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A B S T R A C T   

Fusing LiDAR and high definition (HD) maps is a feasible way to achieve global localization in GNSS-denied 
environments, which is necessary in driverless vehicle and robotic technologies. This paper proposes a single- 
shot global localization solution that uses only a single current scan of a rotating multiple-beam LiDAR sensor 
to locate its own location and pose with respect to an HD map in the form of georeferenced point clouds. This 
single-shot global localization solution estimates the state of the current moment without the previous moment 
state and thus avoids the nonconvergence problems that plague filter-based methods. The proposed solution 
allows HD maps from diverse LiDAR sensors to be used for global localization and is more robust than existing 
methods. The proposed solution consists of two procedures: offline preprocessing and online global localization. 
In the offline procedure, diverse HD maps are preprocessed to construct a global prior map for the localization 
process. The online global localization procedure includes two elements: place recognition, location and pose 
estimation. A novel Cross-Section Shape Context (CSSC) descriptor that is highly descriptive and rotation- 
invariant is proposed for subsequent processes. Two strategies, two-stage similarity estimation and Nearest 
Cluster Distance Ratio (NCDR), based on the CSSC descriptor are proposed to improve place recognition pre-
cision. A Selective Generalized Iterative Closest Point (SGICP) algorithm is proposed to calculate location and 
pose accurately using the CSSC descriptor. Comprehensive experiments were performed to evaluate this solution. 
A comparison of the precision-recall curve of multiple scenes, particularly under changed viewpoint scenes, 
shows that the CSSC descriptor is more robust than existing descriptors. Experimental analysis also confirms that 
the proposed strategies, two-stage similarity estimation and NCDR, improve place recognition precision. Also, 
compared to the generalized iterative closest point algorithm, the SGICP algorithm achieved better accuracy by 
31% and efficiency by 60%. The proposed solution achieves a mean relative translation error (RTE) improvement 
of 27% over the OneShot algorithm on the KITTI dataset. The proposed solution had an average 77% 
improvement over 1σ RTE relative to the benchmark in tests with the long-term localization NCLT dataset. The 
mean RTE of the proposed solution was 0.13 m using HD maps from different LiDAR sensors. Our code is 
available at: https://github.com/Dongxu05/CSSC.   

1. Introduction 

For driverless vehicles and robotics, global localization that fuses 
LiDAR and high definition (HD) maps is a critical technology that pro-
vides accurate global location and pose, particularly when the global 
navigation satellite system (GNSS) does not function adequately. Low 
accuracy and limited generalizability, however, restrict the applicability 
of existing global localization methods based on rotating multiple-beam 
LiDAR sensor data and HD maps rendered as georeferenced point clouds. 
In this paper, we propose a global localization solution that uses a single 

LiDAR scan and a novel global feature descriptor to tackle these 
problems. 

For global localization based on LiDAR and HD maps, Monte Carlo 
localization (MCL) techniques are used in most localization systems. 
However, these MCL-based solutions (Yin et al., 2020; Sun et al., 2020; 
Chen et al., 2020) need multiple dynamic scans for the filter to converge, 
resulting in wake-up and kidnapped robot problems. The wake-up robot 
problem refers to instances when an autonomous mobile system boots 
up and does not provide instantly accurate global locations. The 
kidnapped robot problem occurs when an autonomous mobile system 
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cannot recover from a wrong previous location (Seow et al., 2018; 
Prestes et al., 2009). We argue that single-shot global localization so-
lutions can resolve these challenges. 

The single-shot global localization solution uses only a single LiDAR 
scan at a time. Unlike MCL-based methods, single-shot global localiza-
tion estimates the location and pose of the current moment without the 
previous moment location and pose, and thus does not experience 
nonconvergence problems such as the wake-up robot or kidnapped 
robot problem. This solution includes the following two steps: 1) place 
recognition (Steder et al., 2011; Muhammad and Lacroix, 2011) pro-
vides an initial location from a LiDAR query scan; and 2) fine registra-
tion (Biber et al., 2003; Segal et al., 2010) estimates the six degrees of 
freedom (6DOF) parameters relative to the HD map based on place 
recognition. These steps make the single-shot global localization solu-
tion more robust than other MCL-based methods (Ratz et al., 2020). 

Although the accuracy of single-shot global localization solutions is 
higher than that of MCL-based methods, accuracy and narrow applica-
bility problems are still factors limiting their widespread use. Place 
recognition when obtained from shifting viewpoints and a low- 
resolution LiDAR scan is uncertain due to the low descriptiveness of 
global feature descriptors and the simple place-matching strategy in 
existing solutions. Original iterative closest point (ICP) algorithms used 
in the existing solution (Yin et al., 2020; Guo et al., 2019) provide 
terrible 6DOF parameters when a preset initial guess is used. Uncertain 
place recognition and terrible 6DOF parameters both yield accuracy 
losses to global localization. Existing solutions (Kim and Kim, 2018; 
Wang et al., 2020; He et al., 2016) request the HD map to be from the 
same type of sensor as the localization sensor to provide place recog-
nition. Therefore, the HD maps from different LiDAR sensors, such as 
terrestrial laser scanners (TLSs) and 2D laser range finders, cannot be 
used for existing single-shot global localization solutions directly, 
limiting solution generalizability. 

To resolve the issues of low accuracy and limited generalizability, 
this paper proposes a single-shot LiDAR scan global localization solution 
using a novel Cross-Section Shape Context (CSSC) descriptor. The con-
tributions of this study beyond existing methods are as follows:  

1. We propose an accurate global localization solution that uses only 
one single LiDAR scan, which consists of a high-quality CSSC 
descriptor and novel methods that are used in the pipeline of the 
global localization. The proposed offline HD map preprocessing 
method can process HD map data generated from diverse LiDAR 
sensors, effectively using all information. An integrity index is also 
used to monitor the integrity of each single-shot global localization 
result. 

2. The proposed CSSC descriptor features an enhanced high descrip-
tiveness using the elevation weight and point density weight, which 
describe the spatial distribution characteristics of the point cloud 
from two dimensions.  

3. Based on the CSSC descriptor, a set of improved methods, including 
two-stage similarity estimation, Nearest Cluster Distance Ratio 
(NCDR), and the Selective Generalized Iterative Closest Point 
(SGICP) algorithm, are developed to improve the precision of place 
recognition and 6DOF estimation. 

The remainder of this paper is organized as follows. Section 2 de-
scribes related works; Section 3 introduces the proposed single-shot 
global localization solution; and Section 4 presents experimental re-
sults. Section 5 summarizes and concludes this study. 

2. Related works 

In this section, we review existing studies on place recognition and 
6DOF estimation that are related to global localization by fusing LiDAR 
scans with HD maps. 

2.1. Related works on 3D LiDAR-based place recognition 

Because global feature descriptors improve the robustness of place 
recognition by extracting the features of the entire 3D LiDAR scan, they 
have attracted the attention of researchers. Global feature descriptors 
can be divided into handcrafted and deep learning-based descriptors. 

Regarding handcrafted feature descriptors, Muhammad et al. 
developed Z-projection (Muhammad and Lacroix, 2011), which saves 
the angles between the normal corresponding to each point and the Z 
axis to construct the feature descriptor. He et al. proposed Multiview 2D 
Projection (M2DP) (He et al., 2016) that projects the 3D point cloud to 
multiple 2D planes and obtains the feature descriptor through Singular 
Value Decomposition (SVD) of the distribution matrix. Scan Context 
(SC) (Kim and Kim, 2018), Seed (Fan et al., 2020) and LiDAR iris (iris) 
(Wang et al., 2020) are egocentric feature descriptors. Arc-shaped grids 
that are suitable for rotating LiDAR are constructed, and feature de-
scriptors are generated by extracting the feature from the grid. Behley 
et al. (Behley and Stachniss, 2018) performed place recognition by range 
images and normal images that were extracted from point clouds. The 
DEscriptor of LiDAR Intensities as a Group of HisTograms (DELIGHT) 
(Cop et al., 2018), Intensity Signature of Histograms of OrienTations 
(ISHOT) (Guo et al., 2019) and Intensity Scan Context (ISC) (Wang et al., 
2020) use echo intensity information to construct feature descriptor. In 
the same scene with different viewpoints, histogram- (Muhammad and 
Lacroix, 2011) and projected-based (He et al., 2016) descriptors cannot 
robustly perform place recognition because both descriptors do not have 
rotation invariance. Egocentric feature descriptors (Kim and Kim, 2018; 
Fan et al., 2020; Wang et al., 2019) overcame the problem of different 
viewpoints; however, these descriptors yield poor descriptiveness, 
making their place recognition performance insufficiently robust in 
challenging environments. LiDAR intensity information makes up for 
the lack of texture information. However, there is no general LiDAR 
intensity calibration standard, causing the place recognition solution 
using descriptors with LiDAR intensity to have low generalizability be-
tween different LiDAR sensors (Guo et al., 2019). Also, most of these 
methods use a minimum distance searching strategy for the corre-
sponding place, leading to poor place recognition. 

At present, place recognition based on deep learning is one of the 
research hotspots. PointNETVLAD (Angelina et al., 2018) and SeqLPD 
(Liu et al., 2019) extract a global descriptor for the place recognition 
task with an end-to-end way. These work input directly the points into 
the network and output the result of place recognition. Unlike the 
aforementioned works, other papers input the preprocessing result of 
the original point cloud into a network. SpoxelNet (Chang et al., 2020) 
encoded input spherical voxels into global descriptor vectors by 
extracting the structural features in both fine and coarse scales. OREOS 
(Schaupp et al., 2019) exploited convolutional neural network to extract 
compact descriptors from single 2D range image. SegMatch (Dube et al., 
2017), Oneshot (Ratz et al., 2020), Locus (Vidanapathirana et al., 2020) 
and semantic graph (Kong et al., 2020) realized place recognition 
through using semantic information. The deep learning-based methods 
perform well in the trained environments, while they usually cannot 
generalize well in different environments or different LiDAR sensors. 

2.2. Related works on six degrees of freedom estimation 

Registration algorithms provide 6DOF parameters for LiDAR scans. 
Registration algorithms based on local shape descriptors (LSD) (Guo 
et al., 2015; Tao et al., 2020; Zhao et al., 2019; Dong et al., 2017) have 
been intensively studied in recent decades. LSD-based methods have 
three significant steps: detecting the key points, extracting the LSDs and 
identifying correspondences. These methods achieve good performance 
with registration of model points. However, these methods are not 
suitable for quick global localization using rotating multiple-beam 
LiDAR sensor for two reasons: 1) it remains a challenge to achieve 3D 
key point detection with a high repetition rate in sparse points (Boroson 
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and Ayanian, 2019); and 2) it is time-consuming to calculate local 
feature descriptors of all key points (Yin et al., 2021). 

To improve efficiency, some researchers only extracted the key 
points for registration in the algorithms. LOAM (Zhang and Singh, 2017) 
extracts edge points and plane points for 6DOF estimation. Based on the 
LOAM, Lego-LOAM (Shan and Englot, 2018) removes points of small 
objects, such as leaves moving in the wind, to enhance robustness. In 
addition, Lego-LOAM further optimizes ground points for high accuracy. 
The common characteristic of these methods is that key points are 
extracted from the original point cloud data before matching. The cor-
rect transformation relation between key points is obtained through 
continuous iterative calculation. 

The key point-based methods have made marked improvements in 
efficiency. However, these methods lack robustness in environments 
where features are missing. Registration algorithms that directly operate 
on the original data rarely suffer from this problem. The iterative closest 
point (ICP) is a classical registration algorithm that directly operates on 
the original data. Generalized iterative closest point (GICP) (Segal et al., 
2010) extends the original ICP algorithm using a distribution-to- 
distribution matching method and obtains higher accuracies than ICP. 
However, ICP and other ICP variants are sensitive to initial guesses; a 
poor preset initial guess leads to poor precision and a long time of 
convergence. Also, ICP and related variants highly depend on a nearest 
neighbour search to associate the closest points. The closest point, 
however, is not carefully checked, leading to poor registration perfor-
mance in some cases. 

3. Proposed global localization solution 

In this section, the proposed global localization solution that includes 
the offline preprocessing of HD maps and online single-shot global 
localization is introduced, as shown in Fig. 1. The preprocessing 
component describes how to generate a global prior map using HD maps 
from different LiDAR sensors. The online global localization presents 
improvements in feature extraction, place recognition and 6DOF esti-
mation. Also, the integrity of global localization and parameter analysis 
are introduced. 

As shown in Fig. 1, an HD map is an input, and a global prior map is 
an output in the HD map preprocessing. The global prior map will be 
generated by fusing the scans and features after preprocessing. Based on 
the global prior map, a query scan is used as an input in online global 
localization. After feature extraction, place recognition and 6DOF 

estimation, the global location of the query scan and its integrity will be 
obtained. 

3.1. Preprocessing of HD map 

In this section, we describe how to generate a global prior map using 
HD maps from different LiDAR sensors by scan and feature extraction. 

For extracting scans from HD maps, type judgements on the HD map 
must be made. In this paper, the HD map refers to the point cloud that 
has a global geo-referenced frame. Such HD maps can be obtained in 
several ways for different applications (e.g., vehicles that are equipped 
with high-precision integrated localization systems and rotating multi- 
beam LiDAR (Geiger et al., 2012); TLSs (Liu et al., 2017) and mobile 
laser systems (MLSs) (Liu et al., 2021). According to the type of sensor 
used in the HD map building process, HD maps can be divided into 
homogeneous and heterogeneous maps. During localization, rotating 
multi-beam LiDAR is typically used as a localization sensor (Prestes 
et al., 2009; Steder et al., 2011) due to its 360◦ horizontal field of view 
(FOV) and large vertical FOV. Therefore, the homogeneous HD map 
refers to the map derived from the same type of sensor as the rotating 
multi-beam LiDAR. The heterogeneous HD map refers to the map 
derived from other LiDAR systems, such as TLS and MLS. 

After using type judgement, the HD map will be transformed into a 
series of scans for feature extraction. Because a homogeneous HD map 
has the same scans as scans from the localization sensor, it can be used 
directly for subsequent processes. The heterogeneous HD map must be 
converted into virtual scans that are similar to real scans from a locali-
zation sensor through virtual LiDAR. For more details about virtual 
LiDAR, refer to (Xu et al., 2022). 

After obtaining scans from the homogeneous HD map or virtual scans 
from the heterogeneous HD map, these scans are used to extract features 
that include fingerprints and CSSC descriptors; additional details can be 
found in Section 3.2. A fingerprint is a feature vector and is used for 
forming a kd-tree, which can be used to search for place candidates 
quickly. The CSSC descriptor is used to estimate the similarity between 
candidates and query scans to obtain corresponding places. 

The global prior map used for online global localization is generated 
by fusing the scans, fingerprints and CSSC descriptors in the HD map 
preprocessing component. The preprocessing time varies depending on 
the type and size of the HD map. In the experimental section, the pre-
processing time will be discussed for the specific HD map. 

Fig. 1. Pipeline of the proposed global localization solution. In offline preprocessing, an HD map will be transformed into a global prior map for subsequent global 
localization. In online global localization, the global location of the query scan and its integrity will be obtained. 
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3.2. Feature extraction 

In this section, we present methods to extract features, including 
CSSC descriptors and fingerprints, which are important in offline and 
online procedures. The CSSC descriptor describes the place in a matrix 
way and is used for obtaining place recognition accurately. The finger-
print can be used to search for place candidates quickly. 

3.2.1. Generation of the CSSC descriptor 
The proposed CSSC descriptor is inspired by the 3D Shape Context 

(3DSC) descriptor (Frome et al., 2004) and the measurement principle of 
rotating multi-beam LiDAR. The 3DSC descriptor is an LSD that was 
proposed for object recognition. As with other LSDs, the 3DSC descriptor 
selects a spherical region as the support region. The generation of 3DSC 
is as follows. The entire support region is divided into bins by equally 
spaced boundaries in the azimuth and elevation dimensions along the 
radial dimension. According to the number of points in each bin and the 
number of points in the neighbour area, a weight value is assigned to 
each point in the bin. The 3DSC descriptor is generated by encoding all 
the weighted count numbers of each bin. 

Unlike the 3DSC descriptor, the CSSC descriptor is a global feature 
descriptor. The CSSC descriptor sets the LiDAR origin as the centre and 
uses the FOV of a rotating multiple-beam LiDAR system as a support 
region. Given the scanning principle of rotating multiple-beam LiDAR, 
the scan is divided into bins by horizontal and vertical angles of LiDAR 
along the horizontal distance, as shown in Fig. 2. The CSSC descriptor is 
generated by describing the shape context of all bins at the same hori-
zontal angle and distance bins. The shape context of all bins at the same 
cross-section is described to generate the proposed descriptor. There-
fore, the proposed descriptor is named the cross-section shape context 
descriptor. 

After executing the division shown in Fig. 2, Nd × Nh × Nv bins can 
be obtained, where Nd is the number of bins along the horizontal dis-
tance;Nh is the number of bins in the horizontal FOV; and Nv is the 
number of bins in the vertical FOV. In this paper, we set Nd = 20, Nh =
40, and Nv = 8; parameter details can be found in Section 3.6.1. The 
division used in this paper makes the far bin larger, compensating for the 
insufficient information caused by the sparsity of far points, which is 
caused by the principle of rotating multiple-beam LiDAR. The resolution 
of farther points is smaller than that of nearer points. After division, each 
element in the CSSC descriptor is obtained by encoding spatial 

distribution of the point cloud in the cross-section, as shown in Fig. 3. 
As shown in Fig. 3, elevation and point density weights of Bijk(i ∈

[Nd], j ∈ [Nh ], k ∈ [Nv]) are calculated; the details of these calculations 
are presented in the following paragraphs. Each element in the CSSC 
descriptor is calculated by accumulating the products of two weights 
from bins at the same cross-section. The CSSC descriptor is generated 
after the values of all elements are obtained. 

The elevation weight is related to the vertical angle of each beam, 
that hits the object. In the same horizontal angle and distance bins, the 
higher bin that has a larger vertical angle is assigned to a higher 
elevation weight. The power function is selected as a weighting strategy. 
The elevation weight of each bin can be written as: 

Eijk =
2f(Bijk)

255  

f
(
Bijk
)
=

{
k − 1

(
Bijk ∕= ∅

)

0
(
Bijk = ∅

) (1)  

where Eijk is the evaluation weight of bin Bijk. Because we set Nv = 8, 255 
is calculated by 

∑8
k=12k− 1 and it is used to normal Eijk in the calculation. 

The point density weight is related to the point density of each bin. 
The high point density weight is assigned to the bin that includes many 
points. 

Dijk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1(median = 0)

1 (numberijk > 2*median)

numberijk

2*median
(else)

(2)  

where Dijk is the density weight of Bijk; numberijk is the number of points 
in the Bijk; and median is the median of point numbers at the bins in the 
same vertical angle and horizontal distance. 

Based on the elevation weight and point density weight of Bijk, the 
value of the element Mij (i ∈ [Nd], j ∈ [Nh ]) is calculated by accumulating 
the products of two weights from bins in the same cross-section. After all 
elements have been calculated, we obtain a CSSC descriptor M: 

Mij =
∑8

k=1
Eijk*Dijk  

M =
⋃Nd,Nh,

i=1,j=1
Mij (3) 

The reason for selecting the power function as the elevation 
weighting function is that the higher points of immobile buildings play 
an important role in place recognition under outdoor conditions. The 
redundant points of ground make little difference to the result of place 
recognition and the redundant points of moving vehicles have an 
adverse effect on the result. In the point density weight calculation 
procedure, the median is selected to represent the distribution of point 
numbers. Compared to the mean, the median can describe the central 
tendency accurately when outliers exist. 

3.2.2. Generation of fingerprint 
To find place candidates quickly, fingerprints are extracted after 

division of the support region within the generation of CSSC descriptors. 
A demonstration is shown in Fig. 4. 

As shown in Fig. 4, the numbers of occupied bins (Cnt) in each ring at 
the same layer, where the blue bin refers to the bin at the same layer, are 
counted first. Then, the average (Ave), corresponding index of max Cnt 
(MI) and standard deviation (SD) of Cnts are calculated as sub-features. 
A fingerprint is generated by combining sub-features of all layers. To 
find appropriate candidates accurately and quickly, three single and four 
combined features are evaluated, as shown in Fig. 5. The execution 
details are as follows. Hundreds of query scans are transformed to 

Fig. 2. Interpretation of division with the proposed method. Δd is the gap of 
the horizontal distance; Δh is the gap of the horizontal angle; Δv is the gap of 
the vertical angle. 
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different fingerprints and used for candidate searching. The recall curve 
can be obtained for a different number of candidates. 

Fig. 5 shows that the recall curve of Ave + SD covers the largest area, 
which indicates that Ave + SD is appropriate for candidate searching. 
Therefore, Ave + SD is selected as fingerprints in this study. 

3.3. Place recognition 

In this section, we introduce improved place recognition, including 
two-stage similarity estimation and NCDR strategies, which provides an 
initial location of the query scan from LiDAR. After extracting the 

fingerprint from a query scan, place candidates can be obtained in a 
global and efficient way through kd-tree. Two-stage similarity estima-
tion is conducted to calculate similarities between CSSC descriptors of 
the query scan and candidates. The NCDR strategy was developed to 
deny inaccurately matched candidates. Corresponding places can be 
found through the improved place recognition. 

3.3.1. Two-stage similarity estimation 
The two-stage method is used to improve the similarity estimation 

performance. The proposed method is shown in Fig. 6. The inputs are the 
query scan and candidate scan. The two stages include coarse angle 

Fig. 3. Element calculation in the CSSC descriptor. Each element in the CSSC descriptor is calculated by accumulating the weight products of elevation and point 
density weights from bins at the same cross-section. The elevation and point density weight of the red bin (Bijk) are calculated using blue bins and black bins 
respectively. The blue bins represent the bins at the same horizontal angle and distance as red bin. The black bins represent the bins at the same elevation and 
horizontal distance as red bin. 

Fig. 4. Demonstration of fingerprints generation. The sub-feature of a layer is extracted by analyzing the numbers of occupied bins of each ring in this layer. Here, 
the rings at the same layer refer to the rings at the same vertical angle. A fingerprint is generated by combining sub-features of all layers. 
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transformation and semi-semantic ICP alignment. 
As shown in Fig. 6, the coarse angle between two viewpoints is 

provided in a rapid way in the first stage. The rapid method used in this 
study can be interpreted as follows. The coarse angle is obtained by 
multiplying the horizontal angle gap by the index difference of the 
corresponding columns. The horizontal angle gap is calculated accord-
ing to 360/Nh. We consider each column within the CSSC descriptor as a 
discrete distribution. The index difference of the corresponding columns 
is determined using Jensen–Shannon (JS) divergence, which measures 
the similarity of two discrete distributions. Before the second stage, the 
query scan is transformed with a coarse angle. 

As shown in Fig. 6, the semi-semantic ICP is used to provide an initial 
guess for 6DOF estimation and improve the robustness of place recog-
nition in the second stage. The semi-semantic ICP can be interpreted as 
follows. The points that have high elevation and point density weights 
typically belong to immobile objects, such as buildings and trees, and 
thus, these points are retained to calculate the initial guess for 6DOF 

estimation. Because the classes of retained points are not clear sufficient, 
the proposed method is equivalent to semi-semantic ICP. The specific 
calculation steps are as follows. While generating CSSC descriptors, the 
two weights of each point can be determined. The points that have high 
elevation and point density weights are retained to be projected onto the 
x-y plane, and the ICP is used to calculate 3DOF (Δx, Δy, yaw angle), 
which can be used as an initial guess for 6DOF estimation. Also, we 
minimize the influence of rotation and translation between two scans in 
the same place on the similarity of the descriptors by transforming the 
query scan according to the 3DOF estimation, thus improving the 
robustness of place recognition. 

After semi-semantic ICP, Mq and Mc are generated. Mq refers to the 
CSSC descriptor of the transformed query scan, and Mc refers to that of 
the candidate. The similarity is estimated as follows: 

dis =
1

Nh

∑Nh

j=1

(

1 −
cq

j • cc
j

‖cq
j ‖‖cc

j ‖

)

(4)  

where dis is the similarity between two descriptors, cq
j is the jth clowns of 

Mq, and cc
j is the jth clowns of Mc. 

The range of dis is [0,1], and a smaller distance indicates that the two 
CSSC descriptors are more similar. The two-stage similarity estimation 
provides an initial guess for accurate 6DOF estimation. Also, it is 
beneficial to improve the robustness of place recognition. 

3.3.2. Nearest cluster distance ratio 
After obtaining candidates, the conventional method seeks the cor-

responding place by calculating similarity and checking whether the 
maximum similarity is larger than the threshold value, thus bringing low 
robustness. In this section, NCDR is proposed to improve place recog-
nition precision by denying wrong matches. The steps are as follows. 

Based on the Euclidean distance, candidates are divided into several 
clusters. The dis between the CSSC descriptors of all candidates and the 
query scan are calculated. In a cluster, if the different value between 
maximum and minimum dis is larger than the threshold value, the 
candidates in this cluster are inaccurate matches and will be deleted. 
These steps are repeated until all clusters are checked. We obtain the 
minimum dis of each retained cluster, and ratio is calculated as follows: 

Fig. 5. Recall curve of different features with different percentage of all scans; 
The percentage of all scans refers to the number of candidates as a percentage of 
the all scans. 

Fig. 6. Demonstration of two-stage similarity estimation. The query scan and candidate scan are inputs. The first stage provides a coarse angle between two 
viewpoints of scan by determining the index difference of corresponding columns in CSSC descriptors. The second stage provides Δx, Δy and yaw angle using semi- 
semantic ICP aligning. Then we estimate the similarity between the transformed query scan and candidate scan. 
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ratio =
dis1st

dis2st
(5)  

where dis1st is the first smallest dis, and dis2st is the second smallest dis. 
The range of ratio is [0,1], and a smaller ratio indicates that place 
recognition is more robust. In Fig. 7, positive and negative examples are 
shown. 

As shown in Fig. 7, ten candidates and their corresponding dis are 
obtained in both examples through global searching and two-stage 
similarity estimation. In the positive example, dis1st, dis2st and ratio are 
0.124, 0.321 and 0.386, respectively. In the negative example, the 
minimum distance is 0.183, and the maximum distance is 0.418 in the 
cluster. The different value in this cluster is 0.235. Therefore, this cluster 
is deleted. In the retained clusters, dis1st, dis2st and ratio are 0.342, 0.372 
and 0.919, respectively. The ratio of the positive example is far lower 
than the ratio of the negative example. 

3.4. 6DOF estimation 

In this section, we describe how to estimate the 6DOF of a query scan 
based on the place recognition. We briefly introduce the GICP algorithm 
and then propose a selective GICP that derives from the closest point 
checking method. The initial guess is provided by place recognition for 
later iteration optimization. 

We consider the estimation of the transformation T, which aligns a 
set of points Q = {q0,⋯, qN} (the point cloud of a query scan) with 

respect to another set of points C = {c0,⋯, cM} (the point cloud of the 
corresponding place). The correspondence between Q and C is given by 
the nearest neighbour search: ci = Tqi. 

The GICP algorithm is an accurate registration algorithm that adopts 
a distribution-to-distribution method. This algorithm describes points in 

a normal distribution model, qi ∼ N
(

q̂i,C
Q
i

)
and ci ∼ N

(
ĉi,CC

i
)
. CQ

i and 

CC
i are covariance matrices associated with the measured points qi and 

ci. The transformation error can be written as: 

di = ci − Tqi (6)  

di is a linear combination of qi and ci. Therefore, it can be drawn from a 
normal distribution: 

di ∼ N
(

ĉi − Tq̂i, CC
i +TCQ

i TT)

= N
(
0, CC

i +TCQ
i TT) (7) 

The optimal transformation matrix T can be determined using 
maximum likelihood estimation (MLE): 

T = argmax
T

∏

i
p(di) = argmax

T

∑

i
log(p(di) ) (8)  

which can be simplified to 

Fig. 7. Examples for interpreting NCDR. (a) shows a positive example and (b) shows the dis between query scan and all candidates. (c) shows a negative example, (d) 
shows the dis between query scan and all candidates. 
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T = argmin
T

∑

i
dT

i

(
CC

i + TCQ
i TT)− 1di (9) 

The covariance matrix of each point is typically estimated by its k 
neighbours. Following the suggestion in (Segal et al., 2010), each 
covariance matrix is regularized by replacing its eigenvalue with (1, 1, 
∊). This regularization makes the GICP work as a plane-to-plane ICP. 
There is a case where the two points are false matches, but the distri-
butions of adjacent points are the same. The closest point is not carefully 
checked, leading to terrible registration performance in this case. 

We improved GICP by adding the closest point checking process. In 
the generation of the CSSC descriptor, each point in the scan is assigned 
elevation and point density weights. According to the weights, the 
closest point will be checked. The different weights result in the nearest 
neighbour’s search again. Fig. 8 shows the correspondence models used 
in GICP and SGICP. 

As shown in Fig. 8, the neighbour point distributions of the three 
points are the same, and the covariance matrices of these points are the 
same. After a transformation, GICP finds an inaccurate point via closest 
point searching. An inaccurate transformation error is generated by 
Equation (6). The incorrect transformation error and the same covari-
ance matrices are used to optimize the transformation matrix by Equa-
tion (9), leading to poor results. Compared to GICP, SGICP executes the 
closest point checking process first based on the weights. The checking 
process is equal to a selective process of the closest point. After the se-
lective process, SGICP identifies the corresponding closest point to 
optimize the transformation matrix. The transformation matrix will 
obtain better optimization than optimization in GICP. In addition, SGICP 
has better efficiency than GICP because SGICP uses a selective process of 
the closest point to avoid unnecessary calculation of covariance 
matrices. The SGICP is listed as Algorithm. 1.  

Algorithm. 1. SGICP 

Input: Two point clouds: Q = {q0,⋯,qN}, C = {c0,⋯, cM}

Two covariances: CQ =
{

CQ
0 ,⋯,CQ

N

}
, CC =

{
CC

0 ,⋯,CC
M
}

Initial guess: T 
Output: The optimal transformation T̂ 
while T not converged do 

e = [],J = []

for i ∈ {0,⋯N} do 
while WeightJudge(qi, ci) = false do 

ci = FindCloestPointInC(Tqi)

end 

ei,Ji←Cost(dT
i

(
CC

i + TCQ
i TT

)− 1
di)

e←e ∪ ei, J←J ∪ Ji 

end 

δT← −
(
JTJ
)− 1JTe ∇ Gause Newton update 

end 
return T 
T̂ = T  

After obtaining the optimal transformation, the score of SGICP can be 
written as: 

score =
1
n
∑n

i=1
(ci − T̂qi) (10)  

which describes the transformation accuracy to some extent but does not 
linearly describe the transformation error. Based on the transformation 
and known location and pose of the candidate, the global location and 
pose of the query scan are obtained. 

3.5. Integrity of global localization 

In this section, an index that reflects the integrity of global locali-
zation is presented, avoiding inaccurate global locations under some 
unforeseen conditions. 

The proposed global localization solution includes place recognition 
and 6DOF estimation. The similarity between the CSSC descriptors of 
the two scans (dis) and the NCDR (ratio) both describe the performance 
of place recognition. The score of SGICP describes the performance of 
6DOF estimation to some extent. Therefore, dis, ratio and score are used 
to compute the integrity of global localization. The integrity index can 
be written as: 

WCS = W1(1 − dis)(1 − ratio) + W2(1 − score)

Li =

{
1(WCS ≥ Thr)

0(WCS < Thr)

(11)  

where Li is the integrity of global localization; WCS is the weighted 
combined score; Thr is the threshold value of WCS; W1 is the weight of 
place recognition; and W2 is the weight of 6DOF estimation. dis, ratio 
and score are indices of place recognition and 6DOF estimation. 

Equal weights are used to calculate the integrity. Because two indices 
are obtained after place recognition and one index is obtained after 
6DOF estimation, W1 and W2 are set equal to 0.67 and 0.33, respec-
tively. 

After obtaining a global location, dis, ratio and score are also ob-
tained. According to Equation (11), Li can be calculated to describe the 
integrity of the global localization. When Li is 1, the global location is 
reliable. In contrast, when Li is 0, the global location is not reliable. Thr 
is discussed in Section 3.6.2. 

3.6. Parameters analyses 

In this section, the parameter analyses of the CSSC descriptor and 
global localization integrity are presented. 

Fig. 8. Demonstration of GICP and SGICP. The red circles indicate a source point and the blue circles indicate target points. (a) GICP finds a wrong point via closest 
point searching; (b) SGICP identifies the corresponding closest point after the weight checking. 
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3.6.1. Parameter analysis of CSSC descriptors 
Nd, Nh and Nv are important parameters of the CSSC descriptor and 

have strong impacts on the descriptiveness of descriptors. Nd, Nh and Nv 
affect the size of bins within the CSSC descriptor. Larger Nd, Nh and Nv 
make the bin smaller, indicating that the CSSC descriptor is more 
descriptive but also more sensitive to noise. In addition, it takes more 
time to calculate the similarity between two CSSC descriptors. In 
contrast, smaller Nd, Nh and Nv with larger bins are more robust to noise 
and spend less time estimating similarity. In this study, noise refers to 
the points of small objects, such as leaves moving in the wind and the 
grass, which have a misleading effect on place recognition. 

In the most egocentric feature descriptor (Kim and Kim, 2018; Fan 
et al., 2020); Nd is typically set equal to 20. The length of each bin is set 
at 4 m. In previous work (Xu et al., 2022), a setting for the length of the 
bin was tested. The larger bins (a length of 8 m) hide many details, 
affecting the descriptiveness of the descriptor. The descriptor has com-
parable performance when the length of each bin is set at 4 m, 2 m and 1 
m. However, when the length of each bin is set at 4 m, execution time 
during similarity estimation decreases. Therefore, the 4 m-length bin is 
used in this study. 

Nh is unfixed in these global descriptors. SC (Kim and Kim, 2018) set 
Nh to 60 for noise resistance and efficiency. However, iris (Wang et al., 
2020) sets Nh to 360 and conducts LoG-Gabor filtering for high 
descriptiveness. To determine the appropriate Nh, parameter experi-
ments are performed. We examine the performance of the CSSC 
descriptor in the partial KITTI sequence 00 for different Nh; details of this 
dataset are described in Section 4.1.1. The precision-recall (PR) curve is 
used to assess the performance; evaluation criteria are described in 
Section 4.1.2. Fig. 9 shows the PR curves for various Nh. 

Fig. 9 shows that the best performance is obtained when Nh equals 
40. Too small bins are sensitive to noise, leading to poor place recog-
nition. The CSSC descriptor uses elevation and point density weights to 
describe the spatial distribution characteristics of the point cloud from 
two dimensions, enhancing the descriptiveness of the descriptor. For the 
proposed CSSC descriptor, the noise resistance with a larger bin is 
preferable, instead of high descriptiveness with smaller bins. Therefore, 
we set Nd = 20 and Nh = 40 in this study. If place recognition is required 
in a new dataset with higher resolution, the CSSC descriptor will have 
more descriptiveness with marginally larger Nd and Nh. Because the 
resolution is sufficiently high, a bin that is too large will hide many 
details. In contrast, if place recognition is required in a new dataset with 
lower resolution, marginally smaller Nd and Nh will be good choices. 

Nv is set according to the analysis of frequently used rotating multi- 
beam LiDAR sensors in localization. The vertical FOV of rotating multi- 
beam LiDAR is limited. For example, the vertical angle field values of 

Velodyne HDL-64E (64 beam LiDAR), Velodyne HDL-32E (32 beam 
LiDAR) and Velodyne VLP-16C (16 beam LiDAR) are 26.8◦, 40◦ and 30◦, 
respectively. Considering that the proposed descriptor should be general 
to the frequently used LiDAR sensors, we set Nv = 8 to ensure that there 
are at least two laser beams in each partition within the bin, thus 
resisting the effects of noise. If Nv is larger than 8, there will not be a 
sufficient number of laser beam pairs in each partition within the bin 
when using Velodyne VLP-16C. If Nv is smaller than 8, a partition that is 
too large within the bin will hide many details. 

3.6.2. Parameter analysis of the threshold value of global localization 
integrity 

The threshold value of the weighted combined score is used to 
calculate the integrity that reflects the robustness of global localization. 
In this section, the details of setting the threshold values in different 
conditions (i.e., different LiDAR sensors) and the requirements of 
localization precision are discussed. 

The threshold value of the weighted combined score can be written 
as: 

Thr = 0.67 • Thrpr + 0.33 •
(
1 − precisionreq

)
(12)  

where, Thr is the threshold value of the weighted combined score;Thrpr 
is the threshold value of place recognition; and precisionreq contains the 
requirements of localization precision. 

Thrpr is related to the type of LiDAR sensor present, dis and ratio both 
express the performance of place recognition. In Xu et al. (2022), the 
performances of place recognition with different LiDAR sensors with 
different dis are analysed. To ensure the precision of place recognition, a 
smaller dis is required when LiDAR with fewer beams is used. For 
example, when 64-beam LiDAR is used, dis is set as 0.13 to ensure place 
recognition precision. When 16-beam LiDAR is used, dis is set as 0.07 to 
ensure place recognition precision. In the experiment evaluating the 
NCDR strategy, we find that when ratio is 0.5, precision improves 
markedly. Therefore, when 64-beam LIDAR is used, Thrpr can be set 
equal to 0.435 (0.87 × 0.5). When a 0.5-m localization accuracy is 
required, precisionreq is 0.5. Thr is thus calculated to be 0.456 using 
Formula (12). Table 1 shows the integrity analysis of the global locali-
zation result. 

As shown in the Table 1, we find that the proposed integrity accu-
rately reflects the robustness of global localization under different 
conditions and precision requirements. 

4. Experiments 

In this section, the CSSC descriptor, two-stage similarity estimation 
and NCDR strategy are evaluated. The SGICP for 6DOF estimation is 
subsequently evaluated. Finally, the entire global localization solution is 
assessed using homogeneous and heterogeneous HD maps. 

4.1. Experiments setup 

In this section, the details of the datasets applied in this study’s ex-
periments are described, and evaluation criteria are introduced. All 
experiments were performed on a computer with a Ryzen 9 3900x CPU 
and 64 GB of RAM. 

Fig. 9. PR curves with different parameters in the partial KITTI 00 sequences.  

Table 1 
Percentage of correct location under different conditions and precision 
requirements.  

Dataset precisionreq(m)

0.2 0.3 0.4 0.5 

KITTI (64-beam LiDAR)  94.8%  98.4%  99.4%  98.3% 
NCLT (32-beam LiDAR)  92.2%  94.1%  94.8%  92.1%  
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4.1.1. Datasets 
The experiments were performed with three popular open-source 

datasets: the KITTI dataset (Geiger et al., 2012), NCLT dataset (Carle-
varis-Bianco et al., 2016); WHU-TLS campus dataset (Dong et al., 2020), 
and a custom dataset created for this study. These datasets have a clear 
degree of differentiation, such as the type of LiDAR used and changed or 
unchanged viewpoints at the same place. KITTI and NCLT datasets are 
collected by rotating multiple-beam LiDAR. The WHU-TLS campus 
dataset and the proposed own dataset are collected by TLS and 2D range 
finders, respectively, as shown in Fig. 10. 

In the KITTI dataset, the KITTI sequences 00, 05 and 08, containing 
4541, 2761 scans and 4071 scans, respectively, are selected. A 64-beam 
LiDAR (Velodyne HDL-64E) is used for data collection. In sequences 00 
and 05, the viewpoints were unchanged when the vehicle revisited the 
place. In sequence 08, the viewpoints were changed. 

The NCLT dataset contains repetitive measurements of different 
times along similar routes and is obtained in a challenging environment. 
This dataset can be used to evaluate global localization solutions based 
on a global prior map (Kim et al., 2019). A 32-beam LiDAR (Velodyne 
HDL-32E) is used for data collection. The NCLT-01-08, NCLT-05-26 and 
NCLT-09-28 datasets, containing 28,127 scans, 26,544 scans and 23,394 
scans, respectively, are selected for evaluation. In this dataset, the robot 
moves in both the same and opposite directions at revisited places. 

The WHU-TLS campus dataset (Dong et al., 2020) was captured at 
Wuhan University using the RIEGL VZ-400. RIEGL VZ-400 is a TLS that 
obtains a point cloud with millimetre accuracy. The custom dataset was 
captured on the first floor of a building using Navvis m3, which is a 
trolley-based MLS that consists of three 2D laser range finders and other 
sensors. 

There is inevitably motion artefacts in the point cloud that are ac-
quired by a rotating LiDAR sensor mounted above the moving platform. 
Fortunately, the frequency of LiDAR is high. In one single-shot LiDAR 
scan period, the moving platform can be thought of as moving at a 
constant speed. Therefore, the motion artefact can be corrected using 
the IMU or wheel odometry. All data used in the proposed experiments 
have been corrected. 

4.1.2. Evaluation criteria 
The performances of the proposed improved methods are evaluated 

by the PR curve, relative translation error (RTE) and relative rotation 
error (RRE). 

The PR curve is obtained by calculating the precision and recall 
under different thresholds. 

Precision =
number of correct matches

total number of matches  

Recall =
number of correct matches

total number of corresponding matches
(13)  

where the number of correct matches is the number of pairs whose 

Euclidean distance is smaller than 4 m and whose descriptor similarity is 
less than the threshold; the total number of matches is the number of pairs 
in which their descriptor similarity is less than the threshold; and the 
total number of corresponding matches is the number of pairs whose 
Euclidean distance is smaller than a threshold value. The threshold value 
is set at 4 m according to Kim and Kim (2018), Wang et al. (2019). 

The RTE and RRE are given by: 

ΔHr = Hr(HG)
− 1

=

[
ΔR ΔT

0T 1

]

RRE = arccos
(

tr(ΔR) − 1
2

)

(14)  

RTE = ‖ΔT‖

where Hr is the estimated transformation from the proposed solution; 
HG is the corresponding ground-truth transformation from the computer 
vision method; and tr(ΔR) is the trace of ΔR. 

4.2. Evaluation of place recognition based on the CSSC descriptor 

In this section, the strategies used in place recognition, including 
two-stage similarity estimation and NCDR, are evaluated. In the exper-
iments that evaluate two-stage similarity estimation, the performance of 
the CSSC descriptor is also evaluated. For each experiment, the proposed 
methods are compared against different benchmarks. 

4.2.1. Evaluation of two-stage similarity estimation 
In the experiments that evaluate the two-stage similarity estimation, 

the KITTI and NCLT datasets are used. The scans in all sequences are 
sampled at approximately equidistant 2-m intervals. To conduct a more 
complete experiment, the similarities between the selected scan and all 
the remaining scans are calculated. Three other global feature de-
scriptors (M2DP (He et al., 2016), SC (Kim and Kim, 2018) and iris 
(Wang et al., 2020) are used for evaluation. The corresponding simi-
larity estimations used in these original papers are used. We imple-
mented SC and M2DP in MATLAB, and iris in C++. The default 
parameters of the available codes are used. A comparison between the 
CSSC descriptor with the original similarity estimation and the CSSC 
descriptor with two-stage similarity estimation (CSSC-TS) is also con-
ducted. The performances of all descriptors are evaluated using a 4-m 
threshold value of Euclidean distance, and the PR curve is shown in 
Fig. 11. The area under the curve (AUC) is a quantitative value that is 
more intuitive for evaluating the descriptiveness of a descriptor, and the 
AUCs of different methods are listed in Table 2. 

Fig. 11 and Table 2 show that the SC descriptor obtains the best 
performance in KITTI sequences 00 and 05 from 64-beam LiDAR under 
unchanged viewpoint conditions. In KITTI sequence 08, the viewpoints 
are changed. In the NCLT-01-08, NCLT-05-26 and NCLT-09-28, the 

Fig. 10. (a) WHU-TLS campus dataset. (b) Custom dataset created for this study.  
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resolution of the point cloud is lower than that of the KITTI datasets, and 
the robot moves in both the same and opposite directions at revisited 
places. The CSSC descriptor achieves the best performance with these 
datasets, which indicates that the elevation and point density weights 
used in this study enhance the descriptiveness of the CSSC descriptor, 
making it more robust than the other descriptors in challenging 
environments. 

As shown in Fig. 11 and Table 2, the CSSC descriptor with two-stage 
similarity estimation achieves better performance than other descriptors 
in all datasets. Two-stage similarity estimation minimizes the influence 
of rotation and translation between two scans in the same place on the 
similarity of the descriptors, thus improving the performance of place 
recognition. This result indicates that the CSSC descriptor with two- 
stage similarity provides a robust initial location for query scans from 
LiDAR. 

To determine what will occur if different threshold values of 
Euclidean distance are used, related experiments are also conducted. 
Because the scans in all sequences are sampled at approximately equi-
distant 2-m intervals, the threshold values of Euclidean distance are set 
at 3, 4, 6, 8 and 10 m. The AUC curves of different descriptors with 
different threshold values are shown in Fig. 12. 

Fig. 12 shows that the AUC of all descriptors decreases with the in-
crease in the threshold value of Euclidean distance. The larger threshold 
value makes place recognition more difficult because the two places are 
further apart. In all datasets, the CSSC-TS has the best performance at 
different threshold values, which indicates that the proposed descriptor 

has more descriptiveness and is more robust under challenging 
conditions. 

The initial guess (Δx, Δy, yaw angle) is also provided by two-stage 
similarity estimation. Table 3 shows the error of the initial guess 
under KITTI sequences 05 and 08. 

Table 3 shows that the two-stage similarity estimation provides an 
accurate initial guess in terms of the mean value. However, there are 
unacceptable errors in the results, such as the 6.08-m error of Δx and 
89.9◦ error of the yaw angle. These inaccurate results will be filtered by 
the integrity of global localization. The initial guess helps reduce the 
error of the 6DOF estimation. Additional details can be found in Section 
4.3. 

4.2.2. Evaluation of NCDR 
In the experiments that evaluate the proposed NCDR strategy, the 

KITTI sequences 05 and 08 are used. Most scans in both sequences are 
used to construct global prior maps, and the others are used as query 
scans to test the NCDR strategy, as shown in Fig. 13. In KITTI sequence 
05, scans 1300–1600 and 2300–2650 are used as query scans, and the 
others are used to construct a global prior map. In KITTI sequence 08, 
scans 1400–1850 are used as query scans, and the others are used to 
construct a global prior map. 

Query scans include some scans obtained in places where there is no 
global prior map and some scans obtained in places that are on the 
constructed map. This process is helpful when evaluating the strategy of 
finding the corresponding place. The conventional strategy is selected 
for evaluation. In the conventional strategy, similarity estimation is 
conducted between the query scan and all candidates. If the minimum 
dis between the CSSC descriptors of the query scan and the candidate is 
smaller than the threshold value, the corresponding place can be ob-
tained. The precision curve of the conventional strategy and the pro-
posed NCDR strategy with different ratio values is shown in Fig. 14. 

Fig. 14 shows that the NCDR strategy can markedly improve the 
place recognition precision under both sequences. The precision be-
comes increasingly better with a decreasing ratio. When the ratio is<0.2, 
the place recognition precision is up to 1. When the ratio is between 0.6 
and 0.3, there is small gap in precision improvement. When the ratio is 

Fig. 11. The PR curve of different descriptors. (a) KITTI sequence 00; (b) KITTI sequence 05; (c) KITTI sequence 08; (d) NCLT-01-08; (e) NCLT-05-26; (f) NCLT- 
09-28. 

Table 2 
AUC of different descriptor in KITTI and NCLT datasets.  

Dataset iris SC M2DP CSSC CSSC-TS 

KITTI 00  0.274  0.448  0.370  0.368  0.908 
KITTI 05  0.618  0.776  0.499  0.763  0.926 
KITTI 08  0.348  0.425  0.375  0.556  0.896 
NCLT-01-08  0.164  0.142  0.269  0.420  0.671 
NCLT-05-26  0.242  0.141  0.240  0.498  0.718 
NCLT-09-28  0.133  0.113  0.195  0.325  0.536  
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0.9, the precision improves the least. However, there is still a large 
improvement in precision compared to the conventional method, which 
indicates that NCDR effectively improves the place recognition 
precision. 

4.3. Evaluation of SGICP 

In the SGICP evaluation experiment, KITTI sequences 05 and 08 were 
used. Because 6DOF estimation is executed after place recognition, the 
experiment of evaluating the proposed SGICP is conducted over query 

scans and their corresponding candidates. The query scans are the same 
as the query scans that are selected in Section 4.2.2. The corresponding 
candidates can be obtained according to the ground truth of the global 
location. The execution times required for 6DOF estimation are 4888 
and 1788 in the KITTI sequences 05 and 08, respectively. Two other 
6DOF estimation methods are selected for evaluation, including the 
original ICP used in the existing solution and the original GICP. The 
initial guess is provided by two-stage similarity estimation. In addition, 
SGICP without an initial guess (SGICP-NI) is also compared for evalua-
tion. Table 4 shows the related results. 

Table 4 shows that in terms of RTE, SGICP achieves the best per-
formance. In challenging KITTI sequence 08, SGICP yields a large 
improvement compared to GICP. In terms of RRE, there are marginal 
differences between the three methods because the initial angular guess 
provided by two-stage similarity estimation is sufficiently accurate. By 
comparing the results of SGICP and SGICP-NI, we find that the initial 
guess leads to better precision. 

In terms of time, the mean times of ICP, GICP and SGICP are 1.063 s, 
0.356 s and 0.141 s, respectively. SGICP can estimate 6DOF in a shorter 

Fig. 12. The AUC curve of different descriptors. (a) KITTI sequence 00; (b) KITTI sequence 05; (c) KITTI sequence 08; (d) NCLT-01-08; (e) NCLT-05-26; (f) NCLT- 
09-28. 

Table 3 
Error of initial guess in KITTI sequences.  

Sequences Δx (m) Δy (m) Yaw angle (◦) 

mean max mean max mean max 

05  0.24  6.08  0.18  5.35  0.57  3.02 
08  0.66  5.67  0.29  6.15  0.77  89.90  

Fig. 13. The demonstration of query scan in KITTI dataset. (a) KITTI sequence 05; (b) KITTI sequence 08.  
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time than others. The cautious nearest point searching procedure, based 
on two weights, gives SGICP higher accuracy and better efficiency. 

4.4. Evaluation of global localization solution 

In this section, the proposed global localization solution is evaluated 
using homogeneous and heterogeneous HD maps. The experiments focus 
on the accuracy evaluation with homogeneous HD maps. Using het-
erogeneous HD maps, the applicability of the proposed solution is 
assessed. The execution time of the proposed solution is discussed. The 
threshold value of the integration is set according to the parameter 
analysis in Section 3.6.2. 

4.4.1. Accuracy comparison with homogeneous HD maps 
To date, few studies have focused on using only one LiDAR scan for 

global localization. OneShot (Ratz et al., 2020) is a similar type of so-
lution that uses only a single 3D LiDAR scan for instant global locali-
zation. Unfortunately, OneShot is not an open-source project currently. 
KITTI sequence 00 was selected to evaluate the performance of OneShot 
in the paper. Therefore, the comparison with OneShot is executed in 
KITTI sequence 00. The same implemented details as those in OneShot 
are performed. The scans of seconds 340 to 397 are query scans and 
those of seconds 0 to 300 are for global prior map building. The results of 
OneShot are extracted from the original paper and are shown in Fig. 15 
with the results of the proposed solution. 

Fig. 15 shows that 75% of the proposed global localization solution 
RTEs are distributed in the range of 0 m to 0.1 m, and 6% of the proposed 
global localization solution RTEs are distributed rarely in a range larger 
than 0.2 m. Thirty-two percent of OneShot RTEs are distributed in the 
range of 0 m to 0.1 m, and 15% of OneShot RTEs are distributed in the 
range larger than 0.2 m. In KITTI sequence 00, the mean RTE of OneShot 
was computed as 0.11 m in this study. In KITTI sequence 00, the mean 
RTE of the proposed solution is 0.08 m. Compared to OneShot, the 
proposed solution achieves a mean RTE improvement of 27% on KITTI 
sequences 00, which indicates that the proposed solution has better 
performance than OneShot. 

For a comprehensive evaluation of the proposed solution, 

experiments are also performed with the challenging NCLT datasets. 
However, no study has evaluated global localization that uses one LiDAR 
scan over NCLT datasets, nor is there an open source single-shot global 
localization solution. Therefore, the combined framework of the SC 
descriptor (Kim and Kim, 2018) and faster GICP (Koide, et al., 2021) is 
selected as the benchmark based on the following reasons. The SC 
descriptor is a modern egocentric global feature descriptor that uses a 
two-phase search algorithm that efficiently finds corresponding places. 
Also, the initial guess of the yaw angle is provided by the SC descriptor. 
For 6DOF estimation, faster GICP is picked for its good accuracy and 
efficiency. NCLT-01-08 is selected to construct a global prior map, and 
the scans in NCLT-05-26 and NCLT-09-28 are selected as query scans, as 
shown in Fig. 16. 

To visualize the experimental results more intuitively, the 

Fig. 14. The curve of precision with different ratio in KITTI dataset. (a) KITTI sequence 05; (b) KITTI sequence 08.  

Table 4 
Comparison of different 6DOF estimation methods.  

Sequence RTE RRE  

ICP GICP SGICP SGICP-NI ICP GICP SGICP SGICP-NI 

5  0.17  0.04  0.04  0.08  0.78  0.82  0.79  0.81 
8  0.71  0.67  0.46  0.72  1.32  1.13  1.12  1.13  

Fig. 15. The percentage of different methods RTE distribution in KITTI 
sequence 00. 
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cumulative distribution function (CDF) figures of both solutions are 
shown in Fig. 17 and Fig. 18. Comparative results are also listed in 
Table 5. 

Fig. 17, Fig. 18 and Table 5 show that in terms of the mean, one 
standard deviation (1σ), and the distribution of RTE, the proposed so-
lution achieve better performance than the benchmark. Relative to the 
benchmark, the proposed solution achieves an average 39% improve-
ment over the mean of RTE and an average 75% improvement over the 
mean of RRE in both datasets. The proposed solution has an average 
77% improvement over 1σ of RTE and an average 93% improvement 
over 1σ of RRE in both datasets. 

The proposed global localization algorithm achieves excellent per-
formance due to improvements in place recognition and 6DOF estima-
tion methods. Compared with the SC descriptor, the CSSC descriptor 
achieves better descriptiveness in challenging environments, as shown 
in Section 4.2.1. Two-stage similarity estimation and the NCDR strategy 
improve place recognition precision. These factors allow the proposed 
solution to produce more accurate place recognition results. In the 6DOF 
estimation, the SC descriptor provides an initial guess of the yaw angle, 
while two-stage similarity estimation provides a 3D initial guess (Δx, 
Δy, yaw angle). Also, SGICP has higher accuracy than GICP. These im-
provements make the proposed solution more accurate than the 
benchmark. 

4.4.2. Applicability of the proposed solution with heterogeneous HD maps 
In this section, the applicability of the proposed solution with het-

erogeneous HD maps is evaluated. A 16-beam LiDAR (Velodyne VLP- 
16C) is used to collect query scans in the same scene as the heteroge-
neous HD maps. Using manual registration, the location of the query 
scan in the same geo-referenced frame as the HD map can be obtained. 
Unfortunately, because the pose of LiDAR cannot be measured 

accurately during data collection, we cannot obtain the real pose of 
LiDAR in the georeferenced frame. Therefore, the RTE is only evaluated 
in the following experiment. 

First, heterogeneous HD maps must be converted into virtual scans 
that are similar to real scans from VLP-16C through virtual LiDAR, as 
shown in Fig. 19. The point cloud and location of a virtual scan are 
generated in a semi-automatic way. More details can be found in (Xu 
et al., 2022). 

After obtaining the virtual scans, the global prior map is acquired by 
fusing scans, CSSC descriptors and fingerprints. The estimated global 
location of a query scan is obtained with place recognition and 6DOF 
estimation. In the WHU-TLS campus dataset, the mean RTE of the pro-
posed solution is 0.18 m. In the custom dataset, the mean RTE of the 
proposed solution is 0.07 m. Results show that the proposed global 
localization solution can obtain accurate locations using the heteroge-
neous HD map. This indicates that the proposed solution allows for the 
use of different types of LiDAR during HD map creation and localization 
separately. Combined with the results in Section 4.4.1, the proposed 
solution is found to be widely available for use with point clouds that 
acquired by different sensors, such as rotating multiple-beam LiDAR, 
TLS and MLS. 

4.4.3. Execution time of the proposed solution 
In this section, the execution time of the procedures, including offline 

HD map preprocessing and online global localization, are discussed. 
The execution time of homogeneous HD map preprocessing is equal 

to the time of feature extraction. In KITTI datasets, the mean time for 
extracting features from one scan is 4.37 ms. In NCLT datasets, the mean 
time for extracting features from one scan is 1.87 ms. In a VLP-16C 
dataset, the mean time for extracting features from one scan is 1.41 
ms. The time of the feature extraction depends on the number of points 

Fig. 16. Ground truth of NCLT datasets. (a) NCLT-01-08; (b) NCLT-05-26; (c) NCLT-09-28.  

Fig. 17. The empirical CDF of RTE in NCLT datasets. (a) NCLT-05-26; (b) NCLT-09-28.  
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in one LiDAR scan. 
The time of heterogeneous HD map preprocessing includes the time 

of data conversion and feature extraction. With the WHU-TLS campus 
dataset, 109.05 million points are contained, and 88 locations are 
generated to set virtual LiDAR. Virtual scans require 80.47 s to generate 
results. With the custom dataset, 21.83 million points are contained, and 
26 locations are generated to set virtual LiDAR. Virtual scans require 
2.29 s to generate results. Thus, we find that offline preprocessing of HD 
maps is not time-consuming. The execution time of online global 
localization is shown in Fig. 20. 

Fig. 20 shows that place recognition requires a long time in most 
cases. In a few cases, 6DOF takes more time. The mean time consumed 
for place recognition is 0.86 s, and the mean time consumed for 6DOF 
estimation is 0.6 s. The mean time consumed for global localization 
using a single shot scan is 1.46 s. In general, the proposed solution 

provides global location at an approximate frequency of 1 HZ. 
According to the evaluation of the proposed global localization so-

lution, we find that the proposed solution provides accurate global lo-
cations by fusing rotating multiple-beam LiDAR and diverse HD maps 
that include homogeneous and heterogeneous maps. Offline pre-
processing improves the applicability of the proposed solution by con-
verting homogeneous and heterogeneous HD map maps into global prior 
maps. The global prior map is used to calculate the global location of the 
query scan from rotating multiple-beam LiDAR. The wide applicability 
of the proposed solution makes some existing heterogeneous HD maps 
available for global localization, avoiding repeated collection of HD 
maps. In terms of computation time, we find that the HD map from 
diverse LiDAR sensors can be used to execute global localization after a 
moment offline preprocessing. In online global localization, the pro-
posed solution provides a global location at a frequency of 1 HZ in most 

Fig. 18. Empirical CDF of RRE in NCLT datasets. (a) NCLT-05-26; (b) NCLT-09-28.  

Table 5 
Comparison with LiDAR global localization benchmark.  

NCLT-Sequence methods RTE RRE 

mean 1σ <0.1 <0.5 mean 1σ <0.1 <0.5 

05–26 proposed  0.70  0.13 52% 94%  0.05  0.01 97% 99% 
benchmark  1.23  0.65 23% 60%  0.17  0.16 53% 93% 

09–28 proposed  1.07  0.13 51% 95%  0.03  0.01 97% 99% 
benchmark  1.65  0.50 26% 66%  0.15  0.14 59% 94%  

Fig. 19. Different LiDAR scans in the same scene. (a) A real scan from VLP-16C; (b) a virtual scan from virtual LiDAR.  
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cases. The frequency of global localization can be further improved by 
limiting the search space according to the translation provided by LiDAR 
odometry. In general, the proposed solution provides global locations in 
an accurate and efficient way and has broad applicability with respect to 
using point clouds acquired by different LiDAR sensors. 

5. Conclusion 

To date, global localization under GNSS-denied environments re-
mains a challenge in terms of accuracy and usability. This paper pro-
poses a single-shot LiDAR scan global localization solution for driverless 
vehicles and robots, which provides an instant global location by fusing 
LiDAR and HD maps and has no wake-up or kidnapped problems. This 
paper proposes a novel CSSC descriptor, two-stage similarity estimation 
and NCDR strategies to enhance the robustness of place recognition and 
the SGICP algorithm for improving the precision of location and pose. 
Also, the proposed preprocessing procedure makes the proposed solu-
tion accept HD maps acquired by different LiDAR sensors. The proposed 
CSSC descriptor is more robust than existing descriptors, as shown by 
the comparison of the PR curve of multiple scenes, particularly under 
changed viewpoints and low-resolution conditions. Experimental anal-
ysis also confirms that the proposed strategies, two-stage similarity 
estimation and NCDR, improve place recognition precision. Also, the 
SGICP algorithm improves accuracy compared to the GICP algorithm by 
31% and efficiency by 60%. Using the homogeneous KITTI dataset, the 
proposed global localization method achieves a mean RTE improvement 
of 27% relative to existing methods. Using a long-term localization 
dataset, the proposed solution achieves an average 77% improvement 
over 1σ of RTE and an average 93% improvement over 1σ of RRE 
compared to the benchmark method. Using the heterogeneous WHU- 
TLS campus dataset and a custom dataset, the proposed solution ach-
ieves 0.18 m and 0.07 m RTEs, respectively. Many experiments confirm 
that the proposed solution achieves higher accuracies and broader 
generalizability than existing solutions. 

The proposed solution provides accurate global locations by fusing 
LiDAR and HD maps. However, the proposed solution cannot meet real- 
time requirements. In the future, we plan to integrate the proposed so-
lution with other localization systems to develop real-time global 
localization solution. We also plan to research the impact of the different 
LiDAR sensors on the accuracy of global localization, further improving 
the applicability of the proposed solution. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This study was supported in part by the Natural Science Fund of 
China with Project No. 41874031 and 42111530064, the National Key 
Research Development Program of China with project No. 
2021YFB2501102, Shenzhen Science and Technology Program No. 
JCYJ20210324123611032 and Academy of Finland with Project No. 
337656. 

References 

Angelina, M., Gim, U., Lee, H., 2018. Pointnetvlad: Deep point cloud based retrieval for 
large-scale place recognition. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 4470–4479. 

Behley, J., Stachniss, C., 2018. Efficient Surfel-Based SLAM using 3D Laser Range Data in 
Urban Environments. IN: Robotics: Science and Systems, vol. 2018, p. 59. 

Biber, P., Straßer, W., Gris, W.S.I., 2003. The normal distributions transform: A new 
approach to laser scan matching. In: Proceedings 2003 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). 
vol. 3, IEEE, pp. 2743–2748. 

Boroson, E.R., Ayanian, N., 2019. 3D keypoint repeatability for heterogeneous multi- 
robot SLAM. In: Proc. - IEEE Int. Conf. Robot. Autom., vol. 2019-May, pp. 
6337–6343, https://doi.org/10.1109/ICRA.2019.8793609. 

Carlevaris-Bianco, N., Ushani, A.K., Eustice, R.M., 2016. University of Michigan North 
Campus long-term vision and lidar dataset. Int. J. Rob. Res. 35 (9), 1023–1035. 
https://doi.org/10.1177/0278364915614638. 

Chang, M.Y., Yeon, S., Ryu, S., Lee, D., 2020. SpoxelNet: Spherical voxel-based deep 
place recognition for 3D point clouds of crowded indoor spaces. In: IEEE Int. Conf. 
Intell. Robot. Syst., pp. 8564–8570. https://doi.org/10.1109/ 
IROS45743.2020.9341549. 
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Chen, R., 2021. Interest point detection from multi-beam light detection and ranging 
point cloud using unsupervised convolutional neural network. IET Image Process. 15 
(2), 369–377. 

Zhang, J., Singh, S., 2017. Low-drift and real-time lidar odometry and mapping. Auton. 
Robots 41 (2), 401–416. https://doi.org/10.1007/s10514-016-9548-2. 

Zhao, B., Le, X., Xi, J., 2019. A novel SDASS descriptor for fully encoding the information 
of a 3D local surface. Inf. Sci. (Ny) 483, 363–382. https://doi.org/10.1016/j. 
ins.2019.01.045. 

D. Xu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1109/IROS40897.2019.8967875
https://doi.org/10.1109/IROS40897.2019.8967875
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0115
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0115
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0115
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0115
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0120
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0120
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0120
https://doi.org/10.1109/SSRR.2011.6106765
https://doi.org/10.1007/bf03194506
https://doi.org/10.1109/ICRA40945.2020.9197458
https://doi.org/10.1109/IROS40897.2019.8968094
https://doi.org/10.15607/rss.2009.v.021
https://doi.org/10.1109/RCAR.2017.8311878
https://doi.org/10.1109/RCAR.2017.8311878
https://doi.org/10.1109/IROS.2018.8594299
https://doi.org/10.1109/iros.2011.6094638
https://doi/ogr/10.1109/icra40945.2020.9196708
https://doi.org/10.14358/PERS.86.2.121
https://doi.org/10.14358/PERS.86.2.121
https://doi.org/10.1109/IROS45743.2020.9341010
https://doi.org/10.1109/IROS45743.2020.9341010
https://doi.org/10.1016/j.isprsjprs.2021.10.020
https://doi.org/10.1016/j.isprsjprs.2021.10.020
https://doi.org/10.1109/TITS.2019.2905046
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0205
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0205
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0205
http://refhub.elsevier.com/S0924-2716(22)00144-7/h0205
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1016/j.ins.2019.01.045
https://doi.org/10.1016/j.ins.2019.01.045

	A LiDAR-based single-shot global localization solution using a cross-section shape context descriptor
	1 Introduction
	2 Related works
	2.1 Related works on 3D LiDAR-based place recognition
	2.2 Related works on six degrees of freedom estimation

	3 Proposed global localization solution
	3.1 Preprocessing of HD map
	3.2 Feature extraction
	3.2.1 Generation of the CSSC descriptor
	3.2.2 Generation of fingerprint

	3.3 Place recognition
	3.3.1 Two-stage similarity estimation
	3.3.2 Nearest cluster distance ratio

	3.4 6DOF estimation
	3.5 Integrity of global localization
	3.6 Parameters analyses
	3.6.1 Parameter analysis of CSSC descriptors
	3.6.2 Parameter analysis of the threshold value of global localization integrity


	4 Experiments
	4.1 Experiments setup
	4.1.1 Datasets
	4.1.2 Evaluation criteria

	4.2 Evaluation of place recognition based on the CSSC descriptor
	4.2.1 Evaluation of two-stage similarity estimation
	4.2.2 Evaluation of NCDR

	4.3 Evaluation of SGICP
	4.4 Evaluation of global localization solution
	4.4.1 Accuracy comparison with homogeneous HD maps
	4.4.2 Applicability of the proposed solution with heterogeneous HD maps
	4.4.3 Execution time of the proposed solution


	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


