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Abstract
Recent benchmarks suggest that there remains significant room to improve large lan-
guage models’ ability to robustly reason across facts distributed in extremely long
documents. In this work, we propose MemReasoner, a new memory-augmented
LLM architecture that is trained to perform temporal reasoning, along with multiple
computational steps, over the context stored in the memory. Experiments show
that MemReasoner trained on the core reasoning facts generalizes better, when
compared to off-the-shelf large language models and existing recurrent models, on
a test distribution where the required facts are scattered across long natural text up
to 128k tokens. Further, MemReasoner demonstrates robust reasoning performance
relative to the baselines, when the answer distribution in test samples differs from
that in the training set.

1 Introduction
Transformer-based large language models (LLMs) have recently shown impressive performance in
many natural language processing (NLP) tasks, including machine translation, question answering,
and reading comprehension, demonstrating signature of general reasoning abilities. However, when
restricted to individual NLP reasoning benchmarks, particularly those that require logical reasoning,
current LLMs typically perform poorly despite efforts to improve accuracy through prompt engineer-
ing (Wei et al., 2022; Min et al., 2022). As such, more evidence seems to support the hypothesis
that powerful LLMs often learn statistical features and correlations to simulate reasoning rather than
performing true reasoning (Ruder, 2021).

The recently introduced BABILong benchmark further establishes this point, as it is designed to test
LLM’s ability to reason across facts distributed in extremely long documents (Kuratov et al., 2024).
BABILong is developed based on the bAbi benchmark Weston et al. (2015), which is composed of
20 reasoning tasks. These include fact chaining, simple induction, deduction, counting, and handling
lists/sets (Weston et al., 2015). This set of tasks was designed as prerequisites for any system that
aims to having a conversation with a human. BABILong further introduces irrelevant natural text
from the PG19 book corpus Rae et al. (2019) into the original context to make it artificially longer
and include distracting text, while the underlying reasoning task remains the same. For examples of
the task samples in BABILong, see Figure 1. Experiments with popular transformer-based LLMs
shows that present days’ transformer-based language models effectively utilize only 10-20% of the
context and their performance declines sharply with increased reasoning complexity. Retrieval-
augmented generation with LLMs at best can provide 60% accuracy for a simple QA task that
requires extracting single evidence from the context. Interestingly, a memory-augmented transformer
architecture, namely Recurrent Memory Transformers (RMT) (Bulatov et al., 2022) shows the highest
performance on BABILong benchmark; suggesting that long-term recurrent memory of the context
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Figure 1: Examples of BABILong tasks.

helps. However, as we will demonstrate in this work, RMT needs to be trained on samples with longer
context from BABILong’s distribution in order to perform well and the model fails to generalize
without access to long context examples during training.

In this work, we provide an alternative language model architecture that is designed to naturally
handle recurrent processing over long context that is not seen by the model during training. Our
goal is to provide a more effective and robust solution for handling multi-hop generative QA tasks,
which require the model to gather, relate, and reason over disjoint pieces of information from the
unseen long context to generate an answer. Towards this goal, we propose a memory-augmented
LLM architecture enhanced with two basic operations: (i) explicit learning of temporal orders of
facts/events present within the context, and (ii) mechanism for iteratively reading from the context
and updating the query accordingly. We refer to this new architecture as MemReasoner.

The backbone memory-augmented LLM used in this study is Larimar (Das et al., 2024), which is
trained such that the latent encodings of a set of facts, referred as an episode, are written to a memory
module. For a given query, the readout from this episodic memory module conditions the generation
of the decoder, which is achieved by learning a differentiated attention to the readout during training.
During inference, memory is dynamically updated by solving a linear system of equations, which
is efficiently done via computing matrix pseudoinverse rather than gradient backpropagation. The
memory mechanisms in Larimar assume order invariance of samples within an episode and support
only single time read over the episode, which are insufficient for the architecture to handle more
complicated tasks like multi-hop question-answering (QA). We note that our approach could in
principle be used in conjunction with other LLMs augmented with an episodic memory module
beyond Larimar.

Here, we extend the basic episodic memory module to act as a reasoning module by introducing
a recurrent network, such as a GRU, which is tasked to capture the sequence of events/facts in the
context written to the memory. This step prepares the inputs to the reasoning module with a structured
understanding of their temporal relationships, which is critical for reasoning over time-varying
information. For example, in the sample shown in Fig 1 (right), understanding that “Sandra moved to
the hallway” happens before “Sandra discarded the football” is crucial to answer the question “Where
is the football?” (Answer: hallway). Around the reasoning module, we further enable iterative reads
from the memory to “hop” between supporting facts and update the query accordingly. This operation
allows the model to dynamically retrieve and refine information across multiple computational
steps performed over the context episode. These two operations around the latent memory allows
in-depth deliberation over the context, which is then used by the decoder for generation. Our main
contributions are:

• A novel memory-augmented LLM architecture, namely MemReasoner, which is equipped
with temporal processing and iterative read over the context written to an episodic memory
module.

• Evaluation of MemReasoner on the single-hop (Task 1) and two-hop (Task 2) QA tasks
(see Figure 1) using the challenging BABILong benchmark, establishing that the proposed
architecture can generalize to long context that is unseen during training, whereas current
vanilla transformer-based LLMs struggle and alternative recurrent models fail to generalize.

• Experiments showing that the proposed MemReasoner architecture indeed learns multi-step
processing over the context to solve the QA task, as evident by its robust performance when
the answers in the training data differ from those in the test samples within the same task,
and when the model trained on bABi task 2 is tested on longer BABILong task 1 samples.
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Figure 2: A diagram of the pipeline for reasoning with MemReasoner. q denotes the query, c1, ..., cE
denotes the context for answering the query. zq denotes the encoding of the query while {z1, ..., zE}
denote encodings of each line of the context. We use z̃ to denote temporally encoded latents.

2 Multi-step Reasoning with MemReasoner
2.1 Preliminary
Let X be the LM input space, Z be the latent space, and Y be the LM output space. Larimar
(Das et al., 2024) features an encoder e that maps an input to an embedding z ∈ Z ⊆ RD, and a
memory moduleM. The memory M is adaptable in the sense, that it allows “write” and “read”
operations as episodes (aka, contexts C, where each context is comprised of E sentences) arrive, i.e.,
M̂ = write(M, z), zread = read(M̂, z), wherein M̂ is the updated memory after an write. And, a
decoder d that performs generations conditioned on the memory readout zread.

Now, suppose one is given an input context C = {c1, ..., cE} with E denoting the length of the
context, and the target task is to answer a question q conditioned on the given context C. To approach
the task within Larimar framework, the input, both context C and query q, are encoded to their latents
(z1, . . . , zE and zq) via the encoder e. Next, let M0 be the initial memory, write the context to the
memory via the write operation mimicking posterior updates in Bayesian inference (Pham et al.,
2022), i.e., M̂ = (ZξM

†
0 )

†Zξ, where Zξ = [z1 + ξ1, z2 + ξ2, . . . , zE + ξE ] and ξi ∼ N (0, σ2
ξI).

The memory update is done via finding least-square solutions to linear systems by estimating matrix
pseudoinverses, indicated by † hereafter. Then, the read operation translates the query embedding
from the lens of the encoded memory to a query readout zr via zr = (zqM̂

† + η)M̂ , where
η ∼ N (0, σ2

ηI). Lastly, the decoder d decodes the query q conditioned on the readout by using a
learnable broadcasting parameter WM that casts zr to each decoder layer and obtains hm

k that serves
as the past key values for k = 1, . . . , L, where L is the number of layers in the decoder. We use this
memory-augmented LLM architecture and the operations as backbone for MemReasoner, due to its
memory and space-efficient read/write abilities and demonstrated generalizability at test-time. It is
worth mentioning the earlier works on memory-augmented neural nets, which use a recurrent neural
net together with an external memory, have investigated ideas like temporal feature learning and
iterative hops over context, for example see (Weston et al., 2014; Sukhbaatar et al., 2015). However,
to our knowledge, this is the first study to enable those operations around the explicit episodic
memory of a transformer-based LLM during training and test the resulting model’s generalizability
on a long-context reasoning benchmark like BABILong.

2.2 Memory with Temporal Order
Recall, the latent encoding of facts {z1, ..., zE} within a context episode C are written in the memory
M in an order-invariant manner. However, many multi-step reasoning tasks require some notion of
temporal context. For example, when answering “where is John?” in the context of “. . . John is in the
bathroom. . . . John goes to the garden.” (“. . .” denotes irrelevant facts), there should be a mechanism
in place to guarantee that the memory encodes the correct temporal order of the facts, and the readout
should reflect “John goes to the garden.” as the supporting fact instead of “John is in the bathroom.”.

To introduce some temporal notion within the context, in MemReasoner we introduce a temporal
encoding module P that transforms un-ordered fact latents {z1, ..., zE} within a context episode to
their ordered counterparts {z̃1, ..., z̃E}. The temporal encoding module is generic and allows any
structure featuring sequentiality within context. In practice, we investigate two general types of encod-
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ing methods, un-parameterized methods such as Sinusoidal Positional Encoding and parameterized
methods such as GRUs.

Positional Encoding. We compute positional encodings for each line of context within the episode
by using sine and cosine functions similar to Vaswani et al. (2017). Additionally, we experiment
with positional encoding which assigns encodings starting from the last element of the episode.
The structure ensures that for contexts of different length, the last lines of the contexts are encoded
similarly, which is useful for QA tasks in which the most recent information is more relevant for
answering the question. Finally, to convert {z1, ..., zE} to {z̃1, ..., z̃E} with positional encodings, we
add the computed positional encodings to the input.

GRU. We also investigate learnable encodings via a bidirectional GRU unit. For these, we treat
{z1, ..., zE} as the sequence passed as input into the GRU and simply let {z̃1, ..., z̃E} be the sequential
outputs of the GRU.

These ordered context embeddings {z̃1, ..., z̃E} are then written to memory via Larimar’s write
operation.

2.3 Iterative Read And Query Update
A typical multi-step reasoning task often inherently requires “hops” between facts until the final
solution is found. Additionally, the query embedding can be updated accordingly to reflect the most
recent hop.

In order to perform hopping between facts, we first recall the three key components interacting with
the memory moduleM, the fact embeddings ({z1, . . . , zE}) within a context episode, the query
embedding zq, and the memory readout zr. Let us further consider M stores facts that have been
ordered temporally {z̃1, ..., z̃E}.
To enable iterative read, we pass zq through a linear layer to obtain ẑq=Wqzq before the read
operation from the memory, where Wq ∈ RD×D is a learnable parameter that absorbs the scale
changes introduced by the position encoding in the memory. Specifically, different from Section 2.1,
here we have zr = (ẑqM̂

† + η)M̂ .

To update the query, we first update the query latent and let zq ← zq + α · zr, where α ∈ R is a
hyperparameter to balance the load from the previous readout. The updated query is then fed into
the memory module for another read operation to obtain a new z̃r. The query update procedure is
repeated until the readout converges (i.e. ||z̃tr − z̃t+1

r ||2 < τ where z̃tr denotes the readout at time t
and τ is a hyperparameter) or until it reaches a fixed number of maximum iterations.

2.4 Full Workflow
Now that we have discussed all components of MemReasoner, we elaborate the full pipeline in the
following and provide a visualization in Figure 2.

Consider an input context C = {c1, ..., cE}, a question q, an encoder e, a temporal encoding module
P , an initial memory module M, and a decoder d. We first encode the context C and query q
to their latents, z1, . . . , zE and zq, via encoder e. Then, we follow Section 2.2 and transform
z1, . . . , zE to z̃1, ..., z̃E . Next, we write the ordered context z̃1, ..., z̃E to the memory and obtain M̂ .
Subsequently, we read using the query latent from the memory and perform query and read updates
according to Section 2.3. After we have obtained a z̃r as a final readout which does not undergo
update anymore, we map z̃r to the corresponding unordered encoding in M . This is because we
only want the additional position information to be used when locating the most relevant contexts,
but not during the decoding - if being fed to the decoder, the decoder may overfit to the ordering
information in the latents. We do this by first finding the index of the most similar ordered latent
encoding i = argminj∈{1,...,E} ||z̃r − z̃j ||2 and then obtaining the corresponding encoding zi from
the unordered encodings (prior to undergoing temporal encoding in Figure 2) {z1...zE}. Lastly, the
decoder d decodes the prompt Pa given for answer generation conditioned on zi. We provide the full
pseudocode in Algorithm 1 in the appendix.

2.5 Training Objectives
Let Dreason denote the reasoning data distribution while Dpretrain denotes the pretraining data distri-
bution. Each sample from Dreason is of the form (q, C, S, a) where q is the query, C = {c1, ..., cE}
are the facts in the context, S is a set of indices corresponding to supporting facts (we will use Si to

4



denote the ith supporting fact index in S), and a is the answer. Meanwhile the pretraining distribution
corresponds to a generic corpus, e.g. Wikipedia. Let e denote the encoder, d denote the decoder, t
denote temporal encoding, z̃ir denote the ith temporally encoded readout from iterative reading with
z̃0r = q, zir represent the unordered encoding corresponding to the ith ordered readout, and Pa and
Ps denote the prompts for generating the answer and supporting fact respectively. To train the model,
we utilize the following loss function in Equation 1.

L = E(q,C,S,a)∼Dfinetune

Ez
|S|
r ∼p(z

|S|
r |q,M,z̃0

r ...z̃
|S|−1
r )

ln p(a|z|S|
r , Pa)︸ ︷︷ ︸

reconstruction of answer

+α

|S|∑
i=1

Ezi
r∼p(zi

r|M,z̃0
r ...z̃

i−1
r ) ln p(cSi

|zir, Ps)︸ ︷︷ ︸
reconstruction of supporting facts

+β
∑
s∈S

ln p(d(e(cs)))︸ ︷︷ ︸
autoencoding of supporting fact

+δ

|S|∑
i=1

Ez̃i
r∼p(z̃i

r|q,M,z̃0
r ...z̃

i−1
r )ℓorder(z̃

i
r, Si)︸ ︷︷ ︸

ordering loss

+ ρ Ex∼Dpretrain ln p(d(e(x)))︸ ︷︷ ︸
autoencoding of pretraining dataset

(1)

α, β, δ and ρ are hyperparameters controlling regularization strength and ℓorder is given by
v(zr) = softmax([−||t(e(c1))− zr||2, ...,−||t(e(cE))− zr||2]⊺)

ℓorder(zr, s) = − ln v(zr)s
(2)

The first and second terms correspond to the reconstruction loss of the answer and the supporting
fact(s) with respect to the corresponding prompt for obtaining the answer Pa and final readout, the
third and the fifth terms correspond to the autoencoding loss of the supporting fact(s) and pretraining
data. The fourth term is a loss for encouraging the index of the most similar entry (by l2 distance) to
the ordered readout at each iteration to match the index of the supporting fact through computing the
cross entropy.

3 Experimental Details and Results
3.1 Datasets and Data Pre-processing
We here utilize tasks 1 and 2 from the synthetic bAbi benchmark as our testbed. These datasets
were prepared by synthesizing relations among characters and objects across various locations, each
represented as a fact, such as “Mary traveled to the garden". Task 1 requires performing a single
hop to find answer, whereas task 2 requires gathering two supporting facts in the right order (see Fig
1). These single to multi-hop QA tasks from BABILong benchmark together provide a controlled
setting for evaluating LLMs’ ability to reason over long context, where the difficulty of the task can
be varied by changing the length of irrelevant text. The nature of this benchmark, where the synthetic
sentences corresponding to the actual reasoning task are hidden inside irrelevant but lengthy naturally
occurring text, keeps it at a low risk of data contamination to training sets of todays’ LLMs. And
finally, BABILong leaderboard shows tasks 1 and 2, while being simple enough, are challenging
enough for off-the-shelf LLMs to solve.

We finetune MemReasoner separately on original bAbi task 1 and task 2 training split, each consisting
of 10k samples (Weston et al., 2015). We then evaluate on the test set of the corresponding task from
bAbi as well as from BABILong (Kuratov et al., 2024), in which the core reasoning facts from bAbi
is distributed over arbitrarily long documents. Here we benchmark MemReasoner on BABILong test
samples of up to 128k tokens.

For preprocessing bAbi data, we treat each training sample comprised of multiple facts as a single
context episode, and individual sentence within that context as an instance within that episode. Each
fact within an episode contains up to 64 tokens.For BABILong and for Wikipedia, if sentences are
longer than 64 tokens, we split the sentences at multiples of 64 tokens.

We initiate MemReasoner finetuning from Larimar checkpoint pretrained on Wikitext (obtained by
following the training protocol described in Das et al. (2024)), which uses a Bert-large as the encoder
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and a GPT2-large as the decoder. The number of parameters in MemReasoner is 1.4B. The slot size
in the memory is 512. During finetuning, we randomly sample a batch of pretraining data (Wikipedia)
of the same size as the batch of finetuning data (bAbi) for computing the autoencoding loss on the
pretrain dataset of 2M samples. We generate the answer to the question by passing a prompt to the
decoder (i.e. in the case of bAbi Task1-2, the prompt has the from “<BOS> X is in the" where X
denotes subject of the query).

We train MemReasoner models for 200 epochs using Adam optimizer with learning rate 5e-6. We
set batch size to be 10. Additionally, we set query update parameter α = 1. The maximum episode
length varies from 14 (bAbi Task 1) to 72 (bAbi Task 2). Which means that MemReasoner has been
exposed to a maximum of 90 and 573 tokens during finetuning on task 1 and task 2, respectively,
whereas at test-time the model is exposed to contexts that are up to 128k tokens long. Since bAbi
Task 1 is a single hop task, we do not perform query update during either training or inference. When
fine-tuning on bAbi Task 2, we perform a fix number of 2 hop (equivalent to 1 query update) during
the training. With bAbi Task 2 fine-tuned MemReasoner, we re-use the “2 hop” setting at inference on
all tasks, including bAbi Task 2 and BABILong Task1/2. We consistently use query update parameter
α=8 throughout our experiments and include an ablation study on α in the appendix. Due to the page
limit, we also defer ablation studies on the episodic memory, temporal encoding schemes, and the
number of training epochs to the appendix.

3.2 Baseline Methods
Off-the-shelf Baselines. We show published results from Yang et al. (2023) obtained using GPT-3
(175 B parameters) as an off-the-shelf baseline, with few-shot and chain-of-thought prompting, for
comparison with MemReasoner on original bAbi test set. We also report performances of a recurrent
memory transformer-0.77B and of a Mamba-1.4B model, which we fine-tune on bAbi samples, on
bAbi test set. For BABILong benchmarking, we include the following models from BABILong
leaderboard: (1) Meta-Llama-3-8B-Instruct with a 8K context window size, (2) Phi3-mini-128k-
instruct – a long-context LLM consisting of 3.8B parameters and a 128k token long context window,
and (3) Llama3-ChatQA-1.5-8B with a nvidia/dragon-multiturn-query-encoder – a RAG framework.

Fine-tuned Baselines. We add RMT-137M and Mamba-130M performances from BABILong
leaderboard, which has been finetuned on a set of samples that belongs to the same distribution as
BABILong (with PG19 padding) but is not included in BABILong benchmarking test set. These
models were finetuned by using a curriculum schedule that progressively increases sequence lengths:
1, 2, 4, 6, 8, 16 and 32 segments (Kuratov et al., 2024).

We further benchmark RMT and Mamba models finetuned on bAbi on BABILong test samples. The
goal is to figure out if those alternative recurrent models perform well on BABILong leaderboard due
to their true learning ability of the underlying task or due to their exposure to BABILong samples
during finetuning. We fine-tune off-the-shelf RMT(0.14b/0.77b) and Mamba (0.13b/1.4b) models
using the next token prediction loss on bAbi Task 1 and 2 separately till the testing accuracy on the
task is sufficiently high (near 100%). In practice, we use 5 epochs to reach above 99% accuracy on
RMT and 20 epochs for the accuracy to plateau on Mamba, all using Adam optimizer with learning
rate 1e−5 . We also add a Larimar-1.3B baseline, which is finetuned on bAbi and Wikipedia samples
with first and fifth terms from eqn. 1. The purpose of comparing MemReasoner with respect to
Larimar is to disambiguate the benefits of temporal feature learning, iterative query, and read updates
on top of the episodic memory. Larimar fine-tuning shares the same training setups as MemReasoner.
Throughout the paper, we report task accuracy as the performance metric, so higher the better.

3.3 Results
3.3.1 Performance on bAbi Test Set
Table 1 reports the performances of MemReasoner, which is independently finetuned on original
bAbi task 1 and task 2, along with the baselines on the corresponding bAbi test set of 1k samples.
Results show that, while prompting techniques such as few-shot learning and chain-of-thought
prompting (Yang et al., 2023) work well on task 1 which requires a single hop to find the entity loca-
tion, those baselines perform much poorly on task 2 that requires learning temporal dependence and
performing multiple hops across facts to generate the final answer of object location. MemReasoner,
as well as RMT, Mamba and Larimar, all finetuned on bAbi achieves near-perfect accuracy on both
tasks. Importantly, Larimar baseline falls behind MemReasoner on both tasks, while the gap being
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Model type Task 1 Task 2
CoT - GPT-3 97.3 72.2

Few-shot - GPT-3 98.4 60.8
RMT-.77B (bAbi) 100 99.4

Mamba-1.4B (bAbi) 100 95
Larimar-1.3B (bAbi) 60.6 44.9

MemReasoner-1.4B (bAbi) 100 100
Table 1: Performance on bAbi tasks. Best model is highlighted in bold. GPT-3 (=text-davinci-003)
baselines are from Yang et al. (2023). Finetuning data, if any, seen by a model is specified within
parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

RMT-.14B (BABILong)* 100 97 100 100 100 100 100 100 99 96 94
Mamba-.13B (BABILong)* 100 100 100 100 100 100 100 100 100 100 100

Few-shot - Meta-Llama-3-8B-Instruct* 84.4 - 98 93 90 79 62 - - - -
Few-shot - Phi-3-mini-128k-instruct* 78.4 38 97 84 72 69 70 60 53 38 1

RAG - Llama3-ChatQA-1.5-8B* 59.6 60 60 62 60 58 58 60 60 56 64
RMT-.14B (bAbi) 20 - 100 0 0 0 0 0 0 0 -
RMT-.77B (bAbi) 20.2 - 100 0 1 0 0 0 0 - -

Mamba-.13B (bAbi) 20.4 - 85 11 5 0 1 0 0 0 -
Mamba-1.4B (bAbi) 44.2 - 100 60 42 19 0 0 0 0 -
Larimar-1.3B (bAbi) 44.8 14.3 63 59 55 28 19 14 16 13 14

MemReasoner-1.4B (bAbi) 84.6 68.5 99 91 83 76 74 71 68 70 65
Table 2: BABILong Task 1 Results. Baseline results marked with “*” are from Kuratov et al. (2024).
The finetuning data, if any, seen by each model is specified within parentheses.

Avg. Avg.
Model type ≤ 8k ≥ 16k 0k 1k 2k 4k 8k 16k 32k 64k 128k

RMT-.14B (BABILong)* 98.8 68.5 100 100 99 98 97 94 82 59 39
Mamba-.13B (BABILong)* 98.0 94.5 98 98 98 98 98 98 98 95 87

Few-shot - Meta-Llama-3-8B-Instruct* 40.2 - 47 46 49 39 20 - - - -
Few-shot - Phi-3-mini-128k-instruct* 40.6 15.5 57 38 38 36 34 23 22 15 2

RAG - Llama3-ChatQA-1.5-8B* 21.6 8.75 28 25 22 19 14 13 9 7 6
RMT-.14B (bAbi) 20 - 98 2 0 0 0 0 0 0 -
RMT-.77B (bAbi) 32.2 - 99 18 17 15 12 15 13 - -

Mamba-.13B (bAbi) 16.2 - 64 10 3 3 1 0 0 0 -
Mamba-1.4B (bAbi) 31.6 - 94 44 15 5 0 0 0 0 -
Larimar-1.3B (bAbi) 31 20.3 42 41 29 22 21 19 16 22 24

MemReasoner-1.4B (bAbi) 60.6 18.5 100 73 61 46 23 20 19 17 20
Table 3: BABILong Task 2 Results. Baseline results marked with “*” are from Kuratov et al. (2024).

bigger on more complicated task 2, implying the read/write to episodic memory alone is not sufficient.

3.3.2 Performance on BABILong Test Set
Table 2 and Table 3 report accuracy of MemReasoner, together with baseline methods, on BABILong
task 1 and task 2 samples, respectively. ‘-’ means unavailable due to out of memory errors or maximal
input length constraints. For task 1, the following observations can be made: (i) at half of model’s
context window, the accuracy of Llama-3-8B-Instruct drops to 80% and Phi-3-mini-128k drops to
63% of the corresponding model’s performance at 0k samples, indicating LLMs are not good at
utilizing their full context window. With RAG, the performance stays at a flat ≈ 60% all throughout.
Interestingly, while RMT and Mamba, when finetuned on BABILong samples of up to 16k tokens,
are the best models reported on BABILong leaderboard, they perform poorly on BABILong samples
beyond 0k as we finetune them on bAbi samples. This suggests exposure to BABILong during
training helps RMT and Mamba, as the models have seen facts embedded inside the background
distractor text from PG19. Larimar finetuned on bAbi, while performing much poorly on bAbi test
set and BABILong 0k set to begin with, the accuracy on longer BABILong samples is higher than
bAbi-tuned RMT and Mamba baselines. In contrast, MemReasoner trained on bAbi generalizes well
on BABILong for task 1, providing an average accuracy of 84.6% and 68.5% on ≤ 8k and ≥ 16k
BABILong samples, respectively, though it was never exposed to BABILong samples during training.

For more complicated task 2, which requires learning temporal dependence between the facts and
finding and using two supporting facts in correct order for generation, both few-shot prompting
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Model type Task 1 Task 2
RMT-.77B (bAbi) 45.8 23.7

Mamba-1.4B (bAbi) 67 44
Larimar-1.3B (bAbi) 24.9 7.8

MemReasoner-1.4B (bAbi) 87.2 52.7
Table 4: Robustness to location changes in bAbi test set.

Model type 0k 1k 2k 4k
RMT-.77B (bAbi) 100 13 11 13

Mamba-1.4B (bAbi) 81 8 0 0
Larimar-1.3B (bAbi) 45 19 20 11

MemReasoner-1.4B (bAbi) 83 58 50 45
Table 5: Performance on bAbi task 2 → BABILong task 1 generalization.

and RAG with different base LLM show poor performance to begin with, and sharply degrade with
context length increase of test samples. Again, RMT and Mamba, when fitted to BABILong, perform
well on test samples (though RMT shows performance degradation as samples get longer), both
again fail to generalize from bAbi to BABILong. For example, the accuracy drops from near 100%
at 0k to 18% for RMT and to 36% for Mamba at 1k, implying they haven’t learned to solve the
task. Poor results at short context length for Larimar also indicates model’s failure to learn the task.
MemReasoner, in comparison, provides an accuracy of 100% at 0k, 73% at 1k, and 46% at 4k, while
performance degrades to ≈ 18.5% beyond 16k. The modest (≈ 18.5%) performance of bAbi-tuned
MemReasoner at 16k or longer context suggests that there remains significant room for MemReasoner
to improve, which will be investigated in future.

3.3.3 Generalization to Out-of-distribution Test Sets
To test if the models have indeed learned to solve the tasks, we create a new testbed where the
construct of the tasks remains the same, but the answer changes from training to test set. Specifically,
we change the location information present in the answer set of bAbi training → test as follows:
office → library, garden→ garage, kitchen→ cafe, bathroom → attic, bedroom→ basement, hallway
→ gym. This now becomes a more stringent test, to which we subject all alternative architectures
including MemReasoner. As shown in Table 4, RMT performs the worst in this setting across both
tasks. On task 1, MemReasoner shows ≈ 20% higher accuracy than Mamba, whereas on task 2
MemReasoner wins by ≈ 8%.

Finally, we also check if the models trained on 2-hop bAbi task 2 can solve the simpler 1-hop task 1
but on the corresponding BABILong samples. Results are shown in Table 5, indicating that the best
performing model on 0k BABILong task 1 samples is RMT, while MemReasoner being a second.
However, both RMT and Mamba perform very poorly on longer (1-4k tokens) BABILong samples,
whereas MemReasoner’s accuracy remains strong.

3.4 Conclusion
In this work, we introduce a new memory-augmented LLM architecture that comes with two essential
abilities required to perform robust multi-step reasoning, i.e., learning temporal relations and to hop
meaningfully between facts within a context. Our formulation and implementation of the multi-step
reasoning mechanisms around the episodic memory is generic and in principle model-agnostic, and
therefore can be leveraged to enhance other memory-augmented LLMs. We examine MemReasoner
on BABILong, a benchmark purposed to test models’ reasoning ability when relevant facts are
distributed in background of very large textual corpora. This deceptively lengthy nature of BABILong
samples, along with the presence of distracting text that is naturally occurring, makes the underlying
reasoning task more challenging on which even bigger LLMs that have seen samples with long context
during training fails. We show here that, MemReasoner trained on bAbi samples provides strong
performance on BABILong, compared to the off-the-shelf powerful LLM baselines and alternative
recurrent architectures that are also finetuned on bAbi data. We further show that MemReasoner
generalizes better in the setting where answers in training set differs from those in the test within
the same task. MemReasoner also shows good adaptation from two-hop to single-hop QA task,
whereas the test samples are much longer and mixed with natural irrelevant text. These results suggest,
designing alternative architectures with new loss objectives that encourage the model to learn the
underlying reasoning skills is a potential path toward more robust reasoners.
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A Appendix
A.1 Related Work
LLM Reasoning Logical reasoning, a critical aspect for advancing many scientific fields, involves
deducing new conclusions from existing facts and rules. To derive the final answer, such reasoning
challenges often require multiple steps to be executed effectively and in the right order. For instance,
with facts like “John picked up the football” and “John went to the bedroom”, a logical process will
be to deduce that the football’s current location is bedroom. Despite showing advanced ability to
learn from instructions and in-context demonstrations to answer questions (Brown et al., 2020; Min
et al., 2022), LLMs struggle with complex logical reasoning, especially multi-step reasoning (Liu
et al., 2023a). This failure has been attributed to the autoregressive nature of LLMs (Stechly et al.,
2024), which can be characterized by “System 1" (Kahneman, 2011), a mode of thought that is fast,
instinctive but less accurate. To address this limitation, recent work proposes prompting LLMs to
mimic generating intermediate chain of thought (CoT) reasoning steps (Wei et al., 2022), providing
access to external tools/verifiers (Schick et al., 2023), or a combination of both (Paranjape et al.,
2023), to mimic the process of generating deliberative and logical thinking steps, i.e., the “System 2"
mode. Another direction currently being explored is to train reward models to rank the candidate
solutions or rank the intermediate steps (Khalifa et al., 2023; Wang et al., 2024). Different from these
works, MemReasoner does not rely on deliberate prompt engineering or access to external tools,
neither does it require feedback from an external reward model. Instead, inspired by the distinction
between System 1 and System 2-like thinking, MemReasoner utilizes the decoder for fast generation
and the memory module for slow reasoning, which are two components tightly integrated via training.
In that sense, MemReasoner is closer to the line of works that use (generated) rationales for supervised
finetuning or for preference tuning of LLMs to enhance their reasoning abilities (Zelikman et al.,
2022; Pang et al., 2024). However, it remains unexplored how those approaches perform on iterative
reasoning tasks over lengthy context that is unseen during training.

Long-context Modeling The scope of the present study encompasses two distinct challenges around
multi-step reasoning tasks, namely (1) processing very long context and (2) “hopping” over that
context in a temporally-aware manner to link disjoint pieces of information and generate answers
based on that. On the first challenge, vanilla transformer-based models struggle due to quadratic
time and space complexity of self-attention and the increasing memory requirement of the key-value
cache during generation. Recently, there has been significant progress in long-context modeling with
transformers by using a mix of local and global attention (Munkhdalai et al., 2024), by continued
pretraining on longer sequences (Xiong et al., 2023; Ding et al., 2024), by context window sliding and
segmentation (Ratner et al., 2023), and by applying position extrapolation or interpolation to extend
input length beyond the training phase (Press et al., 2022; Su et al., 2023). Promising alternative
directions include the development of novel recurrent architectures Bulatov et al. (2022) and state-
space-models (Gu & Dao, 2023). Nevertheless, many of these techniques require training on longer
sequences. Additionally, a number of studies and benchmarks suggest that the long-context LLMs
may not be able to fully utilize their context window, and therefore performance degrades on simple
retrieval and complicated reasoning tasks as the input length grows and/or the position of the answer
varies within the context (Hsieh et al., 2024; Yuan et al., 2024; Liu et al., 2023b; Levy et al., 2024).

Status Check on LLM Reasoning Consequently, in parallel to impressive advances in LLMs
abilities, caution has been raised on the discrepancy between claimed reasoning abilities as per
standardized benchmarks and true reasoning skills. The scientific community has advocated for
careful investigations of issues such as data contamination, performance robustness and generalization,
and flawed reasoning benchmark that supports “shortcut learning” (Mitchell, 2023). Recently, a
number of tasks and benchmarks have been developed to address these issues (Valmeekam et al.,
2022; Kuratov et al., 2024; Nezhurina et al., 2024). Along this line, we here show the generalization
robustness of MemReasoner across (i) “unseen” context that consists of varying length of irrelevant
natural text and (ii) answer distribution that is different from the training distribution.
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A.2 Algorithm

Algorithm 1:
1 ] Function IterativeRead( q, {c1, ..., cE}, α, τ):

// q denotes the query tokens while {c1, ..., cE} denote the E lines of
context tokens, α is a hyperparameter for the query update, τ is a
threshold hyperparameter for terminating iterations, Pa is the
prompt given to the decoder for answer generation

// encode query and context lines with encoder
2 zq ← encode(q) for i← 1 to E do
3 zi ← encode(ci)
4 end

// apply temporal encoding over the sequence of context lines and
write to memory

5 z̃1, ..., z̃E ← temporalEncoding(z1, ..., zE)
6 M̂ ←write(z̃1, ..., z̃E)

// iterative read and query update
7 z̃r ← queryUpdate(zq, α, τ)

// Map to latent prior to performing temporal encoding
8 i∗ ← argmini∈{1...E} ||ẑi − ẑr||2
9 return decode(zi∗ , WM , Pa) // generate the answer with the decoder, WM

is a learnable parameter which interfaces the zi∗ with the decoder
10

11
12 Function temporalEncoding({z1, ..., zE}, method):

// temporally encode the sequence {z1, ..., zE}
13 if method = PE then
14 return {zi + PE(i)| ∀i ∈ {1, ..., E}}
15 else if method = GRU then
16 return GRU({z1, ..., zE})
17
18 Function queryUpdate(zq, α, τ):

// given the query encoding zq and threshold τ, perform iterative
reading and update query

19 z̃r ← read (Wqzq,M ) // Wq is learned parameter
20 zq = zq + αz̃r // query update
21 z̃r,next ← read (Wqzq,M )
22 do
23 z̃r ← z̃r,next
24 zq = zq + γz̃r
25 z̃r,next ← read (Wqzq,M )
26 while ||z̃r,next − z̃r||2 > τ
27 return z̃r
28

A.3 Additional dataset preprocessing details
In the unprocessed bAbi data, a single data instance consists of a sequence of lines representing facts
to reason over with questions interspersed throughout the facts. We preprocess the bAbi data such
that after preprocessing, a single training sample consists of a single question with facts for reasoning
being the lines before it, with previous questions replaced by an empty line. On average this leads
to about 2 empty lines per training sample. For batches containing training samples with different
lengths of context episodes, we pad shorter episodes with rows of the encoder padding token at the
beginning.
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A.4 Comparison of inference-time complexity
Let H1, H2 and d1, d2 be the number of transformer layers and hidden state dimension in the encoder
and decoder, respectively. Let E denote the number of context lines in a sample, L be the max
context length, L1 be the max query length, D be the latent space dimension, and m be the memory
size. The inference-time computational complexity for MemReasonr can be estimated by the encoder
complexityO(H1((EL2+L2

1)d1+(EL+L1)d
2
1)), temporal encoding complexityO(Ed2), memory

operation complexity O(Edm2), decoding complexity O(H2(|Pa|2d2 + |Pa|d22)), and broadcasting
complexity O(d1dE) and O(d2dH2). For a typical GPT decoding, the inference-time computational
complexity is O(H2((EL+ L1)

2d2 + (EL+ L1)d
2
2)).

A.5 Ablation Studies
A.5.1 Memory
In Table 6, we conduct the ablation study on the episodic memory module in MemReasoner on
bAbi and BABILong, task 1 and 2. Specifically, MemReasoner w/o memory module uses the same
architecture of encoder and decoder (BERT-Large and GPT2-Large respectively) but does not use the
memory module for encoding the context. Instead, the MemReasoner w/o memory uses the encoder
to encode only the question and this is passed in to the decoder as kv-cache. Additionally, the context
and question are passed to the decoder as part of the prompt with the format:

Context:
{context}
Question:
{question}
Answer:

where {context} and {question} represent the context and the question for the datapoint. We train the
model with reconstruction loss to ensure that the model is able to fill in the answer given this prompt
and with autoencoding loss on the pretraining dataset (see last term of Equation 1) in order to reduce
overfitting on bAbi data. We train MemReasoner w/o memory module for 5 epochs.

MemReasoner w/o memory module trained on bAbi task 1 obtains almost perfect accuracy on bAbi
task 1 and BABILong task 1. However, its generalization ability to long context (BABILong 1k and
2k) is much inferior to MemReasoner (MemReasoner\memory 0% vs. MemReasoner 91% on BABI-
Long 1k). Similar trends can also be seen from bAbi task 2 trained MemReasoner\memory, implying
the significance of the episodic memory module and the operations around it in MemReasoner.

Model type Task 1 0k 1k 2k Task 2 0k 1k 2k
MemReasoner\memory 100 100 0 - 99.3 100 29 -

MemReasoner 100 99 91 83 100 100 73 61
Table 6: Ablation study on the episodic memory

A.5.2 Temporal Encoding
In Table 7, we experiment with different temporal encoding schemes, including non-parametric
method (Positional Encoding) and parametric method (GRU). In the table, we show MemReasoner’s
accuracy on BABILong Task 1. It can be seen that GRU encoding has significant advantage over
Positional Encoding, with much slower decay in the accuracy as the context length increases. Ad-
ditionally, though showing higher accuracy compared with Positional Encoding, uni-directional
GRU’s accuracy decreases faster than bi-directional GRUs. Since 1-layer bi-directional GRU has
similar performance with 2-layer bi-directional GRU, we choose the lighter model and use 1-layer
bi-directional GRU throughout the experiments in this paper.

Encoding scheme 0k 1k 2k
Positional Encoding 100 27 20

2-layer bi-directional GRU 100 90 80
2-layer uni-directional GRU 94 75 61
1-layer bi-directional GRU 99 91 83

Table 7: Ablation study on the temporal encoding schemes.
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A.5.3 Query Update α

In Table 8, we exploit test-time inference hyper-parameter α and its effect in reasoning tasks’
performance. We draw inspiration from Kollias et al. (2024), where authors investigated the effect
of scaling readout vectors to improve generation quality. In Line 20 of Algorithm 1, when using an
α > 1, we equivalently scale up the readout vectors which greatly help our generalization to Task 1
BABILong according to Table 8 (e.g. from 14% to 45% on 4k context token task).

Query update Task 2 bAbi Task 2 BABILong Task 1 BABILong
α location change 0k 1k 2k 4k 8k 16k 32k 64k 128k 0k 1k 2k 4k
1 52.6 100 46 25 18 18 13 16 12 13 78 21 17 14
4 54.2 100 73 61 46 26 22 19 19 27 83 47 44 40
8 52.7 100 73 61 46 23 20 19 17 20 83 58 50 45

Table 8: Ablation study on the query update parameter α.

A.5.4 Training epochs
In Table 9, we evaluate MemReasoner’s performance when fine-tuned on bAbi task 2 as a function of
the number of training epochs. Specifically, with fewer epochs, MemReasoner demonstrates stronger
robustness to location change, reaching an accuracy of 79% at the 66th epoch, which decreases
to around 50% as the training continues (at 100/200th epoch). On the other side, MemReasoner’s
accuracy on shorter context tasks in BABILong Task 1 and 2 (i.e. 0-4k) improves as the training
continues.

Task 2 bAbi Task 2 BABILong Task 1 BABILong
#epochs location change 0k 1k 2k 4k 8k 16k 32k 64k 128k 0k 1k 2k 4k

66 78.0 99 70 54 30 27 23 17 18 17 58 51 45 37
100 47.3 100 70 57 38 28 31 25 12 19 82 58 50 46
200 52.7 100 73 61 46 23 20 19 17 20 83 58 50 45

Table 9: Ablation study on the number of training epochs
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