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ARTICLE INFO ABSTRACT

Keywords: Fusing LiDAR and high definition (HD) maps is a feasible way to achieve global localization in GNSS-denied

Global localization environments, which is necessary in driverless vehicle and robotic technologies. This paper proposes a single-

E];g‘ap shot global localization solution that uses only a single current scan of a rotating multiple-beam LiDAR sensor
1

to locate its own location and pose with respect to an HD map in the form of georeferenced point clouds. This
single-shot global localization solution estimates the state of the current moment without the previous moment
state and thus avoids the nonconvergence problems that plague filter-based methods. The proposed solution
allows HD maps from diverse LiDAR sensors to be used for global localization and is more robust than existing
methods. The proposed solution consists of two procedures: offline preprocessing and online global localization.
In the offline procedure, diverse HD maps are preprocessed to construct a global prior map for the localization
process. The online global localization procedure includes two elements: place recognition, location and pose
estimation. A novel Cross-Section Shape Context (CSSC) descriptor that is highly descriptive and rotation-
invariant is proposed for subsequent processes. Two strategies, two-stage similarity estimation and Nearest
Cluster Distance Ratio (NCDR), based on the CSSC descriptor are proposed to improve place recognition pre-
cision. A Selective Generalized Iterative Closest Point (SGICP) algorithm is proposed to calculate location and
pose accurately using the CSSC descriptor. Comprehensive experiments were performed to evaluate this solution.
A comparison of the precision-recall curve of multiple scenes, particularly under changed viewpoint scenes,
shows that the CSSC descriptor is more robust than existing descriptors. Experimental analysis also confirms that
the proposed strategies, two-stage similarity estimation and NCDR, improve place recognition precision. Also,
compared to the generalized iterative closest point algorithm, the SGICP algorithm achieved better accuracy by
31% and efficiency by 60%. The proposed solution achieves a mean relative translation error (RTE) improvement
of 27% over the OneShot algorithm on the KITTI dataset. The proposed solution had an average 77%
improvement over 1o RTE relative to the benchmark in tests with the long-term localization NCLT dataset. The
mean RTE of the proposed solution was 0.13 m using HD maps from different LiDAR sensors. Our code is
available at: https://github.com/Dongxu05/CSSC.

Global feature descriptor
Place recognition

1. Introduction LiDAR scan and a novel global feature descriptor to tackle these

problems.

For driverless vehicles and robotics, global localization that fuses
LiDAR and high definition (HD) maps is a critical technology that pro-
vides accurate global location and pose, particularly when the global
navigation satellite system (GNSS) does not function adequately. Low
accuracy and limited generalizability, however, restrict the applicability
of existing global localization methods based on rotating multiple-beam
LiDAR sensor data and HD maps rendered as georeferenced point clouds.
In this paper, we propose a global localization solution that uses a single
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For global localization based on LiDAR and HD maps, Monte Carlo
localization (MCL) techniques are used in most localization systems.
However, these MCL-based solutions (Yin et al., 2020; Sun et al., 2020;
Chen et al., 2020) need multiple dynamic scans for the filter to converge,
resulting in wake-up and kidnapped robot problems. The wake-up robot
problem refers to instances when an autonomous mobile system boots
up and does not provide instantly accurate global locations. The
kidnapped robot problem occurs when an autonomous mobile system
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cannot recover from a wrong previous location (Seow et al., 2018;
Prestes et al., 2009). We argue that single-shot global localization so-
lutions can resolve these challenges.

The single-shot global localization solution uses only a single LIDAR
scan at a time. Unlike MCL-based methods, single-shot global localiza-
tion estimates the location and pose of the current moment without the
previous moment location and pose, and thus does not experience
nonconvergence problems such as the wake-up robot or kidnapped
robot problem. This solution includes the following two steps: 1) place
recognition (Steder et al., 2011; Muhammad and Lacroix, 2011) pro-
vides an initial location from a LiDAR query scan; and 2) fine registra-
tion (Biber et al., 2003; Segal et al., 2010) estimates the six degrees of
freedom (6DOF) parameters relative to the HD map based on place
recognition. These steps make the single-shot global localization solu-
tion more robust than other MCL-based methods (Ratz et al., 2020).

Although the accuracy of single-shot global localization solutions is
higher than that of MCL-based methods, accuracy and narrow applica-
bility problems are still factors limiting their widespread use. Place
recognition when obtained from shifting viewpoints and a low-
resolution LiDAR scan is uncertain due to the low descriptiveness of
global feature descriptors and the simple place-matching strategy in
existing solutions. Original iterative closest point (ICP) algorithms used
in the existing solution (Yin et al., 2020; Guo et al., 2019) provide
terrible 6DOF parameters when a preset initial guess is used. Uncertain
place recognition and terrible 6DOF parameters both yield accuracy
losses to global localization. Existing solutions (Kim and Kim, 2018;
Wang et al., 2020; He et al., 2016) request the HD map to be from the
same type of sensor as the localization sensor to provide place recog-
nition. Therefore, the HD maps from different LiDAR sensors, such as
terrestrial laser scanners (TLSs) and 2D laser range finders, cannot be
used for existing single-shot global localization solutions directly,
limiting solution generalizability.

To resolve the issues of low accuracy and limited generalizability,
this paper proposes a single-shot LiDAR scan global localization solution
using a novel Cross-Section Shape Context (CSSC) descriptor. The con-
tributions of this study beyond existing methods are as follows:

1. We propose an accurate global localization solution that uses only
one single LiDAR scan, which consists of a high-quality CSSC
descriptor and novel methods that are used in the pipeline of the
global localization. The proposed offline HD map preprocessing
method can process HD map data generated from diverse LiDAR
sensors, effectively using all information. An integrity index is also
used to monitor the integrity of each single-shot global localization
result.

. The proposed CSSC descriptor features an enhanced high descrip-
tiveness using the elevation weight and point density weight, which
describe the spatial distribution characteristics of the point cloud
from two dimensions.

. Based on the CSSC descriptor, a set of improved methods, including
two-stage similarity estimation, Nearest Cluster Distance Ratio
(NCDR), and the Selective Generalized Iterative Closest Point
(SGICP) algorithm, are developed to improve the precision of place
recognition and 6DOF estimation.

The remainder of this paper is organized as follows. Section 2 de-
scribes related works; Section 3 introduces the proposed single-shot
global localization solution; and Section 4 presents experimental re-
sults. Section 5 summarizes and concludes this study.

2. Related works
In this section, we review existing studies on place recognition and

6DOF estimation that are related to global localization by fusing LiDAR
scans with HD maps.
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2.1. Related works on 3D LiDAR-based place recognition

Because global feature descriptors improve the robustness of place
recognition by extracting the features of the entire 3D LiDAR scan, they
have attracted the attention of researchers. Global feature descriptors
can be divided into handcrafted and deep learning-based descriptors.

Regarding handcrafted feature descriptors, Muhammad et al.
developed Z-projection (Muhammad and Lacroix, 2011), which saves
the angles between the normal corresponding to each point and the Z
axis to construct the feature descriptor. He et al. proposed Multiview 2D
Projection (M2DP) (He et al., 2016) that projects the 3D point cloud to
multiple 2D planes and obtains the feature descriptor through Singular
Value Decomposition (SVD) of the distribution matrix. Scan Context
(SC) (Kim and Kim, 2018), Seed (Fan et al., 2020) and LiDAR iris (iris)
(Wang et al., 2020) are egocentric feature descriptors. Arc-shaped grids
that are suitable for rotating LiDAR are constructed, and feature de-
scriptors are generated by extracting the feature from the grid. Behley
et al. (Behley and Stachniss, 2018) performed place recognition by range
images and normal images that were extracted from point clouds. The
DEscriptor of LiDAR Intensities as a Group of HisTograms (DELIGHT)
(Cop et al., 2018), Intensity Signature of Histograms of OrienTations
(ISHOT) (Guo et al., 2019) and Intensity Scan Context (ISC) (Wang et al.,
2020) use echo intensity information to construct feature descriptor. In
the same scene with different viewpoints, histogram- (Muhammad and
Lacroix, 2011) and projected-based (He et al., 2016) descriptors cannot
robustly perform place recognition because both descriptors do not have
rotation invariance. Egocentric feature descriptors (Kim and Kim, 2018;
Fan et al., 2020; Wang et al., 2019) overcame the problem of different
viewpoints; however, these descriptors yield poor descriptiveness,
making their place recognition performance insufficiently robust in
challenging environments. LiDAR intensity information makes up for
the lack of texture information. However, there is no general LiDAR
intensity calibration standard, causing the place recognition solution
using descriptors with LiDAR intensity to have low generalizability be-
tween different LiDAR sensors (Guo et al., 2019). Also, most of these
methods use a minimum distance searching strategy for the corre-
sponding place, leading to poor place recognition.

At present, place recognition based on deep learning is one of the
research hotspots. PointNETVLAD (Angelina et al., 2018) and SeqLPD
(Liu et al., 2019) extract a global descriptor for the place recognition
task with an end-to-end way. These work input directly the points into
the network and output the result of place recognition. Unlike the
aforementioned works, other papers input the preprocessing result of
the original point cloud into a network. SpoxelNet (Chang et al., 2020)
encoded input spherical voxels into global descriptor vectors by
extracting the structural features in both fine and coarse scales. OREOS
(Schaupp et al., 2019) exploited convolutional neural network to extract
compact descriptors from single 2D range image. SegMatch (Dube et al.,
2017), Oneshot (Ratz et al., 2020), Locus (Vidanapathirana et al., 2020)
and semantic graph (Kong et al., 2020) realized place recognition
through using semantic information. The deep learning-based methods
perform well in the trained environments, while they usually cannot
generalize well in different environments or different LiDAR sensors.

2.2. Related works on six degrees of freedom estimation

Registration algorithms provide 6DOF parameters for LiDAR scans.
Registration algorithms based on local shape descriptors (LSD) (Guo
et al., 2015; Tao et al., 2020; Zhao et al., 2019; Dong et al., 2017) have
been intensively studied in recent decades. LSD-based methods have
three significant steps: detecting the key points, extracting the LSDs and
identifying correspondences. These methods achieve good performance
with registration of model points. However, these methods are not
suitable for quick global localization using rotating multiple-beam
LiDAR sensor for two reasons: 1) it remains a challenge to achieve 3D
key point detection with a high repetition rate in sparse points (Boroson
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and Ayanian, 2019); and 2) it is time-consuming to calculate local
feature descriptors of all key points (Yin et al., 2021).

To improve efficiency, some researchers only extracted the key
points for registration in the algorithms. LOAM (Zhang and Singh, 2017)
extracts edge points and plane points for 6DOF estimation. Based on the
LOAM, Lego-LOAM (Shan and Englot, 2018) removes points of small
objects, such as leaves moving in the wind, to enhance robustness. In
addition, Lego-LOAM further optimizes ground points for high accuracy.
The common characteristic of these methods is that key points are
extracted from the original point cloud data before matching. The cor-
rect transformation relation between key points is obtained through
continuous iterative calculation.

The key point-based methods have made marked improvements in
efficiency. However, these methods lack robustness in environments
where features are missing. Registration algorithms that directly operate
on the original data rarely suffer from this problem. The iterative closest
point (ICP) is a classical registration algorithm that directly operates on
the original data. Generalized iterative closest point (GICP) (Segal et al.,
2010) extends the original ICP algorithm using a distribution-to-
distribution matching method and obtains higher accuracies than ICP.
However, ICP and other ICP variants are sensitive to initial guesses; a
poor preset initial guess leads to poor precision and a long time of
convergence. Also, ICP and related variants highly depend on a nearest
neighbour search to associate the closest points. The closest point,
however, is not carefully checked, leading to poor registration perfor-
mance in some cases.

3. Proposed global localization solution

In this section, the proposed global localization solution that includes
the offline preprocessing of HD maps and online single-shot global
localization is introduced, as shown in Fig. 1. The preprocessing
component describes how to generate a global prior map using HD maps
from different LiDAR sensors. The online global localization presents
improvements in feature extraction, place recognition and 6DOF esti-
mation. Also, the integrity of global localization and parameter analysis
are introduced.

As shown in Fig. 1, an HD map is an input, and a global prior map is
an output in the HD map preprocessing. The global prior map will be
generated by fusing the scans and features after preprocessing. Based on
the global prior map, a query scan is used as an input in online global
localization. After feature extraction, place recognition and 6DOF

HD map preprocessing (offline)
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estimation, the global location of the query scan and its integrity will be
obtained.

3.1. Preprocessing of HD map

In this section, we describe how to generate a global prior map using
HD maps from different LiDAR sensors by scan and feature extraction.

For extracting scans from HD maps, type judgements on the HD map
must be made. In this paper, the HD map refers to the point cloud that
has a global geo-referenced frame. Such HD maps can be obtained in
several ways for different applications (e.g., vehicles that are equipped
with high-precision integrated localization systems and rotating multi-
beam LiDAR (Geiger et al., 2012); TLSs (Liu et al., 2017) and mobile
laser systems (MLSs) (Liu et al., 2021). According to the type of sensor
used in the HD map building process, HD maps can be divided into
homogeneous and heterogeneous maps. During localization, rotating
multi-beam LiDAR is typically used as a localization sensor (Prestes
et al., 2009; Steder et al., 2011) due to its 360° horizontal field of view
(FOV) and large vertical FOV. Therefore, the homogeneous HD map
refers to the map derived from the same type of sensor as the rotating
multi-beam LiDAR. The heterogeneous HD map refers to the map
derived from other LiDAR systems, such as TLS and MLS.

After using type judgement, the HD map will be transformed into a
series of scans for feature extraction. Because a homogeneous HD map
has the same scans as scans from the localization sensor, it can be used
directly for subsequent processes. The heterogeneous HD map must be
converted into virtual scans that are similar to real scans from a locali-
zation sensor through virtual LiDAR. For more details about virtual
LiDAR, refer to (Xu et al., 2022).

After obtaining scans from the homogeneous HD map or virtual scans
from the heterogeneous HD map, these scans are used to extract features
that include fingerprints and CSSC descriptors; additional details can be
found in Section 3.2. A fingerprint is a feature vector and is used for
forming a kd-tree, which can be used to search for place candidates
quickly. The CSSC descriptor is used to estimate the similarity between
candidates and query scans to obtain corresponding places.

The global prior map used for online global localization is generated
by fusing the scans, fingerprints and CSSC descriptors in the HD map
preprocessing component. The preprocessing time varies depending on
the type and size of the HD map. In the experimental section, the pre-
processing time will be discussed for the specific HD map.

Single-shot global localization (online)

Fingerprints

1 ! |
! HD map Scan extraction H |
1 ! - |
1 1 1
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: )‘% Judgement —> Heterogeneous ' Feature extraction i
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Fig. 1. Pipeline of the proposed global localization solution. In offline preprocessing, an HD map will be transformed into a global prior map for subsequent global
localization. In online global localization, the global location of the query scan and its integrity will be obtained.

274



D. Xu et al.

3.2. Feature extraction

In this section, we present methods to extract features, including
CSSC descriptors and fingerprints, which are important in offline and
online procedures. The CSSC descriptor describes the place in a matrix
way and is used for obtaining place recognition accurately. The finger-
print can be used to search for place candidates quickly.

3.2.1. Generation of the CSSC descriptor

The proposed CSSC descriptor is inspired by the 3D Shape Context
(3DSC) descriptor (Frome et al., 2004) and the measurement principle of
rotating multi-beam LiDAR. The 3DSC descriptor is an LSD that was
proposed for object recognition. As with other LSDs, the 3DSC descriptor
selects a spherical region as the support region. The generation of 3DSC
is as follows. The entire support region is divided into bins by equally
spaced boundaries in the azimuth and elevation dimensions along the
radial dimension. According to the number of points in each bin and the
number of points in the neighbour area, a weight value is assigned to
each point in the bin. The 3DSC descriptor is generated by encoding all
the weighted count numbers of each bin.

Unlike the 3DSC descriptor, the CSSC descriptor is a global feature
descriptor. The CSSC descriptor sets the LiDAR origin as the centre and
uses the FOV of a rotating multiple-beam LiDAR system as a support
region. Given the scanning principle of rotating multiple-beam LiDAR,
the scan is divided into bins by horizontal and vertical angles of LiDAR
along the horizontal distance, as shown in Fig. 2. The CSSC descriptor is
generated by describing the shape context of all bins at the same hori-
zontal angle and distance bins. The shape context of all bins at the same
cross-section is described to generate the proposed descriptor. There-
fore, the proposed descriptor is named the cross-section shape context
descriptor.

After executing the division shown in Fig. 2, Nj x Ny x N, bins can
be obtained, where Ny is the number of bins along the horizontal dis-
tance;Nj, is the number of bins in the horizontal FOV; and N, is the
number of bins in the vertical FOV. In this paper, we set Nd = 20, Nh =
40, and Nv = 8; parameter details can be found in Section 3.6.1. The
division used in this paper makes the far bin larger, compensating for the
insufficient information caused by the sparsity of far points, which is
caused by the principle of rotating multiple-beam LiDAR. The resolution
of farther points is smaller than that of nearer points. After division, each
element in the CSSC descriptor is obtained by encoding spatial

Z

A

X ‘ & h

Fig. 2. Interpretation of division with the proposed method. Ad is the gap of
the horizontal distance; Ah is the gap of the horizontal angle; Av is the gap of
the vertical angle.
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distribution of the point cloud in the cross-section, as shown in Fig. 3.

As shown in Fig. 3, elevation and point density weights of By (i €
[Ngl,j € [Np ],k € [Ny]) are calculated; the details of these calculations
are presented in the following paragraphs. Each element in the CSSC
descriptor is calculated by accumulating the products of two weights
from bins at the same cross-section. The CSSC descriptor is generated
after the values of all elements are obtained.

The elevation weight is related to the vertical angle of each beam,
that hits the object. In the same horizontal angle and distance bins, the
higher bin that has a larger vertical angle is assigned to a higher
elevation weight. The power function is selected as a weighting strategy.
The elevation weight of each bin can be written as:

2/ (Bix)
255

ijk =

k—1(By # @)

0By = 2) W

where Ej is the evaluation weight of bin Bjj. Because we set Nv = 8, 255

is calculated by 3°5_, 2k~1 and it is used to normal Ejy in the calculation.

The point density weight is related to the point density of each bin.
The high point density weight is assigned to the bin that includes many
points.

1(median = 0)

1 (numbery, > 2*median)

(else)

Dy = (2)

number

2*median

where Dy is the density weight of By; number;; is the number of points
in the Byj; and median is the median of point numbers at the bins in the
same vertical angle and horizontal distance.

Based on the elevation weight and point density weight of By, the
value of the element My (i € [Ng),j € [Ny]) is calculated by accumulating
the products of two weights from bins in the same cross-section. After all
elements have been calculated, we obtain a CSSC descriptor M:

8
M; = E Ein* Dy
=
Na, N,

M= ] My

i=1,j=1

3

The reason for selecting the power function as the elevation
weighting function is that the higher points of immobile buildings play
an important role in place recognition under outdoor conditions. The
redundant points of ground make little difference to the result of place
recognition and the redundant points of moving vehicles have an
adverse effect on the result. In the point density weight calculation
procedure, the median is selected to represent the distribution of point
numbers. Compared to the mean, the median can describe the central
tendency accurately when outliers exist.

3.2.2. Generation of fingerprint

To find place candidates quickly, fingerprints are extracted after
division of the support region within the generation of CSSC descriptors.
A demonstration is shown in Fig. 4.

As shown in Fig. 4, the numbers of occupied bins (Cnt) in each ring at
the same layer, where the blue bin refers to the bin at the same layer, are
counted first. Then, the average (Ave), corresponding index of max Cnt
(MI) and standard deviation (SD) of Cnts are calculated as sub-features.
A fingerprint is generated by combining sub-features of all layers. To
find appropriate candidates accurately and quickly, three single and four
combined features are evaluated, as shown in Fig. 5. The execution
details are as follows. Hundreds of query scans are transformed to
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Element calculation in the CSSC descriptor

1 Bjjj weight product calculation Weight productsin !
== e e - ———————— - . 1
1 : Elevation weight X Point density weight = 0.09 : % a cross-section 1
| z i . __ 0.26 !
il I = 1 /™ » 1
| : 'y §n | £ — 0.18 I
1 1 1
1 § | i 0.09 | Bijk
! g I 0.06 !
' &= 1 :
| : 1 0.03 .
|
1 N £ 1 0.01 !
[ T 5 1
1 2 I 1
1! »X ; 1 0 1
1l a 1 1
1l g | 0 1
: : i E | Y(weight products in a cross-section) = :
N ! a element in the CSSC descriptor: 0.63 1

A CSSC descriptor

Fig. 3. Element calculation in the CSSC descriptor. Each element in the CSSC descriptor is calculated by accumulating the weight products of elevation and point
density weights from bins at the same cross-section. The elevation and point density weight of the red bin (By) are calculated using blue bins and black bins
respectively. The blue bins represent the bins at the same horizontal angle and distance as red bin. The black bins represent the bins at the same elevation and

horizontal distance as red bin.

Rings at the same layer

The number of occupied |
| bins at this ring(Cnt): 14 :
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Sub-features of 1stlayer
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Fingerprint

Sub-features of 8thlayer

Fingerprint generation

Fig. 4. Demonstration of fingerprints generation. The sub-feature of a layer is extracted by analyzing the numbers of occupied bins of each ring in this layer. Here,
the rings at the same layer refer to the rings at the same vertical angle. A fingerprint is generated by combining sub-features of all layers.

different fingerprints and used for candidate searching. The recall curve
can be obtained for a different number of candidates.

Fig. 5 shows that the recall curve of Ave + SD covers the largest area,
which indicates that Ave + SD is appropriate for candidate searching.
Therefore, Ave + SD is selected as fingerprints in this study.

3.3. Place recognition

In this section, we introduce improved place recognition, including
two-stage similarity estimation and NCDR strategies, which provides an
initial location of the query scan from LiDAR. After extracting the

276

fingerprint from a query scan, place candidates can be obtained in a
global and efficient way through kd-tree. Two-stage similarity estima-
tion is conducted to calculate similarities between CSSC descriptors of
the query scan and candidates. The NCDR strategy was developed to
deny inaccurately matched candidates. Corresponding places can be
found through the improved place recognition.

3.3.1. Two-stage similarity estimation

The two-stage method is used to improve the similarity estimation
performance. The proposed method is shown in Fig. 6. The inputs are the
query scan and candidate scan. The two stages include coarse angle
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Recall
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Fig. 5. Recall curve of different features with different percentage of all scans;
The percentage of all scans refers to the number of candidates as a percentage of
the all scans.

transformation and semi-semantic ICP alignment.

As shown in Fig. 6, the coarse angle between two viewpoints is
provided in a rapid way in the first stage. The rapid method used in this
study can be interpreted as follows. The coarse angle is obtained by
multiplying the horizontal angle gap by the index difference of the
corresponding columns. The horizontal angle gap is calculated accord-
ing to 360/N}y,. We consider each column within the CSSC descriptor as a
discrete distribution. The index difference of the corresponding columns
is determined using Jensen-Shannon (JS) divergence, which measures
the similarity of two discrete distributions. Before the second stage, the
query scan is transformed with a coarse angle.

As shown in Fig. 6, the semi-semantic ICP is used to provide an initial
guess for 6DOF estimation and improve the robustness of place recog-
nition in the second stage. The semi-semantic ICP can be interpreted as
follows. The points that have high elevation and point density weights
typically belong to immobile objects, such as buildings and trees, and
thus, these points are retained to calculate the initial guess for 6DOF

Inputs

Query scan

Candidate
scan
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estimation. Because the classes of retained points are not clear sufficient,
the proposed method is equivalent to semi-semantic ICP. The specific
calculation steps are as follows. While generating CSSC descriptors, the
two weights of each point can be determined. The points that have high
elevation and point density weights are retained to be projected onto the
x-y plane, and the ICP is used to calculate 3DOF (Ax, Ay, yaw angle),
which can be used as an initial guess for 6DOF estimation. Also, we
minimize the influence of rotation and translation between two scans in
the same place on the similarity of the descriptors by transforming the
query scan according to the 3DOF estimation, thus improving the
robustness of place recognition.

After semi-semantic ICP, M? and M° are generated. MY refers to the
CSSC descriptor of the transformed query scan, and M¢ refers to that of
the candidate. The similarity is estimated as follows:

1 Ny c! ot
dis=—Y " |[1-—2_—
thw< |c;’||c;|>

where dis is the similarity between two descriptors, cJ‘? is the jth clowns of
M1, and ¢j is the jth clowns of M*.

The range of dis is [0,1], and a smaller distance indicates that the two
CSSC descriptors are more similar. The two-stage similarity estimation
provides an initial guess for accurate 6DOF estimation. Also, it is
beneficial to improve the robustness of place recognition.

4

3.3.2. Nearest cluster distance ratio

After obtaining candidates, the conventional method seeks the cor-
responding place by calculating similarity and checking whether the
maximum similarity is larger than the threshold value, thus bringing low
robustness. In this section, NCDR is proposed to improve place recog-
nition precision by denying wrong matches. The steps are as follows.

Based on the Euclidean distance, candidates are divided into several
clusters. The dis between the CSSC descriptors of all candidates and the
query scan are calculated. In a cluster, if the different value between
maximum and minimum dis is larger than the threshold value, the
candidates in this cluster are inaccurate matches and will be deleted.
These steps are repeated until all clusters are checked. We obtain the
minimum dis of each retained cluster, and ratio is calculated as follows:

Two-stage similarity estimation

———=====
JS divergence |
calculation :
| |
15t stage |

“ g Coarse angle
transformation

8 g
U
o

P B s

25t stage
Semi-semantic
ICP aligning

a—

Similarity
calculation

After 1% stage

Similarity

3DOF(Ax, Ay,
yaw angle)

Fig. 6. Demonstration of two-stage similarity estimation. The query scan and candidate scan are inputs. The first stage provides a coarse angle between two
viewpoints of scan by determining the index difference of corresponding columns in CSSC descriptors. The second stage provides Ax, Ay and yaw angle using semi-
semantic ICP aligning. Then we estimate the similarity between the transformed query scan and candidate scan.
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)

where disq is the first smallest dis, and dis»; is the second smallest dis.
The range of ratio is [0,1], and a smaller ratio indicates that place
recognition is more robust. In Fig. 7, positive and negative examples are
shown.

As shown in Fig. 7, ten candidates and their corresponding dis are
obtained in both examples through global searching and two-stage
similarity estimation. In the positive example, dis;, disss and ratio are
0.124, 0.321 and 0.386, respectively. In the negative example, the
minimum distance is 0.183, and the maximum distance is 0.418 in the
cluster. The different value in this cluster is 0.235. Therefore, this cluster
is deleted. In the retained clusters, disys, disas; and ratio are 0.342, 0.372
and 0.919, respectively. The ratio of the positive example is far lower
than the ratio of the negative example.

3.4. 6DOF estimation

In this section, we describe how to estimate the 6DOF of a query scan
based on the place recognition. We briefly introduce the GICP algorithm
and then propose a selective GICP that derives from the closest point
checking method. The initial guess is provided by place recognition for
later iteration optimization.

We consider the estimation of the transformation T, which aligns a
set of points Q = {qo,--,qn} (the point cloud of a query scan) with
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respect to another set of points C = {co, ---, cir} (the point cloud of the
corresponding place). The correspondence between Q and C is given by
the nearest neighbour search: ¢; = Tq;.

The GICP algorithm is an accurate registration algorithm that adopts
a distribution-to-distribution method. This algorithm describes points in
a normal distribution model, g; ~ N (ai, C?) and ¢; ~ N(¢;, CF). €2 and

Cf are covariance matrices associated with the measured points g; and
¢;. The transformation error can be written as:

di = c¢; —Tg; (6)

d; is a linear combination of g; and ;. Therefore, it can be drawn from a
normal distribution:

di ~ N(¢; = TG, CE +TCT")

=N(0, Cf +TC2T") %)

The optimal transformation matrix T can be determined using
maximum likelihood estimation (MLE):

T= d,‘ = d g I} d,‘ 8
arg;naxnp( ) drg;ndxz og(p(d;)) ®

which can be simplified to

0.440
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Fig. 7. Examples for interpreting NCDR. (a) shows a positive example and (b) shows the dis between query scan and all candidates. (c) shows a negative example, (d)

shows the dis between query scan and all candidates.
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T = argminy_d! (CS + TCPT") 4, ©
T i

The covariance matrix of each point is typically estimated by its k
neighbours. Following the suggestion in (Segal et al., 2010), each
covariance matrix is regularized by replacing its eigenvalue with (1, 1,
€). This regularization makes the GICP work as a plane-to-plane ICP.
There is a case where the two points are false matches, but the distri-
butions of adjacent points are the same. The closest point is not carefully
checked, leading to terrible registration performance in this case.

We improved GICP by adding the closest point checking process. In
the generation of the CSSC descriptor, each point in the scan is assigned
elevation and point density weights. According to the weights, the
closest point will be checked. The different weights result in the nearest
neighbour’s search again. Fig. 8 shows the correspondence models used
in GICP and SGICP.

As shown in Fig. 8, the neighbour point distributions of the three
points are the same, and the covariance matrices of these points are the
same. After a transformation, GICP finds an inaccurate point via closest
point searching. An inaccurate transformation error is generated by
Equation (6). The incorrect transformation error and the same covari-
ance matrices are used to optimize the transformation matrix by Equa-
tion (9), leading to poor results. Compared to GICP, SGICP executes the
closest point checking process first based on the weights. The checking
process is equal to a selective process of the closest point. After the se-
lective process, SGICP identifies the corresponding closest point to
optimize the transformation matrix. The transformation matrix will
obtain better optimization than optimization in GICP. In addition, SGICP
has better efficiency than GICP because SGICP uses a selective process of
the closest point to avoid unnecessary calculation of covariance
matrices. The SGICP is listed as Algorithm. 1.

Algorithm. 1. SGICP

Input: Two point clouds: Q = {qo.*-,qn}, C = {co,"**,cm}
Two covariances: C2 = {Cg, Cg}, c¢ = {c§, -, c5}
Initial guess: T

Output: The optimal transformation T

while T not converged do

e=[J=]
forie {0,---N} do
while WeightJudge(q;, ¢;) = false do
¢; = FindCloestPointInC(Tgq;)
end

-1
e Ji=Cost(d] (CF +TCAT") " dy)
e—eUe, J—JUJ;
end
6T —(JTJ) 'JTe V Gause Newton update
T« TH 6T
end
return T

T=T

9V

(a)
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After obtaining the optimal transformation, the score of SGICP can be
written as:

n

1 ~
‘ =- i — Tg;
score = Z(c q:)

i=1

(10)

which describes the transformation accuracy to some extent but does not
linearly describe the transformation error. Based on the transformation
and known location and pose of the candidate, the global location and
pose of the query scan are obtained.

3.5. Integrity of global localization

In this section, an index that reflects the integrity of global locali-
zation is presented, avoiding inaccurate global locations under some
unforeseen conditions.

The proposed global localization solution includes place recognition
and 6DOF estimation. The similarity between the CSSC descriptors of
the two scans (dis) and the NCDR (ratio) both describe the performance
of place recognition. The score of SGICP describes the performance of
6DOF estimation to some extent. Therefore, dis, ratio and score are used
to compute the integrity of global localization. The integrity index can
be written as:

WCS = W, (1 — dis)(1 — ratio) + Wx(1 — score)
{ L(WCS > Thr)

0(WCS < Thr)
where Li is the integrity of global localization; WCS is the weighted
combined score; Thr is the threshold value of WCS; W; is the weight of
place recognition; and W, is the weight of 6DOF estimation. dis, ratio
and score are indices of place recognition and 6DOF estimation.

Equal weights are used to calculate the integrity. Because two indices
are obtained after place recognition and one index is obtained after
6DOF estimation, W; and W, are set equal to 0.67 and 0.33, respec-
tively.

After obtaining a global location, dis, ratio and score are also ob-
tained. According to Equation (11), Li can be calculated to describe the
integrity of the global localization. When Li is 1, the global location is
reliable. In contrast, when Li is 0, the global location is not reliable. Thr
is discussed in Section 3.6.2.

an

3.6. Parameters analyses

In this section, the parameter analyses of the CSSC descriptor and
global localization integrity are presented.

o

(b)

9

Fig. 8. Demonstration of GICP and SGICP. The red circles indicate a source point and the blue circles indicate target points. (a) GICP finds a wrong point via closest
point searching; (b) SGICP identifies the corresponding closest point after the weight checking.
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3.6.1. Parameter analysis of CSSC descriptors

Ny, N and N, are important parameters of the CSSC descriptor and
have strong impacts on the descriptiveness of descriptors. Ny, N, and N,
affect the size of bins within the CSSC descriptor. Larger Nq, Ny and N,
make the bin smaller, indicating that the CSSC descriptor is more
descriptive but also more sensitive to noise. In addition, it takes more
time to calculate the similarity between two CSSC descriptors. In
contrast, smaller Ny, N, and N,, with larger bins are more robust to noise
and spend less time estimating similarity. In this study, noise refers to
the points of small objects, such as leaves moving in the wind and the
grass, which have a misleading effect on place recognition.

In the most egocentric feature descriptor (Kim and Kim, 2018; Fan
et al., 2020); Ny is typically set equal to 20. The length of each bin is set
at 4 m. In previous work (Xu et al., 2022), a setting for the length of the
bin was tested. The larger bins (a length of 8 m) hide many details,
affecting the descriptiveness of the descriptor. The descriptor has com-
parable performance when the length of each bin is set at 4 m, 2 m and 1
m. However, when the length of each bin is set at 4 m, execution time
during similarity estimation decreases. Therefore, the 4 m-length bin is
used in this study.

Np, is unfixed in these global descriptors. SC (Kim and Kim, 2018) set
Np, to 60 for noise resistance and efficiency. However, iris (Wang et al.,
2020) sets Np to 360 and conducts LoG-Gabor filtering for high
descriptiveness. To determine the appropriate Nj, parameter experi-
ments are performed. We examine the performance of the CSSC
descriptor in the partial KITTI sequence 00 for different Ny; details of this
dataset are described in Section 4.1.1. The precision-recall (PR) curve is
used to assess the performance; evaluation criteria are described in
Section 4.1.2. Fig. 9 shows the PR curves for various Np,.

Fig. 9 shows that the best performance is obtained when Ny equals
40. Too small bins are sensitive to noise, leading to poor place recog-
nition. The CSSC descriptor uses elevation and point density weights to
describe the spatial distribution characteristics of the point cloud from
two dimensions, enhancing the descriptiveness of the descriptor. For the
proposed CSSC descriptor, the noise resistance with a larger bin is
preferable, instead of high descriptiveness with smaller bins. Therefore,
we set Ny = 20 and Np, = 40 in this study. If place recognition is required
in a new dataset with higher resolution, the CSSC descriptor will have
more descriptiveness with marginally larger Ny and Np. Because the
resolution is sufficiently high, a bin that is too large will hide many
details. In contrast, if place recognition is required in a new dataset with
lower resolution, marginally smaller Ny and Ny will be good choices.

Ny is set according to the analysis of frequently used rotating multi-
beam LiDAR sensors in localization. The vertical FOV of rotating multi-
beam LiDAR is limited. For example, the vertical angle field values of

Precision

—0— V=40
—0— V=60
—— 790
—v— N=120

4 0
Recall

Fig. 9. PR curves with different parameters in the partial KITTI 00 sequences.
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Velodyne HDL-64E (64 beam LiDAR), Velodyne HDL-32E (32 beam
LiDAR) and Velodyne VLP-16C (16 beam LiDAR) are 26.8°, 40° and 30°,
respectively. Considering that the proposed descriptor should be general
to the frequently used LiDAR sensors, we set Nv = 8 to ensure that there
are at least two laser beams in each partition within the bin, thus
resisting the effects of noise. If Nv is larger than 8, there will not be a
sufficient number of laser beam pairs in each partition within the bin
when using Velodyne VLP-16C. If Nv is smaller than 8, a partition that is
too large within the bin will hide many details.

3.6.2. Parameter analysis of the threshold value of global localization
integrity

The threshold value of the weighted combined score is used to
calculate the integrity that reflects the robustness of global localization.
In this section, the details of setting the threshold values in different
conditions (i.e., different LiDAR sensors) and the requirements of
localization precision are discussed.

The threshold value of the weighted combined score can be written
as:

Thr = 0.67 @ Thr,, +0.33 (1 — precisionml) (12)
where, Thr is the threshold value of the weighted combined score;Thr,,
is the threshold value of place recognition; and precision,, contains the
requirements of localization precision.

Thry, is related to the type of LiDAR sensor present, dis and ratio both
express the performance of place recognition. In Xu et al. (2022), the
performances of place recognition with different LiDAR sensors with
different dis are analysed. To ensure the precision of place recognition, a
smaller dis is required when LiDAR with fewer beams is used. For
example, when 64-beam LiDAR is used, dis is set as 0.13 to ensure place
recognition precision. When 16-beam LiDAR is used, dis is set as 0.07 to
ensure place recognition precision. In the experiment evaluating the
NCDR strategy, we find that when ratio is 0.5, precision improves
markedly. Therefore, when 64-beam LIDAR is used, Thr, can be set
equal to 0.435 (0.87 x 0.5). When a 0.5-m localization accuracy is
required, precision,,, is 0.5. Thr is thus calculated to be 0.456 using
Formula (12). Table 1 shows the integrity analysis of the global locali-
zation result.

As shown in the Table 1, we find that the proposed integrity accu-
rately reflects the robustness of global localization under different
conditions and precision requirements.

4. Experiments

In this section, the CSSC descriptor, two-stage similarity estimation
and NCDR strategy are evaluated. The SGICP for 6DOF estimation is
subsequently evaluated. Finally, the entire global localization solution is
assessed using homogeneous and heterogeneous HD maps.

4.1. Experiments setup

In this section, the details of the datasets applied in this study’s ex-
periments are described, and evaluation criteria are introduced. All
experiments were performed on a computer with a Ryzen 9 3900x CPU
and 64 GB of RAM.

Table 1
Percentage of correct location under different conditions and precision
requirements.

Dataset precision,,, (m)

0.2 0.3 0.4 0.5
KITTI (64-beam LiDAR) 94.8% 98.4% 99.4% 98.3%
NCLT (32-beam LiDAR) 92.2% 94.1% 94.8% 92.1%
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4.1.1. Datasets

The experiments were performed with three popular open-source
datasets: the KITTI dataset (Geiger et al., 2012), NCLT dataset (Carle-
varis-Bianco et al., 2016); WHU-TLS campus dataset (Dong et al., 2020),
and a custom dataset created for this study. These datasets have a clear
degree of differentiation, such as the type of LiDAR used and changed or
unchanged viewpoints at the same place. KITTI and NCLT datasets are
collected by rotating multiple-beam LiDAR. The WHU-TLS campus
dataset and the proposed own dataset are collected by TLS and 2D range
finders, respectively, as shown in Fig. 10.

In the KITTI dataset, the KITTI sequences 00, 05 and 08, containing
4541, 2761 scans and 4071 scans, respectively, are selected. A 64-beam
LiDAR (Velodyne HDL-64E) is used for data collection. In sequences 00
and 05, the viewpoints were unchanged when the vehicle revisited the
place. In sequence 08, the viewpoints were changed.

The NCLT dataset contains repetitive measurements of different
times along similar routes and is obtained in a challenging environment.
This dataset can be used to evaluate global localization solutions based
on a global prior map (Kim et al., 2019). A 32-beam LiDAR (Velodyne
HDL-32E) is used for data collection. The NCLT-01-08, NCLT-05-26 and
NCLT-09-28 datasets, containing 28,127 scans, 26,544 scans and 23,394
scans, respectively, are selected for evaluation. In this dataset, the robot
moves in both the same and opposite directions at revisited places.

The WHU-TLS campus dataset (Dong et al., 2020) was captured at
Wuhan University using the RIEGL VZ-400. RIEGL VZ-400 is a TLS that
obtains a point cloud with millimetre accuracy. The custom dataset was
captured on the first floor of a building using Navvis m3, which is a
trolley-based MLS that consists of three 2D laser range finders and other
Sensors.

There is inevitably motion artefacts in the point cloud that are ac-
quired by a rotating LiDAR sensor mounted above the moving platform.
Fortunately, the frequency of LiDAR is high. In one single-shot LiDAR
scan period, the moving platform can be thought of as moving at a
constant speed. Therefore, the motion artefact can be corrected using
the IMU or wheel odometry. All data used in the proposed experiments
have been corrected.

4.1.2. Evaluation criteria

The performances of the proposed improved methods are evaluated
by the PR curve, relative translation error (RTE) and relative rotation
error (RRE).

The PR curve is obtained by calculating the precision and recall
under different thresholds.

.. number of correct matches
Precision =

total number of matches

number of correct matches

Recall = (13)

total number of corresponding matches

where the number of correct matches is the number of pairs whose

(@)
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Euclidean distance is smaller than 4 m and whose descriptor similarity is

less than the threshold; the total number of matches is the number of pairs

in which their descriptor similarity is less than the threshold; and the

total number of corresponding matches is the number of pairs whose

Euclidean distance is smaller than a threshold value. The threshold value

is set at 4 m according to Kim and Kim (2018), Wang et al. (2019).
The RTE and RRE are given by:

_ AR AT
AH, = H,(Hy) ‘:{ o 1 }
RRE = arccos (%) a4

RTE = ||AT||

where H, is the estimated transformation from the proposed solution;
Hg; is the corresponding ground-truth transformation from the computer
vision method; and tr(AR) is the trace of AR.

4.2. Evaluation of place recognition based on the CSSC descriptor

In this section, the strategies used in place recognition, including
two-stage similarity estimation and NCDR, are evaluated. In the exper-
iments that evaluate two-stage similarity estimation, the performance of
the CSSC descriptor is also evaluated. For each experiment, the proposed
methods are compared against different benchmarks.

4.2.1. Evaluation of two-stage similarity estimation

In the experiments that evaluate the two-stage similarity estimation,
the KITTI and NCLT datasets are used. The scans in all sequences are
sampled at approximately equidistant 2-m intervals. To conduct a more
complete experiment, the similarities between the selected scan and all
the remaining scans are calculated. Three other global feature de-
scriptors (M2DP (He et al., 2016), SC (Kim and Kim, 2018) and iris
(Wang et al., 2020) are used for evaluation. The corresponding simi-
larity estimations used in these original papers are used. We imple-
mented SC and M2DP in MATLAB, and iris in C++. The default
parameters of the available codes are used. A comparison between the
CSSC descriptor with the original similarity estimation and the CSSC
descriptor with two-stage similarity estimation (CSSC-TS) is also con-
ducted. The performances of all descriptors are evaluated using a 4-m
threshold value of Euclidean distance, and the PR curve is shown in
Fig. 11. The area under the curve (AUC) is a quantitative value that is
more intuitive for evaluating the descriptiveness of a descriptor, and the
AUGs of different methods are listed in Table 2.

Fig. 11 and Table 2 show that the SC descriptor obtains the best
performance in KITTI sequences 00 and 05 from 64-beam LiDAR under
unchanged viewpoint conditions. In KITTI sequence 08, the viewpoints
are changed. In the NCLT-01-08, NCLT-05-26 and NCLT-09-28, the

(b)

Fig. 10. (a) WHU-TLS campus dataset. (b) Custom dataset created for this study.
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Table 2

AUC of different descriptor in KITTI and NCLT datasets.
Dataset iris SC M2DP CSsC CSSC-TS
KITTI 00 0.274 0.448 0.370 0.368 0.908
KITTI 05 0.618 0.776 0.499 0.763 0.926
KITTI 08 0.348 0.425 0.375 0.556 0.896
NCLT-01-08 0.164 0.142 0.269 0.420 0.671
NCLT-05-26 0.242 0.141 0.240 0.498 0.718
NCLT-09-28 0.133 0.113 0.195 0.325 0.536

resolution of the point cloud is lower than that of the KITTI datasets, and
the robot moves in both the same and opposite directions at revisited
places. The CSSC descriptor achieves the best performance with these
datasets, which indicates that the elevation and point density weights
used in this study enhance the descriptiveness of the CSSC descriptor,
making it more robust than the other descriptors in challenging
environments.

As shown in Fig. 11 and Table 2, the CSSC descriptor with two-stage
similarity estimation achieves better performance than other descriptors
in all datasets. Two-stage similarity estimation minimizes the influence
of rotation and translation between two scans in the same place on the
similarity of the descriptors, thus improving the performance of place
recognition. This result indicates that the CSSC descriptor with two-
stage similarity provides a robust initial location for query scans from
LiDAR.

To determine what will occur if different threshold values of
Euclidean distance are used, related experiments are also conducted.
Because the scans in all sequences are sampled at approximately equi-
distant 2-m intervals, the threshold values of Euclidean distance are set
at 3, 4, 6, 8 and 10 m. The AUC curves of different descriptors with
different threshold values are shown in Fig. 12.

Fig. 12 shows that the AUC of all descriptors decreases with the in-
crease in the threshold value of Euclidean distance. The larger threshold
value makes place recognition more difficult because the two places are
further apart. In all datasets, the CSSC-TS has the best performance at
different threshold values, which indicates that the proposed descriptor

(e)
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Fig. 11. The PR curve of different descriptors. (a) KITTI sequence 00; (b) KITTI sequence 05; (c) KITTI sequence 08; (d) NCLT-01-08; (e) NCLT-05-26; (f) NCLT-
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has more descriptiveness and is more robust under challenging
conditions.

The initial guess (Ax, Ay, yaw angle) is also provided by two-stage
similarity estimation. Table 3 shows the error of the initial guess
under KITTI sequences 05 and 08.

Table 3 shows that the two-stage similarity estimation provides an
accurate initial guess in terms of the mean value. However, there are
unacceptable errors in the results, such as the 6.08-m error of Ax and
89.9° error of the yaw angle. These inaccurate results will be filtered by
the integrity of global localization. The initial guess helps reduce the
error of the 6DOF estimation. Additional details can be found in Section
4.3.

4.2.2. Evaluation of NCDR

In the experiments that evaluate the proposed NCDR strategy, the
KITTI sequences 05 and 08 are used. Most scans in both sequences are
used to construct global prior maps, and the others are used as query
scans to test the NCDR strategy, as shown in Fig. 13. In KITTI sequence
05, scans 1300-1600 and 2300-2650 are used as query scans, and the
others are used to construct a global prior map. In KITTI sequence 08,
scans 1400-1850 are used as query scans, and the others are used to
construct a global prior map.

Query scans include some scans obtained in places where there is no
global prior map and some scans obtained in places that are on the
constructed map. This process is helpful when evaluating the strategy of
finding the corresponding place. The conventional strategy is selected
for evaluation. In the conventional strategy, similarity estimation is
conducted between the query scan and all candidates. If the minimum
dis between the CSSC descriptors of the query scan and the candidate is
smaller than the threshold value, the corresponding place can be ob-
tained. The precision curve of the conventional strategy and the pro-
posed NCDR strategy with different ratio values is shown in Fig. 14.

Fig. 14 shows that the NCDR strategy can markedly improve the
place recognition precision under both sequences. The precision be-
comes increasingly better with a decreasing ratio. When the ratio is<0.2,
the place recognition precision is up to 1. When the ratio is between 0.6
and 0.3, there is small gap in precision improvement. When the ratio is
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Fig. 12. The AUC curve of different descriptors. (a) KITTI sequence 00; (b) KITTI sequence 05; (c) KITTI sequence 08; (d) NCLT-01-08; (e) NCLT-05-26; (f) NCLT-

09-28.

Table 3
Error of initial guess in KITTI sequences.

Sequences Ax (m) Ay (m) Yaw angle (°)
mean max mean max mean max

05 0.24 6.08 0.18 5.35 0.57 3.02

08 0.66 5.67 0.29 6.15 0.77 89.90

0.9, the precision improves the least. However, there is still a large
improvement in precision compared to the conventional method, which
indicates that NCDR effectively improves the place recognition
precision.

4.3. Evaluation of SGICP
In the SGICP evaluation experiment, KITTI sequences 05 and 08 were

used. Because 6DOF estimation is executed after place recognition, the
experiment of evaluating the proposed SGICP is conducted over query

Ground truth
Query scan
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scans and their corresponding candidates. The query scans are the same
as the query scans that are selected in Section 4.2.2. The corresponding
candidates can be obtained according to the ground truth of the global
location. The execution times required for 6DOF estimation are 4888
and 1788 in the KITTI sequences 05 and 08, respectively. Two other
6DOF estimation methods are selected for evaluation, including the
original ICP used in the existing solution and the original GICP. The
initial guess is provided by two-stage similarity estimation. In addition,
SGICP without an initial guess (SGICP-NI) is also compared for evalua-
tion. Table 4 shows the related results.

Table 4 shows that in terms of RTE, SGICP achieves the best per-
formance. In challenging KITTI sequence 08, SGICP yields a large
improvement compared to GICP. In terms of RRE, there are marginal
differences between the three methods because the initial angular guess
provided by two-stage similarity estimation is sufficiently accurate. By
comparing the results of SGICP and SGICP-NI, we find that the initial
guess leads to better precision.

In terms of time, the mean times of ICP, GICP and SGICP are 1.063 s,
0.356 s and 0.141 s, respectively. SGICP can estimate 6DOF in a shorter
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Fig. 13. The demonstration of query scan in KITTI dataset. (a) KITTI sequence 05; (b) KITTI sequence 08.
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Fig. 14. The curve of precision with different ratio in KITTI dataset. (a) KITTI sequence 05; (b) KITTI sequence 08.
Table 4
Comparison of different 6DOF estimation methods.
Sequence RTE RRE
ICP GICP SGICP SGICP-NI ICP GICP SGICP SGICP-NI
5 0.17 0.04 0.04 0.08 0.78 0.82 0.79 0.81
8 0.71 0.67 0.46 0.72 1.32 1.13 1.12 1.13
time than others. The cautious nearest point searching procedure, based
on two weights, gives SGICP higher accuracy and better efficiency.
80% - OneShot
. Lo . 75% L | Proposed
4.4. Evaluation of global localization solution
In this section, the proposed global localization solution is evaluated -
using homogeneous and heterogeneous HD maps. The experiments focus ’ 534
. . . [}
on the accuracy evaluation with homogeneous HD maps. Using het- &
erogeneous HD maps, the applicability of the proposed solution is é
assessed. The execution time of the proposed solution is discussed. The © 404 b
threshold value of the integration is set according to the parameter & 399,
analysis in Section 3.6.2.
4.4.1. Accuracy comparison with homogeneous HD maps 20% 19% 150
To date, few studies have focused on using only one LiDAR scan for =
global localization. OneShot (Ratz et al., 2020) is a similar type of so- 6%
lution that uses only a single 3D LiDAR scan for instant global locali-
o
zation. Unfortunately, OneShot is not an open-source project currently. 0% <0.1 [0.1,0.2] >0. 2
KITTI sequence 00 was selected to evaluate the performance of OneShot RTE (m)

in the paper. Therefore, the comparison with OneShot is executed in
KITTI sequence 00. The same implemented details as those in OneShot
are performed. The scans of seconds 340 to 397 are query scans and
those of seconds 0 to 300 are for global prior map building. The results of
OneShot are extracted from the original paper and are shown in Fig. 15
with the results of the proposed solution.

Fig. 15 shows that 75% of the proposed global localization solution
RTEs are distributed in the range of 0 m to 0.1 m, and 6% of the proposed
global localization solution RTEs are distributed rarely in a range larger
than 0.2 m. Thirty-two percent of OneShot RTEs are distributed in the
range of 0 m to 0.1 m, and 15% of OneShot RTEs are distributed in the
range larger than 0.2 m. In KITTI sequence 00, the mean RTE of OneShot
was computed as 0.11 m in this study. In KITTI sequence 00, the mean
RTE of the proposed solution is 0.08 m. Compared to OneShot, the
proposed solution achieves a mean RTE improvement of 27% on KITTI
sequences 00, which indicates that the proposed solution has better
performance than OneShot.

For a comprehensive evaluation of the proposed solution,
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Fig. 15. The percentage of different methods RTE distribution in KITTI
sequence 00.

experiments are also performed with the challenging NCLT datasets.
However, no study has evaluated global localization that uses one LiDAR
scan over NCLT datasets, nor is there an open source single-shot global
localization solution. Therefore, the combined framework of the SC
descriptor (Kim and Kim, 2018) and faster GICP (Koide, et al., 2021) is
selected as the benchmark based on the following reasons. The SC
descriptor is a modern egocentric global feature descriptor that uses a
two-phase search algorithm that efficiently finds corresponding places.
Also, the initial guess of the yaw angle is provided by the SC descriptor.
For 6DOF estimation, faster GICP is picked for its good accuracy and
efficiency. NCLT-01-08 is selected to construct a global prior map, and
the scans in NCLT-05-26 and NCLT-09-28 are selected as query scans, as
shown in Fig. 16.

To visualize the experimental results more

intuitively, the
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Fig. 16. Ground truth of NCLT datasets. (a) NCLT-01-08; (b) NCLT-05-26; (c) NCLT-09-28.

cumulative distribution function (CDF) figures of both solutions are
shown in Fig. 17 and Fig. 18. Comparative results are also listed in
Table 5.

Fig. 17, Fig. 18 and Table 5 show that in terms of the mean, one
standard deviation (16), and the distribution of RTE, the proposed so-
lution achieve better performance than the benchmark. Relative to the
benchmark, the proposed solution achieves an average 39% improve-
ment over the mean of RTE and an average 75% improvement over the
mean of RRE in both datasets. The proposed solution has an average
77% improvement over 1o of RTE and an average 93% improvement
over 1o of RRE in both datasets.

The proposed global localization algorithm achieves excellent per-
formance due to improvements in place recognition and 6DOF estima-
tion methods. Compared with the SC descriptor, the CSSC descriptor
achieves better descriptiveness in challenging environments, as shown
in Section 4.2.1. Two-stage similarity estimation and the NCDR strategy
improve place recognition precision. These factors allow the proposed
solution to produce more accurate place recognition results. In the 6DOF
estimation, the SC descriptor provides an initial guess of the yaw angle,
while two-stage similarity estimation provides a 3D initial guess (Ax,
Ay, yaw angle). Also, SGICP has higher accuracy than GICP. These im-
provements make the proposed solution more accurate than the
benchmark.

4.4.2. Applicability of the proposed solution with heterogeneous HD maps

In this section, the applicability of the proposed solution with het-
erogeneous HD maps is evaluated. A 16-beam LiDAR (Velodyne VLP-
16C) is used to collect query scans in the same scene as the heteroge-
neous HD maps. Using manual registration, the location of the query
scan in the same geo-referenced frame as the HD map can be obtained.
Unfortunately, because the pose of LiDAR cannot be measured

o

. Empirical CDF
091
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Error(m
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accurately during data collection, we cannot obtain the real pose of
LiDAR in the georeferenced frame. Therefore, the RTE is only evaluated
in the following experiment.

First, heterogeneous HD maps must be converted into virtual scans
that are similar to real scans from VLP-16C through virtual LiDAR, as
shown in Fig. 19. The point cloud and location of a virtual scan are
generated in a semi-automatic way. More details can be found in (Xu
et al., 2022).

After obtaining the virtual scans, the global prior map is acquired by
fusing scans, CSSC descriptors and fingerprints. The estimated global
location of a query scan is obtained with place recognition and 6DOF
estimation. In the WHU-TLS campus dataset, the mean RTE of the pro-
posed solution is 0.18 m. In the custom dataset, the mean RTE of the
proposed solution is 0.07 m. Results show that the proposed global
localization solution can obtain accurate locations using the heteroge-
neous HD map. This indicates that the proposed solution allows for the
use of different types of LIDAR during HD map creation and localization
separately. Combined with the results in Section 4.4.1, the proposed
solution is found to be widely available for use with point clouds that
acquired by different sensors, such as rotating multiple-beam LiDAR,
TLS and MLS.

4.4.3. Execution time of the proposed solution

In this section, the execution time of the procedures, including offline
HD map preprocessing and online global localization, are discussed.

The execution time of homogeneous HD map preprocessing is equal
to the time of feature extraction. In KITTI datasets, the mean time for
extracting features from one scan is 4.37 ms. In NCLT datasets, the mean
time for extracting features from one scan is 1.87 ms. In a VLP-16C
dataset, the mean time for extracting features from one scan is 1.41
ms. The time of the feature extraction depends on the number of points
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Fig. 17. The empirical CDF of RTE in NCLT datasets. (a) NCLT-05-26; (b) NCLT-09-28.

285



D. Xu et al.

Empirical CDF

——Benchmark
—Proposed

Percentage
o
&

O = == —— - -

16 ' :
0.2 0.3 0.4

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 272-288

Empirical CDF

——Benchmark
—Proposed

Percentage

L

I
0.3

0 0.1 05 02 04 05
Error(radian) Error(radian)
(a) (b)
Fig. 18. Empirical CDF of RRE in NCLT datasets. (a) NCLT-05-26; (b) NCLT-09-28.
Table 5
Comparison with LiDAR global localization benchmark.
NCLT-Sequence methods RTE RRE
mean 1o <0.1 <0.5 mean 1o <0.1 <0.5
05-26 proposed 0.70 0.13 52% 94% 0.05 0.01 97% 99%
benchmark 1.23 0.65 23% 60% 0.17 0.16 53% 93%
09-28 proposed 1.07 0.13 51% 95% 0.03 0.01 97% 99%
benchmark 1.65 0.50 26% 66% 0.15 0.14 59% 94%

(@)

(b)

Fig. 19. Different LiDAR scans in the same scene. (a) A real scan from VLP-16C; (b) a virtual scan from virtual LiDAR.

in one LiDAR scan.

The time of heterogeneous HD map preprocessing includes the time
of data conversion and feature extraction. With the WHU-TLS campus
dataset, 109.05 million points are contained, and 88 locations are
generated to set virtual LiDAR. Virtual scans require 80.47 s to generate
results. With the custom dataset, 21.83 million points are contained, and
26 locations are generated to set virtual LiDAR. Virtual scans require
2.29 s to generate results. Thus, we find that offline preprocessing of HD
maps is not time-consuming. The execution time of online global
localization is shown in Fig. 20.

Fig. 20 shows that place recognition requires a long time in most
cases. In a few cases, 6DOF takes more time. The mean time consumed
for place recognition is 0.86 s, and the mean time consumed for 6DOF
estimation is 0.6 s. The mean time consumed for global localization
using a single shot scan is 1.46 s. In general, the proposed solution
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provides global location at an approximate frequency of 1 HZ.
According to the evaluation of the proposed global localization so-
lution, we find that the proposed solution provides accurate global lo-
cations by fusing rotating multiple-beam LiDAR and diverse HD maps
that include homogeneous and heterogeneous maps. Offline pre-
processing improves the applicability of the proposed solution by con-
verting homogeneous and heterogeneous HD map maps into global prior
maps. The global prior map is used to calculate the global location of the
query scan from rotating multiple-beam LiDAR. The wide applicability
of the proposed solution makes some existing heterogeneous HD maps
available for global localization, avoiding repeated collection of HD
maps. In terms of computation time, we find that the HD map from
diverse LiDAR sensors can be used to execute global localization after a
moment offline preprocessing. In online global localization, the pro-
posed solution provides a global location at a frequency of 1 HZ in most



D. Xu et al.

5
Place recognition
6DOF estimation
4 -
3k
—
2
z
[}
=
o
=L
1k
0 1 1 1 1 1 1 1 1 1

100 200 300 400 500 600

Scan index

700 800 900 1000

Fig. 20. Execution time of the proposed solution.

cases. The frequency of global localization can be further improved by
limiting the search space according to the translation provided by LiDAR
odometry. In general, the proposed solution provides global locations in
an accurate and efficient way and has broad applicability with respect to
using point clouds acquired by different LiDAR sensors.

5. Conclusion

To date, global localization under GNSS-denied environments re-
mains a challenge in terms of accuracy and usability. This paper pro-
poses a single-shot LiDAR scan global localization solution for driverless
vehicles and robots, which provides an instant global location by fusing
LiDAR and HD maps and has no wake-up or kidnapped problems. This
paper proposes a novel CSSC descriptor, two-stage similarity estimation
and NCDR strategies to enhance the robustness of place recognition and
the SGICP algorithm for improving the precision of location and pose.
Also, the proposed preprocessing procedure makes the proposed solu-
tion accept HD maps acquired by different LiDAR sensors. The proposed
CSSC descriptor is more robust than existing descriptors, as shown by
the comparison of the PR curve of multiple scenes, particularly under
changed viewpoints and low-resolution conditions. Experimental anal-
ysis also confirms that the proposed strategies, two-stage similarity
estimation and NCDR, improve place recognition precision. Also, the
SGICP algorithm improves accuracy compared to the GICP algorithm by
31% and efficiency by 60%. Using the homogeneous KITTI dataset, the
proposed global localization method achieves a mean RTE improvement
of 27% relative to existing methods. Using a long-term localization
dataset, the proposed solution achieves an average 77% improvement
over 1o of RTE and an average 93% improvement over 16 of RRE
compared to the benchmark method. Using the heterogeneous WHU-
TLS campus dataset and a custom dataset, the proposed solution ach-
ieves 0.18 m and 0.07 m RTEs, respectively. Many experiments confirm
that the proposed solution achieves higher accuracies and broader
generalizability than existing solutions.

The proposed solution provides accurate global locations by fusing
LiDAR and HD maps. However, the proposed solution cannot meet real-
time requirements. In the future, we plan to integrate the proposed so-
lution with other localization systems to develop real-time global
localization solution. We also plan to research the impact of the different
LiDAR sensors on the accuracy of global localization, further improving
the applicability of the proposed solution.
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