Under review as a conference paper at ICLR 2026

TRADEFM: A GENERATIVE FOUNDATION MODEL FOR
TRADE-FLOW AND MARKET MICROSTRUCTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning generalizable representations from the high-frequency, heterogeneous
event streams of financial markets is a significant challenge. We introduce
TradeFM, a foundation model that learns the universal dynamics of market mi-
crostructure. Pre-trained on billions of equities transactions, TradeFM uses a
novel scale-invariant feature representation and a universal tokenization scheme to
form a unified representation, enabling generalization without asset-specific cali-
bration. We validate the quality of the learned representations by demonstrating
that model-generated rollouts in a closed-loop simulator successfully reproduce
canonical stylized facts of financial returns. We robustly evaluate the model’s
ability to generalize to temporally and geographically out of sample data, as well
as its ability to match real distributions of quantities like log returns and spreads.
TradeFM provides a high-fidelity engine for synthetic data generation and down-
stream agent-based modeling.

1 INTRODUCTION

Financial markets are complex systems characterized by high-frequency, non-stationary, endoge-
nous dynamics, driven by interactions of participants (Bouchaud, [2010). The fundamental driver of
this process is order/trade-flow, the sequence of buy and sell orders submitted to the market (Sirig-
nano & Cont, |2021). Modeling this process is a formidable challenge due to the heterogeneity of
market participants, the asynchronous nature of transaction data, and the dramatic shifts in statistical
properties across different assets and time periods (Pascal, 2015)).

While traditional approaches often build asset-specific models, there is strong evidence for universal
features in price formation that generalize across diverse markets. |[Sirignano & Cont| (2021)) demon-
strated that a single deep learning model trained on pooled data from a diverse set of stocks can
significantly outperform asset-specific models. This provides the core motivation for our work: to
build a foundation model that learns generalizable representations of market mechanics directly
from raw, multi-asset order flow data.

We leverage the Transformer architecture, whose success in capturing long-range dependencies has
been proven by Large Language Models (LLMs) that learn general-purpose representations from
vast, diverse datasets (Vaswani et al., 2017; Bommasani et al., [2021). By treating the stream of
multi-featured trade events as a structured sequence, we apply these powerful sequence modeling
techniques to the financial domain.

The contributions of this paper are fourfold:

1. TradeFM: We introduce TradeFM, a large-scale, decoder-only generative Transformer for
market microstructure, pre-trained on billions of transactions from a diverse set of equities
to learn a unified representation of trade-flow dynamics.

2. Learning from Partial Observations: A core design principle of our work is learning
from a partially observed market state. This reflects the realistic, incomplete information
available to any single market participant and enhances the model’s practical applicability.

3. Scale-Invariant Representation and Tokenization: We present an end-to-end method-
ology for processing raw, high-frequency data, including a scale-invariant feature repre-

Under review as a conference paper at ICLR 2026

sentation and a lightweight universal tokenization strategy that enables a single model to
generalize across diverse assets and liquidity regimes without asset-specific calibration.

4. Closed-Loop Market Simulation: We integrate the pre-trained TradeFM with a deter-
ministic market simulator, creating a high-fidelity, closed-loop environment for generating
realistic market rollouts, studying second-order effects like market impact, interactive fine-
tuning, and training learning-based agents.

2 BACKGROUND

2.1 THE MECHANICS OF MODERN ELECTRONIC MARKETS

To provide context for a general AI/ML audience, we briefly introduce the core concepts of market
microstructure fundamental to this work, which are standard features of modern electronic mar-
kets (Hasbrouck, 2007]).

Financial markets are predominantly organized around a Limit Order Book (LOB), a real-time
record of all outstanding orders for a security that functions as a continuous, double-sided auction.
It consists of a bid (buy) side and an ask (sell) side; the midpoint between highest bid and the lowest
ask is an asset’s midprice. The ease with which an asset can be bought or sold quickly at a stable
price is the asset’s liquidity.

Market participants interact with the LOB through a sequence of actions, collectively known as
order flow. Participants may submit limit orders with a specific price limit, which sit on the book
waiting to be matched. The distance between the order price and the midprice is the price depth,
quoted in ticks (the minimum price increment, typically $0.01) or basis points (0.01% of the price).
They may also submit market orders for immediate execution against resting limit orders starting at
the best bid/ask, and cancellations to withdraw resting orders. When an incoming order is matched
with a resting one, a fill (or trade execution) occurs. This matching process is generally governed by
a deterministic price-time priority algorithm, where orders are first prioritized by price and then by
time of submission. These elements and mechanisms constitute market microstructure.

2.2 STYLIZED FACTS AS EMERGENT PROPERTIES

The strategic interactions of market participants give rise to endogenous market dynamics
(Bouchaud, 2010). These dynamics, in turn, give rise to universal and persistent statistical prop-
erties known as stylized facts. These facts are observed across a wide range of assets, markets, and
time periods, and serve as a crucial benchmark for the realism of any generative market model (Cont,
20015 Ratliff-Crain et al.| 2023). Key stylized facts include:

* Heavy-Tailed Returns: The distribution of price returns is leptokurtic (heavy-tailed). This
means that extreme price movements occur far more frequently than would be predicted by a
Gaussian distribution, a critical consideration for risk management.

* Volatility Clustering: Price volatility is not constant. Periods of high volatility tend to be
followed by more high volatility, and periods of calm tend to be followed by calm. This is
observed as a positive and slowly decaying autocorrelation in measures of volatility, such as
squared or absolute returns.

¢ Lack of Autocorrelation in Returns: Consistent with the efficient market hypothesis, asset
prices are considered to follow a random walk. Consequently, the autocorrelation of asset
returns is statistically insignificant beyond very short time lags.

3 RELATED WORK

The modeling of market microstructure has evolved from explicit, theory-driven formulations to-
ward implicit, data-driven representation learning. Our work continues this trajectory, positioning
a generative foundation model as the natural next step to learn universal market dynamics directly
from raw, heterogeneous data.

Under review as a conference paper at ICLR 2026

Price Depth &p Change in Price Level Ap; Volume v Interarrival Time At
80
1.50 4 0.6 4

®
=]

— Low
1.254 0.5 4 —— Med.

60 oh
1.00 0.4 Hig
401 0.75 A 0.3
’ 0.50 0.2
] 204
7 0-251 0.14 \
01 01 0.00 0.0

-0.01 0.00 0.01 -0.02 0.00 0.02 0 500 1000 0 2 4 6
Price Depth [Relative] Price Level [Relative] Volume [shs] Interarrival Time [secs]

Density [log]
N o
o o

N
o

Figure 1: Canonical distributions for core trade features, conditioned on liquidity. Price features are
leptokurtic (Laplace); volume follows a heavy-tailed power-law; and interarrival time is exponential.

3.1 MARKET MICROSTRUCTURE AND ORDER-FLOW MODELING

Classical Stochastic Models A significant body of literature models order arrival times using
point processes, such as Hawkes processes, to capture the self-exciting nature of order flow (Bacry
et al., 2015). More sophisticated approaches like Compound Hawkes processes have also been
proposed, which combine Hawkes-processes to model interarrival times with other fitted empirical
distributions to model additional features like volumes and price depths (Jain et al.| [2024)). While
providing strong theoretical grounding, these models rely on specific parametric assumptions (e.g.,
Gaussianity) that are unable to capture the heavy-tailed nature of market returns.

Agent-Based Models Agent-based models simulate market dynamics by defining the behavior of
individual participants and observing the emergent properties of the system (Byrd et al., [2019).
While ABMs have historically required hand-crafting agent behaviors, recent approaches have
shown success in calibrating agents on real market data (Dwarakanath et al., 2024). Our work
contributes to this line of research by enabling the learning of complex market dynamics, which can
serve as a foundation for more sophisticated agent-based modeling.

Early Deep Learning Models The application of deep learning to LOB data was pioneered by
models like DeepLOB (Zhang et al., |2019). These models demonstrated the potential of learning
features directly from data but were typically trained on a subset of instruments. This limits their
ability to learn universal representations across diverse assets and market conditions.

3.2 TRANSFORMERS AND FOUNDATION MODELS IN FINANCE

The success of the Transformer architecture in capturing long-range dependencies has led to its
widespread application in domains ranging from genomics (Ji et al.| 2021]), to time-series forecast-
ing (Wen et al.,[2022), to non-trading areas of finance, such as modeling payment transactions (Ra-
man et al., 2024). More recently, domain-specific foundation models have emerged. A prominent
example is MaRS, a market simulator with a generative foundation model backbone (Li et al.,[2024).
While our work builds on many of the design principles established in |Li et al.| (2024)’s compre-
hensive framework, TradeFM distinguishes itself in two critical dimensions. First, its pre-training
dataset is explicitly constructed to maximize heterogeneity, covering thousands of assets across
multiple sectors and a wide spectrum of liquidity regimes. This is essential for learning truly uni-
versal market representations. Second, and more fundamentally, TradeFM addresses cross-asset
generalization at the feature level, engineering features to ensure that the model learns representa-
tions that are directly comparable across all assets.

4 PROBLEM FORMULATION

We formulate the task of modeling market microstructure as a generative, autoregressive sequence
modeling problem. Let the market dynamics be represented by a sequence of discrete trade events,
E = (e1,eq,...,er). The objective is to learn the conditional probability distribution P(e;|e<t),
where e, denotes the sequence of all events preceding e;. By learning this distribution, the model
can generate realistic sequences of future trade events, effectively simulating the market’s evolution.

Under review as a conference paper at ICLR 2026

4.1 TRADE EVENT REPRESENTATION

A single trade event e; is a multi-feature tuple capturing the state of the market at the moment
of a transaction. Formally, an event is represented as e; = (Aty, dpy, vy, a, s¢), where the core
features are: At;: Interarrival time since the previous event (seconds); dp;: Price depth of the
transaction (basis points); v;: Volume of the transaction (shares); a;: The action/order type (e.g.,
limit, cancellation); s;: The side of the initiating order (buy/bid or sell/ask). The distributions of
these features are depicted in Fig. [T}

4.2 KEY TECHNICAL CHALLENGES

Modeling this data stream presents several key challenges inherent to high-frequency markets: the
Heterogeneity and Distribution Shift across thousands of assets and varying time periods; the
Sparsity and Irregularity of the asynchronous event stream; the Partial Observability of the
true market state from transaction data; and a High-Dimensional, Multi-Modal Feature Space
combining continuous and categorical values.

5 DATA AND FEATURE ENGINEERING

Our methodology is designed to process raw, heterogeneous transaction data at scale and transform
it into a standardized format suitable for a generative foundation model. This pipeline consists of
data curation, robust feature engineering, and a novel tokenization scheme.

5.1 DATA SOURCES AND SCALE

The model is pre-trained on a proprietary dataset built from billions of raw, tick-level US equities
transactions, spanning 368 trading days from February 2024 to September 2025, across 9,172 unique
assets. This represents over 19 billion tokens across 1.9 million date-asset pairs. We employ a
temporal hold-out strategy, reserving January 2025 onward across all assets for the test set, yielding
a training set of 10.7 billion tokens and a test set of 8.7 billion tokens. The tokenizer is calibrated on
the first 30 days of the training data, February 2024. For evaluating out-of-distribution generalization
we also hold out one month of data from APAC regions, namely Jan. 2025, for both Japan and China.

5.2 MID-PRICE ESTIMATION

A robust estimate of the true market mid-price (p{') is critical for normalizing price-related features.
In our partial-information setting, we estimate this from the observed stream of transaction execution
prices (p7**°). Naive approaches like simple rolling average of execution prices are insufficient, as a
fixed-width window (e.g., 50 trades) is not comparable across assets with different liquidity levels.
Time-based windows (e.g., 2 seconds) can help, but still fail to account for trade volume.

The conventional solution is the Volume-Weighted Average Price (VWAP) (Berkowitz et al.,[1988).
To make this estimator more reactive to recent information, we introduce Exponentially-Weighted
Volume-Weighted Average Price (EW-VWAP). This is calculated by maintaining separate expo-
nential moving averages (EMAs) for the volume-weighted price and the volume itself. The EW-
VWARP at time ¢ is then the ratio of these two values: pEW VWA = EMA (p&*¢ - v;) JEMA(v;). This
serves as our mid-price estimate p™.

The smoothing factor « is determined by a time-based halflife, ensuring that the estimate gives more
weight to larger and more recent trades, providing a stable and representative price benchmark.
Further details are in Appendix: Section[A.3]and Figure[9]

5.3 SCALE-INVARIANT FEATURE CONSTRUCTION

The statistical properties of trading data vary widely across sectors, liquidity profiles, and nominal
prices. In raw dollar, share, and second terms, price depths, volumes, and interarrival times for
an asset like AAPL may differ greatly from those of a penny stock. Trade representations must
therefore be carefully designed to enforce homogeneity across assets. (Sirignano & Cont, [2021)
posits that with such proper representation, mechanics of price formation are universal and invariant.

Under review as a conference paper at ICLR 2026

To address the challenge of heterogeneity, we construct a set of scale-invariant features from the raw
event data. While price-related features are computed as unit-less ratios, we often refer to them in
terms of basis points (bps) for interpretability, where a ratio of 0.01 corresponds to 100 bps.

¢ Interarrival Time (At;): Wall clock time since the previous event: w; — w;_1, in seconds.

* Log-Transformed Volume (v;): To compress the wide dynamic range of order sizes, which
follow heavy-tailed, power-law distributions (Vyetrenko et al.,|2019), we apply a logarithmic
transformation: v; = log(1 + V;) where V; is the raw share volume.

¢ Normalized Price Depth (d;): The depth of a limit order with order price p‘t’rder, relative to the

order

~mid
— Pt — Dy

mid-price: d; Fr This representation is comparable across differently priced assets,
t

unlike prior work using price depths in ticks.

* Relative Price Level vs. Open (Ap;): To capture intraday market movement, we measure the
Py —po
po

current mid-price relative to the day’s opening price (pg): Ap;

Fig. 8] Appendix [A] demonstrates distributional stationarity of relative features (vs tick based).
Fig.[14] Appendix [D.3|demonstrates the subsequent temporal stability of scale-invariant features.

5.4 DATA COMPOSITION: MARKET AND PARTICIPANT-LEVEL SEQUENCES

In downstream applications, TradeFM can be used to model the behavior of the entire market (e.g.,
for synthetic data generation) or that of individual participants (e.g., for agent-based modeling). To
support this flexibility, our training data includes sequences aggregated at both the market level and
the participant level, with approximately a 1.6:1 market-to-participant ratio at the token level. We
provide the model with a binary indicator feature, I, p, to distinguish between these two contexts.

6 TOKENIZATION

Standard Transformer architectures, as applied in natural language processing, operate on univariate
sequences where each element is a single token from a discrete vocabulary. Our trade event data is a
sequence of multi-feature tuples, each comprising a mix of continuous and categorical values. The
core challenge of tokenization is to map this event stream into a univariate discrete sequence.

6.1 BINNING STRATEGY AND OUTLIER HANDLING

Relative Price Level Ap;

We discretize each continuous feature by parti-

Norm. Price Depth d;
o

tioning its distribution into a fixed number of 9107 *| 0.051

bins. For price-related features, which have * 1 0.00 . e
symmetric but highly peaked distributions, we ~ 0-001 /“"""'(F ' -

employ Equal-Frequency Binning (quantile- ‘ -0.05 -

based). This ensures that the bins in the dense -0.10 (7) 1 % . : s
central region of the distribution have a higher Volume v [shs] Interarrival Time At; [sec]
resolution, while still capturing the less fre- ; ;
quent values in the tails. For log-transformed 10000

features, like volume and interarrival time, we . 507 .
use Equal-Width Binning. Applying equal- 59007 . .
width bins to the logarithmic values creates bins 0 et 0 e
that are effectively logarithmic in the original 0 8 15 0 8 15
feature space, providing a way to represent val- Bin Index Bin Index

ues that span multiple orders of magnitude.

Figure 2: Calibrated bin edges for our hybrid
tokenization scheme. Price features (top) use
quantile-based binning for high resolution near
the mean; volume and time (bottom) use logarith-
mic bins to capture their wide dynamic range.

This hybrid approach ensures a relatively uni-
form token distribution, preventing the model
from wasting capacity on rare tokens or nearly-
empty bins. Before binning, we exclude out-
liers above the 99th percentile for each feature,
and additionally exclude outliers below the st percentile for price depth and price level. We reserve

Under review as a conference paper at ICLR 2026

special bins to represent these out-of-range values to prevent the model from allocating excessive
capacity to extremely rare events. We calibrate this tokenizer on the first 30 days of our data.

6.2 MULTI-FEATURE TOKEN COMPOSITION

While our model’s input at each time step is multi-featured, the decoder is trained to predict a single,
unidimensional token, representing the core trade event. Thus, we combine the discrete bin indices
of the trade-related features, (ia¢, 5p, %v, ta, is), INO a single composite integer, iiade-

This is accomplished by treating the set of feature indices as digits in a mixed radix (or mixed base)
number system. Each feature’s bin index is a “digit,” and the number of possible values for the
subsequent features acts as the base” at each position. For a concrete example of the encoding

process, see Sec.

We use the following number of bins for each feature: ns, = 16 for price depth, n, = 16 for
volume, na; = 16 for interarrival time, ny = 2 (buy or sell) for side, and n, = 2 (add or cancel
order) for action type. The composite trade token .4, a single integer encoding all constituent
features, is calculated as:

Tirade =(fa X Mg X Nsp X Ny X NAt) + (15 X Nop X Ny X NAL)+
(i(;p X My X TLAt) + (’iy X nAt) + 1At

)
This yields a vocabulary size of 16,384 for the predictable trade tokens. The model input at each
time step is a tuple containing this composite token along with several non-predicted features used
for conditioning. These contextual features are provided as separate inputs, and are not part of the
composite trade token i,qe calculated in Eq. E} The contextual features are:

 ¢;: The liquidity bin index (n; = 3), determined by binning each asset into low, medium, or
high liquidity ranges based on its Average Daily Volume (ADV).

* iap,: The price level change bin index (na, = 32).
* Inrp: A binary indicator for market-level vs. participant-level sequences.

The final input iS [iyage, 71, ¢ Ape> I pJ. This formulation allows the model to be conditioned on the
broader market context while focusing its predictive power on the next trade event.

7 TRADEFM ARCHITECTURE

TradeFM is a decoder-only Transformer, trained from scratch with a custom configuration. The
architecture is based on the Llama family and incorporates enhancements including grouped-query-
attention (GQA) and rotary positional encoding (RoPE) (Touvron et al.,[2023). Our model size is
524 million parameters, a size chosen based on Chinchilla scaling laws (Hoffmann et al., [2022)
for our dataset size (see Appendix Section for detailed hyperparameter choices). The model is
trained on 3 Nvidia A100 GPUs; we include detailed training setup details in Appendix Section[B.3]

7.1 TABULAR INPUT EMBEDDING

We employ a tabular embedding approach to handle our multi-feature input tokens (as described
in Section . Each feature in the input tuple [i;, Insp, iap, , iwade] is first projected into its own
embedding space using an embedding table. These embedding vectors are concatenated and passed
through a linear projection layer to create a unified representation in the model’s hidden dimension.

8 MARKET SIMULATOR

To evaluate the realism of our generative model, we require an environment that can simulate the
market execution a sequence of predicted trades. We build a lightweight, deterministic simulator tai-
lored to our specific experimental setting. Our simulator serves two critical functions: 1) it provides
the dynamic, state-dependent price level features required by our model during generative rollouts,
and 2) it allows us to test if the model’s generated trade flow can reproduce the well-known stylized
facts of asset returns.

Under review as a conference paper at ICLR 2026

8.1 DETERMINISTIC DESIGN ' Tra;e'” l
The simulator is designed to mimic the core mechanics of a - Market
modern electronic exchange. It maintains a limit order book Simulator
(LOB) for an asset, an internal clock, and an estimate of the 1 _ i)
market mid-price (the midpoint of the best bid and ask). The Trade. | Price: [2 prjice..
order matching engine employs price-time priority: incom- Trade., | Price., | & i
ing orders are matched with the best-priced order on the op- Trade,, | Price., |&

posite side of the book, with ties in price broken by select- : : : G
ing the earliest-submitted resting order (Nasdaq Equity Trad- —-Fomto e

ing Rules). Before using the simulator to validate our large » &L Trade,, | Price.,
trade model, we validate the realism of the simulator itself _

via stylized facts discussed in the Appendix, Section[D.2]

8.2 THE CLOSED-LOOP ROLLOUT Figure 3: The closed-loop simu-

lation architecture. TradeFM pre-
The simulator creates a closed-loop system where the model dicts a trade, the Market Simulator

and the environment interact dynamically. This process, which executes it, and the updated market
we term a rollout, is shown in Fig. [3]and proceeds as follows: state is fed back to the model.

1. Prediction: Given a history of market events, TradeFM predicts the next event token, #iage. We
use multinomial sampling with a repetition penalty of 1.2 to decode the token.

2. Execution: The predicted event (e.g., a new order or cancellation) is passed to the simulator,
which executes it against the LOB according to its price-time priority rules.

3. State Update: The simulator updates its internal state, including the LOB and the mid-price.

4. Feedback: The market state is used to generate the contextual features for the next time step,
which are appended to the history and fed back into TradeFM to generate the next prediction.

This recursive loop allows us to generate long, dynamic sequences of market activity. Crucially, it
enables the study of second-order effects like price impact, as the model’s own predictions influence
the market state that conditions its future predictions.

9 EXPERIMENTS

Evaluating generative models of financial markets presents a unique challenge due to the non-
stationary nature of the data. The underlying data-generating process of a market can shift over
time, meaning that simple predictive accuracy (e.g., next-token perplexity) on a static test set may
not be a reliable measure of a model’s true capabilities. Additionally, prices follow random walks,
so there exists no single “correct” midprice trajectory.

We adopt a more robust evaluation framework by assessing the model’s ability to reproduce the
invariant stylized facts of market behavior. These statistical properties are emergent features of
endogenous market dynamics (Section [2.2). A model that can generate synthetic data exhibiting
these facts has not merely memorized a historical pattern, but has learned the underlying, time-
invariant ”grammar” of the market.

We conduct three experiments to validate our approach. First, we evaluate the model’s realism to
reproduce key stylized facts of asset returns. Second, we perform a rigorous quantitative evaluation
of the distributional fidelity of the generated order flow. Third, we test the model’s ability to
generalize across different market conditions and be controlled by its conditioning features.

Baselines We compare TradeFM against a calibrated Zero-Intelligence (ZI) agent baseline
(Gode & Sunder, [1993} [Farmer et al.| [2005)) to test whether TradeFM learns complex, conditional
market dynamics or merely reproduces the market’s basic structural properties. The ZI agent’s or-
ders are drawn from empirical distributions of key features, and it interacts with the same market
simulator in an identical evaluation pipeline. Additionally, we include a Compound Hawkes base-
line (Bacry et al., 2015}, Jain et al.| [2024), which models the arrivals of trade events separated by
side and action, and their corresponding volumes and price depths. More details are provided in

Appendix [B.6]

Under review as a conference paper at ICLR 2026

At, Kolmogorov-Smirnov Wasserstein
71 Hawkes TradeFM 71 Hawkes TradeFM

10 | 0.198 0.295 0.064 0.003 0.002 0.001
30 | 0.255 0.288 0.092 0.007 0.005 0.002
60 | 0.302 0.262 0.122 0.012 0.009 0.004
120 | 0.346 0.173 0.145 0.021 0.015 0.008

Table 1: Distances of log return distributions from real, for all methods, across return intervals At,.
in seconds. We report Kolmogorov-Smirnov and Wasserstein distances.

Lack of Autocorrelation Long-Range Dependence Aggregational Gaussianity
1.0 1.00
—o— Real —o— Real 40 —o— Real
j= c
2 Zl 2 0.75 ZI Zl
< 0.5 —8— Hawkes ¢ —e— Hawkes 230 —e— Hawkes
5 —o— TradefM 5 0-30 —o— TradeFM = £ —e— TradeFM
3 0.0 3 2
5 : 5 0.25
< =
o5 0.00
0 50 100 0 50 100 10 30 60 120
Lag T (sec) Lag T (sec) Return Interval At (sec)

Figure 4: TradeFM Model Validation against canonical stylized facts. Simulated returns ex-
hibit: (Left) near-zero autocorrelation, (Middle) slowly decaying autocorrelation of absolute returns
(volatility clustering), and (Right) heavy tails and aggregational Gaussianity.

9.1 EXPERIMENT 1: STYLIZED FACT REPRODUCTION

To validate the realism of the generated market trajectories, we evaluate their ability to reproduce
key stylized facts of log returns (r; o). We generate 10 rollouts of 1,024 events for 9 assets across 3
liquidity tiers, for each of 9 held-out months, conditioned on a context of 1,024 real historical events.
We compute autocorrelations over time lags 7, and evaluate kurtosis over return intervals At,..

Results As summarized in Figure]and Table[T} our simulations successfully reproduce the target
stylized facts, demonstrating a close correspondence with real market data. Specifically, we observe:

e Lack of Autocorrelation: The autocorrelation of simulated log returns (left panel) quickly
decays to statistically insignificant levels as the lag 7 increases. This is consistent with the
efficient market hypothesis. The ZI baseline exhibits spurious positive autocorrelation.

* Long-Range Dependence: The autocorrelation of absolute log returns (middle panel) decays
slowly, indicating that our model has captured the long-memory nature of volatility clustering.

* Heavy Tails: The kurtosis of simulated returns (right panel) is high for short time scales (At,.),
confirming the presence of heavy tails. TradeFM significantly outperforms the baselines in
capturing the leptokurtic nature of returns.

» Aggregational Gaussianity: As At, increases, the kurtosis of TradeFM correctly approaches
that of a normal distribution, capturing the reversion towards normality over longer time hori-
Zons.

Table [1| provides a quantitative evaluation of the same — the Wasserstein distance (W) and
Kolmogorov-Smirnov (K-S) statistic between real and generated log return distributions from each
approach. Our method outperforms all baselines in both metrics, across return intervals.

9.2 EXPERIMENT 2: QUANTITATIVE FIDELITY

While reproducing stylized facts confirms that the model captures emergent market dynamics, it does
not assess how well the generated order flow aligns with reality. We conduct a quantitative evaluation
of distributional fidelity, adopting frameworks established in recent benchmarks for generative order

Under review as a conference paper at ICLR 2026

Quantity Kolmogorov-Smirnov Wasserstein
VA Hawkes TradeFM 71 Hawkes TradeFM

Spreads 0400 0.218 0.212 0.375 0.302 0.367
IA Times | 0.651 0.515 0.236 0415 0.626 0.385
OPD 0436 0.281 0.174 0.390 0.348 0.279
OBI 0.237 0.155 0.142 0.200 0.165 0.113
Bid Vol. | 0.460 0.296 0.371 0.616 0.278 0.143
Ask Vol. | 0.391 0.380 0.327 0.638 0.198 0.146

Table 2: Mean statistics across months for each quantity — interarrival (IA) times, order price depths
(OPD), orderbook imbalance at the best bid / ask price (OBI), bid / ask volume — and method.

flow models (Nagy et al.| [2025). As in the benchmark we mean-variance normalize distributions
before computing Wasserstein distance to make this metric comparable between quantities.

Using the rollouts described in Section 9.1} we compute the Kolmogorov-Smirnov statistic and
Wasserstein distance between real and generated distributions for key microstructure variables, in-
cluding Order Volume, Interarrival Times, Bid-Ask Spreads, and Orderbook Imbalance. This evalu-
ation averages results over 9 assets over 3 liquidity tiers over 9 held-out months. As shown in Table
[2] TradeFM achieves consistently lower distance metrics than baseline approaches, demonstrating
superior fidelity in reproducing the statistical properties of market data. We provide detailed results

in Appendix [D.3] Figure [T

9.3 EXPERIMENT 3: GENERALIZATION AND CONTROLLABILITY

To validate our claim that TradeFM learn a uni- Perplexity Distribution by Geography

versal grammar of market microstructure that 100 4
generalizes beyond the assets and time periods
seen during training, we perform extensive out- 80 1
of-distribution (OOD) evaluations.

Z 604
Geographic Zero-Shot Generalization We 3
evaluate the model, trained exclusively on US eq- E 40
uities, on a hold-out set of assets from APAC mar-
kets (China and Japan). We detail these held- 20 4
out datasets in Appendix [D] Table 5] Figure [3]
shows the distribution of perplexity scores for one ol

month of data (held out for all geographies), with Us N P
significant overlap between US and APAC. The Geography

minimal degradation in perplexity on unseen mar-

kets confirms TradeFM’s generalization capabili- Figure 5: Distributions of perplexities across

ties. geographies.

Temporal Robustness Financial markets are non-stationary, with regimes shifting over time. We
evaluate model performance over an extended hold-out period from Jan - Sep 2025, exhibiting
heightened volatility, distinct from the 2024 training set. As detailed in Appendix [D.3] Figure [T6]
distance metrics remain stable over this 9-month horizon.

Controllability Finally, we verify that the model respects its conditioning tokens and that its out-
put can be reliably steered via the indicator features (/j;p and ¢;). We generate 256 context-free
trajectories of 512 tokens each, for every combination of market-participant and liquidity indicators.
We then analyze the statistical properties of the raw generated orders by computing the standard
deviation of volumes and interarrival times for each condition.

Figure [6] shows that modulating the indicator tokens has a significant and intu-
itive effect on the statistical properties of the generated orders with two trends:

9

Under review as a conference paper at ICLR 2026

* The variance of both volume and interarrival
time is consistently higher for market-level
generation than for participant-level, aligned
with the intuition that the aggregate behavior
of an entire market is inherently more volatile
than the behavior of a single participant.

* The model also captures linear relationships be-
tween liquidity and the variance of interarrival
times and volumes.

Collectively, these results demonstrate that TradeFM
has learned a generalizable, conditional model of
market behavior, capable of generating statistically
and contextually appropriate order flow.

10 APPLICATIONS AND EXTENSIONS

The successful validation of TradeFM as a high-
fidelity generative model of market microstructure
opens up several avenues for future research and
practical application. We focus here on synthetic
data generation but discuss market simulation, stress
testing, and multi-agent modeling in the Appendix
(Sections [D.5] and [D.4). The learned latent space
representations of trading data can also be frozen and
used as embeddings for downstream tasks such as
forecasting or trade classification.

10.1 SYNTHETIC DATA GENERATION

TradeFM can serve as a powerful engine for gen-
erating high-fidelity, privacy-preserving synthetic fi-
nancial data. The realism of the generated data is
validated not only at the level of emergent price dy-
namics (Figure [), but also at the granular level of
individual orders. As shown in Figure [/} the distri-
butions of simulated order volumes and interarrival

Volume v Interarrival Time At
1250 A
Low
I 181 & L)
1200 4 & @ Med.
—_ — High
@ 1150 A § 174
) &
. 1100 I =
4 5
[} 16
Q 1050 + a
bt 5
& 1000 ta 15
950 - [}
14 A [}
900 L T T T T
Market Participant Market Participant

Figure 6: Standard deviation of generated
volumes and interarrival times, conditioned
on liquidity (¢;) and observation level (/57 p).
The model produces distinct order flow,
demonstrating controllable generation.

Order Volume v

— 0
8’ 10 == Real Power Law: a=3.63
= Sim. Power Law: a=2.99
£ 1072
9]
C
9]
o T T T T T T
0 2000 4000 6000 8000 10000
Volume [shs]
_ Interarrival Time At
g
= 107>
>
2
‘@ 1071% { —— Real Exp.: A=0.4803
S Sim. Exp.: A=0.6015
[a] T T T T T
0 20 40 60 80

Interarrival Time [sec]

Figure 7: Validation of order-level statis-
tics. (Top) Simulated order volumes closely
follow the power-law observed in real data.
(Bottom) Simulated interarrival times match
the exponential distribution of real data.

times closely match the power-law and exponential distributions observed in real data, respectively.
This high-fidelity generation is valuable for several reasons:

¢ Backtesting Trading Strategies: Synthetic data allows for the robust testing of trading algo-
rithms against a wide range of plausible market scenarios, reducing the risk of overfitting to a

single historical path (Potluru et al.| 2024)).

* Augmenting Sparse Datasets: For illiquid assets where historical data is sparse, the model
can be used to generate additional data to facilitate more robust analysis and model training.

» Sharing Privacy-Preserving Data: The model can generate realistic datasets for academic or
public use without revealing sensitive, proprietary transaction information.

11 CONCLUSION

We have shown that the complex, emergent dynamics of financial markets can be learned directly
from raw, heterogeneous order flow. Our end-to-end methodology, which combines a novel scale-
invariant feature representation with a universal tokenization scheme, allows a single generative
Transformer to generalize across thousands of diverse assets without asset-specific calibration.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Bacry, Iacopo Mastromatteo, and Jean-Frangcois Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 1(01):1550005, 2015.

Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. Transformers for tabular data representa-
tion: A survey of models and applications. Transactions of the Association for Computational
Linguistics, 11:227-249, 2023.

Stephen A Berkowitz, Dennis E Logue, and Eugene A Noser Jr. The total cost of transactions on
the nyse. The Journal of Finance, 43(1):97-112, 1988.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Jean-Philippe Bouchaud. The endogenous dynamics of markets: price impact and feedback loops.
arXiv preprint arXiv:1009.2928, 2010.

David Byrd, Maria Hybinette, and Tucker Hybinette Balch. Abides: Towards high-fidelity market
simulation for ai research, 2019.

Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative
finance, 1(2):223, 2001.

Kshama Dwarakanath, Svitlana Vyetrenko, Peyman Tavallali, and Tucker Balch. Abides-economist:
Agent-based simulation of economic systems with learning agents, 2024.

J Doyne Farmer, Paolo Patelli, and Ilija I Zovko. The predictive power of zero intelligence in
financial markets. Proceedings of the National Academy of Sciences, 102(6):2254-2259, 2005.

Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. arXiv preprint
arXiv:2310.03589, 2023.

Dhananjay K. Gode and Shyam Sunder. Allocative efficiency of markets with zero-intelligence
traders: Market as a partial substitute for individual rationality. Journal of Political Economy, 101
(1):119-137, 1993. ISSN 00223808, 1537534X. URL http://www. jstor.org/stable/
21386776.

Joel Hasbrouck. Empirical market microstructure: The institutions, economics, and econometrics
of securities trading. Oxford University Press, 2007.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Koérfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319-326, 2025.

Konark Jain, Nick Firoozye, Jonathan Kochems, and Philip Treleaven. Limit order book dynamics
and order size modelling using compound hawkes process, 2024. URL https://arxiv.
org/abs/2312.08927.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics,
37(15):2112-2120, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

11

http://www.jstor.org/stable/2138676
http://www.jstor.org/stable/2138676
https://arxiv.org/abs/2312.08927
https://arxiv.org/abs/2312.08927
https://arxiv.org/abs/2001.08361

Under review as a conference paper at ICLR 2026

Junjie Li, Yang Liu, Weiqing Liu, Shikai Fang, Lewen Wang, Chang Xu, and Jiang Bian. Mars: a
financial market simulation engine powered by generative foundation model, 2024.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models, 2025. URL https://arxiv.org/abs/2305.16264.

Peer Nagy, Sascha Frey, Kang Li, Bidipta Sarkar, Svitlana Vyetrenko, Stefan Zohren, Ani Calinescu,
and Jakob Foerster. Lob-bench: Benchmarking generative ai for finance—an application to limit
order book data. arXiv preprint arXiv:2502.09172, 2025.

Nasdaq Listing Center Nasdaq Equity Trading Rules. Equity trading rules. URL
https://listingcenter.nasdaq.com/rulebook/nasdaqg/rules/Nasdag$%
20Equity%204.

Lucian Pasca. A critical review of the main approaches on financial market dynamics modelling.
Journal of Heterodox Economics, 2(2):151-167, 2015. doi: 10.1515/jheec-2015-0017. URL
https://doi.org/10.1515/Jheec—-2015-0017.

Jackson Petty, Sjoerd van Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth on compositional generalization in transformer language models, 2024. URL
https://arxiv.org/abs/2310.19956.

Vamsi K. Potluru, Daniel Borrajo, Andrea Coletta, Niccoldo Dalmasso, Yousef El-Laham, Elizabeth
Fons, Mohsen Ghassemi, Sriram Gopalakrishnan, Vikesh Gosai, Eleonora Kreaci¢, Ganapathy
Mani, Saheed Obitayo, Deepak Paramanand, Natraj Raman, Mikhail Solonin, Srijan Sood, Svit-
lana Vyetrenko, Haibei Zhu, Manuela Veloso, and Tucker Balch. Synthetic data applications in
finance, 2024. URL https://arxiv.org/abs/2401.00081.

Natraj Raman, Sumitra Ganesh, and Manuela Veloso. Scalable representation learning for multi-
modal tabular transactions. arXiv preprint arXiv:2410.07851, 2024.

Ethan Ratliff-Crain, Colin M Van Oort, James Bagrow, Matthew TK Koehler, and Brian F Tivnan.
Revisiting cont’s stylized facts for modern stock markets. arXiv preprint arXiv:2311.07738, 2023.

Justin Sirignano and Rama Cont. Universal features of price formation in financial markets: per-
spectives from deep learning. In Machine learning and Al in finance, pp. 5—15. Routledge, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Svitlana Vyetrenko, David Byrd, Nick Petosa, Mahmoud Mahfouz, Danial Dervovic, Manuela
Veloso, and Tucker Hybinette Balch. Get real: Realism metrics for robust limit order book market
simulations, 2019. URL https://arxiv.org/abs/1912.04941.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deeplob: Deep convolutional neural networks
for limit order books. IEEE Transactions on Signal Processing, 67(11):3001-3012, 2019.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.

Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

12

https://arxiv.org/abs/2305.16264
https://listingcenter.nasdaq.com/rulebook/nasdaq/rules/Nasdaq%20Equity%204
https://listingcenter.nasdaq.com/rulebook/nasdaq/rules/Nasdaq%20Equity%204
https://doi.org/10.1515/jheec-2015-0017
https://arxiv.org/abs/2310.19956
https://arxiv.org/abs/2401.00081
https://arxiv.org/abs/1912.04941

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 FOUNDATION MODELS FOR STRUCTURED DATA

This work draws inspiration from the suc-

. . Relative Ap; Tick-Based Ap:
cess of foundation models beyond NLP, in do- 80 0.020
mains with structured sequential data. This ' Low
. —— Med.
parad1gm has. been .successfully adapted by = 601 0.015 4 High
treating domain-specific sequences as a formof 2
“language.” In genomics, for example, models 2 407 0.010
c
[
o

treat DNA or protein sequences as sentences to \
learn fundamental biological patterns (Ji et al.| 207 / \ 0.005 +

2021). For general-purpose time-series fore- =

2 & purp 01 0.000 =
casting, large pre-trained models have demon- 000 o2 v %o
Strated Stl‘OIlg ZCrO—ShOt performance on unseen Change in Price Level [Relative] Change in Price Level [Ticks]

series (Garza et al., 2023; |Zhou et al., 2021).
Similarly, for tabular data, Transformers pre-
trained on a diverse collection of tables can per-
form inference on new, smaller tables without
task-specific fine-tuning (Badaro et al., 2023}
Hollmann et al., 2025). In finance, by fram-
ing order flow as a structured language of mar-
ket events, our approach aligns with this proven
paradigm, arguing for its direct applicability to the unique challenges of financial data.

Figure 8: Properties of tick-based vs. relative
feature construction for the sample feature Ap,,
across liquidity profiles. We find that relative fea-
tures generalize better across assets than absolute,
tick-based features.

A.2 THE TRANSFORMER AS A NATURAL FIT

The Transformer architecture is uniquely suited to address these challenges. Its core components
map naturally to the fundamental properties of order flow data:

 Self-Attention: The attention mechanism is designed to capture complex, long-range depen-
dencies within a sequence. This makes it an ideal tool for modeling the long memory and
intricate, non-linear interactions inherent in order flow.

¢ Sequence-to-Sequence Framework: As an autoregressive, sequence-based model, the Trans-
former inherently handles the asynchronous, event-driven nature of the data, where the time
between events is itself a feature to be learned.

* Adapting to Multi-feature Sequences: While Transformers excel at processing univariate
text, our trade events are multi-feature tuples. A key challenge is thus to effectively discretize
and tokenize these mixed-type features into a processable sequence, which motivates our novel
tokenization and embedding methodology.

We develop an end-to-end methodology to build TradeFM, a generative foundation model for mar-
ket microstructure. The following four sections detail each component of our pipeline: our data
processing and scale-invariant feature engineering (Section [3)), our universal tokenization scheme
(Section @, the TradeFM model architecture (Section , and the closed-loop market simulator used
for evaluation (Section).

A.3 MID-PRICE ESTIMATION

A robust estimate of the true market mid-price (p'?) is critical for normalizing price-related features.
While dedicated market data sources for this exist, they are often expensive. Given our access to
raw transaction data, we seek to estimate this value directly. In our partial-information setting, we
primarily observe the execution prices (p**°) for consummated trades. The raw stream of p$**° is a
noisy version of the true mid-price pid.

A naive approach, such as a simple rolling average of execution prices, is insufficient. A fixed-width
window of trades is not comparable across assets with different liquidity levels; a 50-trade window
may span less than a second for a highly liquid asset but several hours for an illiquid one. A time-
based window (e.g., 2 seconds) is more relevant, but a simple average still fails to account for trade

13

Under review as a conference paper at ICLR 2026

Time- Time- Asset | Avg. Daily | Midprice Action Side Order | Vol.
step stamp Vol. (shs))] Price ($) | (shs)

42 09:45:30 | AAPL | 53,496,022 182.45 ADD BUY 182.44 | 500

43 09:45:38 | AAPL | 53,496,022 182.48 ADD SELL 182.50 | 750

44 09:45:52 | AAPL | 53,496,022 182.50 | CANCEL | BUY 182.49 | 300

Table 3: Toy example of trading activity for an imaginary AAPL trade sequence, demonstrating the
multifeature and heterogeneous nature of our data pre-tokenization.

volume. For example, an average that gives equal weight to a 1,000-share trade at $10.00 and a
1-share trade at $9.00 would produce a misleading estimate.

The conventional solution to this problem is the volume-weighted average price (VWAP), which is

144 €Xec
. Vi_s -
AXWAP ZZ:O t Zpt—l (2)

Zz’VZO Ut—i

To make this estimator more reactive to recent information, we introduce Exponentially-Weighted
Volume-Weighted Average Price (EW-VWAP). This is calculated by maintaining two separate
exponential moving averages (EMAs): one for the volume-weighted price and one for the volume
itself. For each incoming trade with execution price e; and volume v;, we update the EMAs for the
numerator (/V;) and denominator (D;) as follows:
Ne=a- (- v)+(1-a) Ny
Dt:a~vt+(1fa)~Dt_1
The EW-VWAP at time ¢ is then the ratio of these two values:
N,
~EW-VWAP t
== 3)
t Dt
The smoothing factor « is determined by a time-based halflife, ensuring that the estimate gives more
weight to larger and more recent trades in a temporally consistent manner. This provides a stable

and representative price benchmark that reflects the price at which the bulk of recent market activity
has occurred.

A.4 TOKENIZATION EXAMPLE

Given the imaginary sequence of trade events e; constructed in Table [3| our features for timestep
t = 43 are as follows:

o Aty = wy — wi—q = 09:45:38 — 09:45:30 = 8sec
o Opy — o=Pr _ SI8250-8182.48 _ $0.02 _ () (11% — 4 1.1bps

Dt $182.48 — $182.48
e v; = 750shs
¢ a; = Add Order
e 5, = Sell

Using our calibrated bins, we would discretize these features to the bin indices:
* ia¢, = bin 1l
hd i5pt =bin7
* iy, =bin7

* ig, = bin 0

14

Under review as a conference paper at ICLR 2026

Day Hour Minute
70 executions 7 executions 5 executions
8.47 ® r 8.47 o EWM
8.6 - — EWM
b 8.46 [] 8.46 1 —— VWAP
z —— EW-VWAP
23 85+
a8 8.45 8.45
o
8.4 8.44 - 8.44 -
1|4 1|7 2'1 OIO 2|9 5|9 1|5 2|1 2I7
2,289 executions 297 executions 10 executions
190 ©
190.0 1
— 189.55 A
71891 89.55 I
So 189.5 1 “
2L 1834 °
o 189.50 -
189.0 1
187 1
189.45 1@
13 17 22 00 30 59 04 14 23
. . 34 executions
42,494 executions 3,438 executions +2.235e2
] 223.8
227
0.10 1
226 223.6
2 0.08
2 | 081
oY 225 223.4 1
T-c
o 224 0.06 -
223.2 1
223
0.04 -
: : r 223.0 1, : : : : :
09 16 23 00 29 59 00 29 58
Time [Hr.] Time [Min.] Time [Sec.]

Figure 9: Comparison of mid-price estimators across time scales and liquidity levels. Our proposed
EW-VWAP provides a more stable and responsive estimate than standard VWAP or EWM, closely
tracking the executed fill prices across different time scales and liquidity regimes.

15

Under review as a conference paper at ICLR 2026

* 45, =binl
Using Eq. [I] would yield:
Lirade = 63 011

Assuming an opening price po = $179.50, we would have change in price level feature:

Apt _ pf,p—gpo — $182$51075.$51079.50 =0.017% = +1.7bps

Discretizing this using our bins would give tap; = 19. Based on the asset’s average daily volume
of 53 million, which falls into the high liquidity bin, our liquidity indicator ¢; would be 2. If this
sequence was a market-level sequence, we would have market-participant indicator I;p = 0.

Our final model input would then be:

[ila Inp, iApt) Z.I;rade] = [2, 0,19, 6011]

B REPRODUCIBILITY GUIDE

B.1 MODEL BACKBONE

TradeFM is a decoder-only Transformer, trained from scratch with a custom configuration. The
architecture is based on the Llama family (Touvron et al.,|2023) and incorporates modern enhance-
ments for efficiency and performance, including:

* Grouped-Query Attention (GQA): Balances the performance of Multi-Head Attention with
the reduced memory bandwidth of Multi-Query Attention, enabling faster inference and larger
batch sizes.

* Rotary Position Embeddings (RoPE): Encodes relative positional information by applying a
rotation to query and key vectors, which has been shown to improve generalization for long
sequences.

B.2 MODEL HYPERPARAMETERS AND SCALING

The model size is guided by the Chinchilla scaling laws, which suggest a compute-optimal ratio of
approximately 20 training tokens per model parameter (Kaplan et al.,2020; Hoffmann et al.| [2022).
Given our dataset of 10.7 billion tokens, this implies a target model size of around 525 million
parameters. Our final hyperparameters are as follows:

¢ Context Length: 1,024 tokens

e Hidden Layers: 32

¢ Embedding Dimension: 1,024

¢ Intermediate MLP Size: 4,006

¢ Attention Heads: 32

* Key-Value Heads (GQA): 8 heads, 4 groups
» Total Parameters: 524.4 Million

The 1:4 ratio between the embedding dimension and the intermediate MLP size is chosen in accor-
dance with best practices for Transformer models (Petty et al., [2024]).

B.3 TRAINING CONFIGURATION

We train the model on an AWS instance with 3 Nvidia A100 GPUs, each with 80GB of RAM.
All training is performed in fp16 half-precision. To achieve an effective batch size of 4,032, we
use a per-device batch size of 24 and gradient accumulation over 56 steps. For further memory

16

Under review as a conference paper at ICLR 2026

. Num. Batch Train Time e e .
Model Size Train Tokens Size GPUs / Epoch (hrs) Optimization
125M 2.6B 24 3xA100 17 Accelerate
250M 6.4B 32 4xA10G 29 DeepSpeed
500M 10.7B 24 3xA100 125 Accelerate

Table 4: Training configuration for different model sizes.

TFM-500M Learning Curves

=
o

=) —— Train
—

8. Test
= 8

C

0]

V4

2 6

>

<

wn 4

7))

o

|

0 2000 4000
Training Step

Figure 10: Learning curve for TradeFM-500M, reporting the average token negative log likelihood
over the test set constituting Jan. through Sept. 2025 as loss.

optimization and training acceleration, we use the Accelerate library. The model is trained using the
AdamW optimizer with a linear learning rate schedule, a learning rate of 5 x 107, and 500 steps of
warmup. Following recommendations for training on large datasets (Muennighoff et al.l [2025), we
train for a total of 4 epochs.

Due to compute constraints, different model sizes in memory, and different dataset sizes implied by
Chinchilla scaling laws, our training setups vary slightly between model sizes. We summarize these
variations in Table @]

104 i Model Size
| — 125M
i 250M
> |
£ ! — 500M
= 103 :
o !
2 i
o
o |
10? |
1

2 3 4
Epochs

Figure 11: Out-of-sample Perplexity vs Epochs for all TradeFM models. Epoch 1 represents one
pass over the entire dataset; subsequent training is on repeated data.

17

Under review as a conference paper at ICLR 2026

B.4 TOKENIZER PSEUDOCODE

Algorithm 1 Tokenizer Pseudocode

Input: Flattened trading data with features: price, volume, time, action, side, trader, account
Inpllt: Bin counts: Nprice’ Ndepth, Nyotumes Niime> Nside = 2, Naction = 2
1: for each feature f in {price, depth, volume, time} do

2: Remove NaN and infinite values from f

3: Compute upper outlier threshold u = percentile(f, 99)

4: if feature is double-sided then

5: Compute lower outlier threshold [= percentile(f, 1)

6: Assign values outside [[, u] to lower / upper outlier bins

7: else

8: Assign values above u to upper outlier bin

9: endif
10: if using equal-frequency bins then
11: Compute bin edges By using quantile binning with Ny bins
12: else
13: Compute bin edges B using histogram binning with Ny bins
14: endif

15: Digitize f into bin indices Iy using By

16: Handle outliers: assign out-of-range values to edge bins as needed
17: end for

18: for each categorical feature ¢ in {action, side, trader, account} do
19: Map each category to a unique integer index I,

20: end for

21: for each order o in the dataset do

22: for each feature f do

23: if o[f] is NaN then

24: Impute o[f] with a random valid bin index or default value
25: end if

26: end for

27: Compute token index for o:
28: To = Iaclion X Nside X Ndepth X Nvolume X Ntime

29: +gde X Ndeplh X Nyolume X Niime
30: +Ideplh X Nyolume X Niime

31: +Lvotume X Ntime

32 +Iime

33: Assign T}, to order o

34: end for

18

Under review as a conference paper at ICLR 2026

B.5 MARKET SIMULATION PSEUDOCODE

Algorithm 2 Market Simulator: Part 1 - Initialization and Utilities

Input: Sequence of order transactions, initial price pg, simulation parameters
1: Initialize Exchange:

Set initial price pg

Initialize order book, midprice, fills, deletes, spreads, bid/ask volumes

Function: INITIALIZEORDERBOOK(order_columns)
Reset order book, midprice, fills, deletes, spreads, bid/ask volumes
Set initial bid/ask to pg

Function: GETORDERPRICE(transaction)
if order is market then
9: if side is Sell then
10: price <— lowest ask
11: else
12: price < highest bid
13: endif
14: else
15: price < (order price depth / 10,000) x current midprice + current midprice
16: end if
17: Return price

A

18: Function: GENERATEFILL (best_past_order, order, quantity)
19: Compute time since best_past_order

20: Determine match price:

21: if both orders are market then

22: price < current midprice

23: else if order is market then

24: price < best_past_order price

25: else if best_past_order is market then

26: price < order price

27: else

28: price < best_past_order price

29: end if

30: Return fill record with IDs, sides, prices, depths, volume, time delta

19

Under review as a conference paper at ICLR 2026

Algorithm 3 Market Simulator: Part 2 - Simulation Step Functions

31: Function: STEPORDERBOOK(order)
32: Extract side and price from order

33: while order volume > 0 do

34: if side is Sell then

35: Find matching Buy orders with price > order price
36: else

37: Find matching Sell orders with price < order price
38: endif

39: if no matching orders then

40: break

41: endif

42: Select best matching order (highest bid or lowest ask)
43: if best_past_order volume > order volume then

44: Reduce best_past_order volume by order volume
45: Record fill and return

46: else if best_past_order volume < order volume then
47: Reduce order volume by best_past_order volume
48: Remove best_past_order from book

49: Record fill

50: else

51: Record fill

52: Remove best_past_order from book

53: return

54: end if

55: end while

56: if order volume > O then

57: Add partially filled order to book
58: end if

59: Function: STEPMIDPRICE(transaction)

60: if transaction is Delete then

61: Use current order book

62: else

63: Add transaction to temporary order book

64: end if

65: Update highest bid and lowest ask from book

66: Compute midprice as average of highest bid and lowest ask
67: Record midprice and bid/ask volumes

68: Function: STEPSIM(transaction)
69: Update transaction midprice

70: if action is Add then

71: Compute order price

72: Update midprice

73: Step order book

74: else if action is Delete then

75: Match on order ID

76: Remove matching orders and record deletes
77: Update midprice

78: end if

79: Record simulation time for profiling

80: Function: RUNSIMULATION(data)
81: Initialize order book

82: for each transaction in data do

83: StepSim(transaction)

84: end for

85: Return fills and midprice history

20

Under review as a conference paper at ICLR 2026

B.6 ZERO-INTELLIGENCE BASELINE

The Zero-Intelligence (ZI) agent is a canonical null model used to test whether a model learns
complex, conditional dynamics beyond the market’s basic structural properties (Gode & Sunder;,
1993} [Farmer et al.l |2005). To provide a fair baseline, our ZI agent generates orders stochastically
by sampling from distributions calibrated to match the marginals of key features in a 450-million-
trade sample of the training data.

Specifically, side and action type are sampled from their empirical categorical distributions; interar-
rival time is sampled from a fitted Exponential distribution; order volume from a fitted Exponential
distribution; and price depth is drawn from a Gaussian Mixture Model (GMM).

The resulting ZI agent orders are processed through the identical market simulator and evaluation
pipeline as TradeFM to ensure a direct and fair comparison. We compute 2,048 rollouts of 1,024
events, and compute the same stylized facts.

B.7 COMPOUND HAWKES BASELINE

Hawkes Processes are commonly applied to market data for their ability to robustly model interar-
rival times of self-exciting events (Bacry et al.| 2015} Jain et al., 2024). We adopt the Compound
Hawkes model which combines a Hawkes process for modeling interarrival times with empirical
distributions for modeling additional event features like volume and price depth. We use the same
450-million-trade data as is used to train our zero-intelligence baseline, and separate the data based
on action and side.

We then fit a Hawkes process using a sum of exponential kernel, with 4 dimensions, one for each
combination of action and side (buy-delete, buy-add, sell-delete, sell-add). For each of these action-
side combinations we calibrate a Gaussian Mixture Model for price depths, and an Exponential for
volume.

C SCALING ANALYSIS

Test Loss vs Flops Test Loss vs Tokens

6 x 10° Model Size 6 x10° Model Size

— 125M — 125M
= 250M 250M
Z 4x10° — 500M | Z 100 —— 500M
()] ()]

[%] %]
S S
3 X 100 < 3 x 100 =
2 10 65 2 10 30
Flops [billions] Tokens [billions]

Figure 12: Scaling law results reporting test loss (negative log likelihood) on held-out data one
month in advance of the training data cutoff. The black dashed line represents the power law fit to
the minimum loss frontier.

To substantiate the Foundation Model claim, we conducted a comprehensive scaling analysis of our
approach. We trained models €~ [125M, 250M, 500M].

Our 500M parameter model is still training, and while currently at an early checkpoint, its per-
formance aligns with our scaling projections. The scaling law plots in Figure [I2] demonstrate the
expected power-law relationships between compute, dataset size, and test loss. These plots include
repeated data, as we train for four epochs. We verify this by computing the minimum loss frontier
in terms of both compute and dataset size, and fitting power laws to find that the test loss L(C') with
respect to compute in Flops C, and L(D) with respect to dataset size in tokens D, follow:

L(C) x C7*¢;ac ~ 0.21
L(D) x D™*P;ap ~ 0.19

21

Under review as a conference paper at ICLR 2026

While 500M is small relative to general purpose LLMs (Llama-3 8B, GPT-OSS 20B), it is large for
the Financial Microstructure domain, and similar to other domain-specific models such as MaRS.
Standard SOTA models in this field typically have 10M parameters (e.g., DeepLOB (60K params)
and LOBSS5 (6.3 M params)). TradeFM represents a > 50z increase in model capacity over exist-
ing domain-specific baselines.

D EXTENDED EXPERIMENTAL RESULTS

D.1 DATASET DETAILS

Table 3] contains details on the various held-out datasets used for evaluation.

Country Number of Assets Date-Asset Pairs Tokens

UsS 6,385 81,203 857,017,219
China 4,926 68,925 37,408,529
Japan 2,932 37,235 286,476,052

Table 5: Dataset statistics for US, China, and Japan held-out data. All geographies are evaluated on
Jan. 2025 data.

D.2 SIMULATOR VALIDATION

In order to evaluate the simulator, we replay sequences of real orders through it and compare the
statistical properties of the resulting simulated trade fills against the real fills from our historical
data. We focus on two key metrics: the cumulative distribution function (CDF) of fill volumes and
the CDF of lot counts (the number of discrete fills required to complete a single order). As shown in
Figure[I3] we find a strong correspondence between the real and simulated distributions across assets
of varying liquidity, confirming that our simulator is a high-fidelity environment for evaluation. We
find correlations of 0.91 and 0.98 between sim and real volumes and lot counts, respectively.
Market Simulator Validation

Real vs. Sim. Fill Volumes Real vs. Sim. Lot Counts

1 —— Real = .01 —_—

Simulation

0.8 1 i

0.6
0.4

0.2 1 —— Real
Simulation

Cumulative Probability
© © o o o =¥
o N =Y o ee] o
———

Cumulative Probability

0.0 1

1 10 100 1.0K 10.0K 5 10 15 20 25
Volume (shares) Number of Fills per Order

o

Figure 13: Stylized facts of market simulator fills: (left) fill volumes; (right) lot counts, or number
of separate fills taken to fulfill an order. We see good correspondence between simulated and actual
fills, with a correlation of 0.91 for volumes and 0.98 for lot counts, respectively.

D.3 TEMPORAL DRIFT

As financial markets are dynamic and market regimes are constantly changing, we investigate the
tendency of model performance to drift over time. Our tokenizer’s main contribution is to standard-
ize representations of market features over both the liquidity and time regime.

In Fig. we demonstrate the universality of these features by exploring the distribution of our
relative price level, relative price depth, interarrival time, and volume features in both the month
used to calibrate our tokenizer, Feb. 2024, and one year later in Feb. 2025. We observe that our
features are stationary over this period even as volatility, price level, and other market conditions
vary. Fig. [T5]shows the Kolmogorov-Smirnov and Wasserstein distance of each of these features
between the tokenizer calibration month and each of 9 held-out months. We include a non-stationary
feature, raw midprice, to contextualize the stationarity of these metrics.

22

Under review as a conference paper at ICLR 2026

Change in Price Level Ap; (W1=0.06) Price Depth 6p (W1=0.10)
40 1 I 2024-02 150 1 I 2024-02
[2025-02 125 4 [2025-02
> 100 -
2
€ 75
[a]
50 -
25 -
0 -
—0.075-0.050-0.025 0.000 0.025 0.050 0.075 -0.04 -0.02 0.00 0.02 0.04
Volume v (W1=0.14) Interarrival Time At (W1=0.08)
0.005 [2024-02 0.5 - [2024-02
[2025-02 [2025-02
0.004 0.4 -
2 2
£0.003 £0.3-
C C
[[
2 0.002 A 0521
0.001 4 0.1 1
0.000 - T T T T T 0.0 - T T T T
0 2000 4000 6000 8000 10000 0 20 40 60 80

Figure 14: Kernel-density estimation of feature distributions from the tokenizer calibration period of
Feb. 2024 to one year later in Feb. 2025. Our feature engineering successfully makes these features
stationary over time, allowing our model to generalize to out of distribution temporal regimes.

0.6 Kolmogorov-Smirnov Statistic 0.6 Wasserstein Distance
' , ' —@— Price Level
/R\ SN\ 8- OPD
0.4 4 =y / N 0.4 8 —@—- Volume
4 A Y \ ° 1 Thee o /& IATIme
o--& | < \ //, ¢ Sor “7 7% _@. Raw Midprice
0.2 ¥ 0.2
0.0 E 0.0 I =
NI IS PR AR NGNS IR PR I
A M A R &P P PP
DT AT AT AT AT AT AT AT DT AT AT AT AT AT AT DT
Month Month

Figure 15: Kolomogorov-Smirnov and Wasserstein distances between distributions of our features
during our tokenizer calibration month and held-out months. We include raw midprice, a non-
stationary feature, for context.

In Fig. [T6 we extend the aggregated results in Table 2] for all quantities of interest. We observe that
while these metrics do vary within a range, the variance is small and our method mostly achieves
higher fidelity than baselines.

D.4 MARKET SIMULATION & STRESS TESTING

The integrated TradeFM-simulator system functions as a high-fidelity environment for complex
“what-if” analyses and stress testing. This allows for the study of systemic risk and market sta-

23

Under review as a conference paper at ICLR 2026

Spreads - K-S Spreads - Wasserstein

0.50
0.5
0.25 W

0.00 e—e—o—o—0—0—0—0—0 0.0 ~e—eo—o—o—o0—0—0—0—o
Interarrival Times - K-S Interarrival Times - Wasserstein
0.5 0.5
0.0 ~0—eo—o—0—0—0—0—0—=o 0.0 ~e—e—o—o—0—0—0—0—=0
Price Depths - K-S Price Depths - Wasserstein
0.50 0.50
0.25 0.25

Orderbook Imbalance - K-S Orderbook Imbalance - Wasserstein
0.2
0.2
0.0 ~o—eo—eo—o—o—o0—o0—0—o 0.0 ~e—e—e—o—o—o0—o0—0—=0
Bid Volumes - K-S Bid Volumes - Wasserstein

00 .__._,,4/'/‘\.—‘\.__.
0.5

02 m

0.00 —o—0—0—0—0—0—0—0 0.0 *—o—0—0—0—0—0—0—0

Ask Volumes - K-S Ask Volumes - Wasserstein

0.4

0.5
0.2 ; ; E
0.0 fe—o—o—0—0—0—0—0—0 0.0

PO T NP S PP PO PN
6{/’) Q’f’o 0,{’0 Qq' 0,{’0 Qrf’o Q’f’o 61‘:0 6{”) 0,{’0 Qrf’o Q Q Qq’ 0’{’0 Qq(? Q’{’o Q,{’O
e R N e S N S P N S A P DS A

Month Month

—8— Real —o— ZI —o— Hawkes —8— TradeFM

Figure 16: Wasserstein distance and Kolmogorov-Smirnov statistic of feature distributions and
emergent market factors from various methods over nine held-out months.

bility in a controlled environment. The ability to generate plausible, multi-step forecasts of future
market trajectories, as illustrated in Figure [T7] is a direct outcome of this closed-loop simulation
capability.

Such systems are also useful to regulators and risk managers (Dwarakanath et al., [2024), who can
use this system to simulate the market’s response to extreme or counterfactual scenarios, such as
by injecting large, anomalous orders into a historical context and observing the resulting price tra-

24

Under review as a conference paper at ICLR 2026

Forecasted Midprice

100.6 50% Confidence Interval

— Average
100.4

=

o

e

[N}
!

100.0 1

99.8 A

Price Level [$]

99.6 -
99.4 -

99.2 A

0 1000 2000 3000 4000 5000 6000 7000 8000
Time [seconds]

Figure 17: Multi-step mid-price forecast generated via rollouts for an imaginary asset initially priced
at $100. The average trajectory and 50% confidence interval over 256 simulations show the model
generates plausible, non-stationary market paths.

jectory. Fig. [I8 demonstrates this capability — for a sample asset, we artificially inject buy or sell
orders at 10x the frequency found in the real context, and average midprice forecasts over 10 roll-
outs. When we inject artificial sell orders, the midprice drops, and when we inject buy orders, the
midprice rises, illustrating realistic behavior.

Forecasted Midprice

110 1 = Real Context Avg.
—— Counterfactual Buy Context Avg.
—— Counterfactual Sell Context Avg.

105 A

Price Level [$]

-

[es] o o o
wv o wv o
) ! 1 !

@
o
L

0 500 1000 1500 2000 2500 3000 3500
Time [seconds]

Figure 18: Stress testing via counterfactual simulation. The model’s generated price path responds
realistically to injected anomalous order flow (10x normal frequency), demonstrating its utility for
impact analysis.

D.5 MULTI-AGENT MODELING & RL FINE-TUNING

Our system provides a high-fidelity, interactive environment for training and evaluating sophisti-
cated, learning-based agents. The pre-trained TradeFM can serve as a realistic ”background” market,
generating plausible and reactive counterparty order flow. This creates a dynamic training ground
for:

* Reinforcement Learning (RL) for Optimal Execution: RL agents can be trained to learn op-
timal strategies for executing large orders by interacting with the simulated market, minimizing
costs such as price impact and the bid-ask spread.

* Multi-Agent Systems (MAS): The simulator can be populated with multiple, heterogeneous
learning-based agents to study the emergent, collective behaviors and potential instabilities that
arise from their interactions. The participant-level conditioning of our model provides a natural
and powerful mechanism for initializing and fine-tuning diverse agent policies within such a
system.

25

	Introduction
	Background
	The Mechanics of Modern Electronic Markets
	Stylized Facts as Emergent Properties

	Related Work
	Market Microstructure and Order-flow Modeling
	Transformers and Foundation Models in Finance

	Problem Formulation
	Trade Event Representation
	Key Technical Challenges

	Data and Feature Engineering
	Data Sources and Scale
	Mid-Price Estimation
	Scale-Invariant Feature Construction
	Data Composition: Market and Participant-Level Sequences

	Tokenization
	Binning Strategy and Outlier Handling
	Multi-Feature Token Composition

	TradeFM Architecture
	Tabular Input Embedding

	Market Simulator
	Deterministic Design
	The Closed-Loop Rollout

	Experiments
	Experiment 1: Stylized Fact Reproduction
	Experiment 2: Quantitative Fidelity
	Experiment 3: Generalization and Controllability

	Applications and Extensions
	Synthetic Data Generation

	Conclusion
	Appendix
	Foundation Models for Structured Data
	The Transformer as a Natural Fit
	Mid-Price Estimation
	Tokenization Example

	Reproducibility Guide
	Model Backbone
	Model Hyperparameters and Scaling
	Training Configuration
	Tokenizer Pseudocode
	Market Simulation Pseudocode
	Zero-Intelligence Baseline
	Compound Hawkes Baseline

	Scaling Analysis
	Extended Experimental Results
	Dataset Details
	Simulator Validation
	Temporal Drift
	Market Simulation & Stress Testing
	Multi-Agent Modeling & RL Fine-Tuning

