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Abstract

This paper presents M3GPT, an advanced Multimodal, Multitask framework for
Motion comprehension and generation. M3GPT operates on three fundamental
principles. The first focuses on creating a unified representation space for various
motion-relevant modalities. We employ discrete vector quantization for multimodal
conditional signals, such as text, music and motion/dance, enabling seamless inte-
gration into a large language model (LLM) with a single vocabulary. The second
involves modeling motion generation directly in the raw motion space. This strat-
egy circumvents the information loss associated with a discrete tokenizer, resulting
in more detailed and comprehensive motion generation. Third, M3GPT learns to
model the connections and synergies among various motion-relevant tasks. Text,
the most familiar and well-understood modality for LLMs, is utilized as a bridge to
establish connections between different motion tasks, facilitating mutual reinforce-
ment. To our knowledge, M3GPT is the first model capable of comprehending and
generating motions based on multiple signals. Extensive experiments highlight
M3GPT’s superior performance across various motion-relevant tasks and its power-
ful zero-shot generalization capabilities for extremely challenging tasks. Project
page: https://github.com/luomingshuang/M3GPT.

Can you generate a motion for the caption 
that a person performs a knee tuck to kick L?   

Can you generate a music for the dance?

Can you fullfill the following motion?

A person is performing a Hip Bounce Wrist Circle 
movement.

Can you generate a dance for the music?

Can you translate the motion into a caption?   

M3GPT

Can you predict a motion for a given motion?

Figure 1: M3GPT can handle core motion comprehension and generation tasks, including text-to-motion, motion-
to-text, music-to-dance, dance-to-music, motion prediction, and motion in-between. The motion sequences
within the dashed-line areas are masked in the input.
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1 Introduction

Motion comprehension and generation in multimodality are crucial for diverse applications, including
AR/VR creation, video games, and virtual reality. Numerous studies [15, 51, 64, 52] focus on
motion comprehension, including captioning 3D human motions and generating music from 3D
human dances2. Recent advancements in AI [14, 44, 42, 48] have paved the way for motion
generation, allowing for various control signals including textual descriptions, music pieces, and
human poses. A significant shortcoming of most existing works is their focus on single-modality
control signals, overlooking the potential for multimodal information integration. More importantly,
the comprehension and generation of motions are predominantly studied in isolation. In reality,
human motion cognition and communication indispensably require seamless transitions between
any motion-relevant modalities. Therefore, it is vital to develop a unified framework for motion
comprehension and generation that can efficiently utilize multiple signals simultaneously.

Recent works [12, 62, 63, 58] have shown success in developing a unified multitask motion frame-
work which integrates text-driven and audio-driven motion generation through a single architecture.
Employing a large language model (LLM), [60] adeptly handles multimodal control signals, such as
text and single-frame pose, to generate consecutive motions. Despite their promising performance in
motion generation, these approaches often fall short in comprehending motion. MotionGPT [21], a
recent innovation, constructs a unified motion-language model to generate plausible human motions
and natural language descriptions through prompt instructions. However, MotionGPT focuses solely
on a single non-motion modality, i.e., text. While aligning motion with one additional modality
is relatively straightforward, integrating three or more modalities within a single framework and
achieving bidirectional alignment among them to cover a broad range of modalities for motion
comprehension and generation presents a formidable challenge.

Two main challenges need to be solved for building a unified multimodal framework for motion
comprehension and generation. The first is how to create a unified representation space across
different motion-relevant modalities. MotionGPT [21] and SpeechGPT [54] separately treat motion
and speech as specific language for seamlessly integrating with text. Inspired by these efforts [21, 54],
we view both motion and music as distinct forms of language, facilitating better associations with
text via LLMs. Specifically, akin to language, we compress raw motion and music into a sequence
of discrete semantic tokens. By encoding motion, music, and language within a single vocabulary,
we can build a unified representation space across these different modalities. The second is how
to model the connections and synergies among various motion tasks. Different motion-relevant
tasks are interconnected and can mutually enhance each other. Since text is the most familiar and
well-understood modality for LLMs, we propose employing text as a bridge to establish connections
between different motion tasks. Specifically, to better learn the complex music-to-dance task where
both input and output modalities are unfamiliar to LLMs, we introduce two auxiliary tasks: music-
to-text and text-to-dance, aimed at aligning music and dance modalities with the structured text
embedding space. This strategy enables us to establish connections and synergies between music-
to-dance and text-to-motion tasks, facilitating the alignment and collaboration of text, music, and
motion/dance modalities across different tasks.

In this work, we propose a uniform Multimodal, Multitask framework for Motion comprehension
and generation, namely M3GPT, that leverages the strong language generation capability of LLMs
for unifying various motion-relevant tasks, as depicted in Fig. 1. M3GPT comprises three tires.
Firstly, M3GPT is equipped with multimodal tokenizers capable of compressing raw multimodal
data, including motion, music, and text, into a sequence of discrete semantic tokens. These discrete
representations allow the core LLM to unify motion comprehension and generation in an autoregres-
sive manner, operating at the discrete semantic representation space. Secondly, different from [21, 60]
that solely optimize LLM in discrete semantic space, we jointly train LLM and motion de-tokenizer,
optimizing LLM in both discrete semantic space and raw continuous motion space. This operation
enables the motion-space error signals from de-tokenizer to backpropagate to LLM, enhancing LLM’s
ability to generate the details of motion. Thirdly, we construct paired text descriptions for music, and
design two auxiliary music-to-text and text-to-dance tasks, which aid in aligning music and dance
with the text embedding space. Also, we build up a shared tokenizer for motion and dance data

2In this paper, the term "motion" generally includes "dance." We distinguish them when referring to specific
tasks or scenes, such as text-to-motion, and music-to-dance.
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Methods T2M M2T A2D D2A M2M Random M Random T Random A

TM2D[12] " % " % % " % %

UDE[62] " % " % % " % %

MotionGPT[60] " % % % " " % %

MotionGPT[21] " " % % " " " %

M3GPT (Ours) " " " " " " " "

Table 1: Comparison of recent multimodal, multitask methods across various motion comprehension and
generation tasks. T2M: text-to-motion; M2T: motion-to-text; A2D: music-to-dance; D2A: dance-to-music;
M2M: motion-to-motion that includes motion prediction and motion in-between. Random M, Random T, and
Random A represent the unconstrained generation of motion, text, and music3, respectively.

to project them into a shared semantic space. These auxiliary tasks and shared tokenizer establish
connections between music-to-dance and text-to-motion, enabling mutual reinforcement.

We employ a multimodal pre-training + instruction-tuning pipeline to train M3GPT, enhancing
inter-modal alignment and effectively aligning them with human intent. To our knowledge, M3GPT
is the first approach to integrate six core tasks of motion comprehension and generation—text-to-
motion, motion-to-text, music-to-dance, dance-to-music, motion prediction, and motion in-between—
into a uniform framework. Extensive experiments demonstrate that M3GPT achieves competitive
performance across multiple motion-relevant tasks. Additionally, through qualitative results, we
demonstrate that M3GPT possesses powerful zero-shot generalization capabilities, e.g., long-term
dance generation and music-text conditioned dance generation.

2 Related Work
Motion comprehension and Generation. Many existing works focus on studying human ap-
pearance, pose, detection, attribute, part parsing and so on [61, 19, 45, 40, 23, 17]. This work
focuses on studying human motion, including motion comprehension and motion generation. Motion
comprehension involves two core tasks: motion-to-text and dance-to-music. Motion-to-text aims
to describe human motion with natural language [37]. For example, recurrent networks have been
used in [37] to accomplish this task. Dance-to-music involves creating a piece of music from a
given dance [20, 27, 64]. For example, Zhun et al. [64] utilizes a generative adversarial network to
generate music from dance videos. On the other hand, motion generation involves generating diverse
human motions using multimodal inputs, such as text [44, 56, 15, 5, 57], music [27, 18, 52, 42] and
incomplete motion [31, 1, 3]. Text-to-motion is one of the most important motion generation tasks.
Recent works typically map text to motion using different architectures: diffusion model [57] and
autoregressive transformer model [15]. Music-to-dance focuses on generating dance movements
from music. For example, [42] predicts discrete token sequences conditioned on music, which are
then used to regenerate the dance sequence. Motion Completion generates motion conditioning
on partial motions, such as motion prediction [31, 1] and motion-in-between [34, 43]. Although
these methods have shown promising results in various human motion tasks, most are limited to
handling a single task. Until recently, some works [12, 21, 60, 62] attempt to integrate two or more
tasks into a unified model, as shown in Tab. 1. However, these works either lack the ability of
motion comprehension [62, 60] or fail to handle music modality [12, 21]. In this work, we propose a
unified motion comprehension and generation framework that can handle multiple control signals
simultaneously.

Language Models and Multimodal. Large language models (LLMs) enabled by extensive datasets
and model size, such as T5 [39], Flan-T5 [7], LLaMA [46], LLaMA-2 [47] and Vicuna [6], have
demonstrated impressive comprehension and generation capabilities. Researchers have leveraged
the capabilities of LLMs to handle multimodal tasks, expanding them to multimodal large language
models (MLLMs). For example, AnyGPT [53] employs LLaMA-2 [47] to construct an any-to-any
multimodal language model. NExT-GPT [50] employs Vicuna [6] with multimodal adaptors and
diffusion decoders to perform tasks across arbitrary combinations of text, images, videos, and audio.
Recently, the works [21, 60] attempt to use LLMs for motion-related tasks. [60] uses LLaMA [46] to
build a general-purpose motion generator, which, however, lacks the ability to comprehend motion.
[21] leverages T5 to construct a unified motion-language model, but cannot deal with music modality.

3Note: in this paper, the term "audio" specifically refers to "music". This designation is adopted to avoid
confusion between the initial letter "M" shared by both "music" and "motion," which could lead to ambiguity
when these modalities are represented by their initials.
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Figure 2: An overview of the M3GPT framework. M3GPT consists of multimodal tokenizers and a motion-
aware language model. The training process of M3GPT consists of three stages: multimodal tokenizers training,
modality-alignment pre-training, and instruction tuning.

3 Method

To enhance the comprehension and generation of motion-relevant modalities, we propose a unified
multimodal framework named M3GPT. As illustrated in Fig. 2, M3GPT consists of multimodal
tokenizers responsible for compressing raw motion and music data into discrete tokens (Sec. 3.1), and
a motion-aware language model that learns to understand and generate motion tokens from LLMs by
corresponding text and music (Sec. 3.2). To address motion-relevant tasks, we employ a three-stage
training scheme encompassing multimodal tokenizers training, modality-alignment pre-training, and
instruction tuning (Sec. 3.3). During the inference process, multimodal tokens are decoded back
into their original representations by associated de-tokenizers (decoders of multimodal tokenizers),
enabling various motion-relevant tasks to be executed via instructions (Sec. 3.4).

3.1 Multimodal tokenizers

As shown in Fig. 2, Multimodal tokenizers aim to discretize continuous human motion and music
into language-like tokens, allowing the three modalities to be unified within a single language model.

3D Human Motion Tokenizer. To represent motion in discrete semantic tokens, we build a 3D
human motion tokenizer based on Vector Quantized Variational Autoencoders (VQ-VAE) following
[12, 62, 21, 60]. The motion tokenizer consists of a motion encoder Em and a motion decoder Dm,
along with a codebook Bm =

{
b1, b2, . . . , bNm

}
containing Nm discrete semantic vectors. Notably,

to facilitate mutual enhancement between motion and dance data, we employ a shared tokenizer for
both motions and dances, projecting them into a consistent and shared semantic space. Formally,
given a 3D motion sequence m ∈ RTm×dm , where Tm is the time length and dm is the dimensionality
of each frame’s pose, the motion encoder Em that consists of several 1-D convolutional layers projects
m to a latent embeddings z ∈ RLm×d. Here, Lm is the time interval after downsampling and d is
the latent dimension. Next, we transform z into a collection of codebook entries through discrete
quantization. Specifically, the quantization process replaces each item of z with its nearest embedding
in the codebook Bm, obtaining the quantized latent vectors e ∈ RLm×d as follows:

e = argmin
bk∈Bm

∥∥z − bk
∥∥
2
. (1)

The motion decoder Dm, which consists of several 1-D deconvolutional layers, projects the quantized
embeddings back to raw motion space as m̂ = Dm (e). Following [21, 60], the motion tokenizer can
be trained by the reconstruction loss, embedding loss and commitment loss as follows:

Lvq = ∥m̂−m∥1 + ∥sg [z]− e∥22 + β∥z − sg [e] ∥22 . (2)

where sg [·] is the stop gradient, and β is the factor that adjusts the weight of the commitment loss.
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After training the motion tokenizer, a motion sequence m can be represented as a sequence of discrete
codebook-indices of quantized embedding vector, namely motion tokens qm ∈ RLm , as follows:

qm = argmin
k∈{1,...,Nm}

∥∥Em (m)− bk
∥∥
2
. (3)

Music Tokenizer. For the music data, we adopt the VQ-VAE in Jukebox [9] as the music tokenizer,
which consists of a music encoder Ea, a music decoder Da and a music codebook Ba. Notably, the
limited number of music samples in dance datasets makes it inadequate for training an effective music
tokenizer. To leverage the strong representation ability of the tokenizer trained on the large-scale
musical dataset, we use the pre-trained VQ-VAE from Jukebox [9], which has been trained on a
dataset of 1.2 million songs. Specifically, we first segment each input music sample into 5-second
music segments. Then, for each 5 seconds segment a ∈ RTa×da , we use the pre-trained music
tokenizer {Ea,Ba} to encode a into a sequence of discrete codebook-indices qa ∈ RLa (namely
music tokens) following Eq. 3.

3.2 Language Model Backbone
Expanding Vocabulary. To incorporate multimodal discrete representations into a pre-trained LLM,
we expand the original text vocabulary Vt in LLM with motion vocabulary Bm and music vocabulary
Ba, forming a new unified vocabulary V = {Vt,Bm,Ba}. To accommodate the expanded vocabulary,
we extend the corresponding embedding and prediction layer of LLM, where the newly incorporated
parameters are initialized randomly.

Unified Multimodal Language Model. Equipped with multimodal tokenizers, we can compress
multimodal data into discrete token sequences. To be specific, employing the trained motion tokenizer
and music tokenizer, the input motion m ∈ RTm×dm and music a ∈ RTa×da can be mapped into a
sequence of discrete motion tokens qm ∈ RLm and music tokens qa ∈ RLa . Then equipped with a
unified vocabulary V , we can formulate various motion-relevant tasks in a general format, where
both input and output tokens come from the same vocabulary. These tokens can represent natural
language, human motion, music, or any combination, depending on the specific task to be solved.
This naturally enables the core LLM to unify motion comprehension and generation tasks in an
autoregressive manner.

Following [21], we employ T5 [39] as the language model backbone, which is pre-trained on
750 GB of text tokens. By leveraging this pre-trained large language model, we can harness its
powerful modeling capabilities and generalizability to develop a more user-friendly, motion-related
human-computer interaction model.

3.3 Training Strategy
The training process is divided into three stages. The first stage is Multimodal Tokenizers Training,
which focuses on learning the motion/music tokenizer to represent motion/music as discrete tokens.
The second stage is Modality-Alignment Pre-training, which aims to align motion, music, and text
modalities, and facilitate collaboration across different motion-relevant tasks. The third stage is
Instruction Fine-Tuning, aimed at enhancing the model’s instruction-following capability.

Stage1: Multimodal Tokenizers Training. We first train a motion tokenizer using the objective
defined in Eq. 2. As for the music tokenizer, due to the limited music samples in existing dance
datasets, we directly use the pre-trained VQ-VAE model from Jukebox [9]. This process allows any
motion sequence and music to be represented as a sequence of tokens, enabling seamless integration
with text within LLM. To ensure the stability of LLM training, the encoder of motion tokenizer and
whole music tokenizer remain unchanged. Notably, we continue to optimize the decoder of motion
tokenizer in subsequent training stages to further enhance the quality of generated motions.

Stage2: Modality-Alignment Pre-training. To enable LLM to handle discrete modalities, we utilize
paired motion corpus to train LLM in a next-token prediction task. This process aims to align the
text, music, and motion modalities for unified reasoning in LLM.

• Joint optimization of LLM and motion de-tokenizer. Human motion (especially dance) en-
compasses intricate details. Previous works [21, 60] keep the motion de-tokenizer fixed during
training LLM, which hinders LLM’s ability to perceive the distribution and details of motions.
Specifically, in the output space of LLM, different motion tokens are treated as independent classes;
therefore, the cost of classifying a motion token as semantic-similar token and semantic-distant
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token is the same. Apparently, relying solely on LLM’s autoregressive loss is insufficient for
capturing the details of motion. To address this problem, we jointly optimize LLM and motion
de-tokenizer in stage2 and stage3. This strategy enables the reconstruction error signals in raw
motion space to backpropagate to LLM, enhancing LLM’s ability to generate the details of motion.
With the goal of minimizing L1 loss between the predicted and real motion, we search for the
motion’s token sequence that could minimize this L1 loss in original motion space. As the motion
de-tokenizer continuously optimizes, the target motion’s token sequence, which supervises LLM
training, dynamically changes. This dynamic adjustment reduces L1 loss progressively, achieving
joint optimization.

• Synergy learning of multitasks. Although aligning text with one additional modality is relatively
straightforward, integrating multiple modalities (e.g., motion, text, and music) within a single
framework poses a significant challenge. Additionally, as noted in [4], multitask joint training
usually achieves inferior performance on each individual task compared to single-task training.
This phenomenon is also observed in our text-to-motion task, as shown in Tab. 2. We argue that
the large modality difference among different motion-relevant tasks (e.g., music-to-dance and
text-to-motion) prevents the model from effectively establishing connections between these tasks.
Thus it is difficult for the model to identify a common optimization direction that benefits all tasks.

As ‘text’ serves as a highly semantic descriptor for other modalities and is the most familiar and
well-modeled modality to LLM, we use ‘text’ as a bridge to align motion, text, and music data,
thereby mitigating conflicts in aligning multiple modalities. Initially, we construct paired textual
descriptions for music samples in the dance datasets. Specifically, we use the style annotations of
the music to create paired texts, such as ‘a person is dancing Jazz’. Then, we construct two auxiliary
tasks using the generated pairs of music and text, i.e., music-to-text and text-to-dance. Through
these two auxiliary tasks, M3GPT implicitly learns to decompose the complex music-to-dance
task into two simpler tasks music-to-text and text-to-dance. Additionally, with a shared tokenizer
for motion and dance, text-to-dance and text-to-motion tasks occupy the same matching space,
and thus can mutually reinforce each other. In this way, M3GPT builds the synergies between
the two primary motion generation tasks, music-to-dance and text-to-motion, facilitating mutual
reinforcement, as shown in Tab. 2.

Combining the above analysis, we jointly train LLM and motion de-tokenizer using a mixture of
motion comprehension and generation tasks, along with two auxiliary music-to-text and text-to-
dance tasks. Besides the auxiliary tasks, we consider 2 basic motion comprehension tasks, i.e.,
motion-to-text and dance-to-music, and 4 basic motion generation tasks, i.e., text-to-motion, music-
to-dance, motion prediction and motion in-between. Formally, for a specific task, we denote the
source input consisting of a sequence of tokens as qs =

{
qi
s

}Ls

i=1
, the target output as qt =

{
qi
t

}Lt

i=1
,

LLM predicts the probability distribution of potential next token at each step pθ
(
qi
t|q<i

t , qs

)
in an

autoregressive manner. For motion generation tasks, we add a reconstruction loss. Specifically, when
the output tokens are motion tokens, we pass them to motion de-tokenizer to generate a motion
sequence (denoted as m̂), where a reconstruction loss is then employed for guidance. Overall, during
this training process, the objective is to maximize the log-likelihood of the data distribution and
minimize the reconstruction error within raw motion space:

L =

Lt−1∑
i=0

log pθ
(
qi
t|q<i

t , qs

)
+ λ ∥m̂−m∥1 , (4)

where m denotes the ground-truth for m̂ generated by motion de-tokenizer, and λ is a hyper-
parameter to adjust the weight for reconstruction loss.

Stage3: Instruction Fine-Tuning. To enhance the generalization and instruction-following ca-
pability of M3GPT, we construct a multimodal instruction dataset with resort to GPT-4, building
upon existing motion datasets. Specifically, we define 11 core tasks, each comprising 200/50/50
training/validation/test instruction templates. For example, an instruction for text-to-motion task
could be "Create a motion that complements the poetic elements in <Caption_Placeholder>", with
<Caption_Placeholder> standing for any text sequence; an instruction for music-to-dance could be
"Script a dance that adapts to the tempo shifts in <Audio_Placeholder>", with <Audio_Placeholder>
standing for any music sequence. Further details are available in Appendix B.4.
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3.4 Inference M3GPT

During inference, we evaluate M3GPT’s performance across multiple motion-relevant tasks and
datasets (Sec. 4.2 and Appendix (C, D). Also, we consider two challenging dance generation tasks to
evaluate the zero-shot generalization ability of M3GPT:

(1) Generating long-duration dances from long music. Long-duration dance generation involves
creating uninterrupted, coherent dance sequences based on a single piece of music. Due to the
limitation of computational cost and memory overload, we train M3GPT on the task of 5-second
music-to-dance generation. Conversely, during inference, we can combine this training task music-to-
dance to generate an initial 5-second dance segment, and an unseen zero-shot task music+dance-to-
dance that recursively generates subsequent dance segments conditioned on both music and previously
generated dance segments, to perform long-duration and coherent dance generation.

(2) Generating dance controlled by both music and text. Integrating music and text as control
signals in dance generation (music+text-to-dance) augments music-to-dance task with text modality.
This process guides the generated dances to synchronize with particular actions described in input
texts. Thanks to the tokenizer mechanism, M3GPT can seamlessly combine music and text in LLM’s
input, enabling the integration of text instructions to produce a wide variety of dance sequences.

4 Experiments

4.1 Experimental setup

Datasets and Preprocessing. We use a large-scale text-to-motion dataset: Motion-X [29], and two
music-to-dance datasets: AIST++ [24] and FineDance [25]. Notably, the 3D pose annotations differ
among these datasets, therefore, we standardize their processing for uniform usage. Specifically, we
select 22 joints common to these datasets and preprocess the motion samples following [13], resulting
in motion sequences with identical representation. Further details on datasets and preprocessing are
provided in Appendix B.1.

Evaluation Metrics. Different tasks employ distinct evaluation metrics. We use the most common
evaluation metrics to assess the performance of M3GPT for each task. (1) Text-to-Motion. Following
[21, 12], we use Frechet Inception Distance (FID), Diversity (Div), R-Precition that calculates the
top-1 motion-to-text retrieval accuracy (R TOP1). (2) Motion-to-Text. Following [21], we use
linguistic metrics like BLEU, CIDEr, along with R-Precision for evaluating motion-to-text alignment.
(3) Music-to-Dance. Following [26, 52], we use FID, Diversity and Beat Align Score (BAS) on
kinetic features [22] (denoted as "k") to evaluate the dance generation quality. Notably, as noted
in [48], the geometric features [33] are unreliable as a measure of dance generation quality. So we
only use the kinetic features for evaluation. (4) Dance-to-Music. Following [52], we use Beats
Coverage Scores (BCS), Beats Hit Scores (BHS), and F1 score to evaluate music generation quality.
(5) Motion Prediction and In-Between. Following [21], we use FID and Diversity to measure the
consistency between the provided pose conditions and generated motion. More details and results on
other evaluation metrics are provided in Appendix B.2 and C.

Implementation Details. For motion tokenizer, we set the codebook size to 512. As for music
tokenizer, we use the pre-trained VQ-VAE from Jukebox with a codebook size of 2048. In term of
temporal downsampling rate, the motion encoder uses a rate of 4, while the music encoder uses a rate
of 128. We utilize T5 base [39] as our language model backbone. For training the motion tokenizer,
we use Adam as the optimizer with a batch size of 1000 and an initial learning rate of 10−4. To train
the language model backbone, we employ the Adafactor_dev optimizer and use CosineAnnealingLR
as the learning rate scheduler. The learning rate is set to 2× 10−4 for pre-training stage, and 10−4

for instruction fine-tuning stage. For hyperparameter settings, λ in Eq. 4 is set to 0.2, and β in
Eq. 2 is set to 0.02. All our experiments are conducted on 8 NVIDIA A40 GPUs. To evaluate the
model’s performance across different platforms, we also test our trained M3GPT with T5-base on
Ascend 910B NPUs. Further details on implementation and hyperparameter analysis are provided in
Appendix E.
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Table 2: Evaluation of synergy learning and joint optimization of LLM and motion de-tokenizer on Text-to-
Motion (Motion-X [29]) and Music-to-Dance (AIST++ [24]). T2M: Text-to-Motion. A2D: Music-to-Dance.
T2D: Text-to-Dance. A2T: Music-to-Text. Trained single task refers to a model trained and tested on a single
task. Pre-trained and Instruction-tuned indicate the model after pre-training (stage2) and instruction tuning
(stage3), followed by direct testing on each task. The arrows (↑) indicate that higher values are better. The
arrows (↓) indicate that smaller values are better. Bold indicates the best result.

Methods Re-Optimizing
motion de-tokenizer

Text-to-Motion Music-to-Dance
R TOP1 ↑ FID ↓ Div↑ FIDk ↓ Divk ↑ BAS ↑

Ground Truth - 0.675 0.009 2.316 17.10 8.19 0.2374
Trained single task 0.645 0.081 2.124 83.33 5.18 0.1835
Trained single task ! 0.656 0.078 2.133 75.47 5.57 0.1884

T2M+A2D 0.564 0.094 2.080 51.26 6.73 0.2037
T2M+A2D ! 0.578 0.092 2.106 47.71 7.47 0.1958

T2M+A2D+T2D+A2T 0.617 0.093 2.110 42.70 7.54 0.2084
T2M+A2D+T2D+A2T ! 0.626 0.088 2.197 25.24 7.63 0.2217
M3GPT (Pretrained without T2D and A2T) 0.526 0.105 2.058 40.71 7.47 0.2030
M3GPT (Pretrained without T2D and A2T) ! 0.547 0.104 2.099 37.14 7.61 0.2005
M3GPT (Pre-trained) 0.598 0.089 2.218 32.71 7.43 0.2090
M3GPT (Pre-trained) ! 0.601 0.092 2.251 27.65 7.52 0.2105
M3GPT (Instruction-tuned) 0.606 0.091 2.251 28.46 7.49 0.2052
M3GPT (Instruction-tuned) ! 0.615 0.093 2.253 24.34 7.50 0.2056

4.2 Ablation Studies

In this section, we conduct ablation studies to validate the effectiveness of our method. We use the
same model architecture throughout the experiments. The ablation results are shown in Tab. 2.

Effectiveness of joint optimization of LLM and motion de-tokenizer. Different from previous
works [21, 60] that fix motion de-tokenizer during training LLM, we jointly optimize LLM and motion
de-tokenizer in stage2 and stage3, as detailed in Sec. 3.3. As shown in Tab. 2, the joint optimization
consistently brings performance gains across various metrics and most settings. Specifically, it largely
enhances the fidelity of generated dances, reflected in a notable decrease in FIDk score. We also
notice a minor increase (less than 0.003) in FID of text-to-motion task in M3GPT. The possible
reason is that the motion patterns controlled by text are relatively simple, making LLM optimized
solely in discrete semantic space adequate for text-to-motion. Conversely, dances involve greater
complexity, necessitating the joint optimization of motion decoder to accurately capture intricate
dance movements without compromising information.

Effectiveness of synergy learning of multitasks. During the training of M3GPT, we introduce
a synergy multitask learning strategy by constructing two auxiliary tasks: Text-to-Dance (T2D)
and Music-to-Text (A2T), as detailed in Sec. 3.3. As shown in Tab. 2, the inclusion of T2D
and A2T consistently brings performance gains across various metrics on both text-to-motion and
music-to-dance tasks. Specifically, for music-to-dance, the FIDk score is decreased by nearly 10
points, indicating that the synergy learning helps generate more realistic dances. We argue that
by incorporating these two auxilary tasks, M3GPT implicitly learns to decompose the complex
music-to-dance into two simpler tasks, music-to-text and text-to-dance. This way, the text-to-motion
task can assist in learning the music-to-dance task, thereby enhancing its performance.

4.3 Comparisons with State-of-the-arts
In this section, we compare our M3GPT with state-of-the-arts on multiple core motion-relevant
tasks. We respectively report the comparison results on text-to-motion dataset, Motion-X [29], and
music-to-dance datasets, AIST++ [24] and FineDance [25]. More quantitative and qualitative results
are provided in Appendix C and D. Also, in the supplementary material’s zip file, we provide the
render videos of generated motions/dances and generated music files by our M3GPT.

Main results on text-to-motion dataset. On the text-to-motion dataset, Motion-X, we evaluate
M3GPT on 4 tasks, i.e., text-to-motion, motion-to-text, motion prediction, and motion in-between.
The comparison results are shown in Tab. 3. As shown, M3GPT achieves competitive performance
across all evaluated tasks, highlighting its capability to address diverse motion tasks in a single model.
Also, for text-to-motion task, M3GPT (instruction-tuned only T2M), which combines multitask pre-
training and instruction fine-tuning solely on T2M task, yields better performance than Trained single
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Table 3: Comparison results on Motion-X [29] dataset. The evaluation metrics are computed using the encoder
introduced in Appendix A. Empty columns of previous methods indicate that they can not handle the task.
Instruction-tuned only T2M indicates the model that is initially pre-trained on multiple tasks, followed by
instruction tuning solely on text-to-motion task.
Methods Text-to-Motion Motion-to-Text Motion Prediction Motion In-between

R TOP1↑ FID↓ Div↑ R TOP3↑ Bleu@4↑ CIDEr↑ FID↓ Div↑ FID↓ Div↑

Real 0.675±0.003 0.009±0.000 2.316±0.011 0.881 - - 0.009 2.316 0.009 2.316

MLD [5] 0.612±0.003 0.122±0.008 2.267±0.018 - - - - - - -
T2M-GPT [55] 0.647±0.002 0.101±0.005 2.270±0.033 - - - 0.814 1.755 - -
MotionDiffuse [57] 0.659±0.002 0.075±0.004 2.220±0.022 - - - - - - -
TM2T [15] 0.581±0.002 0.148±0.003 2.005±0.034 0.806 12.13 20.16 - - - -
MDM [44] 0.472±0.008 0.078±0.000 2.133±0.012 - - - 1.028 1.746 0.831 1.768
MoMask [16] 0.668±0.003 0.074±0.004 2.241±0.016 - - - - - 0.626 1.884
MotionLCM [8] 0.658±0.005 0.078±0.003 2.206±0.026 - - - - -
MotionGPT[21] 0.659±0.003 0.078±0.001 2.166±0.026 0.840 11.21 31.36 0.701 1.818 0.648 1.875

Trained single task 0.656±0.002 0.078±0.002 2.133±0.012 0.767 10.14 22.92 0.774 1.778 0.692 1.810
M3GPT (Pre-trained) 0.601±0.002 0.092±0.002 2.251±0.012 0.834 11.00 24.12 0.707 1.874 0.604 1.879
M3GPT (Instruction-tuned) 0.615±0.003 0.093±0.002 2.253±0.026 0.845 11.50 42.93 0.682 1.838 0.612 1.900
M3GPT (Instruction-tuned only T2M) 0.661±0.003 0.076±0.002 2.273±0.026 - - - - - - -

Table 4: Comparison results on Motion-X [29] dataset based on Ascend 910B NPUs.
Methods Text-to-Motion Motion-to-Text Motion Prediction Motion In-between

R TOP1↑ FID↓ Div↑ R TOP3↑ Bleu@4↑ CIDEr↑ FID↓ Div↑ FID↓ Div↑

Trained single task 0.654±0.002 0.081±0.003 2.304±0.017 0.763 10.16 22.89 0.776 1.818 0.712 1.880
M3GPT (Pre-trained) 0.596±0.002 0.096±0.003 2.241±0.018 0.831 11.05 24.03 0.710 1.882 0.608 1.874
M3GPT (Instruction-tuned) 0.612±0.002 0.094±0.002 2.276±0.021 0.846 11.52 42.64 0.684 1.841 0.621 1.903
M3GPT (Instruction-tuned only T2M) 0.659±0.003 0.078±0.003 2.314±0.023 - - - - - - -

Table 5: Comparison results on AIST++ [24] and FineDance [25] datasets.

Methods Music-to-Dance on AIST++ Music-to-Dance on FineDance Dance-to-Music on AIST++

FIDk ↓ Divk ↑ BAS ↑ FIDk ↓ Divk ↑ BAS ↑ BCS↑ BHS↑ F1↑
Real 17.10 10.60 0.2374 - - 0.2120 - - -

FACT [24] 35.35 5.94 0.2209 113.38 3.36 0.1831 - - -
Bailando [42] 28.16 7.83 0.2332 82.81 7.74 0.2029 - - -
EDGE [48] 42.16 3.96 0.2334 94.34 8.13 0.2116 - - -
Lodge [26] 37.09 5.58 0.2423 45.56 6.75 0.2397 - - -
Foley [11] - - - - - - 96.4 41.0 57.5
CMT [10] - - - - - - 97.1 46.2 62.6
D2MGAN [64] - - - - - - 95.6 88.7 93.1
CDCD [65] - - - - - - 96.5 89.3 92.7
LORIS [52] - - - - - - 98.6 90.8 94.5

Trained single task 75.47 5.57 0.1884 128.37 6.48 0.2036 93.9 93.6 92.8
M3GPT (Pre-trained) 27.65 7.52 0.2105 92.35 7.67 0.2134 93.4 93.8 94.2
M3GPT (Instruction-tuned) 24.34 7.50 0.2056 86.47 7.75 0.2158 93.6 94.0 94.9
M3GPT (Instruction-tuned for single task) 23.01 7.85 0.2261 42.66 8.24 0.2231 94.3 94.0 95.0

Table 6: Comparison results on AIST++ [24] and FineDance [25] datasets based on Ascend 910B NPUs.

Methods Music-to-Dance on AIST++ Music-to-Dance on FineDance Dance-to-Music on AIST++

FIDk ↓ Divk ↑ BAS ↑ FIDk ↓ Divk ↑ BAS ↑ BCS↑ BHS↑ F1↑
Trained single task 77.32 5.61 0.1860 134.66 6.52 0.2088 93.8 93.6 92.7
M3GPT (Pre-trained) 27.99 7.61 0.2102 91.39 7.71 0.2128 93.4 93.6 94.2
M3GPT (Instruction-tuned) 25.05 7.48 0.2072 88.25 7.76 0.2160 93.5 93.8 94.7
M3GPT (Instruction-tuned for single task) 23.68 7.83 0.2264 43.78 8.39 0.2225 94.3 94.0 94.9

task that only trains the model on T2M task. Tab. 4 presents the results of testing on the Ascend 910B
NPUs, where M3GPT also achieves comparably good performance. These results demonstrate that
multitask pre-training can enhance the performance of individual tasks across different computation
platforms. Further results of M3GPT trained on NPUs will be presented later.

Main results on music-to-dance datasets. On the music-to-dance datasets, AIST++ and FineDance,
we evaluate M3GPT on 2 tasks, i.e., music-to-dance and dance-to-music. As shown in Tab. 5, in
general, the performance of multitask pre-training and instruction fine-tuning in M3GPT outperforms
single-task training, underscoring the effectiveness of multitask training for dance-relevant tasks. Also,
M3GPT achieves competitive performance on most metrics. For music-to-dance, the best-performing
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Figure 3: Qualitative results for long-term dance and music-text conditioned dance generation of M3GPT.

method on the FineDance dataset is Lodge [26]. This approach features a specialized two-stage
architecture for generating long-duration dance sequences, progressively refining movements from
coarse to fine granularity using a diffusion model. On AIST++ dataset, M3GPT reports the best FIDk

of 24.34 for music-to-dance task, the best BHS and F1 of 94.0 and 94.9 for dance-to-music task.
The results in Tab. 6, tested on the Ascend 910B NPUs, also demonstrate that multitask training can
enhance the performance of both music-to-dance and dance-to-music tasks.

4.4 Evaluation on Zero-Shot Tasks
In this section, we explore M3GPT’s capabilities in handling zero-shot tasks, as mentioned in Sec. 3.4.
Fig. 3 (a) shows the long-term dance generation. As seen, M3GPT can generate a coherent dance
sequence by seamlessly integrating the music-to-dance and zero-shot music+dance-to-dance tasks.
Fig. 3 (b) shows the generated 3D dance with both music and text instruction. We can see that M3GPT
maintains plausible visual results in accordance with input text instructions (cartweel), underscoring
its remarkable zero-shot generalization capability.

5 Conclusion
In this paper, we present M3GPT, a unified framework for comprehending and generating motion
aligned with both text and music modalities. By employing text as a bridge, we build connections and
synergies between different motion-relevant tasks, facilitating mutual reinforcement. Additionally,
the joint optimization of LLM and motion de-tokenizer further enriches the details of generated
motion, enhancing overall motion generation quality. Our extensive evaluations across various
motion-relevant tasks demonstrate the effectiveness of M3GPT in both motion comprehension and
generation. Besides, M3GPT exhibits strong zero-shot generalization abilities, enabling it to handle
previously unseen and challenging motion-relevant tasks.

Limitations and Broader Impacts. Although our M3GPT has successfully processed signals from
motion, text, and music modalities for motion comprehension and generation, it focuses on modeling
human body movements, excluding hands and faces details. Future research can extend the scope of
M3GPT to include hands and facial modeling.
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Appendix

A Text-Motion Alignment Model

Due to the lack of a powerful and publicly available text-motion alignment model, we independently leverage
existing datasets to develop a functional text-motion alignment model, which is used to evaluate tasks such
as text-to-motion, motion-to-text, motion prediction, and motion in-between. We adopt the motion encoder
architecture Em from [14] and use the pretrained CLIP [38] ViT-B/32 model for the text encoder Et. As
depicted in Fig. 4, the training of the text-motion alignment model is split into two phases: pre-training the
motion auto-encoder and text-motion contrastive learning. During the pre-training phase, we use motion data
from the text-to-motion, and dance data from the music-to-dance tasks. This stage employs a reconstruction loss
to ensure the model achieves a robust initial state capable of extracting an expressive motion representation. In
the text-motion contrastive learning phase, we utilize text-motion pair data from the text-to-motion task. We
incorporate an adapter MLP layer into both the motion and text encoders to align the dimensions of zm and
zt at 512. This setup facilitates the alignment of text and motion in the representational space. The motion
reconstruction loss Lrecon_motion for the pre-training stage and the contrastive learning loss LinfoNCE for the
aligning stage are used to optimize this model, as follows,

Lrecon_motion = ∥x− x̃∥2 (5)

LinfoNCE = − 1

N

K∑
i=1

log

(
exp(⟨z′i, zti⟩/τ)∑K
j=1 exp(⟨z′i, ztj⟩/τ)

)
(6)

Em

A person performs a knee 
tuck to kick L.

Em

EtDm

zm
Input Motion 

Generated Motion 

Lrecon_motion

M
LP

M
LP

LinfoNCE

FrozenTrain

Stage 1: Pre-train Motion Auto-Encoder Stage 2: Text-Motion Contrastive Learning

zm
zt

Figure 4: Pipeline of Text-Motion Alignment Model. The training of the text-motion alignment model includes
two stages: pre-training motion auto-encoder and text-motion contrastive learning.

B Details for Training and Evaluating

B.1 Data Introductions and Preprocessing

We leverage the largest available text-to-motion dataset, Motion-X [29], along with widely-used music-to-
dance datasets, AIST++ [24] and FineDance [25], for our multitask training regimen. Motion-X is used for
text-to-motion, motion-to-text, motion prediction, and motion in-between tasks, while AIST++ and FineDance
datasets support both music-to-dance and dance-to-music tasks, and are also adapted for motion prediction and
in-between tasks to enhance our training resources.

Motion-X includes 15.6 million precise 3D whole-body SMPL-X [36] pose annotations across 81.1K motion
sequences with sequence-level semantic text descriptions. AIST++ contains 1,409 dance motion sequences
across 10 dance genres with SMPL [30] pose annotations, and FineDance provides 7.7 hours of dance, totaling
831,600 frames with SMPL-H [41] poses at 30 fps across 16 dance genres. Tab. 7 shows the training datasets
and their corresponding sample numbers that we use to train our model.

We standardize data across these datasets by selecting the 22 common joints and normalizing each motion
sequence to face the same direction and to run at 30 fps. We use a processing technique consistent with prior
research [14, 5, 21] that integrates joint velocities, positions, and rotations for consistent motion representation,
facilitating effective utilization across tasks. For the music data, we use the Librosa toolkit [32] to load raw .wav
data at a sampling rate of 22050 Hz, processed into features by the Jukebox encoder [9]. To optimize the use of
these datasets, we strategically employ data from specific datasets for different tasks. During training for music
and dance tasks, we randomly select 5-second segments from complete music tracks and corresponding dance
segments as training samples, setting the sample length to 6.25 seconds for motion prediction and in-between
tasks with AIST++ and FineDance. When assessing music-to-dance on the FineDance dataset, we don’t evaluate
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all 5-second samples directly. Instead, we generate continuous long dance sequences using music-to-dance
and motion prediction, then segment these into 30-second samples for evaluation to align with Lodge’s testing
methodology.

Table 7: The training datasets and sample numbers for different tasks.
Tasks T2M M2T Motion Prediction/In-between A2D D2A A2T T2D

Training dataset Motion-X Motion-X Motion-X/AIST++/FineDance AIST++/FineDance AIST++/FineDance AIST++/FineDance AIST++/FineDance
Training samples number 64867 64867 64867/952/177 952/177 952/177 952/177 952/177

B.2 Comprehensive Evaluation Metrics

Different tasks utilize specific evaluation metrics. We use the consistent evaluation metrics following prior
research [14, 21, 12, 26, 64, 52].

• Text-to-Motion. We measure the discrepancy between generated and actual motion features using
Frechet Inception Distance (FID), assess diversity (Div) among all generated motion sequences,
and evaluate motion-text semantic correlation with R-precision. Multimodal Distance (MM Dist)
quantifies the disparity between motions and texts. A specialized model developed for evaluating the
text-to-motion task on the Motion-X dataset with 22 joints is detailed in Appendix A.

• Motion-to-Text. We use linguistic metrics including BLEU [35], ROUGE [28], CIDEr [49], and
BertScore [59], along with R-Precision and MM Dist to assess alignment between generated text and
motion.

• Music-to-Dance. We employ the evaluation framework recommended by FACT [24] and Bailando
[42], utilizing FID, Diversity, and Beat Align Score (BAS) to gauge dance quality. In our paper, we
use kinetic features to compute FID and Diversity.

• Dance-to-Music. We use metrics from [52, 64] such as Beats Coverage Scores (BCS), Beats Hit
Scores (BHS), F1 scores, Beats Coverage Std (CSD), and Beats Hit Std (HSD) to evaluate music
generation quality.

• Motion Prediction and Motion In-between. We use Average Displacement Error (ADE) and Final
Displacement Error (FDE) to assess the quality of predicted motion. The text-motion alignment model
aids in evaluating motion prediction performance.

B.3 Distributed Training for Multitasks

We employ a single-node multi-GPU distributed training strategy for M3GPT, distributing each task across
separate GPUs to facilitate multitask training through shared model parameters. This method allows us to tailor
the maximum token length of the LLM for each task, based on the longest sample sequence typical for that task.
Specifically, we set the maximum LLM token length to 192 for tasks such as text-to-motion, motion-to-text,
motion prediction, and motion in-between. For tasks involving the music modality, such as music-to-dance and
dance-to-music, the maximum length is set at 980. This task-specific configuration enables us to optimize batch
sizes effectively, thus maximizing GPU utilization.

In our experimental setup, the batch size is set to 40 for the text-to-motion, text-to-dance, and motion-to-text
tasks, and 4 for the music-to-dance, dance-to-music, and music-to-text tasks. For motion prediction and motion
in-between tasks, the batch size is set to 45. We also establish the number of iterations for pre-training at
1,000,000, instruction fine-tuning at 200,000. This structured approach ensures that each task is optimally
processed, enhancing the efficiency and effectiveness of our training regimen.

B.4 Tasks for Pre-training and Instruction tuning

As shown in Fig. 5, we define 11 core motion-related tasks for the instruction tuning of M3GPT, including
text-to-motion, random-to-motion, motion-to-text, random-to-text, motion prediction, motion in-between, music-
to-dance, dance-to-music, random-to-music, text-to-dance, and music-to-text. The tasks of text-to-dance and
music-to-text were specifically constructed based on the music-to-dance datasets. Random-to-X represents the
unconstrained generation of motion, text and music. In Tab. 8, we present a selection of command templates
for each task, where <Motion_Placeholder>, <Caption_Placeholder>, and <Music_Placeholder> respectively
represent the motion sequence (including dance sequence), textual description, and music segment from the
training data.

C Quantitative Results and Comparisons with SOTA Methods

In this section, we compare the performance of our M3GPT with existing SOTA methods on a broader set of
metrics for each task across three datasets: Motion-X [29], AIST++ [24], and FineDance [25]. Tab. 9 shows
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M3GPT

Text-to-Motion Motion-to-Text

Music-to-Dance

Dance-to-MusicMotion-to-Motion
Text-to-Dance

Music-to-Text
text-to-motion

random-to-motion

motion-to-text

random-to-text

dance-to-music

random-to-music

motion prediction

motion in-between

Figure 5: Tasks for M3GPT pre-training and instruction tuning. Random represents the unconstrained generation
of motion/text/music in the corresponding task.

Table 8: Examples of instruction templates for each task when instruction tuning M3GPT.
Task Instruction template Output

text-to-motion
Design a motion that illustrates the emotions conveyed by <Caption_Placeholder>.

<Motion_Placeholder>How could you express the resilience mentioned in <Caption_Placeholder> through motion?
Can you develop a motion that captures the existential debate in <Caption_Placeholder>?

random-to-motion
Can you generate a motion randomly?

<Motion_Placeholder>Please generate a random motion.
Display a motion for me.

motion-to-text
What themes are explored through the motion in <Motion_Placeholder>?

<Caption_Placeholder>Can you describe the motion <Motion_Placeholder> with texts?
How would you interpret the actions depicted in <Motion_Placeholder>?

random-to-text
Can you generate a text description for motion randomly?

<Caption_Placeholder>Give me a caption which describes a action.
How can we describe a motion with texts?

motion prediction
What movements would suitably follow the thematic climax of <Motion_Placeholder>?

<Motion_Placeholder>What steps might deepen the emotional expression seen in <Motion_Placeholder>?
What movements could follow to resolve the suspense built in <Motion_Placeholder>?

motion in-between
What new character dynamics could the middle section of <Motion_Placeholder> explore?

<Motion_Placeholder>Infer the type of dramatic climax that the masked section of <Motion_Placeholder> might contain.
What potential themes of ascent or descent could be explored in the middle of <Motion_Placeholder>?

music-to-dance
Script a dance that adapts to the tempo shifts in <Music_Placeholder>.

<Motion_Placeholder>Create a dance that would visually mimic the lyrical journey in <Music_Placeholder>.
Compose a dance that explores the genre characteristics of <Music_Placeholder>.

dance-to-music
Can you design a music for this dance <Motion_Placeholder>?

<Music_Placeholder>Please create a music based on this dance <Motion_Placeholder>.
Arrange a symphony that captures the shifts in <Motion_Placeholder>.

random-to-music
Please generate a music for a dance randomly.

<Music_Placeholder>Can you generate a music with dance style?
Creat a music for any style dance.

text-to-dance
Please generate a dance based on the caption <Caption_Placeholder>.

<Motion_Placeholder>Create a dance for the text <Caption_Placeholder>.
Generate a dance that corresponds to the textual description <Caption_Placeholder>.

music-to-text
Describe the dance movements that correspond to the given music <Music_Placeholder>.

<Caption_Placeholder>Describe the dance actions that match the provided music <Music_Placeholder>.
Detail the dance steps associated with the specified music <Music_Placeholder>.

the comparison of text-to-motion on Motion-X dataset. Tab. 10 shows the comparison of motion-to-text on
Motion-X dataset. Tab. 11 shows the comparison of music-to-dance on AIST++ and FineDance datasets. Tab. 12
shows the comparison of dance-to-music on AIST++ and FineDance datasets. Tab. 13 and Tab. 14 shows the
comparison of motion prediction and motion in-between on Motion-X dataset. Tab. 15 shows the comparison of
music-to-text, text-to-dance and text-to-music on AIST++ dataset. Tab. 16 and Tab. 17 show the comparison of
motion-related tasks among different size of T5. As shown in these tables, M3GPT can achieve competitive
performance with SOTAs across all evaluated tasks.

D Qualitative Results and Comparison with SOTA Methods

Fig. 6 presents visualizations for a variety of tasks, including text-to-motion, motion-to-text, motion prediction,
motion in-between, music-to-dance, long-term dance generation, and music-text conditioned dance generation.
The visualization results show that our method can generate realistic results across various motion-relevant tasks.
Fig. 7 presents the qualitative results between different methods for text-to-motion and music-to-dance.

E Additional Experiments

The performance of text-to-motion based on different λ. In Tab. 18, the performance of M3GPT on Motion-X
dataset is analyzed across different values of λ for the text-to-motion task. The results indicate that as λ increases,
the model’s recall precision (Top1, Top2, Top3) initially improves but subsequently declines. The optimal
performance is achieved at λ = 0.2, as evidenced by the highest scores in RPrecision and modality metrics.
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Further increases in λ to 0.3 and 0.4 lead to deteriorating performance, particularly in FID and RPrecision,
suggesting that excessive λ values may result in over-regularization or reduced adaptability of the model.

Table 9: Comparison of Text-to-Motion on Motion-X dataset [29]. The arrows (↑) indicate that higher values are
better. The arrows (↓) indicate that smaller values are better. Bold and underline indicate the best and the second
best result.

Methods RPrecision ↑ FID ↓ MM Dist ↓ Div ↑ MModality ↑
Top1 Top2 Top3

Real 0.675±0.003 0.821±0.003 0.878±0.002 0.009±0.000 2.938±0.007 2.316±0.011 -

MDM [44] 0.472±0.008 0.616±0.005 0.704±0.003 0.161±0.006 5.404±0.031 2.234±0.015 2.241±0.043

MLD [5] 0.612±0.003 0.743±0.002 0.808±0.004 0.122±0.008 3.117±0.035 2.267±0.018 2.210±0.055

T2M-GPT [55] 0.647±0.002 0.785±0.004 0.845±0.003 0.101±0.005 3.046±0.028 2.270±0.033 2.226±0.036

MotionDiffuse [55] 0.659±0.002 0.802±0.004 0.865±0.002 0.075±0.004 2.944±0.004 2.220±0.022 2.102±0.036

Trained single task 0.656±0.002 0.795±0.001 0.843±0.001 0.078±0.000 2.942±0.001 2.133±0.012 2.046±0.052

M3GPT (Pre-trained) 0.601±0.002 0.751±0.003 0.803±0.002 0.092±0.002 2.945±0.001 2.251±0.012 2.188±0.074

M3GPT (Fine-tuned) 0.615±0.003 0.757±0.004 0.815±0.003 0.093±0.002 2.944±0.002 2.253±0.023 2.204±0.058

M3GPT(Fine-tuned only T2M) 0.661±0.003 0.804±0.004 0.861±0.003 0.076±0.002 2.940±0.002 2.273±0.026 2.131±0.032

Table 10: Comparison of Motion-to-Text on Motion-X [29].

Methods RPrecision ↑ MM Dist ↓ Bleu@1 ↑ Bleu@4 ↑ Rouge ↑ CIDEr ↑ BertScore ↑
Top1 Top2 Top3

Real 0.681 0.824 0.881 2.897 - - - - -

TM2T [15] 0.574 0.726 0.806 2.988 30.54 12.13 32.52 20.16 25.37

Trained single task 0.565 0.706 0.767 3.011 31.07 10.14 31.65 22.92 28.19
M3GPT (Pre-trained) 0.627 0.773 0.834 2.946 33.31 11.00 34.10 24.12 30.96
M3GPT (Fine-tuned) 0.631 0.783 0.845 2.950 34.27 11.50 34.55 42.93 31.49

Table 11: Comparison of Music-to-Dance on AIST++ [24] and FineDance [25].

Methods Music-to-Dance on AIST++ Music-to-Dance on FineDance

FIDk ↓ Divk ↑ BAS↑ FIDk ↓ Divk ↑ BAS↑
Real 17.10 8.19 0.2374 - 9.73 0.2120

FACT [24] 35.35 5.94 0.2209 113.38 3.36 0.1831
Bailando [42] 28.16 7.83 0.2332 82.81 7.74 0.2029
EDGE [48] 42.16 3.96 0.2334 94.34 8.13 0.2116
Lodge [26] 37.09 5.58 0.2423 45.56 6.75 0.2397
Trained single task 75.47 5.57 0.1884 128.37 6.48 0.2036
M3GPT (Pre-trained) 27.65 7.52 0.2105 92.35 7.67 0.2134
M3GPT (Fine-tuned) 24.34 7.50 0.2056 86.47 7.75 0.2158

Table 12: Comparison of Dance-to-Music on AIST++ [24] and FineDance [25].

Methods Dance-to-Music on AIST++ Dance-to-Music on FineDance

BCS ↑ CSD ↓ BHS ↑ HSD ↓ F1 ↑ BCS ↑ CSD ↓ BHS ↑ HSD ↓ F1 ↑
Foley [11] 96.4 6.9 41.0 15.0 57.5 - - - - -
CMT [10] 97.1 6.4 46.2 18.6 62.6 - - - - -
D2MGAN [64] 95.6 9.4 88.7 19.0 93.1 - - - - -
CDCD [65] 96.5 9.1 89.3 18.1 92.7 - - - - -
LORIS [52] 98.6 6.1 90.8 13.9 94.5 - - - - -

Trained single task 93.9 9.2 93.6 12.8 92.8 84.84 21.61 51.35 27.13 63.97
M3GPT (Pre-trained) 93.4 10.9 93.8 11.5 94.2 83.16 19.95 73.65 23.90 78.12
M3GPT (Fine-tuned) 93.6 10.1 94.0 10.6 94.9 84.10 18.36 74.66 23.45 78.23
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Table 13: Comparison of Motion Prediction and Motion In-between on Motion-X [29].

Methods Motion Prediction Motion In-between
FID ↓ Diversity ↑ ADE ↓ FDE ↓ FID ↓ Diversity ↑ ADE ↓

Ground Truth 0.009 2.316 - - 0.009 2.316 -
MDM [44] 1.028 1.746 8.057 11.266 0.831 1.768 6.542

Trained single task 0.774 1.778 7.840 9.575 0.692 1.810 6.690
M3GPT-pretrain 0.707 1.874 6.954 8.684 0.604 1.897 5.692
M3GPT-finetune 0.682 1.838 6.898 8.091 0.612 1.900 5.649

Table 14: Comparison of MPJPE on Motion Prediction and Motion In-between on Motion-X [29].
Methods on Motion-X Motion Prediction (MPJPE ↓) Motion In-between (MPJPE ↓)

T2M-GPT [55] 80.2 63.7
MoMask [16] 67.9 55.2
MotionGPT [21] 71.3 59.9
M3GPT (Instruction-tuned) 54.2 51.0

Table 15: Comparison of Music-to-Text (A2T), Text-to-Dance (T2D) and Text-to-Music (T2A) on AIST++.

Methods on AIST++ Music-to-Text Text-to-Dance Text-to-Music
Bleu@4 ↑ CIDEr ↑ R-TOP1 ↑ FID ↓ BCS ↑ BHS ↑

M3GPT (Single task training for A2T) 9.24 24.55 - - - -
M3GPT (Single task training for T2D) - - 0.541 0.095 - -
MusicLDM [2] - - - - 74.5 73.8
Mubert - - - - 73.3 73.0
M3GPT (Instruction-tuned) 11.95 28.88 0.588 0.077 74.5 74.7

Table 16: Comparison of Text-to-Motion and Motion-to-Text with different size of T5.

Methods on Motion-X LLM Training time Text-to-Motion Motion-to-Text
R-TOP1 ↑ FID ↓ Div ↑ R-TOP3 ↑ Bleu4 ↑ CIDEr ↑

M3GPT T5-small (60M) 5 days 0.598 0.096 2.202 0.822 10.43 38.22
M3GPT T5-base (220M) 7 days 0.615 0.093 2.253 0.845 11.50 42.93
M3GPT T5-large (770M) 8 days 0.619 0.090 2.256 0.848 11.64 43.05

Table 17: Comparison of Music-to-Dance and Dance-to-Music with different size of T5.

Methods on AIST++ LLM Training time Music-to-Dance Dance-to-Music
FIDk ↓ DIVk ↑ BAS ↑ BCS ↑ BHS ↑

M3GPT T5-small (60M) 5 days 28.05 5.96 0.2091 89.1 91.2
M3GPT T5-base (220M) 7 days 24.34 7.50 0.2056 93.6 94.0
M3GPT T5-large (770M) 8 days 23.26 7.54 0.2061 93.8 94.1

Table 18: Hyper-parameter analysis of λ. Comparison of Text-to-Motion on Motion-X [29] with different values
of λ. For this ablation study, M3GPT is trained solely on the text-to-motion task to examine the impact of λ.
This study is conducted during the pre-training stage.

Methods RPrecision ↑ FID ↓ MM Dist ↓ Diversity → MModality ↑
Top1 Top2 Top3

Real 0.675±0.003 0.821±0.003 0.878±0.002 0.009±0.000 2.938±0.007 2.316±0.011 -

λ=0.0 0.645±0.002 0.778±0.003 0.826±0.002 0.081±0.002 2.944±0.002 2.124±0.011 2.025±0.021

λ=0.1 0.649±0.002 0.787±0.002 0.838±0.002 0.078±0.002 2.944±0.003 2.128±0.022 2.039±0.049

λ=0.2 0.656±0.002 0.795±0.001 0.843±0.001 0.078±0.000 2.942±0.001 2.133±0.012 2.046±0.052

λ=0.3 0.629±0.002 0.716±0.002 0.784±0.001 0.095±0.002 2.941±0.001 2.113±0.037 2.036±0.041

λ=0.4 0.573±0.001 0.725±0.002 0.793±0.002 0.102±0.002 2.942±0.002 2.090±0.007 2.030±0.086
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A woman is doing the Box Swing To High Knees exercise.

The guy is doing the Arm Leg Lift To Crunch L exercise.

A man raises his left hand to touch his face

Text-to-Motion Task

A person performs a Wide To Narrow Squat.

A man walks forward and moves something with his right hand.

A person is performing a Hip Bounce Wrist Circle movement.

Motion-to-Text Task

Motion prediction based on given 20% frames

Motion prediction based on given 20% frames

Motion-to-Motion Tasks

Motion in-between based on unmasked 50% frames

Music-to-Dance Task

+  “A person  does a cartwheel.” <Dance>Generate

Music-Text Conditioned Dance Generation Task

<Music-to-Dance, 5s> +  <Motion Prediction, 6.25s> <Long Dance>Generate

Frame148Frame147Frame146Frame145Frame144Frame143 Frame149 Frame150 Frame151 Frame152 Frame153 Frame154 Frame155 Frame156 Frame157 Frame158

Frame148Frame147Frame146Frame145Frame144Frame143 Frame149 Frame150 Frame151 Frame152 Frame153 Frame154 Frame155 Frame156 Frame157 Frame158

<Music-to-Dance, 5s> +  <Motion Prediction, 6.25s> <Long Dance>Generate

Long-Term Danc Generation Task

+  “A person  turns a circle on the spot” Generate <Dance>

Figure 6: The qualitative results for different motion comprehension and generation tasks.
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“a person appears to have severe arm 
pain holding and slouching his left 

shoulder.”

“a person walks forward and picks 
things up and puts them down with 

their hands.”

“a person starts slowly walking 
forward and then jogs some before 

coming to a stop.”

Real

   

MDM

   

MoMask

   

M3GPT

  

Bailando

 
 
 

M3GPT

 
 

(Break style，5s)

(a) Qualitative comparison on text-to-motion task. 

(b) Qualitative comparison on music-to-dance task. 

Figure 7: Qualitative comparisons for text-to-motion task and music-to-dance task. (a) refers to the qualitative
comparison between Real, MDM, MoMask and M3GPT on text-to-motion task. The red words and boxes
highlight the misaligned motions. The results demonstrate that our M3GPT shows good text understanding for
motion generation. (b) refers to the qualitative comparison between Bailando and M3GPT on music-to-dance
task. The input is an 5-second-long piece of music in the Break style.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: A summary of the paper’s contributions is provided in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: Not Applicable

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.

22



• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4 and Appendix for implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: See https://github.com/luomingshuang/M3GPT.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: See Section 4 and Appendix for implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [NA]

Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Section 4 and Appendix for implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: See Section 5

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: See References.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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