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Abstract

Constraint Satisfaction Problems (CSPs) are a core technology that solves many real-world problems, especially
for configuration tasks. A key success factor in this context is an efficient knowledge acquisition process where
domain experts and knowledge engineers (developers of CSPs) should develop an agreement on the correctness
of the expanding knowledge base as soon as possible. In this paper, we show how large language models
(LLMs) can be applied to the automated generation of solutions for constraint satisfaction problems thus
reducing overheads related to CSP development and maintenance in the future.
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1.

Knowledge acquisition for knowledge-based systems,
especially constraint-based systems, is a complex
task. It includes the formalization of partly tan-
gible knowledge with a knowledge model, such as
a configuration, constraint, or feature model [1, 2].
Constrained-based systems, in particular, are often
used to implement configuration systems, due to
their ability to compute possible values for configu-
rations or even directly configurations themselves
[3]. Hence, modeling a configuration problem as a
constraint satisfaction problem (CSP) is a typical
approach for computing configurations. This type
of modeling is similar to developing programs in a
high-level programming language but also incorpo-
rates logical semantic elements.

Currently in software engineering, the use of large
language models (LLMs) is exploited to support
programmers in their daily tasks, such as coding,
code completion, reviewing code, API programming,
generating test cases, documentation, or identifying
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design patterns as well as learning programming
languages or understanding legacy code [4]. This is
achieved through general LLMs such as ChatGPT"
or specific ones like for coding trained LLMs such
as CoPilot?, or software agents like CREWAI® and
AutoGenStudio?, or software assisting engineers
such as Devine AI° or its open source correspondent
Devika®.

An example of developing a small game with a
graphical user interface is GPT-Engineer’, which
prompts in natural languages and provides the game
logic and the graphical interface through HTML and
CSS coding. Especially the combination of an LLM
with a compiler or interpreter in a chain leads to
a self-evaluation where a code, which is generated
code by an LLM, is directly checked through the in-
terpreter, and the resulting error message is taken as
the next prompt for the LLM. Through iterating this
(e.g., with a supporting tool such as LangCHAIN®)
a syntactically correct program is created. How-
ever, broader tasks, such as reviewing a software
architecture or refactoring code distributed over
multiple files are hindered by the limited size of a

1Chat Generative Pre-Trained Transformer

Zhttps://github.com/features/copilot. All URLs accessed
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prompt (the context window) to a given number of
tokens such as 128,000 input tokens for GPT-4. In
summary, applying LLMs to software development
still has to cope with issues such as limited con-
text windows, maintainability of Al-created code,
and applicability in project planning or software
architecture.

Inspired by these approaches, for constraint sat-
isfaction problems the following questions arise:

o Which knowledge acquisition and engineering
tasks can be supported by LLMs?

e Can knowledge models be generated by
LLMs? How is quality ensured?

e Which alternative implementations of a
knowledge model are the most comprehensi-
ble or maintainable?

However, a main ingredient of LLMs is of course a
prompt that triggers the generation of text, here of
knowledge models. Hence, for a knowledge model,
the questions are also:

e What type of prompts do we need?

e What has to be presented to the LLM?

e Is natural language text describing the prob-
lem enough?

e Should examples of the formal modeling lan-
guage, which shall be used for formalization,
be given?

¢ Or the complete language specification?

This paper explores the innovative use of LLMs
to automatically generate constraint models in con-
straint programming languages like PyChoco”. Con-
straint programming involves defining problems in
terms of variables, related variable domains, and
constraints that must be satisfied. Popular problems
in this domain include, e.g., the N-queens problem,
Magic Square, Map Coloring, and the Traveling
Salesperson Problem (TSP). To tackle such prob-
lems, we propose a generalized approach (Section 3)
where an LLM is leveraged to generate a constraint
model based on a provided prompt.

We test our approach based on several constraint
satisfaction problem examples (Section 4). In this
paper, we mainly concentrate on known examples
from the constraint community given by well-known
descriptions, not that much on new examples for-
mulated in natural language. Although the task
of starting with known problems is untypical for
configuration problems, in our view, this step is
necessary for exploring the possibilities of LLMs for

9https://pypi.org/project /pychoco/

knowledge modeling in general. This approach of us-
ing commonly known constraint and configuration
problems builds a baseline for further work.

With our proposed approach, we aim to stream-
line the process of model creation in constraint pro-
gramming, making it faster and more accessible by
harnessing the capabilities of LLMs. The main idea
is to define a general prompt once which describes
the problem context and then reuse this general
prompt for specific knowledge engineering tasks at
hand.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of the state-
of-the-art in LLM-based knowledge modeling. In
Section 3, we sketch our proposed LLM-based CSP
generation approach. In Section 4, we provide de-
tails regarding the LLM prompting approach based
on different example CSP tasks. A discussion (Sec-
tion 5) and a conclusion (Section 6) ends the paper.

2. State of the Art in LLMs and
Knowledge Modeling

Many real-world problems can be interpreted as
constraint satisfaction problems (CSPs). Knowl-
edge engineers have the task of formalizing domain-
specific constraints into corresponding constraint-
based representations. This formalization step is
often effortful and more assistance and automation
are required in the modeling process which can be
regarded as a major challenge for constraint-based
systems [5]. Due to recent developments in the
area of large language models (LLMs), we could
envision agent-based approaches that support the
(semi-)automated generation of CSPs [6]. In the fol-
lowing, we discuss related work on the application
of LLMs to knowledge modeling.

The idea of exploiting synergy potentials of
knowledge-based systems and language models for
knowledge-base generation has been proposed a.o.
by Petroni et al. [7], Ding et al. [8], and Razniewski
et al. [9]. Suchanek and Luu [10] motivate the inte-
gration of LLMs with data-driven and knowledge-
based approaches to exploit the advantages of both
worlds, specifically, to let data-driven approaches
act as a basis for grounding the LLM output in
reality. In the work presented in our paper, a sim-
ple form of grounding is the usage of test cases to
assure intended CSP semantics. A similar line of
research is presented in Nayak and Timmapathini
[11] where object and relation identification based
on LLMs is investigated.

Ahmed and Choudhury [12] introduce the idea
of applying LLMs to the generation of optimiza-
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tion problems. The motivation behind this is to
make related problem formulation tasks more acces-
sible to domain experts, i.e., to decrease the need
for specialized mathematical knowledge to make
problem formulations feasible. Based on a given
dataset comprising different example problem defi-
nitions (and solutions), LLMs are used to generate
optimization problem definitions for new problems
defined in a textual fashion. A major difference
compared to our work is that model fine-tuning is
primarily based on a "human in the loop" approach
whereas we focus more on automated fine-tuning
giving LLM feedback on the syntactical (is the gen-
erated CSP correct or what were the compilation
issues?) and the semantic level with test cases. A
related approach is the application of LLMs to sup-
port different types of strategic reasoning tasks, for
example, in the context of economic simulations
and game theory [13].

A very similar approach provides [14]. This ‘Pro-
gram of Thoughts’ named approach also combines
an LLM with an external Python interpreter, how-
ever, in [14] for computing numerical problems. Fur-
thermore, the verification of the generated Python
program is not discussed.

The adaptation of LLMs for logical reasoning
tasks [15] can be performed either based on LLM
fine-tuning where LLMs are trained (and adapted)
for specific problem settings [16] or based on (au-
tomated) prompt adaptation [17]. Intending to
improve the quality of code generation, Pan et al.
[15] follow the idea of using constraint (and SAT)
solver execution errors as feedback channels (in the
prompting process) to increase the quality of code
generation. The feedback approach presented in
our paper extends the work of Pan et al. [15] in
terms of additionally providing test cases that help
to improve the quality of the generated CSP also
on the semantic level.

In [18], various prompts are used to create source
code with built-in variability. Specific prompts en-
able the generation of code in different programming
languages, allowing for application configuration.
However, a human developer would execute these
prompts, no iterative process ensures the correct-
ness of the resulting code.

The automated generation of CSPs can also be
regarded as a specific type of ontology construction
where concept hierarchies are derived based on dif-
ferent LLM prompts representing concept hierarchy-
specific queries (see, for example, the work of Funk
et al. [19]). An example of such a query is the
following: What are all of the most important sub-
categories of the category A?

3. Methodology

Our approach for generating constraint models using
LLMs is a structured, iterative process designed to
create syntactically and semantically (almost) cor-
rect models. This begins by defining a general LLM
prompt that can encompass the varying specifics
of different constraint problems. For instance, the
prompt can be tailored to a specific constraint prob-
lem but always solicits a PyChoco interpreter that
solves the problem.

The process, furthermore, involves using an iter-
ative loop where the LLM generates a constraint
model based on the provided prompt. This gen-
erated model is then verified through a constraint
interpreter or compiler. If the syntax of the model
is incorrect, the result of the Python interpreter
call is automatically taken as a prompt for a next
iteration and the model is adjusted by the LLM and
the process repeats. This loop continues until the
syntax is correct.

Once a syntactically correct model is produced,
the next step is to verify its semantics. This is
done by running a series of test cases specific to
the problem domain. Successful completion of test
cases indicates a correct semantic implementation
(at least concerning the test cases).

This approach, thus, executes an iterative prompt-
ing of an LLM, where only a human user provides
the first prompt, while the results of a Python in-
terpreter are automatically used by the LLM as
successive prompts. A complete example of such
an iterative dialog including in-between generated
answers of the LLM (”Assistant”) is presented in
the Appendix Section 2.

This methodology can be further detailed through
the following steps:

Leveraging Existing Knowledge Problems: To cre-
ate useful constraint models, we use logical problems
that are well understood and documented on the
internet. Examples include classic problems such
as the N-queens problem, Map Coloring, or the
Traveling Salesperson Problem. These problems are
selected due to their well-known constraints and
solution strategies.

Integration with Constraint Solvers: Once the log-
ical problems are defined, we connect these models
to a constraint system, here PyChoco - other suit-
able solvers could be used. This involves mapping
the logical problem’s constraints to the syntax and
structures of the chosen constraint language and,
thus, facilitating automated solving.

Syntax Verification Loop: An iterative process is
set up where the LLM generates a constraint model
based on the initial prompt. This model is then



tool Python_REPL, description: A Python shell.
constraint problem. Input should be a valid Python script using pychoco.
"verify_solutions(solutions, ...)" in order to verify your solutions

System:

You are an agent designed to solve constraint problems, you write python code to solve and verify constraint
problems. You have access to a python REPL, which you can use to execute python code and verify
your solution. If you get an error, debug your code and try again. You only use the constraint solver
pychoco. You conclude your python code with a variable "solutions" and verify it with the method call
"verify_solutions(solutions, <problem_name>", where <problem_name> is given to you as the first word
of the instructions. "solutions" should be a list of all solutions to the constraint problem. If verification fails,

Use this to run and verify your solution to the
The last line should be

you correct your solution.

User: ints10. find numbers one to 10.
Assistant:

(33

python
from pychoco.model import Model

model = Model ()

x = model.intvar(i1, 10, "x")
solver = model.get_solver ()
solutions =

verify_solutions (solutions,
€ ¢

Use the following example as a template for solving constraint problems with pychoco:

from test_tool import verify_solutions

[s.get_int_val(x) for s in solver.find_all_solutions ()]
"ints10")

Figure 1: General prompt including an example for the LLM on how to call the verification method. The first three
lines (the tool description) are needed to avoid iterations related to wrongly calling the method verify_solutions
(see Appendix Section 7 for created errors without those lines).

verified for syntactic correctness using the constraint
interpreter or compiler. If errors are identified, the
prompt is automatically adjusted by the LLM, by
using an error message as a next prompt and the
LLM regenerates the model. This loop continues
until a syntactically correct model is achieved.

Semantic Verification with Test Cases: After
achieving a syntactically correct model, the focus
shifts to ensure semantic correctness. This involves
introducing test cases specific to the defined prob-
lem. The LLM-generated model runs through these
test cases to verify that it not only adheres to syntac-
tic rules but also correctly implements the problem’s
logic. Iteration continues until the model passes all
semantic verification tests.

Generalizability: The ultimate goal of our ap-
proach is to establish a generalizable method for
generating constraint models using LLMs. By sys-
tematically using an iterative loop for both syntac-
tic and semantic verification that employs examples
and logical problem definitions, we aim to create a
robust framework that can be adapted to various

constraint languages and problems.

By following these steps, our approach leverages
the capabilities of LLMs to create accurate and
efficient constraint models, providing a scalable so-
lution for different problem types.

4. Prompting Constraint Models

We divide prompts into a general part which is
used with each constraint problem, i.e., the system
prompt (see Section 4.1), and a query part which
points to a specific problem (see Section 4.2).

4.1. General Prompts

Prompting Syntactic Valid Models Figure 1 shows
the general prompt which we developed for querying
for constraint solutions. The prompt provides the
following explanations to the LLM:

1. what role it has (“You are an agent. .. "),
2. the explanation of the REPL'Y as a tool
(“You have access. .. ),

19Read-Eval-Print-Loop



You are an agent designed to solve constraint problems, you write and execute python code to answer
questions. You have access to a python REPL, which you can use to execute python code. The python
REPL will keep its state between usage. Use this to gradually approach a final solution. Divide the solution
into meaningful parts run them part after part verifying that each part runs correctly. If you get an error,
debug your code and try again only the last part that failed. You only use the constraint solver pychoco.
Only use the output of your code to answer the question. Write for each code line a comment as needed to
justify your reasoning for that code line. | will give you an example of good python code, please, follow the
code convention of the good python code example. This good python code exampleis only an example. This
good python code example has nothing to do with the constraint problem solution. You might know the
answer without running any code, but you should still run the code to get the answer. If it does not seem
like you can write code to answer the question, just return "I don't know" as the answer. The user may
ask questions or give follow up instructions after you presented your solution. You then have to adjust you
solution accordingly.

good python code example:

"# Import mnecessary modules
import os

# Define the input and output file paths
input_file_path = \’numbers.txt\’
output_file_path = \’average.txt\’

# Function to read numbers from a file
def read_numbers_from_file(file_path):
# Initialize an empty list to store the numbers
numbers = []
# Open the file in read mode
with open(file_path, \’r\’) as file:
# Read each line in the file
for line in file:
# Strip any leading/trailing whitespace and convert to float
number = float(line.strip())
# Append the number to the list
numbers.append (number)
# Return the list of numbers
return numbers
main ()"

Figure 2: Refining the prompt to provide comments for the generated model (slightly differently prompted).

3. a hint of the behavior of the tool (“The
python REPL...%),

4. a hint of how to use the tool (“Use this...*),

5. to focus on that tool (“use only*).

Prompting Semantic Verification: To verify, if a
semantic correct solution can be computed with the
generated constraint model, we include a verifica-
tion scheme that builds on tests. Those are specific
for the constraint problem at hand. However, the
general prompt is enhanced with a call to the veri-
fication method, which is parameterized with the
name of the constraint problem. The verification
scheme is given by an example that explains the
parameterization, a constraint model, and the call
to the verification method (Figure 1).

Prompt Refinement: For more understanding, of
why the LLM generates a certain code line in the
model, we have enforced the LLM to provide com-
ments above a code line (see Figure 2). This is done
by explaining in the prompt what a “Good python
code example“'! is. This is done, by repeating this
text at various appropriate positions in the prompt,
as well as providing such an example in the prompt.

4.2. Prompting Specific Problems

The query part simply consists of the name of the
constraint problem and related specific problem

11The italic style in the prompt is only for the human reader,
i.e., only the text is given as prompt.



Listing 1: Queries for specific constraint problems

queen3 = "solve the 3-queen problem"
queen8 = "solve the 8-queen problem"
queenn = "solve the n-queen problem,

coloring = """

solve the map coloring problem for four regions,

adjacency:

regions = [’A’, °B’, ’C’, ’D’]
adjacency_list = {
TN, [’B’, ’C’],
B [’A’, zcz’ ’D’],
10 [’A’, ’B’, ’D’],
D [’B’, )c)]
}.

use n=8 as test instance"

three colors and the

the solution should be a list of python dicts where each dict maps regiomns to

color indices
nmnn

tsp =
instance:

# Number of cities

C =4

# Distance matrix
D = [[0, 10, 15,
the

20], [10, O, 35, 25],

"""solve the traveling salesman problem,

[15,
solution should be a list of valid solutions,

use the following problem

35, 0, 30], [20, 25, 30, 0]]

each solution being a list of

integers representing the cities to be visited.

descriptions, see Listing 1'2.

N-Queens Problem

Problem: Positioning n queens with possible move-
ments known from chess on a n * n chessboard'?.
Figure 1 shows the used prompt.

Results: The LLM makes multiple Python REPL
calls, one that prints the solution, and one that
follows the system prompt on how to verify the
solution. This leads to the correct computation of
the model including the conversion of the solutions
to a list of lists (see Figure 3).

Comments: The solution to the N-queens prob-
lem is provided in the PyChoco documentation on
the internet, hence, the LLM was trained with it.
However, a different solution was found. Also, the
3-queen problem which provides no solution was
correctly represented. A further observation was
that the result is not deterministic, e.g., it varies
arithmetical constraints for diagonals (see Listing
2). Fixing the seed and setting the temperature to

12The code in the GitHub contains further problems such
as magic square that lead to similar observations.

13Gee files “chats/queen8__cs_ agent__sol2__gpt-4-1106-
preview_ *“ in the GitHub for results

zero does not make results deterministic.

The semantic verification test for the N-Queens
problem is shown in Listing 3. Through the method
verify_solutions called by the prompt, each so-
lution (queens) is tested. This test is exhaustive
because it analytically tests the queens’ position,
not leaving out a constraint.

Map Coloring
Problem: Listing 1 describes the well-known Map
Coloring as a query.

Results: A first model which contains the con-
straint all_different raised an error'* but was
corrected by using another constraint modeling (i.e.,
with != instead of all_different) through 2 itera-
tions'®. A further run provides a one-shot success,
however not recognized as such, instead a solution
was hallucinated for presenting to the user'®. A
further run firstly used the API wrongly, but finds

14Tt seems to be an implementation issue, see https://github.
com/chocoteam/choco-solver/issues/705

15coloring cs_ agent_ sol2_ gpt-4-1106-preview
20240529094847.txt

16coloring _cs_agent_sol2_ gpt-4-1106-preview__
20240529095157.txt
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Assistant:

There was a mistake in the code. It seems I incorrectly used the
‘solver.find_solution() ¢ method, which only finds one solution, and I
didn’t convert the solution to the expected list format before passing

it to the verification function. I need to find all solutions and convert
each solution to a list of integers representing the positions of the
queens.

Let me correct the code.

Python_REPL (tool call 1/1):

from pychoco.model import Model

from test_tool import verify_solutions

model = Model ("8-Queens")

# Create an array of 8 variables representing the positions of queens on a
# chess board

queens = model.intvars(8, 1, 8)
# Add constraints
for i in range(8):

for j in range(i + 1, 8):

# Queens cannot be on the same row
model.arithm(queens[i], "!=" queens[j]) .post ()
# Queens cannot be on the same diagonal
model.arithm(queens[i], "-", queens[j],
model.arithm(queens[i], "-", queens[j],

# Find all solutions

solver = model.get_solver ()

solutions = []

for solution in solver.find_all_solutions():

solutions.append ([solution.get_int_val(queens[i]) for i in range(8)])
verify_solutions (solutions, "queen8")

nyp=n
. s

i - j).post()

= J - i).post()

Python_REPL (tool response):
92 of the 92 solutions are correct. Expected 92 solutions

Assistant:
The 8-queens problem has been successfully solved, and all 92 solutions are correct.

tool calls: 6, text messages: 6

Figure 3: Constraint model for 8-queens problem and last output

finally a correct solution'”.

Comments: The solution can also be found on
the internet, however, this does not prevent from
making errors. Finally, also because the iterative
approach is used, a solution was found.

Traveling Salesperson Problem
Problem: Listing 1 describes the well-known TSP
as a query.

Results: In general, there are several recurring
issues when attempting to model constraints for the
TSP (see the error logs in Appendix Section 8). One
major problem lies in accurately modeling distance
constraints, which often leads to incorrect solutions.
Similarly, the Hamiltonian path constraints are dif-

17coloring_cs_ agent_ sol2_ gpt-4-1106-preview__
20240529095612.txt

ficult to model correctly, compounding the problem.
Additionally, there is frequent misuse of the API.
These misuses typically involve providing arguments
in the wrong order or supplying an incorrect num-
ber of arguments. As a result of these issues, the
solutions generated are often flawed. With GPT-4,
no solutions could be found with the resources at
hand, but with GPT-40, some solutions were cor-
rectly identified. However, no implementation was
found that computes all the test cases provided for
verification. Overall, these challenges underscore
the complexity of effectively modeling TSP con-
straints and highlight areas that require significant
improvements to find optimal solutions consistently.



Listing 2: Non-deterministic results

- correct
model.arithm(queens[i], "!=" queens [j] + (j - i)).post ()
model.arithm(queens[i], "!=", queens[j] - (j - i)).post()
- correct
model.arithm(gs[i], "-", qs[j]l, "!=" , j - i).post()
model.arithm(qgs[jl, "-", qs[i]l, "!=" , j - i).post()
- wrong
model.abs (queens - queens).ne(i - j).post() # Diagonal constraint
model.abs (queens - queens).ne(j - i).post() # Diagonal constraint
- wrong
model.arithm(queens[i], "-", queens[j], "!=", i - j).post()
model.arithm(queens[i], "+", queens[j], "!=", i + j + 2).post()

does not find all solutions

diagl [model.int_offset_view(queens[i], i) for i in range(n)]
diag2 = [model.int_offset_view(queens[i], -i) for i in range(n)]
model.all_different (diagl) .post ()
model.all_different (diag2).post ()
- wrong
model.arithm(queens[i], "!=" queens [j]) .post() # Different columns
model.arithm(queens([i], "-", i, "!=" queens [jl, "-", j).post() #
Different diagonals (left-top to right-bottom)
model.arithm(queens[i], "+", i, "!=" , queens[j]l, "+", j).post() #
Different diagonals (left-bottom to right-top)
- wrong
model.all_different ([queens[i], queens[j]]) .post()
model.arithm(queens[i], "-", queens[j], "!=" j - i).post ()
model.arithm(queens[i], "+", queens[j], "!=" j - i).post ()

Listing 3: Verifying a solutions for N-queens through testing the queens’ positions.

def is_valid_solution(queens):
n len(queens)
assert type(queens)
for i in range(n):
for j in range(i + 1, n):
# Check if queens are in the
if queens[i] == queens[j]:
return False
# Check diagonals:
equals
# the difference between the
diagonal
if abs(queens[i]
return False
return True

list,

- queens[j])

"expected 1list of ints"

same Irow

if the difference between the column indices

row indices, they’re in the same

abs(i - j):

4.3. Implementation

The implementation, which utilizes LangChain and
Python leverages ChatGPT-4 and ChatGPT-40 and
is available on GitHub'®. As constraint solver, we
used PyChoco as a Python API for the constraint
solver Choco'®. The resources of ChatGPT are

limited in respect of context/prompt length. This

18https://github.com/hitecev/iCMLLM
19https://choco-solver.org/

leads to simply stopping answering by the LLM if
the chat, which is with each answer extending, i.e.,
e.g., in the last prompt the whole previous chat
history is part of the prompt. The resulting chats
are added to the paper as an appendix as well as
in the GitHub. The implementation can be used to
rerun the experiments, and the data can be utilized
for further investigation in prompt engineering.
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5. Discussion

Overall, across all problems, after initiating multi-
ple chats, each with several iterations, a model that
can compute a single solution could be found (see
Appendix sections 3 to 6). In Appendix Section 9,
we document the number of iterations per exper-
iment, i.e., calls to the Python interpreter (”Tool
Calls”) and answers given by the LLM (”Text Mes-
sages”). Nevertheless, for the TSP, we could not
find a model that computes all solutions. The it-
eration was stopped by the LLM, if no changes
occurred or if too many tokens were used. So the
paper’s result is that in principle constraint models
for well-known problems can be computed, however,
not in any cases.

An interesting observation is that the generated
variable names within the model are always seman-
tically meaningful (e.g., "queens") and not arbitrary.
This likely occurs because LLMs statistically favor
names that have been previously encountered.

In this paper, we use well-known constraint prob-
lems, which, of course, can only be a first step for
leveraging LLMs in knowledge acquisition. The
next steps would be to supply new, unknown prob-
lems, also industrial ones, e.g., by giving tables of
correct variable combinations (configurations) in ta-
ble constraints and generating abstracted constraint
models. However, Listing 1 shows a potential way
of representing formally a problem as a query which
probably can be used for other tasks.

There are several general problems identified: the
program persistently uses the PyChoco API incor-
rectly and often hallucinates PyChoco functions.
This could not be prevented by providing the API
definition in the prompt, because the complete def-
inition extends the number of possible tokens we
could send to the LLM.

Additionally, the chats are not stable and can
vary significantly even with the same prompt. This
instability persists even with temperature set to 0
and a fixed seed, making chats non-deterministic.

The used prompts should be further developed
to achieve the intended general generation of knowl-
edge models; in other words, prompt engineering for
knowledge modeling needs to be elaborated. Few-
Shot Prompting [20] could be used to encourage
the model to produce more consistent outputs and
adhere more closely to given instructions.

The approach of first creating syntactically cor-
rect models and then verifying them to ensure se-
mantic accuracy could be successfully demonstrated
(see Listing 3). Because we use a test-driven seman-
tic verification this verification depends on the qual-
ity of the used test cases. For example, the N-queen

problem was exhaustive because of an analytical-
based verification and not an enumeration of test
cases. Furthermore, writing tests for knowledge-
based tasks is, in our experience, typically easier
than writing knowledge models, hence, the experts’
tasks of creating formal constraints and also configu-
ration models will, in our opinion, shift from writing
models to writing tests - and let us write the mod-
els through an LLM. Thus, the knowledge model
developing process probably, with the presented ap-
proach, can be executed by domain experts not only
by knowledge engineers.

The paper offers, furthermore, an easy way to
begin with iterative LLM prompting. Moreover, it
is suggested to use the LLM for creating a new con-
figuration language by exploiting the hallucination
capabilities.

6. Conclusions

The paper presents the first steps in supporting
the formalization task in constraint modeling with
LLMs, i.e., the mapping of a well-known problem
into a constraint representation of a certain con-
straint language, here PyChoco, with large language
models. By taking various constraint problems, for-
mulating generally applicable prompts, and doing
so in an iterative manner which includes syntactic
and semantic verification processes, the LLM could
generate appropriate and correct constraint models.
Through the iteration, in-between errors related to
syntax and semantics were automatically corrected.
Further work will include a quantitative evaluation
of the method, a comparison of different LLMs, as
well as the generation of constraint models for un-
known problems. In total, this paper provides a first
step into a new kind of constraint and configuration
modeling approach with LLMs.
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