
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRADEFM: A GENERATIVE FOUNDATION MODEL FOR
TRADE-FLOW AND MARKET MICROSTRUCTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning generalizable representations from the high-frequency, heterogeneous
event streams of financial markets is a significant challenge. We introduce
TradeFM, a foundation model that learns the universal dynamics of market mi-
crostructure. Pre-trained on billions of equities transactions, TradeFM uses a
novel scale-invariant feature representation and a universal tokenization scheme to
form a unified representation, enabling generalization without asset-specific cali-
bration. We validate the quality of the learned representations by demonstrating
that model-generated rollouts in a closed-loop simulator successfully reproduce
canonical stylized facts of financial returns. We robustly evaluate the model’s
ability to generalize to temporally and geographically out of sample data, as well
as its ability to match real distributions of quantities like log returns and spreads.
TradeFM provides a high-fidelity engine for synthetic data generation and down-
stream agent-based modeling.

1 INTRODUCTION

Financial markets are complex systems characterized by high-frequency, non-stationary, endoge-
nous dynamics, driven by interactions of participants (Bouchaud, 2010). The fundamental driver of
this process is order/trade-flow, the sequence of buy and sell orders submitted to the market (Sirig-
nano & Cont, 2021). Modeling this process is a formidable challenge due to the heterogeneity of
market participants, the asynchronous nature of transaction data, and the dramatic shifts in statistical
properties across different assets and time periods (Pasca, 2015).

While traditional approaches often build asset-specific models, there is strong evidence for universal
features in price formation that generalize across diverse markets. Sirignano & Cont (2021) demon-
strated that a single deep learning model trained on pooled data from a diverse set of stocks can
significantly outperform asset-specific models. This provides the core motivation for our work: to
build a foundation model that learns generalizable representations of market mechanics directly
from raw, multi-asset order flow data.

We leverage the Transformer architecture, whose success in capturing long-range dependencies has
been proven by Large Language Models (LLMs) that learn general-purpose representations from
vast, diverse datasets (Vaswani et al., 2017; Bommasani et al., 2021). By treating the stream of
multi-featured trade events as a structured sequence, we apply these powerful sequence modeling
techniques to the financial domain.

The contributions of this paper are fourfold:

1. TradeFM: We introduce TradeFM, a large-scale, decoder-only generative Transformer for
market microstructure, pre-trained on billions of transactions from a diverse set of equities
to learn a unified representation of trade-flow dynamics.

2. Learning from Partial Observations: A core design principle of our work is learning
from a partially observed market state. This reflects the realistic, incomplete information
available to any single market participant and enhances the model’s practical applicability.

3. Scale-Invariant Representation and Tokenization: We present an end-to-end method-
ology for processing raw, high-frequency data, including a scale-invariant feature repre-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sentation and a lightweight universal tokenization strategy that enables a single model to
generalize across diverse assets and liquidity regimes without asset-specific calibration.

4. Closed-Loop Market Simulation: We integrate the pre-trained TradeFM with a deter-
ministic market simulator, creating a high-fidelity, closed-loop environment for generating
realistic market rollouts, studying second-order effects like market impact, interactive fine-
tuning, and training learning-based agents.

2 BACKGROUND

2.1 THE MECHANICS OF MODERN ELECTRONIC MARKETS

To provide context for a general AI/ML audience, we briefly introduce the core concepts of market
microstructure fundamental to this work, which are standard features of modern electronic mar-
kets (Hasbrouck, 2007).

Financial markets are predominantly organized around a Limit Order Book (LOB), a real-time
record of all outstanding orders for a security that functions as a continuous, double-sided auction.
It consists of a bid (buy) side and an ask (sell) side; the midpoint between highest bid and the lowest
ask is an asset’s midprice. The ease with which an asset can be bought or sold quickly at a stable
price is the asset’s liquidity.

Market participants interact with the LOB through a sequence of actions, collectively known as
order flow. Participants may submit limit orders with a specific price limit, which sit on the book
waiting to be matched. The distance between the order price and the midprice is the price depth,
quoted in ticks (the minimum price increment, typically $0.01) or basis points (0.01% of the price).
They may also submit market orders for immediate execution against resting limit orders starting at
the best bid/ask, and cancellations to withdraw resting orders. When an incoming order is matched
with a resting one, a fill (or trade execution) occurs. This matching process is generally governed by
a deterministic price-time priority algorithm, where orders are first prioritized by price and then by
time of submission. These elements and mechanisms constitute market microstructure.

2.2 STYLIZED FACTS AS EMERGENT PROPERTIES

The strategic interactions of market participants give rise to endogenous market dynamics
(Bouchaud, 2010). These dynamics, in turn, give rise to universal and persistent statistical prop-
erties known as stylized facts. These facts are observed across a wide range of assets, markets, and
time periods, and serve as a crucial benchmark for the realism of any generative market model (Cont,
2001; Ratliff-Crain et al., 2023). Key stylized facts include:

• Heavy-Tailed Returns: The distribution of price returns is leptokurtic (heavy-tailed). This
means that extreme price movements occur far more frequently than would be predicted by a
Gaussian distribution, a critical consideration for risk management.

• Volatility Clustering: Price volatility is not constant. Periods of high volatility tend to be
followed by more high volatility, and periods of calm tend to be followed by calm. This is
observed as a positive and slowly decaying autocorrelation in measures of volatility, such as
squared or absolute returns.

• Lack of Autocorrelation in Returns: Consistent with the efficient market hypothesis, asset
prices are considered to follow a random walk. Consequently, the autocorrelation of asset
returns is statistically insignificant beyond very short time lags.

3 RELATED WORK

The modeling of market microstructure has evolved from explicit, theory-driven formulations to-
ward implicit, data-driven representation learning. Our work continues this trajectory, positioning
a generative foundation model as the natural next step to learn universal market dynamics directly
from raw, heterogeneous data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Canonical distributions for core trade features, conditioned on liquidity. Price features are
leptokurtic (Laplace); volume follows a heavy-tailed power-law; and interarrival time is exponential.

3.1 MARKET MICROSTRUCTURE AND ORDER-FLOW MODELING

Classical Stochastic Models A significant body of literature models order arrival times using
point processes, such as Hawkes processes, to capture the self-exciting nature of order flow (Bacry
et al., 2015). More sophisticated approaches like Compound Hawkes processes have also been
proposed, which combine Hawkes-processes to model interarrival times with other fitted empirical
distributions to model additional features like volumes and price depths (Jain et al., 2024). While
providing strong theoretical grounding, these models rely on specific parametric assumptions (e.g.,
Gaussianity) that are unable to capture the heavy-tailed nature of market returns.

Agent-Based Models Agent-based models simulate market dynamics by defining the behavior of
individual participants and observing the emergent properties of the system (Byrd et al., 2019).
While ABMs have historically required hand-crafting agent behaviors, recent approaches have
shown success in calibrating agents on real market data (Dwarakanath et al., 2024). Our work
contributes to this line of research by enabling the learning of complex market dynamics, which can
serve as a foundation for more sophisticated agent-based modeling.

Early Deep Learning Models The application of deep learning to LOB data was pioneered by
models like DeepLOB (Zhang et al., 2019). These models demonstrated the potential of learning
features directly from data but were typically trained on a subset of instruments. This limits their
ability to learn universal representations across diverse assets and market conditions.

3.2 TRANSFORMERS AND FOUNDATION MODELS IN FINANCE

The success of the Transformer architecture in capturing long-range dependencies has led to its
widespread application in domains ranging from genomics (Ji et al., 2021), to time-series forecast-
ing (Wen et al., 2022), to non-trading areas of finance, such as modeling payment transactions (Ra-
man et al., 2024). More recently, domain-specific foundation models have emerged. A prominent
example is MaRS, a market simulator with a generative foundation model backbone (Li et al., 2024).
While our work builds on many of the design principles established in Li et al. (2024)’s compre-
hensive framework, TradeFM distinguishes itself in two critical dimensions. First, its pre-training
dataset is explicitly constructed to maximize heterogeneity, covering thousands of assets across
multiple sectors and a wide spectrum of liquidity regimes. This is essential for learning truly uni-
versal market representations. Second, and more fundamentally, TradeFM addresses cross-asset
generalization at the feature level, engineering features to ensure that the model learns representa-
tions that are directly comparable across all assets.

4 PROBLEM FORMULATION

We formulate the task of modeling market microstructure as a generative, autoregressive sequence
modeling problem. Let the market dynamics be represented by a sequence of discrete trade events,
E = (e1, e2, . . . , eT). The objective is to learn the conditional probability distribution P (et|e<t),
where e<t denotes the sequence of all events preceding et. By learning this distribution, the model
can generate realistic sequences of future trade events, effectively simulating the market’s evolution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 TRADE EVENT REPRESENTATION

A single trade event et is a multi-feature tuple capturing the state of the market at the moment
of a transaction. Formally, an event is represented as et = (∆tt, δpt, vt, at, st), where the core
features are: ∆tt: Interarrival time since the previous event (seconds); δpt: Price depth of the
transaction (basis points); vt: Volume of the transaction (shares); at: The action/order type (e.g.,
limit, cancellation); st: The side of the initiating order (buy/bid or sell/ask). The distributions of
these features are depicted in Fig. 1.

4.2 KEY TECHNICAL CHALLENGES

Modeling this data stream presents several key challenges inherent to high-frequency markets: the
Heterogeneity and Distribution Shift across thousands of assets and varying time periods; the
Sparsity and Irregularity of the asynchronous event stream; the Partial Observability of the
true market state from transaction data; and a High-Dimensional, Multi-Modal Feature Space
combining continuous and categorical values.

5 DATA AND FEATURE ENGINEERING

Our methodology is designed to process raw, heterogeneous transaction data at scale and transform
it into a standardized format suitable for a generative foundation model. This pipeline consists of
data curation, robust feature engineering, and a novel tokenization scheme.

5.1 DATA SOURCES AND SCALE

The model is pre-trained on a proprietary dataset built from billions of raw, tick-level US equities
transactions, spanning 368 trading days from February 2024 to September 2025, across 9,172 unique
assets. This represents over 19 billion tokens across 1.9 million date-asset pairs. We employ a
temporal hold-out strategy, reserving January 2025 onward across all assets for the test set, yielding
a training set of 10.7 billion tokens and a test set of 8.7 billion tokens. The tokenizer is calibrated on
the first 30 days of the training data, February 2024. For evaluating out-of-distribution generalization
we also hold out one month of data from APAC regions, namely Jan. 2025, for both Japan and China.

5.2 MID-PRICE ESTIMATION

A robust estimate of the true market mid-price (pmid
t) is critical for normalizing price-related features.

In our partial-information setting, we estimate this from the observed stream of transaction execution
prices (pexec

t). Naive approaches like simple rolling average of execution prices are insufficient, as a
fixed-width window (e.g., 50 trades) is not comparable across assets with different liquidity levels.
Time-based windows (e.g., 2 seconds) can help, but still fail to account for trade volume.

The conventional solution is the Volume-Weighted Average Price (VWAP) (Berkowitz et al., 1988).
To make this estimator more reactive to recent information, we introduce Exponentially-Weighted
Volume-Weighted Average Price (EW-VWAP). This is calculated by maintaining separate expo-
nential moving averages (EMAs) for the volume-weighted price and the volume itself. The EW-
VWAP at time t is then the ratio of these two values: p̂EW-VWAP

t = EMA(pexec
t · vt)/EMA(vt). This

serves as our mid-price estimate p̂mid
t .

The smoothing factor α is determined by a time-based halflife, ensuring that the estimate gives more
weight to larger and more recent trades, providing a stable and representative price benchmark.
Further details are in Appendix: Section A.3 and Figure 9.

5.3 SCALE-INVARIANT FEATURE CONSTRUCTION

The statistical properties of trading data vary widely across sectors, liquidity profiles, and nominal
prices. In raw dollar, share, and second terms, price depths, volumes, and interarrival times for
an asset like AAPL may differ greatly from those of a penny stock. Trade representations must
therefore be carefully designed to enforce homogeneity across assets. (Sirignano & Cont, 2021)
posits that with such proper representation, mechanics of price formation are universal and invariant.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To address the challenge of heterogeneity, we construct a set of scale-invariant features from the raw
event data. While price-related features are computed as unit-less ratios, we often refer to them in
terms of basis points (bps) for interpretability, where a ratio of 0.01 corresponds to 100 bps.

• Interarrival Time (∆tt): Wall clock time since the previous event: wt − wt−1, in seconds.

• Log-Transformed Volume (vt): To compress the wide dynamic range of order sizes, which
follow heavy-tailed, power-law distributions (Vyetrenko et al., 2019), we apply a logarithmic
transformation: vt = log(1 + Vt) where Vt is the raw share volume.

• Normalized Price Depth (dt): The depth of a limit order with order price porder
t , relative to the

mid-price: dt =
porder
t −p̂mid

t

p̂mid
t

. This representation is comparable across differently priced assets,
unlike prior work using price depths in ticks.

• Relative Price Level vs. Open (∆pt): To capture intraday market movement, we measure the
current mid-price relative to the day’s opening price (p0): ∆pt =

pmid
t −p0

p0
.

Fig. 8, Appendix A demonstrates distributional stationarity of relative features (vs tick based).
Fig. 14, Appendix D.3 demonstrates the subsequent temporal stability of scale-invariant features.

5.4 DATA COMPOSITION: MARKET AND PARTICIPANT-LEVEL SEQUENCES

In downstream applications, TradeFM can be used to model the behavior of the entire market (e.g.,
for synthetic data generation) or that of individual participants (e.g., for agent-based modeling). To
support this flexibility, our training data includes sequences aggregated at both the market level and
the participant level, with approximately a 1.6:1 market-to-participant ratio at the token level. We
provide the model with a binary indicator feature, IMP , to distinguish between these two contexts.

6 TOKENIZATION

Standard Transformer architectures, as applied in natural language processing, operate on univariate
sequences where each element is a single token from a discrete vocabulary. Our trade event data is a
sequence of multi-feature tuples, each comprising a mix of continuous and categorical values. The
core challenge of tokenization is to map this event stream into a univariate discrete sequence.

6.1 BINNING STRATEGY AND OUTLIER HANDLING

Figure 2: Calibrated bin edges for our hybrid
tokenization scheme. Price features (top) use
quantile-based binning for high resolution near
the mean; volume and time (bottom) use logarith-
mic bins to capture their wide dynamic range.

We discretize each continuous feature by parti-
tioning its distribution into a fixed number of
bins. For price-related features, which have
symmetric but highly peaked distributions, we
employ Equal-Frequency Binning (quantile-
based). This ensures that the bins in the dense
central region of the distribution have a higher
resolution, while still capturing the less fre-
quent values in the tails. For log-transformed
features, like volume and interarrival time, we
use Equal-Width Binning. Applying equal-
width bins to the logarithmic values creates bins
that are effectively logarithmic in the original
feature space, providing a way to represent val-
ues that span multiple orders of magnitude.

This hybrid approach ensures a relatively uni-
form token distribution, preventing the model
from wasting capacity on rare tokens or nearly-
empty bins. Before binning, we exclude out-
liers above the 99th percentile for each feature,
and additionally exclude outliers below the 1st percentile for price depth and price level. We reserve

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

special bins to represent these out-of-range values to prevent the model from allocating excessive
capacity to extremely rare events. We calibrate this tokenizer on the first 30 days of our data.

6.2 MULTI-FEATURE TOKEN COMPOSITION

While our model’s input at each time step is multi-featured, the decoder is trained to predict a single,
unidimensional token, representing the core trade event. Thus, we combine the discrete bin indices
of the trade-related features, (i∆t, iδp, iv, ia, is), into a single composite integer, itrade.

This is accomplished by treating the set of feature indices as digits in a mixed radix (or mixed base)
number system. Each feature’s bin index is a ”digit,” and the number of possible values for the
subsequent features acts as the ”base” at each position. For a concrete example of the encoding
process, see Sec. A.4.

We use the following number of bins for each feature: nδp = 16 for price depth, nv = 16 for
volume, n∆t = 16 for interarrival time, ns = 2 (buy or sell) for side, and na = 2 (add or cancel
order) for action type. The composite trade token itrade, a single integer encoding all constituent
features, is calculated as:

itrade =(ia × ns × nδp × nv × n∆t) + (is × nδp × nv × n∆t)+

(iδp × nv × n∆t) + (iv × n∆t) + i∆t
(1)

This yields a vocabulary size of 16,384 for the predictable trade tokens. The model input at each
time step is a tuple containing this composite token along with several non-predicted features used
for conditioning. These contextual features are provided as separate inputs, and are not part of the
composite trade token itrade calculated in Eq. 1. The contextual features are:

• il: The liquidity bin index (nl = 3), determined by binning each asset into low, medium, or
high liquidity ranges based on its Average Daily Volume (ADV).

• i∆pt
: The price level change bin index (n∆p = 32).

• IMP : A binary indicator for market-level vs. participant-level sequences.

The final input is [itrade, il, i∆pt , IMP]. This formulation allows the model to be conditioned on the
broader market context while focusing its predictive power on the next trade event.

7 TRADEFM ARCHITECTURE

TradeFM is a decoder-only Transformer, trained from scratch with a custom configuration. The
architecture is based on the Llama family and incorporates enhancements including grouped-query-
attention (GQA) and rotary positional encoding (RoPE) (Touvron et al., 2023). Our model size is
524 million parameters, a size chosen based on Chinchilla scaling laws (Hoffmann et al., 2022)
for our dataset size (see Appendix Section B.2 for detailed hyperparameter choices). The model is
trained on 3 Nvidia A100 GPUs; we include detailed training setup details in Appendix Section B.3.

7.1 TABULAR INPUT EMBEDDING

We employ a tabular embedding approach to handle our multi-feature input tokens (as described
in Section 6.2). Each feature in the input tuple [il, IMP , i∆pt

, itrade] is first projected into its own
embedding space using an embedding table. These embedding vectors are concatenated and passed
through a linear projection layer to create a unified representation in the model’s hidden dimension.

8 MARKET SIMULATOR

To evaluate the realism of our generative model, we require an environment that can simulate the
market execution a sequence of predicted trades. We build a lightweight, deterministic simulator tai-
lored to our specific experimental setting. Our simulator serves two critical functions: 1) it provides
the dynamic, state-dependent price level features required by our model during generative rollouts,
and 2) it allows us to test if the model’s generated trade flow can reproduce the well-known stylized
facts of asset returns.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

8.1 DETERMINISTIC DESIGN

Figure 3: The closed-loop simu-
lation architecture. TradeFM pre-
dicts a trade, the Market Simulator
executes it, and the updated market
state is fed back to the model.

The simulator is designed to mimic the core mechanics of a
modern electronic exchange. It maintains a limit order book
(LOB) for an asset, an internal clock, and an estimate of the
market mid-price (the midpoint of the best bid and ask). The
order matching engine employs price-time priority: incom-
ing orders are matched with the best-priced order on the op-
posite side of the book, with ties in price broken by select-
ing the earliest-submitted resting order (Nasdaq Equity Trad-
ing Rules). Before using the simulator to validate our large
trade model, we validate the realism of the simulator itself
via stylized facts discussed in the Appendix, Section D.2.

8.2 THE CLOSED-LOOP ROLLOUT

The simulator creates a closed-loop system where the model
and the environment interact dynamically. This process, which
we term a rollout, is shown in Fig. 3 and proceeds as follows:

1. Prediction: Given a history of market events, TradeFM predicts the next event token, itrade. We
use multinomial sampling with a repetition penalty of 1.2 to decode the token.

2. Execution: The predicted event (e.g., a new order or cancellation) is passed to the simulator,
which executes it against the LOB according to its price-time priority rules.

3. State Update: The simulator updates its internal state, including the LOB and the mid-price.
4. Feedback: The market state is used to generate the contextual features for the next time step,

which are appended to the history and fed back into TradeFM to generate the next prediction.

This recursive loop allows us to generate long, dynamic sequences of market activity. Crucially, it
enables the study of second-order effects like price impact, as the model’s own predictions influence
the market state that conditions its future predictions.

9 EXPERIMENTS

Evaluating generative models of financial markets presents a unique challenge due to the non-
stationary nature of the data. The underlying data-generating process of a market can shift over
time, meaning that simple predictive accuracy (e.g., next-token perplexity) on a static test set may
not be a reliable measure of a model’s true capabilities. Additionally, prices follow random walks,
so there exists no single ”correct” midprice trajectory.

We adopt a more robust evaluation framework by assessing the model’s ability to reproduce the
invariant stylized facts of market behavior. These statistical properties are emergent features of
endogenous market dynamics (Section 2.2). A model that can generate synthetic data exhibiting
these facts has not merely memorized a historical pattern, but has learned the underlying, time-
invariant ”grammar” of the market.

We conduct three experiments to validate our approach. First, we evaluate the model’s realism to
reproduce key stylized facts of asset returns. Second, we perform a rigorous quantitative evaluation
of the distributional fidelity of the generated order flow. Third, we test the model’s ability to
generalize across different market conditions and be controlled by its conditioning features.

Baselines We compare TradeFM against a calibrated Zero-Intelligence (ZI) agent baseline
(Gode & Sunder, 1993; Farmer et al., 2005) to test whether TradeFM learns complex, conditional
market dynamics or merely reproduces the market’s basic structural properties. The ZI agent’s or-
ders are drawn from empirical distributions of key features, and it interacts with the same market
simulator in an identical evaluation pipeline. Additionally, we include a Compound Hawkes base-
line (Bacry et al., 2015; Jain et al., 2024), which models the arrivals of trade events separated by
side and action, and their corresponding volumes and price depths. More details are provided in
Appendix B.6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

∆tr Kolmogorov-Smirnov Wasserstein
ZI Hawkes TradeFM ZI Hawkes TradeFM

10 0.198 0.295 0.064 0.003 0.002 0.001
30 0.255 0.288 0.092 0.007 0.005 0.002
60 0.302 0.262 0.122 0.012 0.009 0.004

120 0.346 0.173 0.145 0.021 0.015 0.008

Table 1: Distances of log return distributions from real, for all methods, across return intervals ∆tr
in seconds. We report Kolmogorov-Smirnov and Wasserstein distances.

Figure 4: TradeFM Model Validation against canonical stylized facts. Simulated returns ex-
hibit: (Left) near-zero autocorrelation, (Middle) slowly decaying autocorrelation of absolute returns
(volatility clustering), and (Right) heavy tails and aggregational Gaussianity.

9.1 EXPERIMENT 1: STYLIZED FACT REPRODUCTION

To validate the realism of the generated market trajectories, we evaluate their ability to reproduce
key stylized facts of log returns (rt,∆t). We generate 10 rollouts of 1,024 events for 9 assets across 3
liquidity tiers, for each of 9 held-out months, conditioned on a context of 1,024 real historical events.
We compute autocorrelations over time lags τ , and evaluate kurtosis over return intervals ∆tr.

Results As summarized in Figure 4 and Table 1, our simulations successfully reproduce the target
stylized facts, demonstrating a close correspondence with real market data. Specifically, we observe:

• Lack of Autocorrelation: The autocorrelation of simulated log returns (left panel) quickly
decays to statistically insignificant levels as the lag τ increases. This is consistent with the
efficient market hypothesis. The ZI baseline exhibits spurious positive autocorrelation.

• Long-Range Dependence: The autocorrelation of absolute log returns (middle panel) decays
slowly, indicating that our model has captured the long-memory nature of volatility clustering.

• Heavy Tails: The kurtosis of simulated returns (right panel) is high for short time scales (∆tr),
confirming the presence of heavy tails. TradeFM significantly outperforms the baselines in
capturing the leptokurtic nature of returns.

• Aggregational Gaussianity: As ∆tr increases, the kurtosis of TradeFM correctly approaches
that of a normal distribution, capturing the reversion towards normality over longer time hori-
zons.

Table 1 provides a quantitative evaluation of the same – the Wasserstein distance (W1) and
Kolmogorov-Smirnov (K-S) statistic between real and generated log return distributions from each
approach. Our method outperforms all baselines in both metrics, across return intervals.

9.2 EXPERIMENT 2: QUANTITATIVE FIDELITY

While reproducing stylized facts confirms that the model captures emergent market dynamics, it does
not assess how well the generated order flow aligns with reality. We conduct a quantitative evaluation
of distributional fidelity, adopting frameworks established in recent benchmarks for generative order

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Quantity Kolmogorov-Smirnov Wasserstein
ZI Hawkes TradeFM ZI Hawkes TradeFM

Spreads 0.400 0.218 0.212 0.375 0.302 0.367
IA Times 0.651 0.515 0.236 0.415 0.626 0.385
OPD 0.436 0.281 0.174 0.390 0.348 0.279
OBI 0.237 0.155 0.142 0.200 0.165 0.113
Bid Vol. 0.460 0.296 0.371 0.616 0.278 0.143
Ask Vol. 0.391 0.380 0.327 0.638 0.198 0.146

Table 2: Mean statistics across months for each quantity – interarrival (IA) times, order price depths
(OPD), orderbook imbalance at the best bid / ask price (OBI), bid / ask volume – and method.

flow models (Nagy et al., 2025). As in the benchmark we mean-variance normalize distributions
before computing Wasserstein distance to make this metric comparable between quantities.

Using the rollouts described in Section 9.1, we compute the Kolmogorov-Smirnov statistic and
Wasserstein distance between real and generated distributions for key microstructure variables, in-
cluding Order Volume, Interarrival Times, Bid-Ask Spreads, and Orderbook Imbalance. This evalu-
ation averages results over 9 assets over 3 liquidity tiers over 9 held-out months. As shown in Table
2, TradeFM achieves consistently lower distance metrics than baseline approaches, demonstrating
superior fidelity in reproducing the statistical properties of market data. We provide detailed results
in Appendix D.3, Figure 16.

9.3 EXPERIMENT 3: GENERALIZATION AND CONTROLLABILITY

Figure 5: Distributions of perplexities across
geographies.

To validate our claim that TradeFM learn a uni-
versal grammar of market microstructure that
generalizes beyond the assets and time periods
seen during training, we perform extensive out-
of-distribution (OOD) evaluations.

Geographic Zero-Shot Generalization We
evaluate the model, trained exclusively on US eq-
uities, on a hold-out set of assets from APAC mar-
kets (China and Japan). We detail these held-
out datasets in Appendix D Table 5. Figure 5
shows the distribution of perplexity scores for one
month of data (held out for all geographies), with
significant overlap between US and APAC. The
minimal degradation in perplexity on unseen mar-
kets confirms TradeFM’s generalization capabili-
ties.

Temporal Robustness Financial markets are non-stationary, with regimes shifting over time. We
evaluate model performance over an extended hold-out period from Jan - Sep 2025, exhibiting
heightened volatility, distinct from the 2024 training set. As detailed in Appendix D.3, Figure 16,
distance metrics remain stable over this 9-month horizon.

Controllability Finally, we verify that the model respects its conditioning tokens and that its out-
put can be reliably steered via the indicator features (IMP and il). We generate 256 context-free
trajectories of 512 tokens each, for every combination of market-participant and liquidity indicators.
We then analyze the statistical properties of the raw generated orders by computing the standard
deviation of volumes and interarrival times for each condition.

Figure 6 shows that modulating the indicator tokens has a significant and intu-
itive effect on the statistical properties of the generated orders with two trends:

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 6: Standard deviation of generated
volumes and interarrival times, conditioned
on liquidity (il) and observation level (IMP).
The model produces distinct order flow,
demonstrating controllable generation.

• The variance of both volume and interarrival
time is consistently higher for market-level
generation than for participant-level, aligned
with the intuition that the aggregate behavior
of an entire market is inherently more volatile
than the behavior of a single participant.

• The model also captures linear relationships be-
tween liquidity and the variance of interarrival
times and volumes.

Collectively, these results demonstrate that TradeFM
has learned a generalizable, conditional model of
market behavior, capable of generating statistically
and contextually appropriate order flow.

10 APPLICATIONS AND EXTENSIONS

Figure 7: Validation of order-level statis-
tics. (Top) Simulated order volumes closely
follow the power-law observed in real data.
(Bottom) Simulated interarrival times match
the exponential distribution of real data.

The successful validation of TradeFM as a high-
fidelity generative model of market microstructure
opens up several avenues for future research and
practical application. We focus here on synthetic
data generation but discuss market simulation, stress
testing, and multi-agent modeling in the Appendix
(Sections D.5 and D.4). The learned latent space
representations of trading data can also be frozen and
used as embeddings for downstream tasks such as
forecasting or trade classification.

10.1 SYNTHETIC DATA GENERATION

TradeFM can serve as a powerful engine for gen-
erating high-fidelity, privacy-preserving synthetic fi-
nancial data. The realism of the generated data is
validated not only at the level of emergent price dy-
namics (Figure 4), but also at the granular level of
individual orders. As shown in Figure 7, the distri-
butions of simulated order volumes and interarrival
times closely match the power-law and exponential distributions observed in real data, respectively.
This high-fidelity generation is valuable for several reasons:

• Backtesting Trading Strategies: Synthetic data allows for the robust testing of trading algo-
rithms against a wide range of plausible market scenarios, reducing the risk of overfitting to a
single historical path (Potluru et al., 2024).

• Augmenting Sparse Datasets: For illiquid assets where historical data is sparse, the model
can be used to generate additional data to facilitate more robust analysis and model training.

• Sharing Privacy-Preserving Data: The model can generate realistic datasets for academic or
public use without revealing sensitive, proprietary transaction information.

11 CONCLUSION

We have shown that the complex, emergent dynamics of financial markets can be learned directly
from raw, heterogeneous order flow. Our end-to-end methodology, which combines a novel scale-
invariant feature representation with a universal tokenization scheme, allows a single generative
Transformer to generalize across thousands of diverse assets without asset-specific calibration.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Bacry, Iacopo Mastromatteo, and Jean-François Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 1(01):1550005, 2015.

Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. Transformers for tabular data representa-
tion: A survey of models and applications. Transactions of the Association for Computational
Linguistics, 11:227–249, 2023.

Stephen A Berkowitz, Dennis E Logue, and Eugene A Noser Jr. The total cost of transactions on
the nyse. The Journal of Finance, 43(1):97–112, 1988.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Jean-Philippe Bouchaud. The endogenous dynamics of markets: price impact and feedback loops.
arXiv preprint arXiv:1009.2928, 2010.

David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides: Towards high-fidelity market
simulation for ai research, 2019.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative
finance, 1(2):223, 2001.

Kshama Dwarakanath, Svitlana Vyetrenko, Peyman Tavallali, and Tucker Balch. Abides-economist:
Agent-based simulation of economic systems with learning agents, 2024.

J Doyne Farmer, Paolo Patelli, and Ilija I Zovko. The predictive power of zero intelligence in
financial markets. Proceedings of the National Academy of Sciences, 102(6):2254–2259, 2005.

Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. arXiv preprint
arXiv:2310.03589, 2023.

Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. Journal of Political Economy, 101
(1):119–137, 1993. ISSN 00223808, 1537534X. URL http://www.jstor.org/stable/
2138676.

Joel Hasbrouck. Empirical market microstructure: The institutions, economics, and econometrics
of securities trading. Oxford University Press, 2007.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Konark Jain, Nick Firoozye, Jonathan Kochems, and Philip Treleaven. Limit order book dynamics
and order size modelling using compound hawkes process, 2024. URL https://arxiv.
org/abs/2312.08927.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics,
37(15):2112–2120, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

11

http://www.jstor.org/stable/2138676
http://www.jstor.org/stable/2138676
https://arxiv.org/abs/2312.08927
https://arxiv.org/abs/2312.08927
https://arxiv.org/abs/2001.08361

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, and Jiang Bian. Mars: a
financial market simulation engine powered by generative foundation model, 2024.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models, 2025. URL https://arxiv.org/abs/2305.16264.

Peer Nagy, Sascha Frey, Kang Li, Bidipta Sarkar, Svitlana Vyetrenko, Stefan Zohren, Ani Calinescu,
and Jakob Foerster. Lob-bench: Benchmarking generative ai for finance–an application to limit
order book data. arXiv preprint arXiv:2502.09172, 2025.

Nasdaq Listing Center Nasdaq Equity Trading Rules. Equity trading rules. URL
https://listingcenter.nasdaq.com/rulebook/nasdaq/rules/Nasdaq%
20Equity%204.

Lucian Pasca. A critical review of the main approaches on financial market dynamics modelling.
Journal of Heterodox Economics, 2(2):151–167, 2015. doi: 10.1515/jheec-2015-0017. URL
https://doi.org/10.1515/jheec-2015-0017.

Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth on compositional generalization in transformer language models, 2024. URL
https://arxiv.org/abs/2310.19956.

Vamsi K. Potluru, Daniel Borrajo, Andrea Coletta, Niccolò Dalmasso, Yousef El-Laham, Elizabeth
Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreačić, Ganapathy
Mani, Saheed Obitayo, Deepak Paramanand, Natraj Raman, Mikhail Solonin, Srijan Sood, Svit-
lana Vyetrenko, Haibei Zhu, Manuela Veloso, and Tucker Balch. Synthetic data applications in
finance, 2024. URL https://arxiv.org/abs/2401.00081.

Natraj Raman, Sumitra Ganesh, and Manuela Veloso. Scalable representation learning for multi-
modal tabular transactions. arXiv preprint arXiv:2410.07851, 2024.

Ethan Ratliff-Crain, Colin M Van Oort, James Bagrow, Matthew TK Koehler, and Brian F Tivnan.
Revisiting cont’s stylized facts for modern stock markets. arXiv preprint arXiv:2311.07738, 2023.

Justin Sirignano and Rama Cont. Universal features of price formation in financial markets: per-
spectives from deep learning. In Machine learning and AI in finance, pp. 5–15. Routledge, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela
Veloso, and Tucker Hybinette Balch. Get real: Realism metrics for robust limit order book market
simulations, 2019. URL https://arxiv.org/abs/1912.04941.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deeplob: Deep convolutional neural networks
for limit order books. IEEE Transactions on Signal Processing, 67(11):3001–3012, 2019.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

12

https://arxiv.org/abs/2305.16264
https://listingcenter.nasdaq.com/rulebook/nasdaq/rules/Nasdaq%20Equity%204
https://listingcenter.nasdaq.com/rulebook/nasdaq/rules/Nasdaq%20Equity%204
https://doi.org/10.1515/jheec-2015-0017
https://arxiv.org/abs/2310.19956
https://arxiv.org/abs/2401.00081
https://arxiv.org/abs/1912.04941

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FOUNDATION MODELS FOR STRUCTURED DATA

Figure 8: Properties of tick-based vs. relative
feature construction for the sample feature ∆pt,
across liquidity profiles. We find that relative fea-
tures generalize better across assets than absolute,
tick-based features.

This work draws inspiration from the suc-
cess of foundation models beyond NLP, in do-
mains with structured sequential data. This
paradigm has been successfully adapted by
treating domain-specific sequences as a form of
”language.” In genomics, for example, models
treat DNA or protein sequences as sentences to
learn fundamental biological patterns (Ji et al.,
2021). For general-purpose time-series fore-
casting, large pre-trained models have demon-
strated strong zero-shot performance on unseen
series (Garza et al., 2023; Zhou et al., 2021).
Similarly, for tabular data, Transformers pre-
trained on a diverse collection of tables can per-
form inference on new, smaller tables without
task-specific fine-tuning (Badaro et al., 2023;
Hollmann et al., 2025). In finance, by fram-
ing order flow as a structured language of mar-
ket events, our approach aligns with this proven
paradigm, arguing for its direct applicability to the unique challenges of financial data.

A.2 THE TRANSFORMER AS A NATURAL FIT

The Transformer architecture is uniquely suited to address these challenges. Its core components
map naturally to the fundamental properties of order flow data:

• Self-Attention: The attention mechanism is designed to capture complex, long-range depen-
dencies within a sequence. This makes it an ideal tool for modeling the long memory and
intricate, non-linear interactions inherent in order flow.

• Sequence-to-Sequence Framework: As an autoregressive, sequence-based model, the Trans-
former inherently handles the asynchronous, event-driven nature of the data, where the time
between events is itself a feature to be learned.

• Adapting to Multi-feature Sequences: While Transformers excel at processing univariate
text, our trade events are multi-feature tuples. A key challenge is thus to effectively discretize
and tokenize these mixed-type features into a processable sequence, which motivates our novel
tokenization and embedding methodology.

We develop an end-to-end methodology to build TradeFM, a generative foundation model for mar-
ket microstructure. The following four sections detail each component of our pipeline: our data
processing and scale-invariant feature engineering (Section 5), our universal tokenization scheme
(Section 6), the TradeFM model architecture (Section 7), and the closed-loop market simulator used
for evaluation (Section 8).

A.3 MID-PRICE ESTIMATION

A robust estimate of the true market mid-price (pmid
t) is critical for normalizing price-related features.

While dedicated market data sources for this exist, they are often expensive. Given our access to
raw transaction data, we seek to estimate this value directly. In our partial-information setting, we
primarily observe the execution prices (pexec

t) for consummated trades. The raw stream of pexec
t is a

noisy version of the true mid-price pmid
t .

A naive approach, such as a simple rolling average of execution prices, is insufficient. A fixed-width
window of trades is not comparable across assets with different liquidity levels; a 50-trade window
may span less than a second for a highly liquid asset but several hours for an illiquid one. A time-
based window (e.g., 2 seconds) is more relevant, but a simple average still fails to account for trade

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Time- Time- Asset Avg. Daily Midprice Action Side Order Vol.
step stamp Vol. (shs) ($) Price ($) (shs)

...
42 09:45:30 AAPL 53,496,022 182.45 ADD BUY 182.44 500
43 09:45:38 AAPL 53,496,022 182.48 ADD SELL 182.50 750
44 09:45:52 AAPL 53,496,022 182.50 CANCEL BUY 182.49 300

...

Table 3: Toy example of trading activity for an imaginary AAPL trade sequence, demonstrating the
multifeature and heterogeneous nature of our data pre-tokenization.

volume. For example, an average that gives equal weight to a 1,000-share trade at $10.00 and a
1-share trade at $9.00 would produce a misleading estimate.

The conventional solution to this problem is the volume-weighted average price (VWAP), which is

p̂VWAP
t =

∑W
i=0 vt−ip

exec
t−i∑W

i=0 vt−i

(2)

To make this estimator more reactive to recent information, we introduce Exponentially-Weighted
Volume-Weighted Average Price (EW-VWAP). This is calculated by maintaining two separate
exponential moving averages (EMAs): one for the volume-weighted price and one for the volume
itself. For each incoming trade with execution price et and volume vt, we update the EMAs for the
numerator (Nt) and denominator (Dt) as follows:

Nt = α · (pexec
t · vt) + (1− α) ·Nt−1

Dt = α · vt + (1− α) ·Dt−1

The EW-VWAP at time t is then the ratio of these two values:

p̂EW-VWAP
t =

Nt

Dt
(3)

The smoothing factor α is determined by a time-based halflife, ensuring that the estimate gives more
weight to larger and more recent trades in a temporally consistent manner. This provides a stable
and representative price benchmark that reflects the price at which the bulk of recent market activity
has occurred.

A.4 TOKENIZATION EXAMPLE

Given the imaginary sequence of trade events et constructed in Table 3, our features for timestep
t = 43 are as follows:

• ∆tt = wt − wt−1 = 09:45:38− 09:45:30 = 8sec

• δpt =
ot−pt

pt
= $182.50−$182.48

$182.48 = $0.02
$182.48 = 0.011% = +1.1bps

• vt = 750shs
• at = Add Order
• st = Sell

Using our calibrated bins, we would discretize these features to the bin indices:

• i∆tt = bin 11

• iδpt
= bin 7

• ivt = bin 7

• iat = bin 0

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 9: Comparison of mid-price estimators across time scales and liquidity levels. Our proposed
EW-VWAP provides a more stable and responsive estimate than standard VWAP or EWM, closely
tracking the executed fill prices across different time scales and liquidity regimes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• ist = bin 1

Using Eq. 1 would yield:

itrade = 6, 011

Assuming an opening price p0 = $179.50, we would have change in price level feature:

∆pt =
pt−p0

p0
= $182.50−$179.50

$179.50 = 0.017% = +1.7bps

Discretizing this using our bins would give i∆pt = 19. Based on the asset’s average daily volume
of 53 million, which falls into the high liquidity bin, our liquidity indicator il would be 2. If this
sequence was a market-level sequence, we would have market-participant indicator IMP = 0.

Our final model input would then be:

[il, IMP , i∆pt
, itrade] = [2, 0, 19, 6011].

B REPRODUCIBILITY GUIDE

B.1 MODEL BACKBONE

TradeFM is a decoder-only Transformer, trained from scratch with a custom configuration. The
architecture is based on the Llama family (Touvron et al., 2023) and incorporates modern enhance-
ments for efficiency and performance, including:

• Grouped-Query Attention (GQA): Balances the performance of Multi-Head Attention with
the reduced memory bandwidth of Multi-Query Attention, enabling faster inference and larger
batch sizes.

• Rotary Position Embeddings (RoPE): Encodes relative positional information by applying a
rotation to query and key vectors, which has been shown to improve generalization for long
sequences.

B.2 MODEL HYPERPARAMETERS AND SCALING

The model size is guided by the Chinchilla scaling laws, which suggest a compute-optimal ratio of
approximately 20 training tokens per model parameter (Kaplan et al., 2020; Hoffmann et al., 2022).
Given our dataset of 10.7 billion tokens, this implies a target model size of around 525 million
parameters. Our final hyperparameters are as follows:

• Context Length: 1,024 tokens

• Hidden Layers: 32

• Embedding Dimension: 1,024

• Intermediate MLP Size: 4,096

• Attention Heads: 32

• Key-Value Heads (GQA): 8 heads, 4 groups

• Total Parameters: 524.4 Million

The 1:4 ratio between the embedding dimension and the intermediate MLP size is chosen in accor-
dance with best practices for Transformer models (Petty et al., 2024).

B.3 TRAINING CONFIGURATION

We train the model on an AWS instance with 3 Nvidia A100 GPUs, each with 80GB of RAM.
All training is performed in fp16 half-precision. To achieve an effective batch size of 4,032, we
use a per-device batch size of 24 and gradient accumulation over 56 steps. For further memory

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model Size Num.
Train Tokens

Batch
Size GPUs Train Time

/ Epoch (hrs) Optimization

125M 2.6B 24 3xA100 17 Accelerate
250M 6.4B 32 4xA10G 29 DeepSpeed
500M 10.7B 24 3xA100 125 Accelerate

Table 4: Training configuration for different model sizes.

Figure 10: Learning curve for TradeFM-500M, reporting the average token negative log likelihood
over the test set constituting Jan. through Sept. 2025 as loss.

optimization and training acceleration, we use the Accelerate library. The model is trained using the
AdamW optimizer with a linear learning rate schedule, a learning rate of 5× 10−5, and 500 steps of
warmup. Following recommendations for training on large datasets (Muennighoff et al., 2025), we
train for a total of 4 epochs.

Due to compute constraints, different model sizes in memory, and different dataset sizes implied by
Chinchilla scaling laws, our training setups vary slightly between model sizes. We summarize these
variations in Table 4.

Figure 11: Out-of-sample Perplexity vs Epochs for all TradeFM models. Epoch 1 represents one
pass over the entire dataset; subsequent training is on repeated data.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.4 TOKENIZER PSEUDOCODE

Algorithm 1 Tokenizer Pseudocode
Input: Flattened trading data with features: price, volume, time, action, side, trader, account
Input: Bin counts: Nprice, Ndepth, Nvolume, Ntime, Nside = 2, Naction = 2

1: for each feature f in {price, depth, volume, time} do
2: Remove NaN and infinite values from f
3: Compute upper outlier threshold u = percentile(f, 99)
4: if feature is double-sided then
5: Compute lower outlier threshold l = percentile(f, 1)
6: Assign values outside [l, u] to lower / upper outlier bins
7: else
8: Assign values above u to upper outlier bin
9: end if

10: if using equal-frequency bins then
11: Compute bin edges Bf using quantile binning with Nf bins
12: else
13: Compute bin edges Bf using histogram binning with Nf bins
14: end if
15: Digitize f into bin indices If using Bf

16: Handle outliers: assign out-of-range values to edge bins as needed
17: end for
18: for each categorical feature c in {action, side, trader, account} do
19: Map each category to a unique integer index Ic
20: end for
21: for each order o in the dataset do
22: for each feature f do
23: if o[f] is NaN then
24: Impute o[f] with a random valid bin index or default value
25: end if
26: end for
27: Compute token index for o:
28: To = Iaction ×Nside ×Ndepth ×Nvolume ×Ntime
29: +Iside ×Ndepth ×Nvolume ×Ntime
30: +Idepth ×Nvolume ×Ntime
31: +Ivolume ×Ntime
32: +Itime
33: Assign To to order o
34: end for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.5 MARKET SIMULATION PSEUDOCODE

Algorithm 2 Market Simulator: Part 1 - Initialization and Utilities
Input: Sequence of order transactions, initial price p0, simulation parameters

1: Initialize Exchange:
2: Set initial price p0
3: Initialize order book, midprice, fills, deletes, spreads, bid/ask volumes

4: Function: INITIALIZEORDERBOOK(order columns)
5: Reset order book, midprice, fills, deletes, spreads, bid/ask volumes
6: Set initial bid/ask to p0

7: Function: GETORDERPRICE(transaction)
8: if order is market then
9: if side is Sell then

10: price← lowest ask
11: else
12: price← highest bid
13: end if
14: else
15: price← (order price depth / 10,000) × current midprice + current midprice
16: end if
17: Return price

18: Function: GENERATEFILL(best past order, order, quantity)
19: Compute time since best past order
20: Determine match price:
21: if both orders are market then
22: price← current midprice
23: else if order is market then
24: price← best past order price
25: else if best past order is market then
26: price← order price
27: else
28: price← best past order price
29: end if
30: Return fill record with IDs, sides, prices, depths, volume, time delta

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 Market Simulator: Part 2 - Simulation Step Functions
31: Function: STEPORDERBOOK(order)
32: Extract side and price from order
33: while order volume > 0 do
34: if side is Sell then
35: Find matching Buy orders with price ≥ order price
36: else
37: Find matching Sell orders with price ≤ order price
38: end if
39: if no matching orders then
40: break
41: end if
42: Select best matching order (highest bid or lowest ask)
43: if best past order volume > order volume then
44: Reduce best past order volume by order volume
45: Record fill and return
46: else if best past order volume < order volume then
47: Reduce order volume by best past order volume
48: Remove best past order from book
49: Record fill
50: else
51: Record fill
52: Remove best past order from book
53: return
54: end if
55: end while
56: if order volume > 0 then
57: Add partially filled order to book
58: end if
59: Function: STEPMIDPRICE(transaction)
60: if transaction is Delete then
61: Use current order book
62: else
63: Add transaction to temporary order book
64: end if
65: Update highest bid and lowest ask from book
66: Compute midprice as average of highest bid and lowest ask
67: Record midprice and bid/ask volumes

68: Function: STEPSIM(transaction)
69: Update transaction midprice
70: if action is Add then
71: Compute order price
72: Update midprice
73: Step order book
74: else if action is Delete then
75: Match on order ID
76: Remove matching orders and record deletes
77: Update midprice
78: end if
79: Record simulation time for profiling

80: Function: RUNSIMULATION(data)
81: Initialize order book
82: for each transaction in data do
83: StepSim(transaction)
84: end for
85: Return fills and midprice history

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.6 ZERO-INTELLIGENCE BASELINE

The Zero-Intelligence (ZI) agent is a canonical null model used to test whether a model learns
complex, conditional dynamics beyond the market’s basic structural properties (Gode & Sunder,
1993; Farmer et al., 2005). To provide a fair baseline, our ZI agent generates orders stochastically
by sampling from distributions calibrated to match the marginals of key features in a 450-million-
trade sample of the training data.

Specifically, side and action type are sampled from their empirical categorical distributions; interar-
rival time is sampled from a fitted Exponential distribution; order volume from a fitted Exponential
distribution; and price depth is drawn from a Gaussian Mixture Model (GMM).

The resulting ZI agent orders are processed through the identical market simulator and evaluation
pipeline as TradeFM to ensure a direct and fair comparison. We compute 2,048 rollouts of 1,024
events, and compute the same stylized facts.

B.7 COMPOUND HAWKES BASELINE

Hawkes Processes are commonly applied to market data for their ability to robustly model interar-
rival times of self-exciting events (Bacry et al., 2015; Jain et al., 2024). We adopt the Compound
Hawkes model which combines a Hawkes process for modeling interarrival times with empirical
distributions for modeling additional event features like volume and price depth. We use the same
450-million-trade data as is used to train our zero-intelligence baseline, and separate the data based
on action and side.

We then fit a Hawkes process using a sum of exponential kernel, with 4 dimensions, one for each
combination of action and side (buy-delete, buy-add, sell-delete, sell-add). For each of these action-
side combinations we calibrate a Gaussian Mixture Model for price depths, and an Exponential for
volume.

C SCALING ANALYSIS

Figure 12: Scaling law results reporting test loss (negative log likelihood) on held-out data one
month in advance of the training data cutoff. The black dashed line represents the power law fit to
the minimum loss frontier.

To substantiate the Foundation Model claim, we conducted a comprehensive scaling analysis of our
approach. We trained models ∈≈ [125M, 250M, 500M].

Our 500M parameter model is still training, and while currently at an early checkpoint, its per-
formance aligns with our scaling projections. The scaling law plots in Figure 12 demonstrate the
expected power-law relationships between compute, dataset size, and test loss. These plots include
repeated data, as we train for four epochs. We verify this by computing the minimum loss frontier
in terms of both compute and dataset size, and fitting power laws to find that the test loss L(C) with
respect to compute in Flops C, and L(D) with respect to dataset size in tokens D, follow:

L(C) ∝ C−αC ;αC ≈ 0.21

L(D) ∝ D−αD ;αD ≈ 0.19

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

While 500M is small relative to general purpose LLMs (Llama-3 8B, GPT-OSS 20B), it is large for
the Financial Microstructure domain, and similar to other domain-specific models such as MaRS.
Standard SOTA models in this field typically have 10M parameters (e.g., DeepLOB (60K params)
and LOBS5 (6.3 M params)). TradeFM represents a > 50x increase in model capacity over exist-
ing domain-specific baselines.

D EXTENDED EXPERIMENTAL RESULTS

D.1 DATASET DETAILS

Table 5 contains details on the various held-out datasets used for evaluation.

Country Number of Assets Date-Asset Pairs Tokens
US 6,885 81,203 857,017,219
China 4,926 68,925 37,408,529
Japan 2,932 37,235 286,476,052

Table 5: Dataset statistics for US, China, and Japan held-out data. All geographies are evaluated on
Jan. 2025 data.

D.2 SIMULATOR VALIDATION

In order to evaluate the simulator, we replay sequences of real orders through it and compare the
statistical properties of the resulting simulated trade fills against the real fills from our historical
data. We focus on two key metrics: the cumulative distribution function (CDF) of fill volumes and
the CDF of lot counts (the number of discrete fills required to complete a single order). As shown in
Figure 13, we find a strong correspondence between the real and simulated distributions across assets
of varying liquidity, confirming that our simulator is a high-fidelity environment for evaluation. We
find correlations of 0.91 and 0.98 between sim and real volumes and lot counts, respectively.

Figure 13: Stylized facts of market simulator fills: (left) fill volumes; (right) lot counts, or number
of separate fills taken to fulfill an order. We see good correspondence between simulated and actual
fills, with a correlation of 0.91 for volumes and 0.98 for lot counts, respectively.

D.3 TEMPORAL DRIFT

As financial markets are dynamic and market regimes are constantly changing, we investigate the
tendency of model performance to drift over time. Our tokenizer’s main contribution is to standard-
ize representations of market features over both the liquidity and time regime.

In Fig. 14 we demonstrate the universality of these features by exploring the distribution of our
relative price level, relative price depth, interarrival time, and volume features in both the month
used to calibrate our tokenizer, Feb. 2024, and one year later in Feb. 2025. We observe that our
features are stationary over this period even as volatility, price level, and other market conditions
vary. Fig. 15 shows the Kolmogorov-Smirnov and Wasserstein distance of each of these features
between the tokenizer calibration month and each of 9 held-out months. We include a non-stationary
feature, raw midprice, to contextualize the stationarity of these metrics.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 14: Kernel-density estimation of feature distributions from the tokenizer calibration period of
Feb. 2024 to one year later in Feb. 2025. Our feature engineering successfully makes these features
stationary over time, allowing our model to generalize to out of distribution temporal regimes.

Figure 15: Kolomogorov-Smirnov and Wasserstein distances between distributions of our features
during our tokenizer calibration month and held-out months. We include raw midprice, a non-
stationary feature, for context.

In Fig. 16 we extend the aggregated results in Table 2 for all quantities of interest. We observe that
while these metrics do vary within a range, the variance is small and our method mostly achieves
higher fidelity than baselines.

D.4 MARKET SIMULATION & STRESS TESTING

The integrated TradeFM-simulator system functions as a high-fidelity environment for complex
”what-if” analyses and stress testing. This allows for the study of systemic risk and market sta-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 16: Wasserstein distance and Kolmogorov-Smirnov statistic of feature distributions and
emergent market factors from various methods over nine held-out months.

bility in a controlled environment. The ability to generate plausible, multi-step forecasts of future
market trajectories, as illustrated in Figure 17, is a direct outcome of this closed-loop simulation
capability.

Such systems are also useful to regulators and risk managers (Dwarakanath et al., 2024), who can
use this system to simulate the market’s response to extreme or counterfactual scenarios, such as
by injecting large, anomalous orders into a historical context and observing the resulting price tra-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 17: Multi-step mid-price forecast generated via rollouts for an imaginary asset initially priced
at $100. The average trajectory and 50% confidence interval over 256 simulations show the model
generates plausible, non-stationary market paths.

jectory. Fig. 18 demonstrates this capability – for a sample asset, we artificially inject buy or sell
orders at 10x the frequency found in the real context, and average midprice forecasts over 10 roll-
outs. When we inject artificial sell orders, the midprice drops, and when we inject buy orders, the
midprice rises, illustrating realistic behavior.

Figure 18: Stress testing via counterfactual simulation. The model’s generated price path responds
realistically to injected anomalous order flow (10x normal frequency), demonstrating its utility for
impact analysis.

D.5 MULTI-AGENT MODELING & RL FINE-TUNING

Our system provides a high-fidelity, interactive environment for training and evaluating sophisti-
cated, learning-based agents. The pre-trained TradeFM can serve as a realistic ”background” market,
generating plausible and reactive counterparty order flow. This creates a dynamic training ground
for:

• Reinforcement Learning (RL) for Optimal Execution: RL agents can be trained to learn op-
timal strategies for executing large orders by interacting with the simulated market, minimizing
costs such as price impact and the bid-ask spread.

• Multi-Agent Systems (MAS): The simulator can be populated with multiple, heterogeneous
learning-based agents to study the emergent, collective behaviors and potential instabilities that
arise from their interactions. The participant-level conditioning of our model provides a natural
and powerful mechanism for initializing and fine-tuning diverse agent policies within such a
system.

25

	Introduction
	Background
	The Mechanics of Modern Electronic Markets
	Stylized Facts as Emergent Properties

	Related Work
	Market Microstructure and Order-flow Modeling
	Transformers and Foundation Models in Finance

	Problem Formulation
	Trade Event Representation
	Key Technical Challenges

	Data and Feature Engineering
	Data Sources and Scale
	Mid-Price Estimation
	Scale-Invariant Feature Construction
	Data Composition: Market and Participant-Level Sequences

	Tokenization
	Binning Strategy and Outlier Handling
	Multi-Feature Token Composition

	TradeFM Architecture
	Tabular Input Embedding

	Market Simulator
	Deterministic Design
	The Closed-Loop Rollout

	Experiments
	Experiment 1: Stylized Fact Reproduction
	Experiment 2: Quantitative Fidelity
	Experiment 3: Generalization and Controllability

	Applications and Extensions
	Synthetic Data Generation

	Conclusion
	Appendix
	Foundation Models for Structured Data
	The Transformer as a Natural Fit
	Mid-Price Estimation
	Tokenization Example

	Reproducibility Guide
	Model Backbone
	Model Hyperparameters and Scaling
	Training Configuration
	Tokenizer Pseudocode
	Market Simulation Pseudocode
	Zero-Intelligence Baseline
	Compound Hawkes Baseline

	Scaling Analysis
	Extended Experimental Results
	Dataset Details
	Simulator Validation
	Temporal Drift
	Market Simulation & Stress Testing
	Multi-Agent Modeling & RL Fine-Tuning

