary benefits beyond scene-level descriptions or purely visual reasoning. To
further illustrate, we provide a case study to showcase the text generations from different prompts
in Figure 7(b). These examples highlight that while P desc and P visual capture global semantics and
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(a) Discrepancy Maps

𝑃desc: The aerial view captures a bustling urban thoroughfare. During daylight, the scene 
is illuminated by bright sunlight. A line of neatly trimmed trees borders the central road. 
Pedestrians linger near storefronts. The streetlights are adorned with decorative lamps. 
The overall arrangement conveys a structured interaction between nature and urban life. 

𝑃visual : Bright daytime lighting and sharp shadows suggest clear visibility and movement. 
Vehicles are spaced evenly, while cars along the edges point to mixed use. Sidewalks 
show sparse pedestrian activity, with foot traffic near storefronts. These patterns reflect a 
structured, multi-purpose environment balancing transit, commerce, and local access. 

𝑃dm: The discrepancy map reveals inconsistencies in spatial coherence, particularly 
where light and shadow interact. Vibrant mismatches disrupt structural continuity. Shifts in 
vegetation density affect how lanes and buildings are perceived, causing confusion in 
urban layout. They collectively undermine a clear spatial interpretation of the scene. 

(b) Case Study of Actor-Critic Visual Reasoning and Comparison with Traditional Prompt 

Figure 7: Case study of generated discrepancy maps and actor-critic visual reasoning.

Table 3: Ablation study on VisDrone-DET.
D-Reasoning D-Denoising FA FID ↓ PSNR ↑ LPIPS ↓

✗ ✗ ✗ 101.05 5.93 0.57
✓ ✗ ✗ 94.40 6.95 0.57
✗ ✓ ✗ 85.42 6.90 0.57
✗ ✗ ✓ 88.28 7.51 0.58
✓ ✗ ✓ 83.76 6.92 0.51
✓ ✓ ✓ 78.02 7.03 0.47
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Figure 8: Evaluation on adaptive denoising.

coarse structures, only the discrepancy-aware prompt P dm explicitly exposes subtle errors and in-
consistencies. This demonstrates the advantage of our actor-critic reasoning, where the combination
of P desc and P dm produces scene description and rationale that are both semantically rich and error-
aware, yielding higher-quality guidance for aerial image synthesis.

4.4 ABLATION STUDY

We conduct an ablation study to evaluate the contribution of each module in MIND, focusing on
discrepancy-aware reasoning (D-Reasoning), discrepancy-guided denoising (D-Denoising), and fea-
ture augmentation (FA), as summarized in Table 3. We also analyze the effect of applying dis-
crepancy guidance at different stages of the denoising process, shown in Figure 8. Removing all
components leads to the weakest results (FID 101.05, PSNR 5.93, LPIPS 0.57), consistent with the
Stable Diffusion baseline. Introducing D-Reasoning alone gives modest gains, showing its stan-
dalone utility. Larger improvements arise from D-Denoising and FA, which significantly reduce
FID and improve PSNR. The full model, combining all three modules, achieves the strongest per-
formance (FID 78.02, PSNR 7.03, LPIPS 0.47), highlighting their complementary effects. Figure 8
further demonstrates that progressively injecting discrepancy cues during denoising leads to con-
sistent improvements. As timesteps with discrepancy guidance increases (from 0 to 15), both FID
decreases and PSNR increases, indicating enhanced image fidelity and reconstruction accuracy.

4.5 DISCUSSION AND LIMITATIONS

While MIND achieves notable improvements in semantic fidelity and spatial alignment, several chal-
lenges remain. The model struggles with complex texts involving multi-object interactions, where
reasoning about fine-grained relationships is required. Performance also degrades in extremely dark
scenes, where low illumination and high noise impair structural preservation and contextual co-
herence. Addressing these challenges, for example by incorporating stronger temporal priors or
physics-aware constraints, is an important direction for future work.

5 CONCLUSION

This paper presents MIND, a novel discrepancy-centric latent diffusion framework for high-fidelity
aerial image synthesis. By introducing multi-scale discrepancy maps and integrating them into
the generation process through visual reasoning, latent representation augmentation, and adaptive
denoising, MIND addresses the unique challenges of aerial imagery such as geometric distortion,
dense object distributions, and semantic misalignment. Extensive experiments on VisDrone-DET
and DroneRGBT demonstrate that MIND significantly outperforms state-of-the-art methods in visual
quality, spatial consistency, and text-image alignment. This work establishes a robust foundation for
structured, interpretable, and controllable generation in aerial visual understanding.
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A APPENDIX

This appendix contains additional technical details and discussions of our submission as follows:

• A.1: A detailed overview of diffusion models, including forward, reverse, and inference processes
in latent space.

• A.2: Formal problem description for aerial image synthesis with discrepancy-aware guidance.

• A.3: The detailed structure of the discrepancy modeling module.

• A.4: Proof of Theorem 1, establishing residuals as normal-space projections.

• A.5: Proof of Proposition 1, showing multi-scale decomposition and stability.

• A.6: Justification of Proposition 2, motivating adaptive denoising.

• A.7: Additional details on traditional visual reasoning prompts.

• A.8: Disclosure on the use of LLMs in this paper.

A.1 DIFFUSION MODELS

The overall generation pipeline using diffusion models involves three core phases: a forward process
that progressively corrupts clean data by adding noise, a reverse process that learns to denoise this
noisy input, and an inference process that iteratively removes noise from a pure Gaussian sample
to synthesize a structured output. To improve scalability and efficiency, modern diffusion models,
such as Stable Diffusion Rombach et al. (2022), often operate in a latent space rather than directly
in pixel space. More specifically, let X0 ∈ R3×H×W denote a clean image. This input image is first
encoded into a compact latent representation z0 = E(X0) using a variational autoencoder (VAE)
encoder E(·) Cemgil et al. (2020).

Forward process. During the forward process, a predefined noise schedule is applied to progres-
sively corrupt z0 over timesteps t ∈ [1, T ], producing noisy latent vectors zt:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (14)

where ᾱt is the cumulative product of noise scaling coefficients that controls the signal-to-noise ratio
at timestep t.

Reverse process. A denoising model ϵθ(zt, t, c), parameterized by θ, is trained to predict and
remove the added noise ϵ. The model is conditioned on external information c, such as textual
description or semantic layout, which provides high-level guidance for generating the desired output.
The training objective minimizes the mean squared error between predicted and true noise:

L = Et,z0,ϵ

[
∥ϵθ(zt, t, c)− ϵ∥22

]
. (15)

Inference process. A latent vector zT ∼ N (0, I) is randomly sampled and then refined through
iterative denoising steps guided by the learned noise prediction function ϵθ:

zt−1 =
√
ᾱt−1 · ẑ0 +

√
1− ᾱt−1 · ϵθ(zt, t, c) (16)

where the predicted clean latent image ẑ0 is estimated by

ẑ0 =
1√
ᾱt

(
zt −

√
1− ᾱt · ϵθ(zt, t, c)

)
. (17)

After completing all denoising steps, the final latent z0 is decoded using the VAE decoder D(·)
to reconstruct the high-resolution image X̂0 = D(z0). By incorporating the external conditioning
signals c into both the reverse and inference processes, diffusion models are capable of generating
images that are not only visually realistic but also semantically aligned with the target context,
making them particularly effective for controlled image generation.
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A.2 PROBLEM DESCRIPTION

We denote an aerial dataset of images as X = {Xi}ni=1, where each Xi represents a high-resolution
top-down view. Our goal is to develop a diffusion model over this dataset to address key chal-
lenges in generating structured and high-fidelity aerial imagery, particularly those arising from small,
densely packed objects, geometric distortions, and the lack of paired text descriptions. To this end,
our proposed framework enhances the generative process by integrating discrepancy-driven guid-
ance throughout the image generation process. Specifically, we estimate discrepancy maps that
capture semantic and structural inconsistencies between generations and expected outputs. These
maps are leveraged in three complementary ways: (1) to assist LLMs in generating descriptive and
rationale-rich text that enhances semantic conditioning, (2) to augment latent representations with
spatially contextualized features that recover missing or suppressed details, and (3) to dynamically
modulate the denoising process by injecting spatially localized corrective signals to refine structural
details in the synthesized output.

A.3 DETAILED STRUCTURE OF DISCREPANCY MODELING
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Figure 9: Discrepancy modeling that first performs image reconstruction, then extracts multi-scale
spatial features, and finally estimates the discrepancy map.

The discrepancy modeling module operates in three sequential stages: (1) reconstructing the input
image to expose off-manifold deviations, (2) extracting multi-scale features that preserve both global
structure and local detail, and (3) fusing these features to predict a spatially coherent discrepancy
map. This design enables the model to highlight error-prone regions that are critical for downstream
visual reasoning and adaptive denoising.

A.4 PROOF OF THEOREM 1

Let M ⊂ RH×W×3 be a C2 embedded submanifold representing the data manifold. For any X
sufficiently close to M, let X0 ∈ M be the closest point under metric projection, and write the
deviation as ϵ = X−X0. We assume:

(A1) Local projection: the trained autoencoder A = D ◦ E approximates the metric projection PM
to the first order near M, such that PM: A(X) = PM(X) + o(∥ϵ∥).
(A2) First-order linearization: A is differentiable at X0 with Jacobian JA(X0), so locally

A(X0 + ϵ) = A(X0) + JA(X0)ϵ+ o(∥ϵ∥). (18)

(A3) Tangent consistency: The Jacobian JA(X0) = ΠTX0
M coincides with the orthogonal projector

onto the tangent space at X0, capturing that A preserves on-manifold directions to first order and
contracts normal directions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Since X0 ∈ M, it follows that A(X0) = X0. Substituting into (A2) and applying (A3), the
reconstruction of X becomes:

X̂ = A(X0 + ϵ) = X0 +ΠTX0
Mϵ+ o(∥ϵ∥). (19)

Thus, the residual can be examined as:

R(X) = X− X̂ = ϵ−ΠTX0
Mϵ+ o(∥ϵ∥) = ΠTX0

M⊥ϵ+ o(∥ϵ∥). (20)

which proves the directional statement. For the norm, decompose ϵ = ϵ⊤ + ϵ⊥ with ϵ⊤ ∈ TX0M
and ϵ⊥ ∈ TX0M⊥. Then

∥R(X)∥ = ∥ϵ⊥∥+ o(∥ϵ∥). (21)
By smoothness of M and standard properties of metric projection, we have dist(X,M) = ∥ϵ⊥∥+
o(∥ϵ∥). Combining the two expressions results in ∥R(X)∥ = dist(X,M) + o(∥X − X0∥),
establishing the claimed equivalence.

A.5 PROOF OF PROPOSITION 1

Let {ψs,k} be a Parseval frame (e.g., wavelets or Laplacian pyramid) on RH×W×3 indexed by scale
s = 0, . . . , S and location k. Any residual R admits a decomposition Rs =

∑
k⟨R, ψs,k⟩ψs,k,

with associated energy Es = ∥Rs∥22 =
∑

k |⟨R, ψs,k⟩|2. By Parseval’s property, the total residual
energy decomposes across scales:

∥R∥22 =
∑
s,k

|⟨R, ψs,k⟩|2 =

S∑
s=0

Es, (22)

This proves the stated equality. For scale separation, low-frequency components (small s) are dom-
inated by slowly varying structures such as geometric misalignments or layout shifts, while high-
frequency components (large s) emphasize sharp features such as small-object omissions or edge
artifacts. Hence, coarse scales capture global layout errors, and fine scales indicate local details. For
stability under deformations, consider a smooth geometric deformation τ with ∥∇τ−I∥∞ ≤ κ≪ 1.
For wavelet-type frames with C1 generators, deformation stability results imply∑

k

|⟨R ◦ τ, ψs,k⟩ − ⟨R, ψs,k⟩|2 ≤ Cκ222s∥R∥22, (23)

so the subband energies Es vary smoothly under small perturbations of the input. This ensures
robust detection of global discrepancies at coarse scales and local omissions at fine scales.

A.6 PROOF OF PROPOSITION 2

At early timesteps, the latent zt is heavily corrupted (large σt), so intermediate reconstructions are
unreliable and the estimated discrepancy Dt is noisy and biased. Using it to steer denoising risks is
more likely to inject artifacts than to improve alignment. As noise decays (small σt), reconstructions
stabilize; Dt concentrates around the true residual and becomes informative for targeting normal-
space errors such as missing vehicles or misaligned roads. Hence, discrepancy guidance is most
effective late in the reverse process.

Formally, let Lt(z) = E ∥ϵ − ϵθ(z, t, ct)∥22 denote the per-timestep denoising risk. Consider a
single-step update z+t = zt + η u(Dt) with step size η > 0 and a direction u(·) aligned with the
normal component of the denoising model’s error gradient. A first-order expansion yields

Lt(z
+
t ) ≈ Lt(zt) + η ⟨∇zLt(zt), u(Dt)⟩ + O(η2). (24)

Decompose the estimated discrepancy as Dt = D + bt + nt, where D is the true (noise-free)
discrepancy signal, the systematic bias satisfies ∥bt∥ = O(σt), and the zero-mean noise nt sat-
isfies E∥nt∥2 = O(σ2

t ). Taking expectation and using alignment ⟨Πnormal∇zLt, u(D)⟩ ≤
−κ∥Πnormal∇zLt∥22 for some κ > 0, we obtain

E
[
Lt(z

+
t )− Lt(zt)

]
≤ −η κ ∥Πnormal∇zLt∥22 + ηO(σt) + O(η2). (25)

Thus, for sufficiently small σt (late timesteps) and small enough η, the negative descent term dom-
inates, guaranteeing a decrease in expected denoising risk. When σt is large (early timesteps), the
O(σt) term can dominate, and no improvement is guaranteed. This establishes the existence of a
threshold σ⋆ below which discrepancy-guided updates are beneficial.
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A.7 TRADITIONAL VISUAL REASONING PROMPT

Traditional visual reasoning prompts like P visual Mao et al. (2023), rely solely on the input image
Xi and focus on salient regions without capturing localized inconsistencies, failing to offer targeted
feedback essential for refining complex aerial scenes.

P visual: Generate a concise rationale that interprets an [aerial image]. Start with high-level context (lighting
and time of day) to frame visibility and activity. Then reason through the scene region by region, analyzing
how objects behave and interact. Highlight uncovering patterns like flow, clustering, or contrast to reveal
deeper insights into the scene’s structure.

A.8 USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely to assist in language refinement and copyediting of portions of the
manuscript. All core research contributions, including conceptual development, methodology de-
sign and implementation, and experimental results, were conducted entirely by the authors. No
LLMs were used to generate code, raw data, or figures. However, because optimizing actor-critic
visual reasoning is a core contribution of this work, LLMs were intentionally used as part of the
proposed methodology to generate text descriptions and rationales for aerial image datasets and to
validate the effectiveness of the designed reasoning strategy. This constitutes a technical contribu-
tion and is explicitly detailed in the main content of the paper.
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