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ABSTRACT

Visual data comes in various forms, ranging from small icons of just a few pixels
to long videos spanning hours. Existing multi-modal LLMs usually standardize
these diverse visual inputs to fixed-resolution images or patches for visual encoders
and yield similar numbers of tokens for LLMs. This approach is non-optimal for
multimodal understanding and inefficient for processing inputs with long and short
visual contents. To solve the problem, we propose Oryx, a unified multimodal
architecture for the spatial-temporal understanding of images, videos, and multi-
view 3D scenes. Oryx offers an on-demand solution to seamlessly and efficiently
process visual inputs with arbitrary spatial sizes and temporal lengths through
two core innovations: 1) a pre-trained OryxViT model that can encode images at
any resolution into LLM-friendly visual representations; 2) a dynamic compressor
module that supports 1x to 16x compression on visual tokens by request. These de-
signs enable Oryx to accommodate extremely long visual contexts, such as videos,
with lower resolution and high compression while maintaining high recognition
precision for tasks like document understanding with native resolution and no
compression. Beyond the architectural improvements, enhanced data curation and
specialized training on long-context retrieval and spatial-aware data help Oryx
achieve strong capabilities in image, video, and 3D multimodal understanding
simultaneously.

1 INTRODUCTION

Multi-Modal Large Language Models (MLLMs) have made significant strides in processing and
integrating visual and linguistic inputs to generate coherent and contextually relevant responses.
Proprietary models such as (OpenAI, 2023b; 2024; GeminiTeam, 2024) exemplify the cutting-edge
capabilities of MLLMs. Concurrently, the open-source community is actively advancing MLLMs by
enhancing their ability to understand diverse visual content (Tong et al., 2024; Liu et al., 2024g; Yang
et al., 2023a), including images (Li et al., 2024a; Chen et al., 2024b), videos (Lin et al., 2023a; Cheng
et al., 2024; Qian et al., 2024), and 3D data (Hong et al., 2023), etc. As MLLMs become stronger,
there is a growing need for more general and unified MLLMs that are capable of processing visual
content in more diverse forms and accomplishing more challenging multimodal problems.

One core challenge in the path to achieving more general MLLMs is to develop better visual
representations for diverse visual data. Visual data exhibit significant complexity and diversity,
characterized by variations in collection sources, targeted visual tasks, specific contents, and resolution
qualities. Existing approaches often simply treat all kinds of visual inputs uniformly, overlooking the
variations in visual content and the specific demands of different applications. For example, early
MLLMs (Alayrac et al., 2022; Li et al., 2023; Bai et al., 2023) attempt to standardize these diverse
visual inputs by converting them into a fixed resolution so that pre-trained CLIP encoders can be used
to extract high-quality visual representations that are well aligned with language contents. Recent
advancements in MLLMs (Liu et al., 2024c; Xu et al., 2024b; Yao et al., 2024) extend the idea by
introducing dynamic partitioning (Liu et al., 2024c) as a means to produce high-resolution visual
representations while utilizing the strong CLIP models for encoding. However, the solution remains a
compromise due to the lack of high-quality multi-modal encoders that support native resolution inputs.
Supporting native resolution in an on-demand manner for visual inputs emerges as a more generalized
and effective solution for visual understanding in MLLMs, offering several advantages: it prevents
information loss by utilizing the entire image as input, thereby resolving extreme corner cases, and it
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Oryx
On-demand MLLM

User:	Describe the newspaper I
provided in detail.

Oryx: The title of the newspaper
is The Guardian…
The content of the news is PM
faces revolt on Rwanda…

User:	Howmany pandas are
there in the image?

Oryx: There are two pandas.

On-demand	resolution	for	visual tasks On-demand	compression for temporal lengths

60s

Case	1: Text Retrieval

540 pix

768 pix

Case	2: Object Recognition

1026 pix

1536 pix

Case	3: Frame Localization

User:	In thismatch, which	player	
wins	this	point?

Oryx: From the close-up, Novak	
Djokovic wins this point.

Case	4: Brief Summarization

30 min

User:	What	happened	in	this	
documentary?

Oryx: The	documentary	describes	
the	landscape	in	the	desert…

Native Resolution Preseves More Details

Low Resolution is Sufficient for Efficiency

Low Compression offers Higher Precision

High Compression Supports Longer LengthToken Length: 6144

Token Length: 1584

Tokens per Frame: 225

Tokens per Frame: 20

Figure 1: Our main idea of on-demand multimodal understanding. Different visual data and tasks
may require different input resolutions and compression ratios on visual tokens. Supporting arbitrary
resolution in an on-demand manner for visual inputs emerges as a more general and effective solution
for visual understanding in MLLMs.

enhances efficiency and naturalness, resulting in better overall performance. As illustrated in Figure 1,
optimizing for resolution and compression can lead to greater efficiency and meet practical needs:
high resolution is crucial for text-relevant tasks, while object-level tasks may require only simple
images, some applications may need to summarize extremely long videos while others maintain high
precision for each frame.

In this paper, we explore on-demand MLLMs for comprehensive spatial-temporal understanding by
introducing evolved architectural designs and propose the new Oryx model, which aims to address
these challenges and enhance the functionality of MLLMs. Oryx is a unified spatial-temporal
understanding MLLM framework that adeptly handles arbitrary visual resolutions, varying temporal
lengths, and a diverse range of tasks in an on-demand manner. Oryx is characterized by the following
key contribution: 1) A pre-trained visual encoder OryxViT is developed to generate LLM-friendly
visual representations at native resolutions. Equipped with adaptive positional embeddings and
variable-length self-attention, OryxViT can efficiently process visual data with different sizes in
parallel; 2) Dynamic compression technique that adjusts downsampling ratios arbitrarily while fusing
the information through a shared projector, thereby supporting a seamless switch between 1x to 16x
compression. The new design enables Oryx to easily process extremely long inputs with up to 16x
compression while maintaining high recognition precision for inputs that do not require compression;
3) Enhanced data curation and training strategies that help Oryx achieve pioneering performance in
multimodal images, videos, and 3D data understanding and easily adapt to arbitrary input resolution
and tasks simultaneously.

We evaluate the Oryx model on a wide range of multi-modal benchmarks, demonstrating remarkable
performance in both spatial and temporal understanding across image, video, and multi-view 3D data.
Notably, the Oryx model excels in general and long-form video comprehension, achieving competitive
results with a 7B model size and surpassing models up to 72B in size with our 34B variant. This
has led to new state-of-the-art results among open-source models on several benchmarks, including
NextQA (Xiao et al., 2021), Perception Test (Patraucean et al., 2024), MMBench-Video (Fang
et al., 2024), and MVBench (Li et al., 2024c) for general video understanding and MLVU (Zhou
et al., 2024), LongVideoBench (Wu et al., 2024) for long-form video benchmark. Additionally,
the Oryx model shows strong performance in 2D and 3D spatial understanding, outperforming
mainstream image-based MLLMs and 3D-specific LLMs, respectively, benefiting from its unified
training strategy.

2 RELATED WORK

Visual Encoding in Multi-Modal LLMs. Multi-modal LLMs depend on visual encoders to extract
visual features and employ connectors for aligning visual features with the LLMs. Alayrac et al.
(2022) and Li et al. (2023) utilize attention to capture visual features and align the visual encoder
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with LLMs through learnable queries, which may struggle when not adequately trained. LLaVA (Liu
et al., 2024d;b;f) utilizes a simple MLP to connect the visual encoder with LLMs, while Ranzinger
et al. (2024) combines visual features from different encoders for enhancement. However, they
are limited to fixed resolutions, which may hinder their ability to capture detailed information and
restrict their flexibility in understanding images with varying aspect ratios. Recent advancements in
high-resolution perception (Liu et al., 2024c; Xu et al., 2024b; Yao et al., 2024) have primarily been
driven by dynamic partitioning, which divides an image into multiple patches of equal resolution.
While this method can manage high-resolution images, it is inefficient, and the partitioning process
may result in the loss of critical information present in the original image. In this paper, we introduce
OryxViT, an innovative step in visual encoding that enables native resolution perception.

Multi-modal LLMs Supporting Diverse Contexts and Tasks. Recent advancements in MLLMs
have enabled them to comprehend a wide range of complex visual inputs from different tasks with
various contexts. Lin et al. (2023a); Cheng et al. (2024); Qian et al. (2024) try to combine image and
video perception, and Zhang et al. (2024a) focuses on long-form video analysis with extended context
lengths. 3D-LLM (Hong et al., 2023) made the first attempt to enable MLLMs to comprehend 3D
environments. Li et al. (2024b); Jiang et al. (2024) investigate interleaved data training to handle
multi-image scenarios, and Li et al. (2024a) unifies single-image, multi-image, and video settings
through improved data curation and training strategies. While previous approaches relied heavily on
enhanced data curation to achieve multi-task comprehension, we propose a novel framework that
represents complex visual inputs with cohesive representations. Our model is capable of processing
visual contexts of arbitrary sizes, videos of varying lengths, and 3D data seamlessly, supporting
various context lengths and versatile tasks.

3 METHODS

In this section, we provide a detailed explanation of Oryx’s contribution. Our design is segmented
into two primary components: the architecture and the data curation & training pipeline, which are
elaborated upon in Section 3.1 and 3.2, respectively. We describe our innovative architecture to
process native and on-demand visual inputs within MLLMs, as illustrated in Figure 2, enabling the
development of a model capable of generalizing across image, video, and 3D data. Furthermore, we
outline the simple yet effective training pipeline of the Oryx model.

3.1 ORYX ARCHITECTURE: MLLM WITH NATIVE AND FLEXIBLE VISUAL INPUTS

3.1.1 VISUAL REPRESENTATIONS WITH NATIVE RESOLUTION

Resizing and regularizing visual inputs, including images and videos, is a necessary and effective
preprocessing step. Common practice typically involves resizing and cropping visual inputs to a fixed
resolution with a square shape. However, such processes may negatively impact the performance
of vision backbones, as previous studies on vision recognition have demonstrated the effectiveness
of maintaining visual content in its original form. NaViT (Dehghani et al., 2024) leverages the
characteristics of the vanilla ViT (Dosovitskiy, 2020), introducing a pack sequence operation that
accommodates images of any aspect ratio and resolution for efficient training. Similarly, Flex-
iViT (Beyer et al., 2023) and ViTAR (Fan et al., 2024) incorporate randomly resized images during
training to develop a Vision Transformer capable of handling inputs of varying resolutions.

Despite these advancements, the effectiveness of native or arbitrary resolution in the realm of MLLM
has barely been explored. Most existing MLLMs integrate original image-text visual encoders such
as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) to encode input visual data. We posit
that MLLMs provide an optimal environment for processing visual representations at their native
resolution for two primary reasons: (1) the sources and tasks associated with visual inputs are diverse,
necessitating varying demands and formats; (2) the token lengths in MLLMs are inherently dynamic,
particularly in the language component. Consequently, the dynamic representation of visual context
aligns seamlessly with subsequent processing stages.

In Vision Transformer (ViT) models (we omit the class token here for simplification), given the
visual input {x}∈H×W , where typically H ̸= W , the ViT first resizes the visual input into {x}∈N×N .
The resized image is then passed through patch embedding layers, which partition the image into
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OryxViT

Dynamic	Compressor

Video 2

Pre-trained ViT with Variable-length Self-attention

MLP

On-demand Dynamic Compression

Regional Cross-Attention

MLP

1x1 1x1 2x2 Pool 4x4 Pool

N x

2048 pix
10s 45min

60 pix

Images of	arbitrary	sizes Multi-view	3D	sceneVideos of arbitrary lengths

Image 1 Image 2 Video 1

20 pix
1536 pix

Large Language Model

text output… … …

Patchify

… … …text input

Variable-Length Self-Attention

Resized Positional Embedding

Visual	contents	with	native	aspect	ratios	and	resolution

Figure 2: Overview of Oryx architecture. Oryx offers two options to process visual inputs with
arbitrary spatial sizes and temporal lengths in an on-demand manner. 1) A pre-trained OryxViT
equipped with variable-length self-attention to encode visual features with native aspect ratios and
resolution. 2) A dynamic compressor offering on-demand compression on visual tokens while
maintaining a unified token form.

patches of size p × p, resulting in a sequence of patches {x}∈(N/p)×(N/p). Conventional Vision
Transformers utilize a fixed-size position embedding matrix P corresponding to the predefined image
size N ×N . However, when processing visual inputs at their native resolution {x}∈⌊H/p⌋×⌊W/p⌋,
directly resizing P to ⌊H/p⌋ × ⌊W/p⌋ can lead to a significant drop in accuracy, as demonstrated in
previous works (Dehghani et al., 2024; Beyer et al., 2023).

To address the issue of native resolution processing, we introduce a visual encoder named OryxViT,
which builds upon the advanced SigLIP (Zhai et al., 2023) models and is based on the Vision
Transformer (Dosovitskiy, 2020) architecture. We modify the vision encoder by incorporating a
sufficiently large position embedding matrix P that accommodates the maximum target input sizes
(2048×2028 in our models, which can also be further interpolated for even larger inputs). For
each visual input, we rescale the original position embeddings into P∈⌊H/p⌋×⌊W/p⌋ using bilinear
interpolation and apply the transformation x = x + P . The adaptation strategy for the newly
defined P under native input resolution follows the training format of common MLLMs. We employ
a relatively lightweight LLM as the language interface, keeping the vision encoder’s parameters
unfrozen while freezing most of the other parameters. We collect training data pairs from multiple
vision-language tasks including captioning, OCR, visual question answering, etc. The pre-training
strategy for the proposed visual encoder OryxViT under native input resolution follows the training
format of common MLLMs. We employ a relatively lightweight LLM as the language interface,
keeping the vision encoder’s parameters unfrozen while freezing most of the other parameters. Details
for the training settings and datasets can be referred to in the Appendix.

A significant challenge is managing the dynamic sequence length N = ⌊H/p⌋ × ⌊W/p⌋ for the
Vision Transformer during batch processing, where we propose the Variable-Length Self-Attention
strategy to address this issue. For visual patches with lengths N1, N2, . . . , Nb in a batch of size b,
we concatenate the patches across the sequence dimensions into a shape of [1,

∑b
i=1 Ni, C] before

feeding them into the transformer blocks. We utilize the variable-length attention operator provided
in flash attention (Dao et al., 2022) to compute the attention for each visual input within the batch
independently. With these designs, our OryxViT can efficiently process visual signals of varying
aspect ratios in batch mode, maintaining a forward speed comparable to that of conventional fixed-
resolution visual encoders. We also provide the detailed speed test for OryxViT in the Appendix to
demonstrate the efficiency.
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3.1.2 ON-DEMAND DYNAMIC COMPRESSION SUPPORTING LONG VISUAL CONTEXT

With visual inputs varying in temporal length and resolution, such as some video data lasting tens of
minutes, treating all inputs equally, as in most previous works (Zhang et al., 2024a; Xue et al., 2024),
leads to inefficient computational costs. To address this, we propose a Dynamic Compressor, which
is capable of performing higher compression ratios for longer contexts. Our design unifies visual
contexts with different compression ratios into a consistent pattern, allowing us to control the overall
visual sequence length on demand.

Using the visual representation feature map f , the compression serves as the bridge between vision
and language modalities. We implement downsample layers with varying ratios to accommodate
different input lengths. Specifically, we categorize the visual context into pure images, short videos,
and long videos, applying downsample layers d1, d2, d3 respectively. In our implementation, we
set d3 = 4d2 = 16d1, therefore the token length of frames in the long videos is reduced to 1

16 of
that of images with the same resolution. We satisfy the downsampling ratio r1 < r2 < r3 for layer
d1, d2, d3 to reduce the token length for frames in videos.

We obtain the low-resolution feature map fL = di(fH), i = 1, 2, 3 from the high-resolution feature
map fH . To mitigate the effects of downsampling, we employ an attention operation to facilitate
interaction between fL and fH . Specifically, for a downsample ratio r, we treat fL ∈ RN×C as
the query tensor Q and fH ∈ RN×r2×C as the key tensor K and value tensor V. Each patch in
the low-resolution fL interacts with r2 neighboring patches in the high-resolution fH through a
cross-attention operation, formulated as follows:

fL = fL + Softmax(
ϕq(Q)ϕk(KT )√

dk
)V (1)

where we define the query and key projection layers, denoted as ϕq and ϕk, to project the query and
key tensors into lower dimensions. To maintain the original features from the visual encoder and limit
the number of linear projection layers, we omit the value and output projection layers commonly
used in attention modules. Then we utilize a shared MLP across multiple downsample modules to
project the compressed low-resolution features into the embedding space of the language model. We
preserve the interactions between different downsample ratios through the shared projection. Upon
completion of the dynamic compression module, the final visual representation features are flattened
and integrated into the sequence of visual tokens among the text tokens. This combined sequence is
then fed into the language model for token prediction.

3.2 DATA CURATION & TRAINING PIPELINE

3.2.1 ONE MODEL FOR ALL: IMAGE, VIDEO, AND 3D UNDERSTANDING

Previous work (Li et al., 2024a; Chen et al., 2024b; QwenTeam, 2024b) has demonstrated the
coexistence of MLLMs that support both image and video modalities. Building on this foundation,
our research aims to extend the capabilities of these models to handle more diverse contexts, varying
lengths of content, and a broader range of tasks. To achieve this, we meticulously curate a training
dataset specifically designed for extremely long-form videos. Additionally, we further incorporate
spatial-relevant knowledge through coarse correspondence markers among multi-frame visual inputs
to make Oryx 3D-aware.

Long-Form Temporal Training with Needle-In-A-Haystack. The key ability for processing long-
form video inputs is the identification of specific information within an extensive context, akin to the
”needle-in-a-haystack” task in the NLP field. To enhance the Oryx model’s capability to pinpoint
details, we prepare long-form temporal needle-in-a-haystack training data. Specifically, we source
video samples from the MovieNet (Huang et al., 2020) dataset, which comprises an average of 1000
frames per movie and an average duration of 45 minutes, thereby providing a natural setting for
retrieving designated targets. We devise two tasks to train the model: captioning and differing. The
captioning task requires the model to generate captions for frames at specific indices, while the
differing task involves identifying differences between two frames given their indices. The training
corpus is generated using SOTA LLMs GPT-4o, which produces captions for single frames or frame
pairs. These captioned frames are then reinserted into the overall movie sequences, ensuring the
training data maintains contextual integrity.
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Learning Spatial-Aware Knowledge via Coarse Correspondences. Recent advancements have
focused on enhancing multi-modal LLMs with 3D understanding capabilities. These approaches
primarily treat 3D tasks as multi-image inputs. However, unlike video inputs, multi-view images
generated from 3D environments lack temporal or trajectory cues, which are essential for MLLMs to
accurately process sequential data. As a result, previous methods often struggle to achieve correct
spatial understanding when evaluated against 3D benchmarks.

Building on the work of (Liu et al., 2024a), we introduce coarse correspondences into our training
dataset. The core concept is to assign a consistent label to the same object across different frames,
allowing the model to better capture spatial correlations across multiple views. This approach aims to
enhance the model’s ability to develop a more accurate 3D spatial understanding. Specifically, we
utilize Track-Anything (Yang et al., 2023b) as our tracking model to generate coarse correspondences
for the ScanQA training set. These data are then incorporated into the final training set.

3.2.2 TRAINING PIPELINE

The training pipeline of Oryx is lightweight and direct in a 2-stage strategy. We start from a well-
trained vision tower OryxViT and a Large Language Model. The first stage involves only image
data following common practice (Liu et al., 2024d;b). The second stage uses a mixture of data from
images, videos, and corresponding 3D frames and we train the multi-source data jointly thanks to our
unified design. All of our training data are collected from open-source datasets, therefore ensuring
the reproducibility of the Oryx model and holding room for improvement with better data curation.

Stage 1: Text-Image Pre-training and Supervised Fine-tuning. In the first stage of our training
process, we focus on developing the foundational vision-language capabilities of the Oryx model
using image data. This stage begins with a pre-training phase to train the dynamic compressor
component with the basic image captioning data a dataset of 558k images in LLaVA-1.5 (Liu et al.,
2024b). Following this, we gather a collection of 4 million supervised fine-tuning image-text pairs
that focus on high-quality knowledge learning. This data is sourced from various open-source
academic datasets, including LLaVA-NeXt (Liu et al., 2024c), Cauldron (Laurençon et al., 2024),
and Cambrian-1 (Tong et al., 2024). It is important to note that we do not incorporate large-scale
pre-training stages as described in (Li et al., 2024a) or employ exclusive supervised fine-tuning
data such as those in (Lin et al., 2023b; Bai et al., 2023), as our primary objective is to validate the
effectiveness of our unified Oryx architecture.

Stage 2: Joint Supervised Fine-tuning. In Stage 2, we further conduct a supervised fine-tuning
procedure following the initial stage, aiming to jointly train the Oryx model with image, video,
and 3D-aware visual inputs. The image training data is sampled from the dataset collected during
the supervised fine-tuning phase of Stage 1, ensuring a balanced ratio of image and video data
by utilizing around 600k image-text pairs. For video data, we source both comprehensive and
multiple-choice datasets from open-source video repositories. Comprehensive datasets, which
include question-answering and captioning tasks, are integrated using VideoChatGPT-Plus (Maaz
et al., 2024), ShareGPT4Video (Chen et al., 2024a) and LLaVA-Hound (Zhang et al., 2024b). To
enhance performance on multiple-choice benchmarks, we further incorporated Cinepile (Rawal et al.,
2024), NextQA (Xiao et al., 2021) and PerceptionTest (Patraucean et al., 2024) into our training
dataset. Additionally, we include video samples of needle-in-a-haystack data generated by GPT-
4o (OpenAI, 2024) for long-form video learning and spatial-aware 3D multi-frame samples from the
ScanQA (Azuma et al., 2022) training dataset, culminating in a total of around 650k video samples.
The supervised fine-tuning strategy in this stage mirrored that of Stage 1, ensuring consistency in the
training approach.

4 EXPERIMENTS

We conduct comprehensive experiments across multiple vision-language benchmarks to demonstrate
the effectiveness of our method. In this section, we present the main results on general video
understanding benchmarks (Sec. 4.1), long-form video benchmarks (Sec. 4.2), 2D & 3D spatial
understanding benchmarks (Sec. 4.3) and compare our method with other state-of-the-art video
MLLMs. Finally, we provide analysis experiments and critical ablation studies on design elements.
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Table 1: General Temporal Understanding. We conduct experiments on four multiple-choice
benchmarks and three generation benchmarks comprehensively and report the main score for each
dataset. Oryx exhibits superior performance under a wide range of open-sourced video MLLMs.

Model Size VideoMME

NextQA
MVBench

PercepTest

MMB-Video

VCG
VDC

Proprietary Models

GPT-4V (OpenAI, 2023b) - 59.9/63.3 - 43.7 - 1.53 4.06 4.00
GPT-4o (OpenAI, 2024) - 71.9/77.2 - - - 1.63 - -
Gemini-1.5-Pro (GeminiTeam, 2024) - 75.0/81.3 - - - 1.30 - -

Open-Sourced Video MLLMs

VideoChat2-HD (Li et al., 2024c) 7B 45.3/55.7 79.5 62.3 47.3 1.18 3.10 -
VideoLLaMA2 (Cheng et al., 2024) 7B 47.9/50.3 - 54.6 51.4 - 3.13 -
LLaVA-OneVision (Li et al., 2024a) 7B 58.2/61.5 79.4 56.7 49.7 - 3.51 3.75
Kangaroo (Liu et al., 2024e) 8B 56.0/57.6 - 61.1 - 1.44 - -
VideoCCAM (Fei et al., 2024) 9B 53.9/56.1 - 64.6 - - - -

LLaVA-Next-Video (Zhang et al., 2024c) 34B 52.0/54.9 70.2 - 51.6 - 3.34 3.48
PLLaVA (Xu et al., 2024a) 34B - - 58.1 - - 3.48 -
VILA-1.5 (Lin et al., 2023b) 40B 60.1/61.1 67.9 - 54.0 - 3.36 3.37
VideoLLaMA2 (Cheng et al., 2024) 72B 61.4/63.1 - 62.0 57.5 - 3.16 -
LLaVA-OneVision (Li et al., 2024a) 72B 66.2/69.5 80.2 59.4 66.9 - 3.62 3.60

Oryx 7B 59.1/63.3 81.9 63.9 70.0 1.47 3.53 3.76
Oryx 34B 63.2/67.4 83.5 64.7 71.4 1.49 3.51 3.66

4.1 GENERAL TEMPORAL UNDERSTANDING

Setup. We present the experimental results on general multi-modal video understanding datasets, as
video data provides comprehensive insights into visual-language abilities, especially when dealing
with complex and diverse visual inputs. We select several representative and popular benchmarks,
encompassing both multiple-choice and generation tasks for evaluation. We conduct evaluations on
four multiple-choice benchmarks. VideoMME (Fu et al., 2024) performs a full spectrum of diverse
videos and varying temporal lengths. NextQA (Xiao et al., 2021) is a classic benchmark for video
reasoning. MVBench (Li et al., 2024c) performs 20 challenging video tasks for video comprehension.
Perception Test (Patraucean et al., 2024) focuses on the perception and reasoning skills of MLLMs.
For generation-relevant benchmarks scored by advanced proprietary models, we integrate evaluations
on MMBench-Video (Fang et al., 2024), Video-ChatGPT(VCG) (Maaz et al., 2023), and Video
Detailed Caption(VDC) benchmarks. Following common practice, GPT-4-1106 (OpenAI, 2023c) is
used as the evaluator for MMBench-Video (Fang et al., 2024), GPT-3.5-0613 (OpenAI, 2023a) is
employed for Video-ChatGPT (Maaz et al., 2023) and Video Detailed Caption.

Results. The experimental results, as detailed in Table 1, demonstrate that the Oryx model achieves
highly competitive outcomes in general video understanding tasks. We surpass a broad spectrum of
near-term video-specific MLLMs and establish new state-of-the-art. The Oryx model attains tier-1
performance among small-sized MLLMs (approximately 7B parameters) and exhibits competitive
performance when compared to larger MLLMs (exceeding 30B parameters), even rivaling models
with 72B parameters. On the VideoMME benchmark (Fu et al., 2024) with subtitles, the Oryx
models achieve mean accuracies of 62.6 and 67.4. Oryx also demonstrates robust performance
across various multiple-choice datasets by surpassing previous state-of-the-art results by 3.3% and
4.5% on NextQA (Xiao et al., 2021) and Perception Test (Patraucean et al., 2024). Additionally,
the Oryx model performs convincingly on GPT-eval benchmarks, with an average score of 1.49
on MMBench-Video (Fang et al., 2024), 3.53 and 3.76 on VideoChatGPT (Maaz et al., 2023) and
Video Detailed Caption, respectively. Remarkably, the Oryx model outperforms advanced proprietary
models such as GPT-4V (OpenAI, 2023b) and Gemini-1.5-Pro (GeminiTeam, 2024) on several of the
most challenging benchmarks.

4.2 LONG-FORM TEMPORAL UNDERSTANDING

To further demonstrate the exceptional long-context understanding capability of our method, we
conduct experiments on benchmarks specifically designed for long video evaluation. Additionally,
we employ the video needle-in-a-haystack task to illustrate our model’s ability to handle extremely
lengthy video content in Appendix C.1.
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Table 2: Long-Form Temporal Understanding. We show results on three mainstream long-
form temporal understanding datasets, each featuring video inputs of tens of minutes in duration.
Oryx demonstrates superior performance, achieving state-of-the-art results and surpassing several
proprietary models across various benchmarks.

Model Size MLVU LongVideoBench
VideoMME-Long

w/o subs w subs

Proprietary Models

GPT-4V (OpenAI, 2023b) - 49.2 60.7 53.5 56.9
GPT-4o (OpenAI, 2024) - 64.6 66.7 65.3 72.1
Gemini-1.5-Pro (GeminiTeam, 2024) - - 64.4 67.4 77.4

Open-Sourced Video MLLMs

VideoLLaMA2 (Cheng et al., 2024) 7B 48.5 - 42.1 43.8
LongVA (Zhang et al., 2024a) 7B 56.3 - 46.2 47.6
LLaVA-OneVision (Li et al., 2024a) 7B 64.7 - - -
Kangaroo (Liu et al., 2024e) 8B 61.0 54.8 46.6 49.3
LongVILA (Xue et al., 2024) 8B - - 39.7 -

VideoCCAM (Fei et al., 2024) 14B 63.1 - 46.7 49.9
LLaVA-Next-Video (Zhang et al., 2024c) 34B - 50.5 - -
PLLaVA (Xu et al., 2024a) 34B - 53.2 - -
VILA-1.5 (Lin et al., 2023b) 40B 56.7 - 53.8 55.7
LLaVA-OneVision (Li et al., 2024a) 72B 66.4 61.3 60.0 62.4

Oryx 7B 67.5 56.3 51.3 56.8
Oryx 34B 70.8 62.2 53.9 58.0

Setup. We select three mainstream and representative benchmarks specifically designed for long
video understanding, ensuring a comprehensive evaluation of long video inputs. MLVU (Zhou et al.,
2024), encompasses videos ranging from 3 minutes to 2 hours and includes 9 distinct tasks that
assess both global and local information within the video content. LongVideoBench (Wu et al., 2024)
presents a primary challenge of retrieving and reasoning over a dataset comprising 3k long video
inputs. Additionally, we utilize the long video subset of the VideoMME (Fu et al., 2024) benchmark,
which features videos with lengths ranging from 30 minutes to 60 minutes.

Results. Results are shown in Table 2, which highlights the efficacy of our unified and on-demand de-
sign across varying temporal lengths and our further efforts in the context of long video retrieval. The
Oryx model exhibits a remarkable capability in understanding long-form video content. Specifically,
our Oryx-7B model surpasses all existing 7B model series on long video benchmarks. Furthermore,
the Oryx-34B model showcases strong performance across larger MLLMs, achieving a mean accuracy
improvement of 4.4% and 0.9% over previous state-of-the-art models equipped with 72B parameter
LLMs on the MLVU (Zhou et al., 2024) and LongVideoBench (Wu et al., 2024) benchmarks, respec-
tively. Notably, the Oryx-34B model also outperforms GPT-4o (OpenAI, 2024) on the challenging
MLVU (Zhou et al., 2024) benchmark by a margin of 6.2%, underscoring its advanced capabilities in
long video understanding.

4.3 2D & 3D SPATIAL UNDERSTANDING

As we perform a general solution across spatial and temporal understanding, we incorporate image
and 3D benchmarks to thoroughly evaluate our model, which shows the foundation multi-modal
capabilities of Oryx and the potential for extending to more visual tasks, formats, and circumstances.

Image Benchmarks. We select a diverse set of mainstream and representative image benchmarks to
evaluate the model’s proficiency in image understanding. Specifically, we included MMBench (Liu
et al., 2023a) and MMMU (Yue et al., 2024) to assess general image understanding capabilities, and
DocVQA (Mathew et al., 2021), OCRBench (Liu et al., 2023b), AI2D (Kembhavi et al., 2016), and
TextVQA (Singh et al., 2019) to evaluate the model’s performance on specific tasks such as document
recognition, OCR, text understanding tasks, etc. The results are summarized in Table 3. Notably, the
Oryx model maintains pioneering results on image benchmarks, such as an 84.5% mean accuracy
on MMBench (Liu et al., 2023a) and a 91.4% accuracy on DocVQA (Mathew et al., 2021). Such
results demonstrate the effectiveness of our method in comprehending images with more simple and
lightweight training pipelines, data curation, and strategies compared with concurrent works.
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Table 3: Image Understanding. We conduct 2D spatial understanding tasks on six representative
image benchmarks, including general and task-specific benchmarks. Our Oryx model achieves tier-1
performance across a wide range of MLLMs.

Model Size MMBench MMMU DocVQA OCRBench AI2D TextVQA

Deepseek-VL (Lu et al., 2024) 7B 73.2 36.6 - 456 - 64.7
Monkey (Li et al., 2024d) 7B 72.4 40.7 - 534 68.5 -
LLaVA-NeXT (Liu et al., 2024c) 8B 72.1 41.7 78.2 531 71.6 -
Bunny-LLama3 (He et al., 2024) 8B 77.2 43.3 - 444 69.4 -
Cambrian-1 (Tong et al., 2024) 8B 75.9 42.7 77.8 624 73.6 71.7
VILA-1.5 (Lin et al., 2023b) 8B 75.3 38.6 - - - 68.5
Idefics2 (Laurençon et al., 2024) 8B 76.7 43.0 - - - 73.0

Yi-VL (Young et al., 2024) 34B - 45.1 - 290 65.9 -
LLaVA-NeXT (Liu et al., 2024c) 34B 79.3 49.7 84.0 574 74.9 -
Cambrian-1 (Tong et al., 2024) 34B 81.4 49.7 75.5 600 79.7 76.7
VILA-1.5 (Lin et al., 2023b) 40B 82.4 51.9 - - - 73.4

Oryx 7B 81.4 47.1 90.1 713 79.7 75.7
Oryx 34B 84.5 50.3 91.4 743 81.0 77.8

Table 4: 3D Spatial Understanding. We use the popular ScanQA (Azuma et al., 2022) dataset
and evaluate the relevant scores. We compare the Oryx model with 3D-specific models together
with general open-source MLLMs. Oryx excels in 3D spatial understanding tasks, highlighting its
versatility across various applications.

Model Size METEOR ROUGE-L CIDEr BLEU-1 BLEU-2

3D-Specific Models

VoteNet+MCAN (Qi et al., 2019) - 11.4 29.8 54.7 28.0 16.7
ScanQA (Azuma et al., 2022) - 11.5 30 55.4 26.9 16.6
ScanRefer+MCAN (Chen et al., 2020) - 13.1 33.3 64.9 30.2 20.4
3D-LLM (Hong et al., 2023) - 14.5 35.7 69.4 39.3 25.2

General Open-Source MLLMs

BLIP2 (Li et al., 2023) - 11.3 26.6 45.7 29.7 16.2
Flamingo (Alayrac et al., 2022) 7B 11.3 31.1 55 25.6 15.2
Mantis (Jiang et al., 2024) 7B - 16.1 - - -
LLaVA-Next-Interleave (Li et al., 2024b) 14B - 34.5 - - -
LLaVA-OneVision (Li et al., 2024a) 72B - 35.8 - - -

Oryx 7B 14.5 35.5 69.1 35.8 24.4
Oryx 34B 15.0 37.3 72.3 39.6 26.7

3D Spatial Understanding. We conduct the 3D spatial understanding experiments on the classic
ScanQA validation set, following the protocol established by previous work (Azuma et al., 2022;
Hong et al., 2023; Liu et al., 2024a). We incorporate advanced baseline models, including 3D-specific
models and general open-source MLLMs supporting 3D spatial tasks for a comprehensive comparison.
As shown in Table 4, the Oryx model not only outperforms previous specialized models designed for
3D understanding, but also surpasses the recently updated general MLLMs and specially designed
3D-LLM (Hong et al., 2023). These results underscore the robust adaptability of our method in
addressing 3D spatial tasks.

4.4 ANALYSIS

Effects of resolution and resize strategy across benchmarks. To illustrate the effectiveness of the
advanced native representation for visual inputs, we conduct ablation analysis experiments on the
effects of resolution across multi-modal benchmarks in Figure 3. We compare inputs with native
resolution to inputs rescaled to specific overall number of pixels while maintaining the original aspect
ratios. The left figure presents the scores on several benchmarks, where we utilize images scaled
to 7682 pixels, 10242 pixels, images with native resolution, and larger images (2x area) with native
resolution. The results indicate that native resolution consistently outperforms fixed sizes, with the
performance gap becoming more pronounced in the DocVQA and OCRBench datasets. These datasets
require the visual encoder to process more natural image inputs for text understanding. Additionally,
further enlarging the resolution does not yield significant gains in most benchmarks. The right figure
illustrates the performance trends on MMBench and OCRBench with varying visual input resolutions.
Our findings suggest that while larger images generally lead to better performance, maintaining the
native resolution emerges as a simple yet effective strategy for optimizing performance.
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Figure 3: Effects of resolution and resize strategy across benchmarks. The left figure shows
the performance across benchmarks with fixed size, native size, and larger images. The right figure
shows the trend of performance with varying resolutions, where we illustrate the performance of
native resolution for reference. The text-relative benchmarks show more sensitivity to the resolution
scale, while all the benchmarks benefit from the visual inputs with native resolution.

Table 5: Ablations on the Oryx Architecture. We evaluate our design of two core architectures
within the Oryx model. (a) examines the impact of the visual encoder and the method of processing
visual inputs, demonstrating the superiority of native visual representations compared with dynamic
partition and the strong visual-text alignment capability of OryxViT. (b) assesses the influence of
dynamic compression modules in comparison to conventional MLP connectors, revealing signifi-
cant performance gains due to improved fusion of image and video data. Various downsampling
approaches were tested, with average pooling yielding the best performance.

(a) Ablation study on Visual Encoder.

Visual Enc. Res. DocVQA OCRBench MMBench

SigLIP Partition 74.8 531 68.0
SigLIP Native 17.1 67 15.8
OryxViT Partition 76.3 549 68.9
OryxViT Native 78.5 572 69.3
OryxViT Optimal 79.2 572 69.9

(b) Ablation Study on Compression Module.

Connector Downsample VideoMME MLVU

MLP Avg Pool 54.6 57.5
Dy.Compressor Avg Pool 55.4 59.3
Dy.Compressor DWConv 55.0 58.9
Dy.Compressor Conv-MLP 54.7 58.5

Effectiveness of the Oryx Architecture. We conduct more ablation experiments on the design
of the Oryx architecture in Table 5. For the visual representation, we compare OryxViT with the
mainstream SigLIP visual encoder. Our comparison highlights the superior alignment performance
of OryxViT. Additionally, we fairly compare previous dynamic partition approaches with visual
inputs of native resolutions. We conclude from the results that the previous mainstream multi-modal
encoder SigLIP (Zhai et al., 2023) fails to process native visual input and only works on fixed
resolution with the dynamic partition trick. On the contrary, the OryxViT benefits from the visual
inputs at native resolution, which is superior to the partition approach. As an arbitrary visual encoder,
we are also curious about the limit of resolutions, where we find that searching for the optimal
anchor resolution leads to better performance (the last line in Table 5 (a)). However, for the sake of
fairness and efficiency, we do not employ this optimization in our primary evaluations. We report our
results on several representative image benchmarks, including DocVQA, OCRBench, and the general
MMBench datasets, using a subset of image training data for efficient training.

For the connector module, we compare the proposed dynamic compressor with the popular and
straightforward MLP architecture. The dynamic compressor demonstrates superior performance
on both general and long temporal benchmarks by better fusing multi-modal data. Furthermore,
our analysis reveals that average pooling yields better results for higher compression visual inputs
compared to parameter-reliant approaches such as DWConv and Conv-MLP. This improvement is
likely due to the parameter-free nature of average pooling, which preserves the distribution of visual
features, and more complex downsampling layers may not be effectively trained through the current
training pipeline. Our analysis of the connector module is conducted on a subset of video training
data to maintain training efficiency.

5 CONCLUSION

In this paper, we have introduced the Oryx series, a novel approach designed to handle diverse visual
inputs across varying tasks, temporal lengths, and resolutions in an on-demand manner. The Oryx
model stands out as a unified multi-modal framework for spatial-temporal understanding, leveraging
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the innovative design of OryxViT for native resolution processing, the Dynamic Compressor for
efficient data compression, and a robust joint training strategy. Our extensive evaluations demonstrate
that the Oryx model achieves outstanding performance across a wide array of image, video, and 3D
mainstream benchmarks. We hope that our work offers a novel perspective on multi-modal learning
and paves the way for the development of more general MLLMs in future research endeavors.
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Video	Summarization	and	Detailed	Description

User:	Describe	what	is	happening	in	the	video	in	detail.

Oryx:	The	video	captures	a	moment	from	the	2018	Wimbledon	Semifinal	between	Djokovic	and	Nadal.	The	scene	is	
set	on	a	grass	court,	with	the	players	positioned	on	opposite	sides	of	the	net.	Djokovic,	dressed	in	white,	is	seen	
preparing	to	hit	the	ball,	while	Nadal,	also	in	white,	is	poised	to	return	the	shot.	The	scoreboard	indicates	that	the	
match	is	tied	at	7-7,	adding	to	the	tension	of	the	moment.	....
LLaVA-OneVision:	The	video	begins	with	a	wide	shot	of	a	grass	tennis	court	during	the	2018	Wimbledon	Semifinal.	
Two	players,	both	dressed	in	white,	are	positioned	on	either	side	of	the	net.	The	player	on	the	left	is	preparing	to	
serve,	while	the	player	on	the	right	is	ready	to	return.	The	court	is	surrounded	by	a	large	audience,	and	the	
scoreboard	in	the	background	shows	the	names	'SACHSNOVIC'	and	'DRAKOVIC'with	scores.	

Figure 4: Oryx is able to make a comprehensive video summary and detailed caption.

Video	Multiple	Choice	and	Reasoning

User: According	to	the	video,	if	I	have	some	expired	aspirin,	which	kind	of	waste	is	it?
A.	Waste. B.	Toxic	Waste. C.	Wet	or	Organic	Waste. D.	Dry	waste.	
Oryx:	The	answer	is	B,	because	expired	aspirin	is	a	kind	of	drug,	drugs	are	toxic	waste.
The	video	explains	that	if	you	have	some	expired	aspirin,	it	is	considered	toxic	waste.	This	is	because	drugs	can	be	
harmful	to	the	environment	and	should	not	be	disposed	of	in	the	regular	trash.	Instead,	they	should	be	taken	back	to	
a	pharmacy	or	other	designated	location	for	proper	disposal.
LLaVA-OneVision:	Expired	aspirin	is	categorized	as	toxic	waste,	as	indicated	in	the	video.	Toxic	waste	includes	
substances	like	medicines,	which	need	special	care	when	disposing	of	them	to	prevent	environmental	and	health	
risks.	Therefore,	the	correct	answer	is	B.	Toxic	Waste.	It's	important	to	dispose	of	such	items	properly,	often	
through	designated	hazardous	waste	disposal	facilities	or	special	collection	events.

Figure 5: Oryx learns to reason through the input video.

A GENERATION RESULTS

Video Summarization and Detailed Description. As shown in Fig. 4, the Oryx model effectively
generates a comprehensive and detailed caption that accurately summarizes the input video. It
captures the main event while preserving essential information. Oryx produces more accurate results
about the match information, the name, and the status of the player. In contrast, LLaVA-OneVision (Li
et al., 2024a) shows the wrong name, and LongVILA tells the wrong score on the board.
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Skill Learning From Videos

User: According	to	the	video,	if	I	want	to	cite	the	paper	titled	'Oryx',	what	should	I	do?	List	the	actions	below.
Oryx: To cite the paper titled 'Oryx', you should follow these steps: 1. Open google chrome and search for google
scholar. 2. Search for the paper 'Oryx’. 3. Select the paper from the search results and click on the "Cite" button to
generate the citation in your preferred format. 4. Copy the generated citation and paste it into your document where
you want to reference the paper.
LLaVA-OneVision:	To	cite	the	paper	titled	'Oryx'	from	the	video,	follow	these	steps: Open	the Google	Scholar	
webpage	and	search	for	the	paper	'Oryx’. Once	you	find	the	paper,	click	on	the	three	dots	next	to	it and	select	'Cite’.
Choose	the	citation	format	you	need,	such	as	APA,	MLA,	or	Chicago. If	the	paper's	details	are	not	automatically	filled,	
manually	input	the	information	from	the	paper's	publication	details	including	authors,	title,	year,	and	
journal.	Copy	the	citation	and	paste	it	into	your	bibliography	or	reference	list.

Figure 6: Oryx learns useful skills from the input video.

Understanding	3D	with	Coarse	Correspondences

User: If Alice comes out of the building and wants to go down the stairs and cross the street using the pedestrian
crossing, which direction should she turn after exiting the door?
A. Left B. Right.
Please answer from Alice’s perspective, not the observer’s. Explain why using the labels inside the images.
Oryx:	If	Alice	comes	out	of	the	building	and	wants	to	go	down	the	stairs	and	cross	the	street	using	the	pedestrian	
crossing,	she	should	turn	right	after	exiting	the	door. This	is	because	the	pedestrian	crossing	is	located	on	the	right	
side	of	the	entrance	when	facing	it	from	inside	the	building.	The	labels	inside	the	images	indicate	that	the	pedestrian	
crossing	(label	3)	is	to	the	right	of	the	door	(label	4),	and	the	stairs	(label	1)	are	also	situated	to	the	right	of	the	door	
when	viewed	from	Alice's	perspective.	Therefore,	turning	right	would	lead	Alice	towards	the	pedestrian	crossing	and	
then	across	the	street.
LLaVA-OneVision:	After	exiting	the	door,	Alice	should	turn	left.	This	is	because…	,	as	indicated	by	the	position	of	the	
yellow	fire	hydrant	(label	1)	and	the	bicycle	rack	(label	2)	in	the	images.	Turning	left	will	lead	her	towards	these	
features	and	ultimately	to	the	street	where	she	can	use	the	pedestrian	crossing.

Figure 7: Oryx understands 3D spatial information through coarse correspondences.

Video Multiple Choice and Reasoning. Oryx is also capable of reasoning based on the input video.
As demonstrated in Fig. 5, Oryx can answer questions through analogy and generate well-reasoned
responses.

Skill Learning From Videos. Oryx can acquire useful skills from the input video. As demonstrated
in Fig. 6, Oryx learns to use Google Scholar to cite a paper by following the steps shown in the video.
It illustrates all the necessary steps to complete the citation, highlighting its strong skill-learning
capability and potential for agent-based tasks and task execution. Although the baseline model
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Video	Time	Perception

User:	Describe	what	happened	at	15-18	seconds.	Describe	the	scene	in	detail.

Oryx:	At	15-18	seconds,	the	video	captures	a	moment	during	the	2018	Wimbledon	Semifinal	between	Novak	
Djokovic	and	Rafael	Nadal.	The	scene	is	set	on	a	grass	court	with	players	positioned	on	opposite	sides	of	the	net.	The	
scoreboard	in	the	background	shows	that	the	match	is	tied	at	7-7,	indicating	a	closely	contested	game.	The	player	on	
the	left	side	of	the	court	is	preparing	to	hit	the	ball,	while	his	opponent	on	the	right	side	is	anticipating	the	shot.	The	
audience	in	the	stands	is	visible,	adding	to	the	atmosphere	of	the	event.	(The	answer	is	wrong.	in	15-18	seconds,	
djokovic wins	the	point	with	a	forehand	shot.)

Figure 8: Failure cases about time perception.

Knowledge	Reasoning	and	Transfer

User:	What	is	the	purpose	of	beating	the	balloon?	Describe	in	detail.

Oryx:	The	purpose	of	beating	the	balloon	is	to	create	a	series	of	air	pockets	within	it.	This	process	involves	
repeatedly	striking	the	balloon	with	a	flat,	blunt	object,	such	as	a	wooden	spoon	or	a	similar	tool,	until	it	becomes	
visibly	deflated	and	has	multiple	air	pockets	throughout	its	surface.	The	air	pockets	are	created	by	the	impact	of	the	
object	on	the	balloon's	surface,	causing	the	air	inside	to	be	released	and	trapped	in	the	form	of	bubbles.	(The	answer	
is	wrong.	The	correct	purpose	is	to	conduct	chemical	reaction	and	generate	the	cute	globefish.	)

Figure 9: Failure cases about knowledge reasoning and transfer.

provides additional instructions, some detailed steps are not depicted in the original video. We believe
this hallucination may stem from the information in the training data.

Understanding 3D with Coarse Correspondences. Oryx enhances its 3D spatial understanding
using coarse correspondences. Fig. 7 illustrates Oryx’s reasoning process, demonstrating its ability to
improve 3D comprehension through these correspondences and generate accurate reasoning outcomes.
In the challenging task involving direction in a first-person view, LLaVA-OneVision (Li et al., 2024a)
provides incorrect conclusions.
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Figure 10: Visualization Results on Video Needle-In-A-Haystack Experiments. We compare
Oryx-7B (right subfigure) with LLaVA-Next-Video-7B (left subfigure) on the frame retrieval task.
The results are shown for inserted depths ranging from 0.0 to 1.0 and the number of frames ranging
from 0.1k to 1.6k. The Oryx model demonstrates superior performance in long-form understanding
tasks, providing precise results even when a single relevant frame is embedded within over 1k frames
of irrelevant information.

B FAILURE CASES

In this section, we further test the Oryx model on more challenging samples. We provide some
representative failure cases to show the limitations of the Oryx model and point out the future direction
for VLMs. The incorrect response is highlighted in red.

Time Perception. We provide an example of time perception in Fig. 8. From the responses, we
can observe that current video understanding models using uniform frame sampling tend to lose
the temporal context in videos, which is critical information between frames. For instance, Oryx
provides incorrect answers and cannot accurately determine the timestamps for the given video. We
believe that incorporating timestamps directly into the video or processing video inputs without
frame sampling may help address this issue, leading to a more comprehensive video understanding
capability.

Knowledge Reasoning and Transfer. We provide the knowledge reasoning video in Fig. 9. From
the responses, we can observe that the Oryx model lacks knowledge of chemical reactions, indicating
that the training data of current MLLMs is not comprehensive enough. We believe that expanding the
knowledge base of current MLLMs is an urgent issue. Additionally, this example requires simple
reasoning to integrate chemical knowledge into the main idea of the video, which poses a challenge
for Oryx. Enhancing the reasoning capability may help address this issue.

C MORE ANALYSIS

C.1 VIDEO NEEDLE-IN-A-HAYSTACK

To demonstrate the retrieval ability in long-form visual inputs and test the quality of the dynamic
compression module, we design the video needle-in-a-haystack experiment under extreme conditions,
following the methodologies established in previous work (Zhang et al., 2024a; Xue et al., 2024).
For this experiment, we select an extremely long video and then insert irrelevant image question-
answering data as a single frame at arbitrary depths within the video. The model is tasked with
answering questions related to these inserted images. We utilize LLaVA-Next-Video (Zhang et al.,
2024c) of comparable size as our baseline. As depicted in Figure 10, baseline models trained with
32 frames failed to identify the images, suffering from severe information loss. In contrast, our
method successfully retrieves the inserted images and accurately answers the questions, even with
frame counts of 1.6k. This outcome strongly demonstrates the model’s ability in long-form temporal
understanding, facilitated by the on-demand compression module.

C.2 INFERENCE SPEED AND EFFICIENCY

We implement variable-length self-attention using the highly optimized FlashAttention (Dao et al.,
2022) library. This allows the inference throughput of our arbitrary-resolution visual encoder to
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Table 6: Test on Inference Speed and Memory Cost.

Backbone Processing Approach Throughput (image/s) Max Memory Cost

OryxViT Native Resolution 146.5 49.1GB
SigLIP Dynamic Partition 157.7 48.7GB
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Figure 11: Memory-Resolution Curve for OryxViT.

remain comparable to the dynamic partition approach used in previous methods. Additionally,
the memory overhead and inference throughput remain negligible, as the variable-length attention
operation is fully optimized through modifications in the CUDA kernels.

Moreover, the model size of the Vision Transformer is considerably smaller than that of large language
models (400M parameters compared to 7B/32B). Consequently, the main memory cost arises from
the weights and features of the LLMs, as full attention is computed on visual tokens within the LLM,
even when using dynamic partitioning in visual encoding. Therefore, we maintain a similar efficiency
to previous solutions in terms of inference speed and memory cost.

We tested the inference speed with an input image size of 1280× 1280 on one NVIDIA A100 GPU.
We observed that OryxViT is only 7% slower than SigLIP with the dynamic partition approach.
We believe this overhead is acceptable given the improved performance and the ability to process
images at their native resolutions directly. For the max memory cost, we set the batch size to 4 and
the image size to a total of 1280 × 1280 pixels, with the aspect ratio randomly determined. The
dynamic-partition baseline uses an average of 48.7G of memory, while OryxViT uses 49.1G, showing
comparable results.

Additionally, we plotted the memory-resolution curve to illustrate how the memory footprint increases
with varying resolutions in Fig. 11. Our experiment was conducted on an NVIDIA A100 GPU, using
square-shaped input images. The results show that the memory cost is positively correlated with
image resolution and is approximately in linear relation among common image resolutions, indicating
that OryxViT provides a memory-efficient solution when scaling input resolutions.

Furthermore, we can also observe that the primary memory cost arises from the model weights and
the features themselves. Notably, considering that the main memory cost comes from the computation
in LLMs, our method with native resolution support will not introduce much extra memory footprint
compared to previous methods like LLaVA-Next (Liu et al., 2024c) and InternVL2 (Chen et al.,
2024b). Oryx can largely save memory if we apply dynamic compression on visual tokens (e.g., 2x
or 4x downsampling) while previous methods do not support this feature.

C.3 ABLATIONS ON TRAINING DATA

We conduct ablation experiments on the collected training data including the long-form video data
and the 3D coarse corresponding data in Tab. 7. We can observe from the results that the long-form
temporal data benefits the long video benchmarks. For 3D-related tasks, our proposed approach based
on coarse correspondence is an effective solution for 3D benchmarks. We conducted experiments and
provided results on ScanQA. ”3D Data” indicates whether 3D datasets are included in the training set,
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Table 7: Ablations on Training Data.

(a) Effects on Long-Form Data.

Long-Form Data VideoMME MLVU

✗ 55.2 58.1
✓ 55.4 59.3

(b) Effects on 3D-relevant Data.

3D Data C.C. METEOR ROUHE-L

✗ ✗ 11.7 28.1
✓ ✗ 12.8 32.7
✓ ✓ 14.0 35.1

Table 8: Ablations on Designs of MLP Adapter.

MLP Architecture VideoMME MLVU MMBench MMMU

Shared 55.4 59.3 81.4 43.9
Separated 54.0 54.2 81.2 43.1

while ”C.C.” refers to using the coarse correspondence approach to annotate objects in 3D-relevant
videos. We observe that both components contribute to an improved understanding results.

C.4 DESIGNS FOR MLP ADAPTER

We explored using specialized projection layers when integrating video modality into our model.
However, we found that employing a shared MLP for all visual inputs yields better performance. To
align with this design, we use the Dynamic Compressor module to closely maintain the distribution
of image and video features and employ the shared MLP for visual information fusion. This ensures
that input tokens for LLMs maintain a consistent distribution for both images and videos, allowing
the shared MLP to be better trained with joint visual knowledge.

We conducted experiments in Tab. 8 to support our hypothesis, comparing our shared MLP strategy
with separate MLPs for images and videos. Both the image and video MLPs were initialized from
pre-trained image weights. The results indicate that using separate MLPs negatively impacts video
benchmarks, as the dual-projector design can lead to differing distributions for similar data. Therefore,
using a single MLP is a more effective solution for visual encoding.

C.5 ANALYSIS ON DOWNSAMPLING

Analysis on Overall Downsampling Architecture. We integrate several mainstream approaches,
including direct average pooling, 2× 2 spatial convolution, Q-former, and our proposed Dynamic
Compressor for comparison. The results are presented in Tab. 9 (a). We reference results from
VideoMME (Fu et al., 2024) and MLVU (Zhou et al., 2024). Our observations indicate that the
proposed Dynamic Compressor outperforms traditional downsampling strategies based on average
pooling and spatial convolution. Additionally, we find that Q-former-based methods are not suitable
for handling long visual content with fixed lengths of visual tokens. This limitation arises because
the information capacity of a visual token is directly proportional to its length, making fixed lengths
inadequate for more complex cases involving longer visual content.

Analysis on Downsampling Function in Dynamic Compressor We are also curious which down-
sampling function performs better within the dynamic compressor. We compared average pooling,
DWConv, and Conv-MLP architectures. The results are presented in Tab. 9 (b). Results indicate that
the parameter-free average pooling outperforms parameter-dependent methods like DWConv and
Conv-MLP. This improvement is likely because average pooling better preserves the distribution of
visual features, whereas more complex downsampling layers may not be effectively trained with the
current pipeline.
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Table 9: Analysis on Downsampling.

(a) Overall Downsampling Architecture.

Strategy VideoMME MLVU

Average Pooling 54.6 57.5
Convolution 54.2 56.8

Q-former 42.7 35.3
Dynamic Compressor 55.4 59.3

(b) Downsampling Function in Dynamic Compressor.

Function VideoMME MLVU

DWConv 55.0 58.9
Conv-MLP 54.7 58.5

Average Pooling 55.4 59.3

D MORE DETAILS

D.1 IMPLEMENTATION DETAILS

Our implementation integrates the Oryx model with two sets of LLMs, Qwen-2.5-7B (QwenTeam,
2024a), and Yi-1.5-34B (Young et al., 2024), to demonstrate generalizability across different model
sizes. For the visual encoder, we use our pre-trained OryxViT to support arbitrary-resolution visual
inputs. During the pre-training stage, we utilize 558k captioning data from LLaVA-1.5 (Liu et al.,
2024b), unfreezing the parameters of the dynamic compression module. The image SFT stage
involves curating an open-source dataset of around 4M images. In the joint training stage, we
incorporate approximately 1.2M data consisting of images sampled from the previous stage and
video/3D data. For video data, we restrict the frame number to 64 for standard videos of low
compression ratio and 256 for long videos of high compression ratio. We use the 2 × 2 average
downsample for low compression and 4× 4 average downsample for high compression. Image data
are maintained at their native resolution, with a maximum size of 1536 pixels, while video data
resolutions are confined to a range of 288 to 480 pixels. The rest of the training details are provided in
the appendix. In our implementation, we set the downsampling ratio d3 = 4d2 = 16d1, therefore the
token length of frames in the long videos is reduced to 1

16 of that of images with the same resolution.

D.2 DETAILS OF ORYXVIT

We pre-train OryxViT with a relatively small language model (Qwen2-0.5B (QwenTeam, 2024a) in
our implementation) to enhance the language interface and improve vision-language alignment. We
unfreeze OryxViT and apply LoRA fine-tuning to the language models. As a result, the total number
of trainable parameters is 0.6B, making the training process significantly faster than supervised fine-
tuning in the main stage (approximately 10 times faster). We collected a total of 400M pre-training
data, focusing mainly on image captioning and image OCR tasks. For image captioning, we used the
CapsFusion (Yu et al., 2024) datasets, and for OCR tasks, we employed synthesized OCR data pairs
with OCR models. We set the batch size to 2048 and used a similar cross-entropy loss as in the main
stages.

D.3 TRAINING DETAILS

Stage 1. For stage 1, we first pre-train the connector module between the visual encoder and Large
Language Model for the initial alignment between image and text modalities. We conduct our
experiments on 558k caption data from BLIP (Li et al., 2023) model following LLaVA-1.5 (Liu et al.,
2024b). We only unfreeze the parameter for the connector while maintaining other parameters fixed.
We adopt the total training batch size at 256 and the overall learning rate at 1e-3. We maintain the
aspect ratio for the input image while adjusting the overall pixels to 7682 to reduce the computational
cost. The training cost for the pre-training alignment is lightweight thanks to the small number of
parameters for the connector and the relatively lower image-text data pairs. Subsequently, we conduct
the supervised fine-tuning stage with 4.1M image data. We freeze the parameter for the visual encoder
while unfreezing the connector and the Large Language Model following common practice. In this
stage, we use the native resolution of the image while restricting the maximum number of pixels
at 12802 for efficiency. For the image larger than 12802 pixels, we scale down the image to match
the overall number of pixels. We set the learning rate at 2e-5 for Oryx-7B and the learning rate at
1e-5 for Oryx-34B. We adopt the total batch size at 128 and conduct our experiments on 64 NVIDIA
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A100-40G GPUs for Oryx-7B and 64 NVIDIA A800-80G GPUs for Oryx-34B, as larger models
need more GPU memories. The total model maximum length is set as 8192.

Stage 2. For stage 2, we continuously train the Oryx model from the multi-modal LLMs in stage
1. We randomly sample around 600k image data from the supervised fine-tuning stage in stage 1
and add an additional 650k temporal and 3D data from open-source multi-modal datasets, resulting
in an overall number of 1.2M further supervised fine-tuning data. In the more general stage, we
increase the restriction for image pixels to 15362 to meet the longer sequential length in temporal
data. We maintain the aspect ratio of video data while normalizing each frame to the minimum size of
2882 pixels and the maximum size of 4802 pixels, therefore the token length before the compression
module ranges from 324 to 900. We adopt 1× 1 path for the image data, 2× 2 pooling path for the
multi-frame data including video and 3D-relevant data, and 4 × 4 pooling path for the extremely
long video needle-in-the-haystack retrieval data. We maintain most of the training hyper-parameters
identical to stage 1, with a total batch size of 128, a learning rate of 2e-5 for Oryx-7B, and a learning
rate of 1e-5 for Oryx-34B. We sample 1 frame per second for video data and set the max frame
number at 64 frames. We uniformly sample the frames among all the frames if the number exceeds
the upper bound. The maximum sequence length is set to 16384.

E CODE

The code is also provided in the supplementary material (see the code folder). Our Oryx is
implemented using PyTorch library (Paszke et al., 2019).

23


	Introduction
	Related Work
	Methods
	Oryx Architecture: MLLM with Native and Flexible Visual Inputs
	Visual Representations with Native Resolution
	On-Demand Dynamic Compression Supporting Long Visual Context

	blue Data Curation & Training Pipeline
	blue One Model for All: Image, Video, and 3D Understanding
	Training Pipeline


	Experiments
	General Temporal Understanding
	Long-Form Temporal Understanding
	2D & 3D Spatial Understanding
	Analysis

	Conclusion
	Generation Results
	Failure Cases
	More Analysis
	Video Needle-In-A-Haystack
	Inference Speed and Efficiency
	Ablations on Training Data
	Designs for MLP Adapter
	Analysis on Downsampling

	More Details
	Implementation Details
	Details of OryxViT
	Training Details

	Code

