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Abstract—High-dimensional data arises in numerous applica-
tions, and the rapidly developing field of geometric deep learning
seeks to develop neural network architectures to analyze such
data in non-Euclidean domains, such as graphs and manifolds.
Recent work has proposed a method for constructing manifold
neural networks using the spectral decomposition of the Laplace-
Beltrami operator. Moreover, in this work, the authors provide a
numerical scheme for implementing such neural networks when
the manifold is unknown and one only has access to finitely
many sample points. They show that this scheme, which relies
upon building a data-driven graph, converges to the continuum
limit as the number of sample points tends to infinity. Here,
we build upon this result by establishing a rate of convergence
that depends on the intrinsic dimension of the manifold but is
independent of the ambient dimension. We also discuss how the
rate of convergence depends on the depth of the network and
the number of filters used in each layer.

Index Terms—Geometric Deep Learning, Manifold Learning,
Continuum Limits

I. INTRODUCTION

The emerging field of Geometric Deep Learning [1], [2]
aims to extend the success of convolutional neural networks
to more general domains such as graphs and manifolds.
Though only in its infancy, this field has already achieved
substantial success. For instance, Graph Neural Networks are
used to power both Amazon’s product recommender system
[3] and Google Maps [4]. However, while there has been a
tremendous body of research on the construction of neural
networks for graphs [5], there has been relatively little work
on the development of neural networks for manifolds, except
in the case of two-dimensional surfaces [6]. This is in spite
of the fact that manifold learning techniques [7], [8] are
often used in unsupervised algorithms for representing high-
dimensional by capturing the intrinsic structure of the data.
Future developments in the development of manifold neural
networks could have tremendous applications in the processing
of high-dimensional data arising, for example, in single-cell
imaging [9]–[11].

As an important step in the development of manifold neural
networks, several recent works [12], [13] have introduced
CNN-like architectures that use filters based on the eigende-
composition of the Laplace-Beltrami operator and analyzed
their stability properties. However, [12] and [13] assume that
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one knows the manifold which is not realistic for many real-
world applications. Instead, one is given access to finitely
many sample points x1, . . . , xn ∈ RD and makes the mod-
eling assumption that these sample points lie upon (or near)
an unknown d-dimensional Riemannian manifold for some
d ≪ D. In this setup, it is non-trivial to actually implement
a neural network since one does not have global knowledge
of the manifold. One approach, based on manifold learning
[8], [14], [15] is to construct a data-driven graph Gn, whose
vertices are the sample points x1, . . . , xn, and use the eigen-
vectors and eigenvalues of graph Laplacian to approximate
the eigenfunctions and eigenvalues of the Laplace-Beltrami
operator.

Recently, in [16], the authors showed that if the graph
Gn is constructed properly, their proposed neural network
will converge to a continuum limit as the number of sample
points n tends to infinity. At the same time, a different line
of work [17] proposed a numerical method for implementing
the manifold scattering transform [18], [19], a wavelet-based
model of deep learning on manifolds, in the setting where
one only has to sample finitely many points and proved
convergence to a continuum limit. Moreover, using results
from [20] the authors are able to establish a quantitative rate
of convergence which depends on the intrinsic dimension d,
but not on the ambient dimension D.

The purpose of this paper is to apply results from [17] and
[20] to the manifold neural network considered in [16] and
establish a quantitative rate of convergence. Notably, as in [17],
our rate of convergence will depend on the intrinsic dimension
d, but not on the ambient dimension D. We do not know if
our rate of convergence is optimal, but it is likely that some
dependence on d cannot be avoided. Additionally, we note
that our rate also depends on the number of layers L and the
number of filters Fl used in each layer. As we shall discuss
below, these dependencies will give insights into how to best
design manifold neural networks.

A. Notation

We assume that M is a compact d-dimensional Riemannian
manifold without boundary embedded in RD for some D ≫
d such that vol(M) = 1, and that the points {xi}ni=1 are
uniformly sampled from M. We will let Gn denote a graph
with vertices xi, 1 ≤ i ≤ n. We will let L denote the Laplace-
Beltrami operator on M and let Ln denote the graph Laplacian



on Gn. We will let ϕi and λi denote the eigenfunctions/values
of the Laplace Beltrami operator L and let ϕn

i and λn
i denote

the eigenvectors/values of the graph Laplacian Ln. We will let
Pn be the projection operator, defined for continuous functions
f ∈ L2(M) by [xn]i = [Pnf ]i = f(xi). We will let ∥·∥L2(M)

and ∥·∥L2(Gn) denote the L2 norms on M and Gn. However,
when no ambiguity exists we may simple write ∥ · ∥ to refer
to the L2 norm on the appropriate space.

II. MANIFOLD NEURAL NETWORKS

Let M be a compact d-dimensional Riemannian manifold
without boundary embedded in RD for some D ≫ d, and let
L be the Laplace-Beltrami operator on M. It is well-known
that L has an orthonormal basis of eigenfunctions {ϕi}∞i=1

with Lϕi = λiϕi, λi ≥ 0. This implies that for f ∈ L2(M)
we may write

f =

∞∑
i=1

f̂(i)ϕi,

where, for 1 ≤ i < ∞, f̂(i) is the generalized Fourier
coefficient defined by ⟨f, ϕi⟩L2(M). Since we interpret the f̂(i)
as generalized Fourier coefficients, we will refer to a function
f as bandlimited if there are finitely many nonzero f̂(i) as
formalized in the following definition.

Definition 1 (Bandlimited functions). For κ ≥ 0, a function
f ∈ L2(M) is said to be κ-bandlimited if we have f̂(i) = 0
for all i > κ.

Motivated by the convolution theorem in real analysis,
we will define manifold convolution as multiplication in
the Fourier domain. Given a sufficiently nice function ĥ :
[0,∞) → R, we let h ∈ L2(M) be the function

h =

∞∑
i=1

ĥ(λi)ϕi

and define a spectral convolution operator, h(L) by

h(L)f =

∞∑
i=1

ĥ(λi)f̂(i)ϕi. (1)

Importantly, we note that since these spectral convolution
operators are defined in terms of a function ĥ : [0,∞) → R
one may verify that the h(L) does not depend on the choice
of the orthonormal basis {ϕi}∞i=1. (See for example Remark
1 of [17].)

In [16], the authors use this notion of convolution to define
an L-layer manifold neural network with Fℓ filters used in
layer ℓ. In this network, one is given an initial signal f =
f0 ∈ L2(M) and then produces a hidden representation of
this signal through a multi-layer sequence of linear and non-
linear maps. In particular, for 1 ≤ ℓ ≤ L and 1 ≤ p ≤ Fℓ,
they define

fp
ℓ = σ

Fℓ−1∑
q=1

hpq
ℓ (L)fq

ℓ−1

 , (2)

where hpq
ℓ (L) is a spectral convolution operator defined as in

(1) and σ is a pointwise Lipschitz nonlinearity which is non-
expansive in the sense that |σ(a)−σ(b)| ≤ |a−b|. Admissible
choices of σ include ReLu, absolute value, and many others.
As in [16], we will write the network compactly as

H = ∪L
ℓ=1{h

pq
ℓ , 1 ≤ q ≤ Fℓ−1, 1 ≤ p ≤ Fℓ}

denote the set of all filters and let Φ(H,L, f) denote the
output of their network. Throughout this paper, we will assume
that all of the hpq

ℓ are non-amplifying and Lipschitz as defined
below.

Definition 2 (Non-amplifying filters). A manifold filter h(L)
is called non-amplifying if ∥ĥ∥∞ ≤ 1.

Definition 3 (Lipschitz filters). For C > 0, a manifold filter
h(L) is called C-Lipschitz if for all a, b ∈ [0,∞) we have

|ĥ(a)− ĥ(b)| ≤ C|a− b|.

We note that the condition that h(L) is non-amplifying
allows one to verify (using Parseval’s Theorem) that
∥h(L)f∥L2(M) ≤ ∥f∥L2(M) for all f ∈ L2(M) and the
condition that h is Lipschitz implies that h(L) is robust to
minor perturbations of the eigenvalues.

As in, e.g., [16] and in Section 6 of [17], we will assume
that we have a collection of n points x1, . . . , xn, which lie on
M and are drawn i.i.d. uniformly at random with respect to
the Riemannian volume form, and build a data-driven graph,
Gn, whose adjacency matrix An is defined by

[An]ij = wij =
1

n

1

tn(4πtn)d/2
exp

(
−∥xi − xj∥22

4tn

)
, (3)

where tn is a suitably chosen scale parameter. Given An,
the diagonal degree matrix Dn and graph Laplacian Ln are
defined by

Ln = Dn −An.

It is known that the graph Laplacian has an orthonormal basis
of eigenvectors ϕn

i such that Lnϕ
n
i = λn

i ϕ
n
i , λ

n
i ≥ 0, which

allows us to write

x =

n∑
i=1

x̂iϕ
n
i , x̂i = ⟨x, ϕn

i ⟩.

In order to implement a discrete network analogous to (2), we
will need to define a projection operator Pn which maps a
function f onto its values at the sample points xi, 1 ≤ i ≤ n.

Definition 4 (Projection operators). For a continuous function
f ∈ L2(M), we define its projection onto Gn to be the vector
Pnf whose entries are given by [Pnf ]i = f(xi).

Given this definition, one can then implement a discrete
approximation of (2) by setting xn,0 = Pnf and defining

xp
n,ℓ = σ

Fℓ−1∑
q=1

hpq
ℓ (Ln)x

q
n,ℓ−1

 , (4)



where analogous to (1), h(Ln) is defined by

h(Ln)x =

n∑
i=1

ĥ(λi)x̂iϕ
n
i .

With these definitions, we may now state the following
result which is Proposition 1 of [16]. It shows that this discrete
approximation converges to the continuum limit under certain
assumptions.

Theorem 1 (Proposition 1 of [16]). Assume that the xi are
drawn i.i.d. uniform at random from M and that f is κ-
bandlimited for some finite κ. Let H = ∪L

ℓ=1{h
pq
ℓ , 1 ≤

q ≤ Fℓ−1, 1 ≤ p ≤ Fℓ}, and assume that each h ∈ H
is non-amplifying and C-Lipschitze for some finite C > 0.
Assume that Gn is constructed as in (3), and let Φ(H,L, f)
and Φ(H,Ln,Pnf) denote the output of the continuous and
discretized manifold neural networks defined in (2) and (4).
Then, letting PnΦ(H,L, f) denote the projection of the output
of the continuum network onto Gn, we have

lim
n→∞

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥L2(Gn) = 0

where the above limit is in probability.

While Theorem 1 guarantees convergence, it does not tell
provide a quantitative rate. However, recent work by Chew
et al. [17], provides methods for implementing the manifold
scattering transform1 from finitely many sample points with a
quantitative rate. Similar to the method discussed above, the
method used in [17] also relies upon building a data-driven
graph Gn although it builds this graph in a slightly different
way, defining the adjacency matrix, diagonal degree matrix,
and graph Laplacian by

[An]i,j = tn
−d/2 exp

(
−∥x− x′∥22

tn

)
,

[Dn]i,i =

n∑
j=1

[An]i,j ,

Ln =
1

ntn
(Dn −An) . (5)

With the graph defined this way, they are then able to utilize
the following theorem, which is a special case of Theorem 5.4
of [20].

Theorem 2 (Theorem 5.4 of [20]). Assume that the points
{xi}ni=1 are drawn i.i.d uniformly at random. Let κ > 0 be
fixed. Assume that the first κ eigenvalues of the (true) Laplace-
Beltrami operator, L, λ1, . . . , λκ, all have single multiplicity.
Construct Gn as in (5), and let ϕn

i and λn
i be the eigenvectors

and eigenvalues of the data-driven Ln. Assume that tn → 0
and n → ∞ at a rate where tn ∼ n−2/(d+6). Then, with
probability at least 1−O

(
1
n9

)
, there exist scalars αk with

|αk| = 1 + o(1) (6)

1The manifold scattering transform is a nonlinear convolutional architecture
similar to that discussed here. It differs by assuming that the filters are wavelets
with a certain specified form and by not featuring a summation over channels.

such that for all 0 ≤ i ≤ κ

|λi − λn
i | = O

(
n− 2

d+6

)
and

∥Pnϕi − αiϕ
n
i ∥2 = O

(
n− 2

d+6

√
log n

)
,

where the constants implied by the big-O notation depend on
κ and the geometry of M.

Remark 1. As noted earlier, spectral filters of the form
(1) do not depend on the choice of eigenbasis. Therefore,
when applying Theorem 2 to the manifold neural networks
considered here we may assume that the αi > 0 (since
otherwise we change the basis by replacing ϕi with −ϕi.)

Therefore, by imitating the proof of Theorem 10 of [17],
with probability at least 1−O( 1

n9 ), we may see

∥Pnϕi − ϕn
i ∥2 = O

(
n− 2

d+6

√
log n

)
.

The authors of [17] also make frequent use of the following
Lemma which is a consequence of Hoeffding’s inequality.

Lemma 1 (Lemma 5 of [17]). Assume that the points {xi}ni=1

are drawn i.i.d uniformly at random, and let f, g ∈ C(M).
Then, with probability at least 1− 2

n9 we have

|⟨f, g⟩Gn
− ⟨f, g⟩L2(M)| ≤

√
18 log n

n
∥fg∥∞.

Given Theorem 2 and Lemma 1, the authors of [17] then
show that the manifold scattering transform converges at a
quantifiable rate informally summarized below in the follow-
ing theorem. (See Theorems 13 and 14 [17] for a precise
statement).

Theorem 3 (Informal). Under the assumptions of Theo-
rem 2, the manifold scattering transform converges at rate
O
(
n− 2

d+6
√
log n

)
.

The main result of this paper, discussed in the following
section, establishes a similar convergence result for manifold
neural networks.

III. CONVERGENCE RATES FOR MANIFOLD NEURAL
NETWORKS

The following theorem is our main result. It builds upon
Theorem 1 by providing a quantitative rate of convergence. Its
proof is based on combining Theorem 2 with the techniques
used to prove Theorem 1. Full details are provided in the
supplementary material.

Theorem 4. Assume that the xi are drawn i.i.d. uniformly at
random from M and that f is κ bandlimited. Assume that
each of the filters h ∈ H is non-amplifying and C-Lipschitz,
and let C̃ = max{C, 1}. Assume that Gn is constructed as
in (5), let Φ(H,L, f) and Φ(H,Ln,Pnf) denote the output
of the continuous and discretized manifold neural networks
defined in (2) and (4) and assume that tn → 0 and n → ∞ at



a rate where tn ∼ n−2/(d+6). Then with probability at least
1−O( 1

n9 ), we have that

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥L2(Gn)

≤ C̃O
( √

log n

n2/(d+6)

)
max
ℓ,q

∥fq
ℓ ∥

L∑
k=1

L∏
j=L−k

Fj

+ C̃O
(

(log n)1/4

n1/4+2/(d+6)

)
max
ℓ,q

∥fq
ℓ ∥∞

L∑
k=1

L∏
j=L−k

Fj

when d ≥ 2. In the case when d = 1, we instead have

∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥L2(Gn)

≤ C̃O
(√

log n

n2/7

)
max
ℓ,q

∥fq
ℓ ∥

L∑
k=1

L∏
j=L−k

Fj

+ C̃O
(√

log n

n1/2

)
max
ℓ,q

∥fq
ℓ ∥∞

L∑
k=1

L∏
j=L−k

Fj .

In order to interpret Theorem 4, we may make the following
observations on the rate of convergence.

• Our bounds depend on the intrinsic dimension d but not
on the ambient dimension D, and the rate of convergence
with respect to n is the same as that of analogous results
in [17]. We also note that our rate is slightly faster than
the rate of O(n−1/(2d+8)) which was established for a
single filter (satisfying certain assumptions) in Theorem
3 of [21].

• The rate of convergence depends on the L2 and L∞

norms of the filters (although for large n the L2 term
dominates). Therefore, when training manifold neural
networks, one might want to employ regularization when
training the filters.

• The bound depends linearly on the Lipschitz constant of
the filters. Again, this suggests that one might want to
employ regularization.

• Networks with more filters (unsurprisingly) require more
training data. More specifically, if one uses an L layer
network with Fℓ = F filters in each layer, then our bound
depends on F via

L∑
k=1

L∏
j=L−k

Fj ≈ FL+1.

Therefore, very deep networks may require large amounts
of training data and so it might be better to use a fairly
small number of layers unless one has truly massive
amounts of data. Interestingly, this in some sense parallels
a well-known phenomenon in graph neural networks
where performance typically either levels or deteriorates
if more than two or three layers are used (although this
is likely for a different reason). This is in contrast to
Euclidean CNNs where optimal performance is usually
obtained with much deeper networks.

IV. NUMERICAL EXPERIMENTS

We investigate the convergence rate of the proposed MNN
with experiments on the two-dimensional sphere, which en-
ables exact evaluation of the continuous MNN along with the
discretized MNN. We uniformly sample up to 214 points on
the sphere and construct a signal f by

f =

9∑
i=1

αiϕi

where αi ∈ R and ϕi are the spherical harmonics, which are
the eigenfunctions of the Laplace-Beltrami operator on the
sphere. Hence, f̂(i) = αi and thus we can exactly compute
h(L)f . We use a single layer with one filter defined by ĥ(λ) =
e−λ and use the absolute value as the nonlinearity σ. In Figure
1, we plot ∥Φ(H,Ln,Pnf)−PnΦ(H,L, f)∥L2(Gn) against
the number of sampled points N , averaged over 100 trials.
We observe a convergence rate of about O(n−0.76) which is
faster than the rate guaranteed by our Theorem in the case
where d = 2, O(n−1/4). This suggests that it may be possible
to sharpen our rate of convergence in future work, at least in
cases such as the sphere where we have additional information
about the structure of the eigenfunctions.

Fig. 1: Errors and log-log fit over 10 logarithmically spaced
values of n from 210 to 214 points. Both axes are logarithmi-
cally scaled.

V. CONCLUSIONS AND FUTURE WORK

We have established a quantitive rate of convergence for
the manifold neural network introduced in [12], [13]. Notably,
our rate of convergence depends on the depth of the network
and the number of filters used in each layer suggesting that
truly deep networks may require massive amounts of training
data. This raises an important question for future inquiry.
Can one design a manifold neural network whose sampling
requirements scale at most linearly with respect to the depth
of the network and the number of filters used per layer?

Additionally, we note that both Theorem 1 (restated from
[16]) and Theorem 4 assume that the sample points xi lie
exactly on the manifold M and are sampled i.i.d. uniformly



with respect to the Riemannian volume form. We view remov-
ing these assumptions as an important line of future inquiry.
One possible solution for addressing the first issue is to use
techniques from noise-robust manifold learning (see [22] and
the references therein) in which one assumes the data has the
form yi = xi + ηi where xi ∈ M and ηi is noise. Similarly,
for the second challenge, one could consider methods used in
works such as [8], [23], [24] where the data is assumed to be
sampled from a non-uniform density. However, adapting these
results to our setting is non-trivial because most of these works
establish pointwise convergence guarantees whereas our proof
techniques require convergence in L2.
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