
Under review as a conference paper at ICLR 2022

DeepSplit: Scalable Verification of Deep
Neural Networks via Operator Splitting

Anonymous authors
Paper under double-blind review

Abstract

Analyzing the worst-case performance of deep neural networks against input
perturbations amounts to solving a large-scale non-convex optimization
problem, for which several past works have proposed convex relaxations as a
promising alternative. However, even for reasonably-sized neural networks,
these relaxations are not tractable, and so must be replaced by even weaker
relaxations in practice. In this work, we propose a novel operator splitting
method that can directly solve a convex relaxation of the problem to high
accuracy, by splitting it into smaller sub-problems that often have analytical
solutions. The method is modular, scales to very large problem instances,
and compromises of operations that are amenable to fast parallelization
with GPU acceleration. We demonstrate our method in obtaining tighter
bounds on the worst-case performance of large convolutional networks in
image classification and reinforcement learning settings.

1 Introduction

Despite their superior performance, neural networks lack formal guarantees, raising serious
concerns about their adoption in safety-critical applications such as autonomous vehicles
(Cao et al., 2019) and medical machine learning (Finlayson et al., 2019). Motivated by
this drawback, there has been an increasing interest in developing tools to verify desirable
properties for neural networks, such as robustness to adversarial attacks. Neural network
verification refers to the problem of verifying whether the output of a neural network satisfies
certain properties for a bounded set of input perturbations. This problem can be framed as
optimization problems of the form

minimize J(f(x)) subject to x ∈ X , (1)

where f is given by a deep neural network, J is a real-valued function representing a
performance measure (or a specification), and X is a set of inputs to be verified. In this
formulation, verifying the neural network amounts to certifying whether the optimal value of
(1) is bounded below by a certain threshold. This problem is large-scale and non-convex,
making it extremely difficult to solve efficiently–both in terms of time and memory. For
ReLU activation functions and linear objectives, the problem in (1) can be cast as a Mixed-
Integer Linear Program (MILP) (Lomuscio & Maganti, 2017; Cheng et al., 2017; Dutta et al.,
2018; Fischetti & Jo, 2018), which can be solved for the global solution via, for example,
Branch-and-Bound (BaB) methods. While we do not expect these approaches to scale to
large problems, for small neural networks they can still be practical.

Instead of solving (1) for its global minimum, one can instead find guaranteed lower bounds
on the optimal value via convex relaxations, such as Linear Programming (LP) (Wong &
Kolter, 2017) and Semidefinite Programming (SDP) (Raghunathan et al., 2018; Fazlyab et al.,
2019; 2020). Verification methods based on convex relaxations are sound but incomplete, i.e.,
they are guaranteed to detect all false negatives but also produce false positives, whose rate
depends on the tightness of the relaxation. Although convex relaxations are polynomial-time
solvable (in terms of number of decision variables), in practice they are not computationally
tractable for large-scale neural networks. To improve scalability, these relaxations must
typically be further relaxed (Wong & Kolter, 2017; Weng et al., 2018; Zhang et al., 2018;
Dvijotham et al., 2018; Bunel et al., 2020a).

1



Under review as a conference paper at ICLR 2022

Contributions In this work, we propose an algorithm for solving convex relaxations
exactly for large-scale neural networks. Our starting point is to express (1) as a constrained
optimization problem whose constraints are imposed by the forward passes in the network.
We then introduce additional decision variables and consensus constraints that naturally
split the corresponding problem into independent subproblems, which often have closed-form
solutions. Finally, we employ an operator splitting technique based on the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011), to solve the corresponding
Lagrangian relaxation of the problem. This approach has several favorable properties. First,
the method requires minimal parameter tuning and relies on simple operations, which scale to
very large problems and can achieve a good trade-off between runtime and solution accuracy.
Second, all the solver operations are amenable to fast parallelization with GPU acceleration.
Third, our method is fully modular and applies to standard network architectures.

We employ our method to compute exact solutions to LP relaxations on the worst-case
performance of adversarially trained deep networks, with a focus on networks whose convex
relaxations were previously impossible to solve exactly due to their size. Specifically, we
perform extensive experiments in the `∞ perturbation setting, where we verify robustness
properties of image classifiers for CIFAR10 and deep Q-networks (DQNs) in Atari games
(Zhang et al., 2020). Our method is able to quickly solve LP relaxations at scales that are
too large for exact BaB verifiers, SDP relaxations, or commercial LP solvers such as Gurobi.

1.1 Related Work

Convex relaxations LP relaxations are relatively the most scalable form of convex relax-
ations (Ehlers, 2017). However, even solving LPs can become computationally prohibitive for
small convolutional networks (Salman et al., 2019). One line of work studies computationally
cheaper but looser bounds of the LP relaxation (Wong & Kolter, 2017), which have been
extended to larger and more general networks and settings (Wong et al., 2018; Weng et al.,
2018; Zhang et al., 2018; Xu et al., 2020). These bounds tend to be loose unless optimized
during training, which typically comes at a significant cost to standard performance. Further
work has aimed to tighten these bounds (Singh et al., 2019; Tjandraatmadja et al., 2020;
de2), however these works focus primarily on small convolutional networks and struggle
to scale to more typical deep networks. Other work has studied the limits of these convex
relaxations on these small networks using vast amounts of CPU-compute (Salman et al.,
2019). Recent SDP-based approaches (Dathathri et al., 2020) can produce much tighter
bounds on these small networks.

Lagrangian-based bounds Related to our work is that which solves the Lagrangian of
the LP relaxation (Dvijotham et al., 2018; Bunel et al., 2020a), which can tighten the bound
but do not aim to solve the LP exactly due to relatively slow convergence. However, these
works primarily study small networks whose LP relaxation can still be solved exactly with
Gurobi. Although these works could in theory be used on larger networks, only the faster,
linear-based bounds (Xu et al., 2020) have demonstrated applicability to standard deep
learning architectures. In our work, we solve the LP relaxation exactly in large network
settings that previously have only been studied with loose bounds of the LP relaxation such
as LiRPA (Xu et al., 2020).

Complete verification methods These methods verify properties of deep networks
exactly (without false positives or false negatives) using methods such as SMT solvers
(Scheibler et al., 2015; Ehlers, 2017; Katz et al., 2017) and MILP solvers (Lomuscio &
Maganti, 2017; Cheng et al., 2017; Dutta et al., 2018; Fischetti & Jo, 2018). Complete
verification methods typically rely on BaB algorithms (Bunel et al., 2017), in which the
verification problem is divided into subproblems (branching) that can be verified using
incomplete verification methods (bounding) (Bunel et al., 2020b). However, these methods
have a worst-case exponential runtime and have difficulty scaling beyond relatively small
convolutional networks. Motivated by this, several recent works have improved the practical
running time of BaB methods with custom solvers for medium-sized networks (Bunel et al.,
2020a; De Palma et al., 2021; Xu et al., 2021; Wang et al., 2021), but have yet to scale to
larger deep networks.

2



Under review as a conference paper at ICLR 2022

Operator splitting methods Operator splitting, and in particular the ADMM method, is
a powerful technique in solving structured convex optimization problems and has applications
in numerous settings ranging from optimal control (O’Donoghue et al., 2013) to training
neural networks (Taylor et al., 2016). These methods scale well with the problem dimensions,
can exploit sparsity in the problem data efficiently (Zheng et al., 2017), are amenable to
parallelization on GPU (Schubiger et al., 2020), and have well-understood convergence
properties under minimal regularity assumptions (Boyd et al., 2011). The benefit of ADMM
as an alternative to interior-point solvers has been shown in various classes of optimization
problems (O’donoghue et al., 2016). Our operator splitting method is specifically tailored
for neural network verification in order to fully exploit the problem structure.

Notation. We denote the set of real numbers by R, the set of nonnegative real numbers
by R+, the set of real n-dimensional vectors by Rn, the set of m× n-dimensional matrices
by Rm×n, and the n-dimensional identity matrix by In. The p-norm (p ≥ 1) is denoted by
‖ · ‖p : Rn → R+. For a set S, we define the indicator function IS(x) of S as IS(x) = 0 if
x ∈ S and IS(x) = +∞ otherwise. Given a function f : X → Y, the graph of f is the set
Gf = {(x, f(x)) | x ∈ X}.

2 Scalable Neural Network Verification via Operator
Splitting

We consider an `-layer feed-forward neural network f(x) : Rn0 → Rn` described by the
following recursive equations,

x0 = x, xk+1 = φk(xk) k = 0, · · · , `− 1, f(x) = x` (2)
where x0 ∈ Rn0 is the input to the neural network, xk ∈ Rnk is the input to the k-th
layer, and φk : Rnk → Rnk+1 is the operator of the k-th layer, which can represent any
commonly-used operator in deep networks, such as linear (convolutional) layers, MaxPooling
units, and activation functions.

Given the neural network f , a specification function J : Rn` 7→ R, and an input set X ⊂ Rn0 ,
we say that f satisfies the specification J if J(f(x)) ≥ 0 for all x ∈ X . This is equivalent
to verifying that the optimal value of (1) is non-negative. We assume X ⊂ Rn0 is a closed
convex set and J : Rn` → R∪{+∞} is a convex function, defining a performance measure on
the output of the network. Note that our formulation generalizes to arbitrary computational
graphs (e.g. residual blocks) and general objective functions (see Appendix B).

Using the sequential representation of the neural network in (2), we may rewrite the
optimization problem in (1) as the following constrained optimization problem,
J? ← minimize J(x`) subject to xk+1 = φk(xk), k = 0, · · · , `− 1, x0 ∈ X , (3)

with n :=
∑`
k=0 nk decision variables. We can rewrite (3) equivalently as

J? ← minimize J(x`) subject to (xk, xk+1) ∈ Gφk , k = 0, · · · , `− 1, x0 ∈ X , (4)
where Gφk = {(xk, xk+1) | xk+1 = φk(xk), xk ≤ xk ≤ x̄k} is the graph of φk. Here xk
and x̄k are a priori known bounds on xk when x0 ∈ X . The problem in (4) is non-convex
due to presence of nonlinear operators in the network, such as activation layers. By over-
approximating Gφk by a convex set (or ideally by its convex hull), we arrive at a direct
layer-wise convex relaxation of the problem. However, solving this relaxation directly cannot
scale to even medium-sized neural networks Salman et al. (2019). In this section, by exploiting
the sequential structure of the constraints, we propose a reformulation of (3) whose convex
relaxation can be solved efficiently and in a scalable manner.

2.1 Variable Splitting

By introducing the intermediate variables yk and zk, we can rewrite (3) as
J? ←minimize J(x`) (5)

subject to yk = xk, zk = φk(yk), xk+1 = zk, k = 0, · · · , `− 1,

x0 ∈ X

3



Under review as a conference paper at ICLR 2022

Figure 1: Left: Illustration of the network structure (top) and DeepSplit computation
module for a generic layer (bottom). Adding identity layers in between the neural network
layers decouples the variables xk and allows processing them independently. Right: Over-
approximation of the graph of tanh (top) and ReLU (bottom) function by convex hull.

which has now 3n− n0 − n` decision variables. Intuitively, we have introduced additional
“identity layers” between consecutive layers (see Figure 1). By overapproximating Gφk by a
convex set Sφk , we obtain the convex relaxation

J?relaxed ←minimize J(x`) (6)
subject to yk = xk, (yk, zk) ∈ Sφk , xk+1 = zk, k = 0, · · · , `− 1,

x0 ∈ X ,

for which J?relaxed ≤ J?. This form is known as consensus as yk and zk−1 are just copies of the
variable xk. As shown below, this “overparameterization” allows us to split the optimization
problem into smaller sub-problems that can be solved in parallel and often in closed form.

2.2 Lagrangian Relaxation and Operator Splitting

We use x = (x0, · · · , x`), y = (y0, · · · , y`−1) and z = (z0, · · · , z`−1) to denote the concate-
nated variables. By relaxing the equality constraints with Lagrangian multipliers, we define
the augmented Lagrangian for (6) as follows,

L(x,y, z,λ,µ)=J(x`)+

`−1∑
k=0

ISφk (yk, zk)+IX (x0) + (ρ/2)

`−1∑
k=0

(
‖xk − yk + λk‖22 − ‖λk‖22

)
+ (ρ/2)

`−1∑
k=0

(
‖xk+1 − zk + µk‖22 − ‖µk‖22

)
. (7)

where λ = (λ0, · · · , λ`−1) and µ = (µ0, · · · , µ`−1) are the scaled dual variables (by 1/ρ) and
ρ > 0 is the augmentation constant. Note that we have only relaxed the equality constraints
in (6), and the constraints describing the sets Sφk as well as X are kept intact. Furthermore,
the inclusion of augmentation will render the dual function differentiable (see the Appendix
for more details), and hence, easier to optimize. For the Lagrangian in (7), the dual function,
which provides a lower bound to J?relaxed, is given by g(λ,µ) = inf(x,y,z) L(x,y, z,λ,µ).
The best lower bound can then be found by maximizing the dual function. 1

Solving the inner problem jointly over (x,y, z) to find the dual function is as difficult as
solving a direct convex relaxation of (3). Instead, we split the primal variables (x,y, z) into
x and (y, z) and apply the classical ADMM algorithm to obtain the following iterations

1If strong duality holds, then this best lower bound would match J?
relaxed. As shown in Salman

et al. (2019), strong duality holds under mild conditions.

4



Under review as a conference paper at ICLR 2022

Algorithm 1: DeepSplit Algorithm
Data: neural network f (Eq. 2), bounded convex input set X , convex function J .
Result: lower bound J?relaxed on Problem (1).
Initialization: x0 ∈ X , xk+1 = φk(xk), yk = xk, zk = xk+1, λk = 0, µk = 0,
k = 0, · · · , `− 1, augmentation constant ρ > 0.
repeat

Step 1: x-update (9)
Step 2: (y, z)-update (10)
Step 3: dual update (13)

until stopping criterion is met ;
Output: J(x`)

(shown in Figure 1) for updating the primal and dual variables,

x+ ∈ argminx L(x,y, z,λ,µ) (8a)

(y+, z+) ∈ argmin(y,z) L(x+,y, z,λ,µ) (8b)

(λ+,µ+)=(λ,µ)+∇(λ,µ) L(x+,y+, z+,λ,µ). (8c)

As we show below, the Lagrangian has a separable structure by construction that can be
exploited in order to efficiently implement each step of (8).

2.3 The x-update

The Lagrangian in (7) is separable across the xk variables; hence, the minimization in (8a)
can be done independently for each xk. Specifically, for k = 0, we obtain the following
update rule for x0,

x+
0 = ProjX (y0 − λ0). (9a)

Projections onto the `∞ and `2 balls can be done in closed-form. For the `1 ball, we can use
the efficient projection scheme proposed in (Duchi et al., 2008), which has O(n0) complexity
in expectation. For subsequent layers k = 1, · · · , `, we obtain the updates

x+
k =

1

2
(yk − λk + zk−1 − µk−1) (9b)

x+
` =arg min

x`

J(x`)+
ρ

2
‖x`−z`−1+µ`−1‖22. (9c)

For convex J and ρ > 0, the optimization problem for updating x` is strongly convex with a
unique optimal solution. Indeed, its solution is the proximal operator of J/ρ evaluated at
z`−1−µ`−1. For the special case of linear objectives, J(x`) = c>x`, we obtain the closed-form
solution x+

` = −c/ρ+ (z`−1 − µ`−1).

2.4 The (y, z)-update

Similarly, the Lagrangian is also separable across the (yk, zk) variables. Updating these
variables in (8b) corresponds to the following projection operations per layer,

(y+
k , z

+
k ) = ProjSφk

(x+
k + λk, x

+
k+1 + µk), (10)

for k = 0, · · · , ` − 1. Depending on the type of the layer (linear, activation, convolution,
etc.), we obtain different projections, which we describe below.

Affine Layers. Suppose φk(yk) = Wkyk+bk is an affine layer representing a fully-connected,
convolutional, or an average pooling layer. Then the graph of φk is already a convex set
given by Gφk = {(yk, zk) | zk = Wkyk + bk}. Choosing Sφk = Gφk , the projection in (10)
takes the form

y+
k = (Ink+W>k Wk)−1(x+

k + λk+W>k (x+
k+1+µk−bk))

z+
k = Wky

+
k + bk.

(11)

5



Under review as a conference paper at ICLR 2022

The matrix (Ink + W>k Wk)−1 can be pre-computed and cached for subsequent iterations.
We can do this efficiently for convolutional layers using the fast Fourier transform, which we
discuss later in Section D.3.

Activation Layers. For an activation layer of the form φ(x) := [ϕ1(x1) · · · ϕn(xn)]>, the
convex relaxation of Gφ is given by the Cartesian product of individual convex relaxations
i.e., Sφ = Sϕ1 × · · · × Sϕn . For a generic activation function ϕ : R→ R, suppose we have a
concave upper bound ϕ̄ and a convex lower bound ϕ on ϕ over an interval I = [x, x̄], i.e.,
ϕ(x) ≤ ϕ(x) ≤ ϕ̄(x) ∀ x ∈ [x, x̄]. A convex overapproximation of Gϕ is

Sϕ={(x, y) | ϕ(x) ≤ y ≤ ϕ̄(x), x ≤ x ≤ x̄}, (12)

which turns out to be the convex hull of G(ϕ) when ϕ̄ and ϕ are concave and convex
envelopes of ϕ, respectively. As an example, when x < 0 < x̄, the ReLU activation function
y = max(0, x) admits the envelopes ϕ(x) = max(0, x), ϕ̄(x) = y +

ȳ−y
x̄−x (x − x) on [x , x̄ ],

where y = max(0, x) and ȳ = max(0, x̄) (Ehlers, 2017; Wong & Kolter, 2017) (see Figure 1).
The assumed pre-activation bounds x and x̄ used to relax the activation functions can be
obtained a priori via a variety of existing techniques (Wong & Kolter, 2017; Zhang et al.,
2018; 2019). We present projection operators of additional layers in Appendix C.

2.5 The (λ,µ)-update

Finally, we update the scaled dual variables as follows,
λ+
k = λk + (x+

k − y
+
k ), k = 0, · · · , `− 1,

µ+
k = µk + (x+

k+1 − z
+
k ), k = 0, · · · , `− 1.

(13)

The DeepSplit Algorithm is summarized in Algorithm 1. We provide further details such as
parameter selection and efficient implementations for convolutional layers in Appendix D.

3 Connection to Lagrangian-based methods

In this section, we draw connections to two related methods relying on Lagrangian relaxation.
Specifically, we relate our approach to an earlier dual method (Dvijotham et al., 2018)
(Section 3.1), as well as a recent Lagrangian decomposition method (Bunel et al., 2020a)
(Section 3.2). Overall, these approaches use a similar Lagrangian formulation, but the
specific choices in splitting and augmentation of the Lagrangian result in poorer theoretical
convergence guarantees when solving the convex relaxation to optimality.

3.1 Dual method via Lagrangian Relaxation of the nonconvex problem

Instead of splitting the neural network equations (3) with auxiliary variables, an alternative
strategy is to directly relax (3) with Lagrangian multipliers (Dvijotham et al., 2018):

L(x,λ) = J(x`) +

`−1∑
k=0

λ>k (xk+1 − φk(xk)) + IX (x0). (14)

where x = (x0, · · · , x`) and λ = (λ0, · · · , λ`−1). This results in the dual problem g? ←
maximize g(λ), where the dual function is

g(λ)= inf
x`≤x`≤x̄`

{J(x`) + λ>`−1x`}+

`−1∑
k=1

inf
xk≤xk≤x̄k

{λ>k−1xk−λ>k φk(xk)}+ inf
x0∈X0

{−λ>0 φ0(x0)}.

By weak duality, g? ≤ J?. The inner minimization problems in g(λ) to compute the dual
function for a given λ can often be solved efficiently or even in closed-form (Dvijotham et al.,
2018). The resulting dual problem is unconstrained but non-differentiable; hence it is solved
using dual subgradient method (Dvijotham et al., 2018). However, subgradient methods are
known to be very slow with convergence rate O(1/

√
N) where N is the number of updates

(Nesterov, 2003), making it inefficient to find exact solutions to the convex relaxation. On
the other hand, this method can be stopped at any time to obtain a valid lower bound.

6



Under review as a conference paper at ICLR 2022

3.2 Lagrangian method via a non-separable splitting

Another related approach is the Lagrangian decomposition method from Bunel et al. (2020a).
To decouple the constraints for the convex relaxation of (3), this approach can be viewed as
introducing one set of intermediate variables yk as copies of xk to obtain

J?relaxed ←minimize J(y`) (15)
subject to (yk, xk+1) ∈ Sφk k = 0, · · · , `− 1

yk = xk k = 0, · · · , `
x0 ∈ X

This splitting is in the spirit of the splitting introduced in Bunel et al. (2020a;b),2 and
differs from our splitting which uses two sets of variables in (5). By relaxing the consensus
constraints yk = xk, the Lagrangian is

L(x,y,µ) = J(y`) +
∑̀
k=0

µ>k (yk − xk) +

`−1∑
k=0

ISφk (yk, xk+1) + IX (x0). (16)

Again the Lagrangian is separable and its minimization results in the following dual function

g(µ) = inf
x`≤y`≤x̄`

{J(y`)+µ>` y`}+

`−1∑
k=0

inf
(yk,xk+1)∈Sφk

{µ>k yk − µ>k+1xk+1}+ inf
x0∈X

{−µ>0 x0}.

Since the dual function is not differentiable, it must be maximized by a subgradient method,
which again has an O(1/

√
N) rate. To induce differentiability in the dual function and

improve speed, Bunel et al. (2020a) uses Augmented Lagrangian (AL). Since only one set of
variables was introduced in (15), the AL is no longer separable across the primal variables.
Therefore, for each update of the dual variable, the AL must be minimized iteratively.
To this end, Bunel et al. (2020a) use the Frank-Wolfe Algorithm in a block-coordinate as
an iterative subroutine. However, this slows down overall convergence and suffers from
compounding errors when the sub-problems are not fully solved. When stopping early, the
primal minimization must be solved to convergence in order to compute the dual function
and produce a valid bound.

In contrast to the approach described above, in this paper we used a different variable
splitting scheme in (5) that allows us to fully separate layers in a neural network. This
subtle difference has a significant impact: we can efficiently minimize the corresponding AL
in closed form, without resorting to any iterative subroutine. Specifically, we use the ADMM
algorithm, which is known to converge at an O(1/N) rate (He & Yuan, 2012). In summary,
our method enjoys an order of magnitude faster theoretical convergence, is more robust to
numerical errors, and has minimal requirements for parameter tuning. To stop early, we can
use a similar strategy as the Frank-Wolfe approach from Bunel et al. (2020a) and run the
primal iteration to convergence with fixed dual variables to get a valid bound.

4 Experiments

The strengths of our method are (a) its ability to exactly solve LP relaxations and (b) do so
at scales that were previously impossible. To evaluate this, we first demonstrate how solving
the LP to optimality leads to tighter certified robustness guarantees in image classification
and reinforcement learning tasks (Section 4.1). We then stress test our method in both speed
and scalability against a commercial LP solver and in the large network setting (Section 4.2).

Setup In all the experiments, we focus on the setting of verification-agnostic networks,
similar to Dathathri et al. (2020). However, we focus on significantly larger networks that

2If we define φk(xk) = Wk+1σ(xk) + bk+1, where Wk+1, bk+1 are the parameters of the affine
layer and σ is a layer of activation functions, this splitting coincides with the one proposed in Bunel
et al. (2020a;b)

7



Under review as a conference paper at ICLR 2022

Table 1: Certified test accuracy (%) of PGD-trained models on CIFAR10 through ADMM,
the Lagrangian decomposition methods (Dvijotham et al., 2018; Bunel et al., 2020b), and
fast dual/linear (Wong et al., 2018; Xu et al., 2020) or interval bounds (Gowal et al., 2018).
All the methods are given the same time budget.

Exact Lagrangian methods Fast bounds

ε ADMM Adam Prox Dual Adam Dual Decomp Adam Linear IBP

1/255 64.0 47.4 61.1 47.6 47.8 59.8 42.8
1.5/255 45.7 28.4 41.8 28.5 28.8 36.8 16.8
2/255 19.5 10.9 17.4 11.0 11.1 13.2 3.6
2.5/255 5.5 2.6 4.5 2.7 2.7 3.3 0.7

have previously only been feasibly bounded with fast linear-based bounds of the LP relaxation
(Wong et al., 2018; Xu et al., 2020). All the networks have been trained adversarially with
the PGD attack (Madry et al., 2017). Full details about the network architecture, network
training, and the parameters for our splitting method can be found in Appendix F.

4.1 Improved Bounds From Exact LP Solutions with ADMM

We first demonstrate how solving the LP exactly with our method results in tighter bounds
than prior work. We consider two main settings: certifying the robustness of classifiers for
CIFAR10 and deep Q-networks (DQNs) in Atari games. We defer additional analogous
results in the smaller MNIST setting to Appendix F.3.

CIFAR10 Much work studying verification in CIFAR10 has focused primarily on a small
CNN with only 6k hidden units—smaller than the classic LeNet from MNIST (LeCun et al.,
2015). In this regime, tighter approaches such as SDP and branch-and-bound are applicable.

Instead, we consider an order of magnitude larger model, which cannot be feasibly solved by
these alternatives. Up until this point, the only solutions for large networks were linear-based
bounds to the LP relaxation (Wong et al., 2018; Xu et al., 2020). However, these bounds are
known to be quite loose. How much better can we do if we solve the LP exactly?

In Table 1, we find that solving the LP exactly leads to significant gains in certified robustness
for large networks, with up to 4% additional certified robustness over the best-performing
alternative. All the methods in Table 1 are given the same time budget. Indeed, the better
theoretical convergence guarantees of ADMM translate to better results in practice: when
given a similar budget, the Lagrangian baselines have worse convergence and cannot verify
as many examples. A complete description of these baselines is in Appendix F.3, with
implementation details for the Lagrangian methods in Appendix G.

State-robust RL We demonstrate our approach on a non-classification benchmark from
reinforcement learning: verifying the robustness of deep Q-networks (DQNs) to adversarial
state perturbations (Zhang et al., 2020). Specifically, we verify whether a learned DQN policy
outputs stable actions in the discrete space when given perturbed states. Similar to the large
network considered in the CIFAR10 setting, this benchmark has only been demonstrably
verified with fast but loose linear-based bounds (Xu et al., 2020).

Similar to the CIFAR10 setting, we observe consistent improvement in certified robustness
of the DQN when solving the LP exactly with ADMM across multiple RL settings. We
summarize the results using our method and the linear-based bounds on LP relaxations (Wong
et al., 2018; Xu et al., 2020) in Table 2. Further details regarding the dataset, the DQN
architectures, and this task can be found in Appendix F.4.

4.2 Speed and Scalability

In this section, we stress test several aspects of DeepSplit for solving LP relaxations. We first
compare solving speeds of our ADMM-based LP solver to a commercial-grade LP solver. We
then push the limits of architecture size and solve the LP relaxation for a standard ResNet18.

8



Under review as a conference paper at ICLR 2022

Table 2: The percentage of actions from a deep Q-network that are certifiably robust to
changes in the state space for three RL tasks: Bankheist, Roadrunner, and Pong. We
compare fast linear bounds (Linear) (Wong et al., 2018; Xu et al., 2020) and ADMM.

Bankheist Roadrunner Pong

ε Linear ADMM ε Linear ADMM ε Linear ADMM

0.0016 67.0 71.4 0.0012 32.6 36.6 0.0004 96.1 97.4
0.0020 39.7 49.5 0.0016 26.3 27.5 0.0008 93.4 95.6
0.0024 12.7 25.9 0.0020 19.6 22.8 0.0012 92.1 94.3
0.0027 1.4 7.3 0.0024 1.1 3.7 0.0016 82.1 84.0

0% 25% 50% 75% 100% 125% 150% 175% 200%
relative improvement of lower bounds

0

100

200

300

400

500

fre
qu

en
cy

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%
relative improvement of upper bounds

0

50

100

150

200

250

300

fre
qu

en
cy

Figure 2: A total of 1000 ResNet18 output lower and upper bounds are computed from
ADMM and LiRPA for comparison in CIFAR10. Histograms of the relative improvement
percentage of ADMM over LiRPA are shown for the lower (left) and upper (right) bounds,
which have an average relative improvement of 31.61% and 2.32%, respectively.

Speed comparison We first compare the solving speeds of our method with state-of-the-
art solvers for convex relaxations: a commercial-grade LP solver, Gurobi. Since Gurobi
cannot handle large networks, we benchmark the approaches on a fully connected network
that Gurobi can handle (see Appendix H for further details on experimental setup, as well
as additional speed comparisons to alternative approaches).

We find that our method provides a nearly 7x speedup over Gurobi. On average, it takes
ADMM 38 seconds per example to calculate these intermediate bounds using a single GeForce
GTX 1080, in comparison to 258 seconds per example for Gurobi on an Intel Core i7-6700K.

Scalability Finally, to test the scalability and generality of our approach, we consider
solving the LP relaxation for a ResNet18, which up to this point has simply not been
possible. The only applicable method here is LiRPA (Xu et al., 2020)—a highly scalable
implementation of the linear-based bounds that works for arbitrary networks but can be
quite loose in practice. We defer specific experimental details to Appendix I.

We find that exact LP solutions with our ADMM solver can also produce substantial
improvements in the bound at ResNet18 scales, as shown in Figure 2. For a substantial
number of examples, we find that ADMM can find significantly tighter bounds (especially
for lower bounds). A tabular presentation of the results is in Table 5 of Appendix I.

5 Conclusion

In this paper, we proposed DeepSplit, a scalable and modular operator splitting technique for
solving convex relaxation-based verification problems for neural networks. The method can
exactly solve large-scale LP relaxations with GPU acceleration with favorable convergence
rates. Our approach leads to significantly tighter bounds across a range of classification
and reinforcement learning benchmarks, and can scale to a standard ResNet18. We leave as
future work a further investigation of variations of ADMM that can improve convergence
rates in deep learning-sized problem instances, as well as extensions beyond the LP setting.

9



Under review as a conference paper at ICLR 2022

References

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,
48(3):334–334, 1997.

Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Now Publishers Inc, 2011.

Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar. A unified
view of piecewise linear neural network verification. arXiv preprint arXiv:1711.00455,
2017.

Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip Torr, and M Pawan Kumar. Lagrangian decomposition for neural network
verification. In Conference on Uncertainty in Artificial Intelligence, pp. 370–379. PMLR,
2020a.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Pushmeet Kohli, P Torr, and P Mudigonda.
Branch and bound for piecewise linear neural network verification. Journal of Machine
Learning Research, 21(2020), 2020b.

Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi,
Qi Alfred Chen, Kevin Fu, and Z Morley Mao. Adversarial sensor attack on lidar-based
perception in autonomous driving. In Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pp. 2267–2281, 2019.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. In International Symposium on Automated Technology for Verification
and Analysis, pp. 251–268. Springer, 2017.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan,
Jonathan Uesato, Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy
Liang, et al. Enabling certification of verification-agnostic networks via memory-efficient
semidefinite programming. arXiv preprint arXiv:2010.11645, 2020.

Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip HS Torr, and M Pawan Kumar. Improved branch and bound for neural
network verification via lagrangian decomposition. arXiv preprint arXiv:2104.06718, 2021.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pp. 272–279, 2008.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range
analysis for deep feedforward neural networks. In NASA Formal Methods Symposium, pp.
121–138. Springer, 2018.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Push-
meet Kohli. A dual approach to scalable verification of deep networks. arXiv preprint
arXiv:1803.06567, 2018.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
International Symposium on Automated Technology for Verification and Analysis, pp.
269–286. Springer, 2017.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J Pappas.
Efficient and accurate estimation of lipschitz constants for deep neural networks. arXiv
preprint arXiv:1906.04893, 2019.

Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness
analysis of neural networks via quadratic constraints and semidefinite programming. IEEE
Transactions on Automatic Control, 2020.

10



Under review as a conference paper at ICLR 2022

Samuel G Finlayson, John D Bowers, Joichi Ito, Jonathan L Zittrain, Andrew L Beam, and
Isaac S Kohane. Adversarial attacks on medical machine learning. Science, 363(6433):
1287–1289, 2019.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296–309, 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715,
2018.

Bingsheng He and Xiaoming Yuan. On the o(1/n) convergence rate of the douglas–rachford
alternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

BS He, Hai Yang, and SL Wang. Alternating direction method with self-adaptive penalty
parameters for monotone variational inequalities. Journal of Optimization Theory and
applications, 106(2):337–356, 2000.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pp. 97–117. Springer, 2017.

Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann. lecun.
com/exdb/lenet, 20(5):14, 2015.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint arXiv:1706.07351, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

Brendan O’Donoghue, Giorgos Stathopoulos, and Stephen Boyd. A splitting method for
optimal control. IEEE Transactions on Control Systems Technology, 21(6):2432–2442,
2013.

Brendan O’donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via
operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory
and Applications, 169(3):1042–1068, 2016.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for
certifying robustness to adversarial examples. In Advances in Neural Information Processing
Systems, pp. 10900–10910, 2018.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex
relaxation barrier to tight robustness verification of neural networks. arXiv preprint
arXiv:1902.08722, 2019.

Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. Towards verification
of artificial neural networks. In MBMV, pp. 30–40, 2015.

Michel Schubiger, Goran Banjac, and John Lygeros. Gpu acceleration of admm for large-scale
quadratic programming. Journal of Parallel and Distributed Computing, 144:55–67, 2020.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. Beyond the single
neuron convex barrier for neural network certification. Advances in Neural Information
Processing Systems, 32:15098–15109, 2019.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein.
Training neural networks without gradients: A scalable admm approach. In International
conference on machine learning, pp. 2722–2731. PMLR, 2016.

11



Under review as a conference paper at ICLR 2022

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and
Juan Pablo Vielma. The convex relaxation barrier, revisited: Tightened single-neuron
relaxations for neural network verification. arXiv preprint arXiv:2006.14076, 2020.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for complete
and incomplete neural network verification. arXiv preprint arXiv:2103.06624, 2021.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning,
Inderjit S Dhillon, and Luca Daniel. Towards fast computation of certified robustness for
relu networks. arXiv preprint arXiv:1804.09699, 2018.

Eric Wong and J Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. arXiv preprint arXiv:1711.00851, 1(2):3, 2017.

Eric Wong, Frank R Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable
adversarial defenses. arXiv preprint arXiv:1805.12514, 2018.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. arXiv preprint arXiv:2001.03994, 2020.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable
certified robustness and beyond. Advances in Neural Information Processing Systems, 33,
2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh.
Fast and complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=nVZtXBI6LNn.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient
neural network robustness certification with general activation functions. arXiv preprint
arXiv:1811.00866, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane
Boning, and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust
neural networks. arXiv preprint arXiv:1906.06316, 2019.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, and Cho-Jui Hsieh. Robust
deep reinforcement learning against adversarial perturbations on observations. Advances
in Neural Information Processing Systems, 2020.

Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew
Wynn. Fast admm for semidefinite programs with chordal sparsity. In 2017 American
Control Conference (ACC), pp. 3335–3340. IEEE, 2017.

12

https://openreview.net/forum?id=nVZtXBI6LNn


Under review as a conference paper at ICLR 2022

Demonstration of our codes are anonymously available in the attachment.

A Convergence Analysis of DeepSplit

By defining x1 = x, x2 = (y, z) (the primal variables) and ν = (λ,µ) (the scaled dual
variables), we can write the split convex relaxation in (6) as

minimize f1(x1) + f2(x2) (17)
subject to A1x1 +A2x2 = 0

with the corresponding Augmented Lagrangian

L(x1,x2,ν) = f1(x) + f2(x2) +
ρ

2
(‖A1x1 +A2x2 + ν‖22 − ‖ν‖22) (18)

where f1 : Rn → R∪{+∞} and f2 : R2n−2n` → R∪{+∞} are extended real-valued functions
defined as f1(x1) := J(x`)+IX (x0), f2(x2) :=

∑`−1
k=0 ISφk (yk, zk). Moreover, A1x1+A2x2 = 0

represents the set of equality constraints yk = xk and xk+1 = zk for k = 0, · · · , `. The dual
function is given by

g(ν) = inf
x1,x2

L(x1,x2,ν). (19)

By Danskin’s theorem (Bertsekas, 1997), the sub-differential of the dual function is given by
∂g(ν) = {A1x̄1 +A2x̄2 : (x̄1, x̄2) ∈ arg minL(x1,x2,ν)} (20)

Here x̄1, x̄2 are minimizers of the Lagrangian (not necessarily unique), which satisfy the
optimality conditions

0 ∈ ∂f1(x̄1) + ρA>1 (A1x̄1 +A2x̄2 + ν) (21)

0 ∈ ∂f2(x̄2) + ρA>2 (A1x̄1 +A2x̄2 + ν)

First, we show that the sub-differential is a singleton, i.e., g is continuously differentiable. Sup-
pose (x̄1, x̄2) ∈ arg minL(ξ,ν) and (w̄1, w̄2) ∈ arg minL(ξ,ν) are two distinct minimizers
of the Lagrangian, hence satisfying

0 ∈ ∂f1(w̄1) + ρA>1 (A1w̄1 +A2w̄2 + ν) (22)

0 ∈ ∂f2(w̄2) + ρA>2 (A1w̄1 +A2w̄2 + ν)

By monotonicity of the sub-differentials, we can write
(∂f1(x̄1)− ∂f1(w̄1))>(x̄1 − w̄1) ≥ 0 (23)

(∂f2(x̄2)− ∂f2(w̄2))>(x̄2 − w̄2) ≥ 0

By substituting (21) and (22) in (23), we obtain

− (ρA>1 (A1x̄1 +A2x̄2 + ν)− ρA>1 (A1w̄1 +A2w̄2 + ν))>(x̄1 − w̄1) ≥ 0 (24)

− (ρA>2 (A1x̄1 +A2x̄2 + ν)− ρA>2 (A1w̄1 +A2w̄2 + ν))>(x̄2 − w̄2) ≥ 0

By adding the preceding inequalities, we obtain
−ρ‖A1x̄1 +A2x̄2 − (A1w̄1 +A2w̄2)‖22 ≥ 0 (25)

This implies that A1x̄1 + A2x̄2 = A1w̄1 + A2w̄2 and hence, the sub-differential ∂g is a
singleton.

Convergence. When X is a closed nonempty convex set, IX (x0) is a convex closed proper
(CCP) function. Assuming that J is also CCP, then we can conclude that f1 is CCP.
Furthermore, since the sets Sφk are nonempty convex sets, we can conclude that f2 is CCP.
Under these assumptions, the augmented Lagrangian has a minimizer (not necessarily unique)
for each value of the dual variables. Finally, under the assumption that the Augmented
Lagrangian has a saddle point (which produces a solution to (17)), the ADMM algorithm we
have primal convergence ‖rp‖ → 0 (see (31)), dual residual convergence ‖rd‖ → 0, as well as
objective convergence J(x`)→ J? (Boyd et al., 2011).

We remark that the convergence guarantees of ADMM holds even if f1 and f2 assume the
value +∞. This is the case for indicator functions resulting in projections in the first two
updates of ADMM.

13



Under review as a conference paper at ICLR 2022

B ADMM for General Computational Graphs

To handle general computational graphs, we follow the approach used in (Wong et al., 2018).
Specifically, consider a generalized `-"layer" neural network given by the equations

xk+1 =

k∑
i=1

φik(xi) ≡ Φk(x1:k) k = 0, · · · , `− 1 (26)

where x1:k denotes the concatenated vector of variables (x1, · · · , xk). Note that this view
of a network reduces to the feedforward equations in (2) when φik(xi) = 0 for all i < k.
Furthermore, this view subsumes arbitrary skip connections, such as residual connections.
Then, the graph form of the verification problem in (4) can be rewritten for the generalized
neural network as

J? ←minimize J(x`) (27)
subject to (x1:k, xk+1) ∈ Gφk(x1:k) k = 0, · · · , `− 1

x0 ∈ X .
Similar to before, let Sφk be a sound convex approximation of Gφk . Then, our convex
relaxation introduces additional intermediate variables y1:k and zk to get the following
convex relaxation (analogous to (6)):

p?relaxed ←minimize J(x`) (28)
subject to y1:k = x1:k k = 0, · · · , `− 1

(y1:k, zk) ∈ Sφk k = 0, · · · , `− 1

xk+1 = zk k = 0, · · · , `− 1

x0 ∈ X .
Thus, producing an ADMM layer for a network with arbitrary skip connections reduces to
deriving the corresponding projection operator onto Sφk . Since most residual connections
simply add an affine transformation of a previous layer, these projections are straightforward
and have a closed form (an example of a typical residual ADMM block is in Appendix C).

C ADMM layers

C.1 ReLU projection

Consider the ReLU function y = ϕ(x) = max(0, x) on the interval x ∈ [x, x̄]. The projection
of a point (x(0), y(0)) onto the convex hull of G(ϕ) has a closed-form solution. We consider
three cases.

1. Active neuron (x ≥ 0). In this case, the convex hull is given by
Sϕ = {(x, y) | y = x, x ≤ x ≤ x̄}.

and the projection of (x(0), y(0)) onto Sϕ is given by x′ = y′ = min(max(x
(0)+y(0)

2 , x), x̄).

2. Inactive neuron (x̄ ≤ 0). In this case, the convex hull is
Sϕ = {(x, y) | y = 0, x ≤ x ≤ x̄}.

and the projection of (x(0), y(0)) onto Sϕ is given by x′ = min(max(x(0), x), x̄), y′ = 0.

3. Unknown neuron (x ≤ 0 ≤ x̄). The convex hull is given by
Sϕ = {(x, y) | y ≥ 0, y ≥ x, y ≤ y + s(x− x)}

where s =
ȳ−y
x̄−x , y = max(0, x), ȳ = max(0, x̄). We first project (x(0), y(0)) onto each facet of

the triangle and then select the point with the minimal distance.

x(1) = min(max(
x(0) + y(0)

2
, 0), x̄) y(1) = x(1)

x(2) = min(max(
x(0) + sy(0) + s(sx− y)

s2 + 1
, x), x̄) y(2) =

s(x(0) − x) + s2y(0) + y

s2 + 1

x(3) = min(max(0, x(0)), x) y(3) = 0

14



Under review as a conference paper at ICLR 2022

Figure 3: Projection of a point (x0, y0) onto the convex hull of the ReLU function y =
max(0, x) over the interval [x, x̄]. We first project (x0, y0) onto all facets of the convex hull
and then select the point with minimal distance to (x0, y0).

The projected point is (x′, y′) = (x(i?), y(i?)), where i? =

arg min1≤i≤3

√
(x(0) − x(i))2 + (y(0) − y(i))2.

C.2 Convolutions

Although a convolution is technically a linear operator, it is impractical to directly form the
inverse matrix from the projection step of the DeepSplit algorithm. Instead, we represent a
typical convolutional layer fconv with stride, padding and bias as

fconv = fbias ◦ fds ◦ fcrop ◦ fcirc ◦ fpad = fpost ◦ fcirc ◦ fpad, (29)

where fpad is a padding step, fcirc is a circular convolution step, fcrop is a cropping step,
fds is a downsampling step to handle stride greater than one, and fbias is a step that adds
the bias. Then, the last three steps are combined into one post-processing step fpost to
reduce the number of concensus constraints in the DeepSplit algorithm. The projection steps
for all of these operators are presented next in Sections C.3 through C.6, and an efficient
implementation of the projection step for the affine layer fcirc is in Appendix E.

C.3 Padding

The padding layer fpad takes an image as input and adds padding to it. Denote the input
image by yk and the padded image by zk. We can decompose the output zk into two vectors,
z0
k which is a copy of the input yk, and z1

k which represents the padded zeros on the edges of
image. Equivalently, the padding layer zk = φk(yk) can be written in an affine form

zk =

[
z0
k
z1
k

]
=

[
I
0

]
yk = Wkyk,

for which the projection operator reduces to the affine case.

C.4 Cropping

The cropping layer fcrop crops the output of the circular convolution fcirc to the original size
of the input image before padding. Denote yk the input image and zk the output image of
the cropping layer. By decomposing the input image yk into the uncropped pixels y0

k and
the cropped pixels y1

k, the cropping layer zk = φk(yk) has an affine formulation

zk = y0
k = [I 0]

[
y0
k
y1
k

]
= Wkyk

whose projection operator is given in Section 2.4.

C.5 Down-sampling and bias

If the typical convolutional layer fconv has stride greater than one, a down-sampling layer
is added in the DeepSplit algorithm, which essentially has the same affine form as the

15



Under review as a conference paper at ICLR 2022

cropping layer with different values of y0
k and y1

k. Therefore, the projection operator for the
down-sampling layer reduces to the affine case as well.

The bias layer in the DeepSplit algorithm handles the case when the convolutional layer
fconv has a bias bk and is implemented by zk = φk(yk) = yk + bk. This is an affine expression
and its projection operator is given in Section 2.4.

C.6 Convolutional post-processing layer

We combine the cropping, down-sampling and bias layers into one post-processing layer,
i.e., fpost = fbias ◦ fds ◦ fcrop, as shown in (29). This reduces the total number of concensus
constraints in the DeepSplit algorithm. Since all the three layers are in fact affine, the
post-processing layer is also affine and its projection operator can be obtained correspondingly.

C.7 Maxpooling

Consider a Maxpooling layer φ(x) = maxk xk, k = 1, · · · , n over x ≤ x ≤ x̄. (Bunel et al.,
2020b, Appendix B.2) shows that the Maxpooling layer can be equivalently decomposed
as a combination of linear and ReLU layers. This is motivated by the following fact that
max(x1, x2, x3, x4) = max(max(x1, x2),max(x3, x4)) and max(x1, x2) = max(x1 − x2, 0) +
max(x2 − x2, 0) + x2. Therefore, we can represent the Maxpooling layer by a composition of
pairwise maximum functions which can themselves be decomposed into a combination of
linear and ReLU layers. The projection operations onto the convex hull of the ReLU and
linear layers are closed-form as shown in Appendix C.1 and Section 2.4, respectively.

C.8 Residual connection

We consider a typical residual connection φk(yk, yi) = yk +Wiyi + bi for i < k, where yi is an
arbitrary layer before yk and Wi, bi is any affine transformation (i.e. a 1 by 1 convolution for
upsampling or downsampling layer frequently used in residual connections with differently
sized feature maps). Then, we can write this as

φk(yki) = Wkiyki + bi, (30)

where yki =

[
yk
yi

]
and Wki = [I Wi]. Then, the projection operator reduces to the affine

case but with weights Wki, bi for input yki.

C.9 Batch normalization and average pooling

The batch normalization and average pooling layers that appear in the architecture of the
residual networks, e.g., ResNet18 applied in this paper, are essentially affine mapping layers
whose weights and biases can be extracted accordingly. Therefore, the projection onto the
graph of these two layers has a closed-form solution as shown in Eq. (11).

D Implementation Details

D.1 Convergence and Stopping Criterion

The DeepSplit algorithm converges to the optimal solution of the convex problem (6) under
mild conditions. Specifically, when J is closed, proper and convex, and when the sets Sk
(convex outer approximations of the graph of the layers) along with X are closed and convex,
we can resort to the convergence results of ADMM (Boyd et al., 2011).

16



Under review as a conference paper at ICLR 2022

For the LP relaxation (6) of a feed-forward neural network, the primal and dual residuals
are defined as

rp =

`−1∑
k=0

{‖y+
k − x

+
k ‖

2 + ‖x+
k+1 − z

+
k ‖

2} (31)

rd = ρ

`−1∑
k=1

‖(y+
k − yk) + (z+

k−1 − zk−1)‖22 + ρ
(
‖y+

0 − y0‖22 + ‖z+
`−1 − z`−1‖22

)
.

These are the residuals of the optimality conditions for (6) and converge to zero as the
algorithm proceeds. A reasonable termination criterion is that the primal and dual residuals
must be small, i.e. rp ≤ εp and rd ≤ εd, where εp > 0 and εd > 0 are tolerance levels (Boyd
et al., 2011, Chapter 3). These tolerances can be chosen using an absolute and relative
criterion, such as

εp=
√
p εabs+εrel max{(‖x0‖22+2

`−1∑
i=1

‖xi‖22+‖x`‖22)
1
2 + (

`−1∑
i=0

(‖yi‖22 + ‖zi‖22)1/2}

εd=
√
n εabs+εrel(‖λ0‖22+

`−1∑
i=1

‖λi+µi−1‖22 + ‖µ`−1‖22)
1
2 ,

where p = n0 + 2
∑`−1
i=1 ni + n`, n =

∑`
i=0 ni, εabs > 0 and εrel > 0 are absolute and relative

tolerances. Here n is the dimension of x, the vector of primal variables that are updated in
the first step of the algorithm, and p is the total number of consensus constraints.

For neural networks with general computational graphs such as residual networks, the primal
and dual residuals as well as the stopping criteria have different representations from what’s
shown above. But with our proposed splitting method, these representations are easy to
derive from (Boyd et al., 2011, Chapter 3).

D.2 Parameter Selection

A proper selection of the augmentation constant ρ has a dramatic effect on the convergence
of the method. Large values of ρ enforces consensus more quickly, yielding smaller primal
residuals but larger dual ones. Conversely, smaller values of ρ leads to larger primal and
smaller dual residuals. A commonly used heuristic to make this trade-off is residual balancing
He et al. (2000), in which the penalty parameter varies adaptively based on the following
rule:

ρ+ =


τρ if rp > µrd
ρ/τ if rd > µrp
ρ otherwise,

where µ, τ > 1 are parameters. In our experiments, we found this rule to be effective in
speeding up the practical convergence.

D.3 Convolutional Layers

The projection step for affine layers from (11) requires multiplication by the matrix (Ink +
W>k Wk)−1 for that layer, where nk is the number of neurons in the layer. When handling
networks with convolutional layers on image data, nk can easily exceed tens of thousands,
so the resulting matrix and its inversion can exceed reasonable memory and computational
constraints.

To make the update step practical and in line with typical computational costs of deep
convolutional networks, we replace the typical deep learning convolution with an equivalent
circular convolution. Specifically, let fconv be a typical strided convolution with padding.
We can rewrite fconv as three sequential updates using a circular convolution as fconv =
fpost ◦ fcirc ◦ fpad, where fpad is a padding step, fcirc is a circular convolution, and fpost is a

17



Under review as a conference paper at ICLR 2022

post-processing step that performs cropping, downsampling, and adds any bias term from
fconv.

We can now treat these three updates as separate, individual layers in our ADMM algorithm.
The key observation is that we can use the convolution theorem to implement the ADMM
update for the circular convolution fcirc efficiently. Specifically, for an input of size nk × nk,
the projection step from (11) for a circular convolution can be calculated in O(n2

k log nk)
using the fast Fourier transform. We provide the specific details of this procedure in Appendix
E.

E FFT implementation for circular convolutions

In order to efficiently implement convolutional layers, recall that we decompose a convolution
into the following three steps:

fconv = fpost ◦ fcirc ◦ fpad (32)

We now discuss in detail how to efficiently perform the (y, z) update for multi-channel,
circular convolutions fcirc using Fourier transforms. We begin with the single-channel setting,
and then extend our procedure to the multi-channel setting. See Appendix C for details
regarding the ADMM projection step for fpad and fpost.

E.1 Single-channel circular convolutions

Let U represent the discrete Fourier transform (DFT) as a linear operator, and let W be the
weight matrix for the circular convolution fcirc(x) = W ∗ x. Then, using matrix notation,
the convolution theorem states that

fcirc(x) = W ∗ x = U∗(UW · Ux) = U∗DUx (33)

where D = diag(UW ) is a diagonal matrix containing the Fourier transform of W and U∗ is
the conjugate transpose of U . Then, we can represent the inverse operator from (11) as

(I + f>circfcirc)
−1 = U∗(I +DD)−1U (34)

Since (I +DD) is a diagonal matrix, its inverse can be computed quickly by simply inverting
the diagonal elements, and requires storage space no larger than the original kernel matrix.
Thus, multiplication by the inverse matrix for a circular convolution reduces to two DFTs
and an element-wise product. For an input of size n× n, this step has an overall complexity
of O(n2 log n) when using fast Fourier transforms.

E.2 Multi-channel circular convolutions

We now extend the operation for single-channel circular convolutions to multi-channel, which
is typically used in convolutional layers found in deep vision classifiers. Specifically, for a
circular convolution with n input channels and m output channels, we have

fcirc(x)j =

n∑
i=1

Wij ∗ xi (35)

where fcirc(x)j is the jth output channel output of the circular convolution, Wij is the kernel
of the ith input channel for the jth output channel, and xi is the ith channel of the input x.
The convolutional theorem again tells us that

fcirc(x)j =

n∑
i=1

U∗DijUxi (36)

where Dij = diag(UWij). This can be re-written more compactly using matrices as

fcirc(x) = Ū∗D̄Ū x̄ (37)

where

18



Under review as a conference paper at ICLR 2022

• Ū =

 U · · · 0
...

. . .
...

0 · · · U

 is a block diagonal matrix with n copies of U along the diagonal

• Ū∗ =

 U∗ · · · 0
...

. . .
...

0 · · · U∗

 is a block diagonal matrix with m copies of U along the

diagonal

• D̄ =

 D11 · · · Dn1

...
. . .

...
D1m · · · Dnm

 is a block matrix with diagonal blocks where the ijth

block is Dij

• x̄ =

 x1

...
xn

 is a vertical stacking of all the input channels.

Then, we can represent the inverse operator from (11) as

(I + f>circfcirc)
−1 = Ū∗(I + D̄D̄)−1Ū (38)

where I + D̄D̄ is a block matrix, where each block is a diagonal matrix. The inverse can
then be calculated by the inverting sub-matrices formed from sub-indexing the diagonal
components. Specifically, let D̄j::p be a slice of D̄ containing elements spaced m elements
apart in both column and row directions, starting with the jth item. For example, D̄0::p is
the matrix obtained by taking the top-left most element along the diagonal of every block.
Then, for j = 1 . . .m, we have

(I + D̄D̄)−1
j::p =

(
(I + D̄D̄)j::p

)−1 (39)

Thus, calculating this matrix amounts to inverting a batch of p matrices of size m×m. For
typical convolutional networks, m is typically well below 1, 000, and so this can be calculated
quickly. Further note that this only needs to be calculated once as a pre-computation step,
and can be reused across different inputs and objectives for the network.

Memory and runtime requirements In practice, we do not store the fully-expanded
block diagonal matrices; instead, we omit the zero entries and directly store the the diagonal
entries themselves. Consequently, for an input of size p, the diagonal matrices require storage
of size O(mnp), and the inverse matrix requires storage of size O(m2p). Since the discrete
Fourier transform can be done in O(p log p) time with fast Fourier transforms, the overall
runtime of the precomputation step to form the matrix inverse is the cost of the initial DFT
and the batch matrix inverse, or O(nmp log p+m3p). Finally, the runtime of the projection
step is O((n+m)p log p+n2mp), which is the respective costs of the DFT transformations Ū
and Ū∗, as well as the multiplication by D̄. Since the number of channels in a deep network
are typically much smaller than the size of the input to a convolution (i.e. n < p and m < p),
the costs of doing the cyclic convolution with Fourier transforms are in line with typical deep
learning architectures.

F Experimental details

F.1 Architectures, datasets, and training specifics

MNIST We consider two ReLU based architectures. The first one is a fully connected
network with layer sizes 784−600−400−200−100−10 which we denote MNIST-A. It is more
than triple the size of that considered by (Dathathri et al., 2020) with one additional layer. It
is, however, still small enough such that Gurobi is able to solve the LP relaxation, and allows
us to compare our running time against Gurobi. The second one is a convolutional network

19



Under review as a conference paper at ICLR 2022

Table 3: Approximate verification time for solving the LP relaxation through ADMM.
Epsilons are evenly spaced within the range.

Model # of epsilon Epsilon range Time (hrs)

MNIST-A 10 [0.01, 0.1] 13.12
MNIST-B 10 [0.01, 0.1] 19.92
CIFAR10 8 [0.5/255, 4/255] 50.69
Bankheist 10 [0.1/255, 1/255] 4.96
Roadrunner 10 [0.1/255, 1/255] 52.33
Pong 10 [0.1/255, 1/255] 31.06

which uses the small convolutional architecture from (Wong et al., 2018) and consists of two
convolutional layers of size 16− 32 with kernel sizes 4− 4, strides 2− 2, and padding 1− 1.
We denote this network by MNIST-B. This architecture is comparable to the convolutional
architecture considered by (Dathathri et al., 2020), and allows us to compare our running
time against the gradient-based SDP solver.

We train both models with an `∞ PGD adversary at radius ε = 0.1, using 7 steps of size
α = 0.02, with batch size 100 for 100 epochs. We use the Adam optimizer with a cyclic
learning rate (maximum learning rate of 0.005), and both models achieve a clean accuracy of
99%.

CIFAR10 For CIFAR10, we use the large convolutional architectures from (Wong et al.,
2018), which consists of four convolutional layers with 32 − 32 − 64 − 64 channels, with
strides 1− 2− 1− 2, kernel sizes 3− 4− 3− 4, and padding 1− 1− 1− 1. This is followed
by three linear layers of size 512− 512− 10. This is significantly larger than the CIFAR10
architectures considered by (Dathathri et al., 2020), and has sufficient capacity to reach 43%
adversarial accuracy against an `∞ PGD adversary at ε = 8/255.

The model is trained against a PGD adversary with 7 steps of size α = 2/255 at a maximum
radius of ε = 8.8/255, with batch size 128 for 200 epochs. We used the SGD optimizer with
a cyclic learning rate (maximum learning rate of 0.23), momentum 0.9, and weight decay
0.0005. The model achieves a clean test accuracy of 71.8%.

State-robust RL We use the pretrained, adversarially trained, DQNs released by (Zhang
et al., 2020) from

https://github.com/chenhongge/SA_DQN

which has not included any license information up to the date of submission of this paper.
These models were trained to be robust at ε = 1/255 with a PGD adversary for the Atari
games Pong, Roadrunner, Freeway, and BankHeist. Each input to the DQN is of size
1× 84× 84, which is more than double the size of CIFAR10. The DQN architectures are
convolutional networks, with three convolutional layers with 32 − 64 − 64 channels, with
kernel sizes 8− 4− 3, strides 4− 2− 1, and no padding. This is followed by two linear layers
of size 512−K, where K is the number of discrete actions available in each game.

F.2 Timing experiments

Runtime summary: We certify the robustness of classifiers for MNIST and CIFAR10 and
DQNs in Atari games to `∞ perturbations over a range of radii. The specific verification
setups can be found in Appendix F.3 and F.4. We report the approximate runtime for all
experiments in Table 3.

Effects of ADMM parameters: In this subsection, we demonstrate the effects of the
algorithm parameters on the convergence of ADMM through two networks: MNIST-A
(fully-connected) and MNIST-B (convolutional). Specifically, we focus on the choice of ρ and
the application of residual balancing.

20

https://github.com/chenhongge/SA_DQN


Under review as a conference paper at ICLR 2022

0 500 1000 1500 2000 2500 3000
iteration

−15

−10

−5

0

5

10

15

20

25

ob
je
ct
iv
e 
va

lu
e

ρ=0.1
ρ=1.0
ρ=10.0
res. balancing

0 500 1000 1500 2000 2500 3000
iteration

10−3

10−2

10−1

100

101

pr
im

al
 re

sid
ua

l

ρ=0.1
ρ=1.0
ρ=10.0
res. balancing

0 500 1000 1500 2000 2500 3000
iteration

10−2

10−1

100

du
al
 re

sid
ua

l

ρ=0.1
ρ=1.0
ρ=10.0
res. balancing

Figure 4: The objective values (left), primal residuals (middle), and dual residuals (right)
of ADMM under different augmentation parameters ρ on the MNIST-A (fully-connected)
network.

0 500 1000 1500 2000 2500 3000
iteration

0

10

20

30

ob
je
ct
iv
e 
va

lu
e

ρ=0.1
ρ=1.0
ρ=10.0
res. balancing

0 500 1000 1500 2000 2500 3000
iteration

10−2

10−1

100

101
pr
im

al
 re

sid
ua

l
ρ=0.1
ρ=1.0
ρ=10.0
res. balancing

0 500 1000 1500 2000 2500 3000
iteration

10−2

10−1

100

du
al
 re

sid
ua

l

ρ=0.1
ρ=1.0
ρ=10.0
res. balancing

Figure 5: The objective values (left), primal residuals (middle), and dual residuals (right)
of ADMM under different augmentation parameters ρ on the MNIST-B (convolutional)
network.

We conduct our experiment on the 1938-th example which is randomly chosen from the
MNIST test data set. For this example, both MNIST-A and MNIST-B predicts its class
(number 4) correctly. We add an `∞ perturbation of radius ε = 0.02 to the input image
and verify if the network outputs are robust with respect to class number 3. The maximum
number of iterations is restricted to 3000. The objective values, primal and dual residuals of
ADMM for MNIST-A and MNIST-B under different augmentation parameters ρ are plotted
in Figure 4 and 5, respectively. The residual balancing in this experiment is applied with
initial ρ = 10.0, τ = 2, and µ = 10 as described in Section D.2.

The update rule of ADMM suggests that a large value of ρ tends to produce small primal
residuals since it puts a large penalty on the violation of the primal feasibility. However,
the dual residuals for such ρ tends to be larger. Conversely, a small ρ tends to reduce
the dual residuals at the cost of larger primal residuals. This phenomenon is illustrated
empirically with the fully-connected network MNIST-A in Figure 4 and the convolutional
network MNIST-B in Figure 5.

Since ADMM terminates when both the primal and dual residuals are small enough, in
practice we prefer to choose the augmentation parameter ρ not too large or too small in order
to balance the reduction in the primal and dual residuals. An effective way to choose a good
ρ is residual balancing, which tries to keep the primal and dual residuals close during the
ADMM updates by adjusting ρ online. In both Figure 4 and Figure 5, ADMM with residual
balancing is initialized with ρ = 10.0 and shows significant improvement in convergence rate
compared with the case of constant ρ = 10.0. As observed in our other experiments, with
residual balancing, ADMM becomes insensitive to the initialization of ρ and usually achieves
a good convergence rate.

In all of the test accuracy certification results reported in this paper, we initialize ρ =
1.0 and apply residual balancing when running ADMM. In different experiments, the
stopping criterion parameters εabs, εrel of ADMM are chosen by trial-and-error to achieve a
balance between the accuracy and the running time of the algorithm. Although ADMM has
convergence guarantees for its objective values, primal and dual residuals, it may take too
many iterations for ADMM to achieve a solution of high accuracy (Boyd et al., 2011).

21



Under review as a conference paper at ICLR 2022

0.02 0.04 0.06 0.08 0.10
ε

0

2000

4000

6000

8000

10000

ce
rti
fie

d 
nu

m
be

r

MNIST-A
LP-ADMM
LP-Dual

0.02 0.04 0.06 0.08 0.10
ε

0

200

400

600

800

di
ffe

re
nc

e

MNIST-A

0.02 0.04 0.06 0.08 0.10
ε

0

2000

4000

6000

8000

10000

ce
rti
fie

d 
nu

m
be

r

MNIST-B
LP-ADMM
LP-Dual

0.02 0.04 0.06 0.08 0.10
ε

0

200

400

600

800

1000

1200

1400

1600

di
ffe

re
nc

e

MNIST-B

Figure 6: The numbers of certified examples (left column) of ADMM and the linear-based
bounds (Wong et al., 2018; Xu et al., 2020) for the MNIST-A (upper row) and MNIST-B
(lower row) networks and their differences (right column) for each ε ∈ {0.01, 0.02, · · · , 0.10}.

F.3 Image classification

In this section, we report the details of certified test accuracy of our proposed method
(ADMM) and the scalable linear-based bounds on LP relaxations (Linear) (Wong et al., 2018;
Xu et al., 2020) in the image classification tasks of MNIST and CIFAR10.

MNIST: For both the fully-connected network MNIST-A and the convolutional network
MNIST-B, we apply LP-ADMM with εabs = 10−3, εrel = 10−3 as the stopping criterion, and
residual balancing with the initial ρ = 1.0. For each classifier network, we go through the
10000 examples in the MNIST test data set and a range of `∞ perturbation radii ε to count
the number of certified examples. To make the counting more efficient, we (i) search over
ε in a descending order since examples that are robust for a larger ε are also robust for a
smaller ε, and (ii) only apply ADMM on examples that cannot be verified by Linear (Wong
et al., 2018; Xu et al., 2020) since Linear (Wong et al., 2018; Xu et al., 2020) gives a more
relaxed bound than the LP-relaxation. For each batch of test examples, ADMM solves ten
optimization problems of the form (5) with the linear objective function given with respect
to each prediction class.

For a range of ε ∈ {0.01, 0.02, · · · , 0.10}, the numbers of verified examples of ADMM and
Linear (Wong et al., 2018; Xu et al., 2020) and their differences are shown in Figure 6 for
MNIST-A and MNIST-B, respectively. Exact certified accuracy is reported in Table 4 for a
range of ε.

CIFAR10: On the CIFAR10 data set, we compare ADMM and Linear (Wong et al., 2018;
Xu et al., 2020) following the same process as on the MNIST data set. The stopping
criterion for LP-ADMM is set as εabs = 10−4, εrel = 10−4 and the range of ε is set as
{0.5/255, 1.0/255, · · · , 4.0/255}. The numbers of certified examples of ADMM and Lin-
ear (Wong et al., 2018; Xu et al., 2020) and their differences are shown in Figure 7.

Further details for baselines in Table 1 In Table 1, we report the certified accuracy of
solving the LP exactly with ADMM in comparison to a range of baselines. We compare with
methods that have previously demonstrated the ability to bound networks of this size: fast

22



Under review as a conference paper at ICLR 2022

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
ε

0

1000

2000

3000

4000

5000

6000

7000

ce
rti

fie
d 
nu

m
be

r

CIFAR10
LP-ADMM
LP-Dual

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
ε

0

200

400

600

800

di
ffe

re
nc

e

CIFAR10

Figure 7: The number of certified examples (left) of ADMM and the linear-based
bounds (Wong et al., 2018; Xu et al., 2020) for the CIFAR10 network and their differ-
ences (right) for each ε ∈ {0.5/255, 1.0/255, · · · , 4.0/255}.

Table 4: Certified accuracy of PGD-trained models on MNIST when using a computationally
cheap bound (linear-based bounds (Wong et al., 2018; Xu et al., 2020)) vs. our method
(ADMM)

Certified test accuracy (%)

Model Epsilon Linear ADMM Diff

MNIST-A 0.02 67.8 77.1 9.3
0.03 7.8 14.2 6.5

MNIST-B 0.07 88.8 91.5 2.7
0.08 74.5 82.2 7.7
0.09 43.0 58.9 15.9
0.10 2.6 8.8 6.2

bounds of the LP (Linear) (Wong et al., 2018; Xu et al., 2020), and interval bounds (IBP)
(Gowal et al., 2018). We additionally compare to a suite of Lagrangian-based baselines, whose
effectiveness at this scale was previously unknown. These methods include supergradient
ascent (Adam) (Bunel et al., 2020b), dual supergradient ascent (Dual Adam) (Dvijotham
et al., 2018) and a variant thereof (Dual Decomp Adam) (Bunel et al., 2020b), and a
proximal method (Prox) (Bunel et al., 2020a). Lagrangian-based baselines were given the
same computational budget as the ADMM solver, with further details in Appendix G.

F.4 Reinforcement learning

We compare the tightness of ADMM and Linear (Wong et al., 2018; Xu et al., 2020) by
verifying the robustness of DQNs on three Atari game benchmarks: BankHeist, Roadrunner,
and Pong 3. The DQNs applied in these experiments are introduced in Appendix F.1.

For each benchmark, we collect 10, 000 frames (each with dimension 1× 84× 84) across 100
episodes using the natural policy with 100 frames sampled randomly from each episode as
the test data set. Note that the input images to the DQNs are already pre-processed such
that the pixel values are normalized to [0, 1] with a single channel.

In each game, for each frame in the sampled data set, we verify if the DQN does not change
its actions when an `∞ perturbation of various radii is added to the frame which is the state
observation of the agent. The number of actions in BankHeist, Roadrunner and Pong are
6, 6, 4, respectively. Essentially, we reduce the verification of the DQN with finite discrete
action space to the same setting as verifying classifiers. Therefore, we apply the same
verification process as descried in Appendix F.3 with ε ∈ {0.1/255, 0.2/255, · · · , 1.0/255} on

3(Zhang et al., 2020) consider one additional RL setting (Freeway). However, the released
PGD-trained DQN is completely unverifiable for nearly all epsilons that we considered.

23



Under review as a conference paper at ICLR 2022

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
ε

0

2000

4000

6000

8000

ce
rti
fie
d 
nu
m
be
r

BankHeist
LP-ADMM
LP-Dual

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
ε

0

200

400

600

800

1000

1200

di
ffe

re
nc

e

BankHeist

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
ε

0

2000

4000

6000

8000

ce
rti
fie

d 
nu

m
be

r

Roadrunner
LP-ADMM
LP-Dual

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
ε

0

50

100

150

200

250

300

350

400

di
ffe

re
nc

e

Roadrunner

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
ε

0

2000

4000

6000

8000

10000

ce
rti
fie

d 
nu

m
be

r

Pong
LP-ADMM
LP-Dual

0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040
ε

0

200

400

600

800

1000

1200

di
ffe

re
nc

e

Pong

Figure 8: The numbers of certified examples (left column) of ADMM and the linear-based
bounds (Wong et al., 2018; Xu et al., 2020) and their differences (right column) in the
verification of DQNs from the BankHeist (first row), Roadrunner (second row) and Pong
(third row) benchmarks. The range of ε is given by {0.1/255, 0.2/255, · · · , 1.0/255}.

all three tasks. The numbers of certified examples of ADMM and Linear (Wong et al., 2018;
Xu et al., 2020) and their differences on each task are plotted in Figure 8.

G Additional details on comparison to Lagrangian-based
methods

In Section 4.1, we compared the certified test accuracy of ADMM with a suite of Lagrangian-
based methods (Bunel et al., 2020a) on CIFAR10. These Lagrangian-based baselines were
implemented using the codes at

https://github.com/oval-group/decomposition-plnn-bounds

under the MIT license. As mentioned in Section 3.2, these baselines require solving an
inner optimization problem through iterative algorithms. In the experiments of Table 1, the
number of iterations of different iterative algorithms are bounded separately such that each
Lagrangian-based method listed in Section 4.1 has runtime of 9 seconds to finish verifying
one example.

24

https://github.com/oval-group/decomposition-plnn-bounds


Under review as a conference paper at ICLR 2022

Our ADMM solver averages 9 seconds runtime per example in this verification task, which
is the same as the average runtime of the Lagrangian-based methods, with the stopping
criterion of εabs = 10−4, εrel = 10−3 and ρ = 1.0.

Architecture size. We note that the architecture we verify in this paper is 10x larger
than considered by (Bunel et al., 2020b). However, the released framework could not handle
this model size due to their implementation of intermediate bounds. In order to handle this
model size, we externally calculated the intermediate bounds (using (Wong et al., 2018))
and loaded these into the framework for the Lagrangian-based baselines.

H Speed comparison

Comparison with LP solver: To demonstrate the effectiveness of GPU-acceleration in
the DeepSplit algorithm, we compare the runtime of DeepSplit and Gurobi in solving LP
relaxations that bound the output range of MNIST-A network (the fully connected network
defined in Appendix F.1) with `∞ perturbations in the input. Specifically, for a given example
in the MNIST test data set, we apply DeepSplit/Gurobi layer-by-layer to find the tightest
pre-activation bounds under the LP-relaxation.

Recall that the MNIST-A network is a fully-connected netowrk with architecture 784− 600−
400− 200− 100− 10. With the Gurobi solver, we need to solve 2× 600 LPs sequentially to
obtain the lower and upper bounds for the first activation layer, 2× 400 LPs for the second
activation layer, and so forth. With DeepSplit, the pre-activation bounds can be computed
in batch and allows GPU-acceleration.

In our experiment, we fix the radius of the `∞ perturbation at the input image as ε = 0.02.
For the Gurobi solver, we randomly choose 10 samples from the test data set and compute
the pre-activation bounds layer-by-layer. The LP relaxation is formulated in CVXPY and
solved by Gurobi v9.1 on an Intel Core i7-6700K CPU, which has 4 cores and 8 threads.
For each example, the total solver time of Gurobi is recorded with the average solver time
being 275.9 seconds. For the DeepSplit method, we compute the pre-activation bounds
layer-by-layer on 19 randomly chosen examples. The algorithm applies residual balancing
with the initial ρ = 1.0 and the stopping criterion is given by εabs = 10−4, εrel = 10−3. The
total running time of DeepSplit is 717.9 seconds, with 37.8 seconds per example on average.
With the GPU-acceleration, out method achieves 7x speedup in verifying NN properties
compared with the commercial-grade Gurobi solver.

Comparison with SDP solver: Our method is significantly faster than solving the convex
relaxation through other approaches. For example, it took our method approximately 20
hours to verify all MNIST test set images for the convolutional architecture at 10 different
epsilon values (See Table 3), taking on average 2 hours per epsilon to verify all 10,000
examples. See F.2 for the running time summary of each experiment. In contrast, the
SDP relaxation (Raghunathan et al., 2018) takes 3 hours to verify 500 examples at one
epsilon value for a similarly sized CNN. This highlights the difference in speed and scalability
of solving the LP relaxation over the SDP one, albeit at the cost of looser verification
guarantees.

Comparison with branch-and-bound solver: Branch-and-bound methods have expo-
nential runtime as opposed to the polynomial runtime of LP-solvers. In practice, this leads to
significantly longer solve times that has largely limited these methods to the small network
regime. For example, the fastest branch-and-bound method from Bunel et al. (2020a) takes
on average 6 minutes per example to verify a small convolutional network, whereas our solver
takes on average 9 seconds per example (40x faster) to verify an order-of-magnitude larger
network.

25



Under review as a conference paper at ICLR 2022

Figure 9: ResNet18 output lower (left) and upper (right) bounds obtained using either
ADMM (blue dots) and LiRPA (orange triangles) from the first 100 CIFAR10 test examples.
Higher lower bounds and lower upper bounds are better. For ease of visualization, bounds
are sorted in ascending order according to the ADMM bound.

Table 5: Comparison of computed bounds using LiRPA (Xu et al., 2020)) vs. our method
(ADMM) on a ResNet18 for CIFAR10.

Linear ADMM Diff

Upper bounds 39.87± 66.42 38.02± 62.21 2.32%± 2.35%

Lower bounds 0.04± 17.02 4.76± 7.56 31.61%± 43.38%

I Scalability

To highlight the scalability of our approach, we consider a ResNet18 network trained on
CIFAR10 whose max pooling layer is replaced by a down-sampling convolutional layer for
comparison with LiRPA (Xu et al., 2020) 4 (codes available at

https://github.com/KaidiXu/auto_LiRPA

under the BSD 3-Clause "New" or "Revised" license), which is capable of computing provable
linear bounds for the outputs of general neural networks and is the only method available
so far that can handle ResNet18. The ResNet18 is adversarially trained using the fast
adversarial training code from (Wong et al., 2020).

In our experiments, for the first 100 test examples in CIFAR10, we use LiRPA to compute the
preactivation bounds for each ReLU layer in ResNet18 and then apply ADMM to compute
the lower and upper bounds of ResNet18 outputs (there are 10 outputs corresponding to the
10 classes of the dataset). The ADMM is run with stopping criterion εabs = 10−5, εrel = 10−4

and augmentation parameter ρ = 1.0. With ε = 1/255, the lower/upper bounds of ADMM
from these 100 examples are arranged in an ascending order in Figure 9 and are compared
with those obtained by LiRPA. We observe that the bounds from ADMM are consistently
tighter than those from LiRPA. The average running time of ADMM across the 100 examples
is 2312 seconds. Overall bound statistics are shown in Table 5.

4The max pooling layer has not been considered in the implementation of LiRPA by the submission
of this paper.

26

https://github.com/KaidiXu/auto_LiRPA

	Introduction
	Related Work

	Scalable Neural Network Verification via Operator Splitting
	Variable Splitting
	Lagrangian Relaxation and Operator Splitting
	The x-update
	The (y,z)-update
	The (bold0mu mumu subsection,bold0mu mumu subsection)-update

	Connection to Lagrangian-based methods
	Dual method via Lagrangian Relaxation of the nonconvex problem
	Lagrangian method via a non-separable splitting

	Experiments
	Improved Bounds From Exact LP Solutions with ADMM
	Speed and Scalability

	Conclusion
	Convergence Analysis of DeepSplit
	ADMM for General Computational Graphs
	ADMM layers
	ReLU projection
	Convolutions
	Padding
	Cropping
	Down-sampling and bias
	Convolutional post-processing layer
	Maxpooling
	Residual connection
	Batch normalization and average pooling

	Implementation Details
	Convergence and Stopping Criterion
	Parameter Selection
	Convolutional Layers

	FFT implementation for circular convolutions
	Single-channel circular convolutions
	Multi-channel circular convolutions

	Experimental details
	Architectures, datasets, and training specifics
	Timing experiments
	Image classification
	Reinforcement learning

	Additional details on comparison to Lagrangian-based methods
	Speed comparison
	Scalability

