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ABSTRACT

Minwise hashing (MinHash) is a standard hashing algorithm for large-scale search
and learning with the binary Jaccard similarity. One permutation hashing (OPH)
is an effective and efficient alternative of MinHash which splits the data into K
bins and generates hash values within each bin. In this paper, to protect the pri-
vacy of the output sketches, we combine differential privacy (DP) with OPH, and
propose DP-OPH framework with three variants: DP-OPH-fix, DP-OPH-re and
DP-OPH-rand, depending on the densification strategy to deal with empty bins
in OPH. Detailed algorithm design and privacy and utility analysis are provided.
The proposed DP-OPH methods significantly improves the DP minwise hashing
(DP-MH) alternative in the literature. Experiments on similarity search confirm
the effectiveness of our proposed algorithms. We also provide an extension to
real-value data, named DP-BCWS, in the appendix.

1 INTRODUCTION

Let u,v ∈ {0, 1}D be two D-dimensional binary vectors. In this paper, we focus on the
hashing algorithms for the Jaccard similarity (a.k.a. the “resemblance”) defined as J(u,v) =
∑D

i=1
1{ui=vi=1}

∑
D
i=1

1{ui+vi≥1}
. This is a widely used similarity measure in machine learning applications. u and

v can also be viewed as two sets of items represented by the locations of non-zero entries. In indus-
trial applications with massive data size, directly calculating the pairwise Jaccard similarity among
the data points becomes too expensive. To accelerate large-scale search and learning, the celebrated

“minwise hashing” (MinHash) algorithm (Broder, 1997; Broder et al., 1997) has been a standard
hashing technique for approximating the Jaccard similarity in massive binary datasets. It has seen
numerous applications such as near neighbor search, duplicate detection, malware detection, cluster-
ing, large-scale learning, social networks, and computer vision (Indyk & Motwani, 1998; Charikar,
2002; Fetterly et al., 2003; Das et al., 2007; Buehrer & Chellapilla, 2008; Bendersky & Croft, 2009;
Chierichetti et al., 2009; Pandey et al., 2009; Lee et al., 2010; Deng et al., 2012; Chum & Matas,
2012; Tamersoy et al., 2014; Shrivastava & Li, 2014; Zhu et al., 2017; Nargesian et al., 2018;
Wang et al., 2019; Lemiesz, 2021; Feng & Deng, 2021; Li & Li, 2022). The output of MinHash
is an integer. For large-scale applications, to store and use the hash values (or called sketches)
more conveniently and efficiently, Li & König (2010) proposed b-bit MinHash that only stores the
last b bits of the hashed integers, which is memory-efficient and convenient for similarity search
and machine learning. Thus, it has been a popular coding strategy for the MinHash values and its
alternatives (Li et al., 2011; 2015; Shah & Meinshausen, 2017; Yu & Weber, 2022).

1.1 ONE PERMUTATION HASHING (OPH) FOR JACCARD SIMILARITY APPROXIMATION

To use MinHash in practice, we need to generate K hash values to achieve good utility. This requires
applying K random permutations (or hash functions as approximations) per data point, yielding
an O(Kf) complexity where f is the number of non-zero elements. One permutation hashing
(OPH) (Li et al., 2012) provides a strategy to significantly reduce the complexity to O(f). The idea
of OPH is: to generate K hashes, we split the data vector into K non-overlapping bins, and conduct
MinHash within each bin. Yet, empty bins may arise which breaks the alignment of the hashes. To
deal with empty bins, densification schemes (Shrivastava, 2017; Li et al., 2019) are proposed that fill
the empty bins with some non-empty bin. It is shown that OPH with densification provides unbiased
Jaccard estimator, and the estimation variance can often be smaller than that of MinHash. OPH has
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been widely used as an improved method over MinHash for the Jaccard similarity (Dahlgaard et al.,
2017; Zhao et al., 2020; Jia et al., 2021; Tseng et al., 2021; Jiang et al., 2022).

1.2 HASHING/SKETCHING AND DIFFERENTIAL PRIVACY

MinHash and OPH both belong to the broad family of probabilistic hashing/sketching methods
designed for various purposes and tasks. Examples of more sketching methods include the ran-
dom projection (RP) based methods for cosine estimation (Charikar, 2002; Vempala, 2005), the
count-sketch (CS) for frequency estimation (Charikar et al., 2004), and the Flajolet-Martin (FM)
sketch (Flajolet & Martin, 1985) and HyperLogLog sketch (Flajolet et al., 2007) for cardinality es-
timation, etc. Since the data sketches produce “summaries” of the original data, sketching/hashing
may also cause data privacy leakage. Therefore, protecting the privacy of the data sketches has
become an important topic which has gained growing research interests in recent years.

Differential privacy (DP) (Dwork et al., 2006b) has become a popular privacy definition with rigor-
ous mathematical formulation, which has been widely applied to clustering, regression and classifi-
cation, principle component analysis, matrix completion, optimization, deep learning (Blum et al.,
2005; Chaudhuri & Monteleoni, 2008; Feldman et al., 2009; Gupta et al., 2010; Chaudhuri et al.,
2011; Kasiviswanathan et al., 2013; Zhang et al., 2012; Abadi et al., 2016; Agarwal et al., 2018;
Ge et al., 2018; Wei et al., 2020; Dong et al., 2022), etc. Prior efforts have also been con-
ducted on combining differential privacy with the aforementioned hashing algorithms, e.g., for
RP (Blocki et al., 2012; Kenthapadi et al., 2013; Stausholm, 2021), count-sketch (Zhao et al., 2022),
and FM sketch (Smith et al., 2020; Dickens et al., 2022). Some works (e.g., Blocki et al. (2012);
Smith et al. (2020); Dickens et al. (2022)) assumed “internal randomness”, i.e., the randomness of
the hash functions are kept private, and showed that many hashing methods themselves already pos-
sess strong DP property under some data conditions. However, this setting is more restrictive in
practice as it requires that the hash keys or projection matrices cannot be accessed by any adver-
sary. In another setup (e.g., Kenthapadi et al. (2013); Stausholm (2021); Zhao et al. (2022)), both
the randomness of the hash functions and the algorithm outputs are treated as public information,
and perturbation mechanisms are developed to make the algorithms differentially private.

Contributions. While prior works have proposed DP algorithms for some sketching methods men-
tioned earlier, the differential privacy of OPH and MinHash for the Jaccard similarity has not been
well studied. In this paper, we mainly focus on the differential privacy of one permutation hash-
ing (OPH), the state-of-the-art framework for hashing the Jaccard similarity. We consider the more
practical and general setup where the randomness of the algorithm is external/public.

We develop three variants under the DP-OPH framework, DP-OPH-fix, DP-OPH-re, and DP-OPH-
rand, corresponding to fixed densification, re-randomized densification, and no densification for
OPH, respectively. We provide detailed algorithm design and privacy analysis for each variant, and
compare them with a DP MinHash (DP-MH) method. In our retrieval experiments, we show that
the proposed DP-OPH method substantially improves DP-MH, and re-randomized densification is
superior over fixed densification in terms of differential privacy. DP-OPH-rand performs the best
when ǫ is small, while DP-OPH-re is the most performant in when larger ǫ is allowed. We also
extend our algorithms to real-value datasets and develop DP-BCWS algorithm in Appendix A.

2 BACKGROUND: MINHASH, b-BIT CODING, AND DIFFERENTIAL PRIVACY

Algorithm 1 Minwise hashing (MinHash)

Input: Binary vector u ∈ {0, 1}D; number of hash values K
Output: K MinHash values h1(u), ..., hK(u)

1: Generate K independent permutations π1, ..., πK : [D]→ [D] with seeds 1, ...,K respectively
2: for k = 1 to K do
3: hk(u)← mini:ui 6=0 πk(i)
4: end for

Minwise hashing (MinHash). The MinHash method is summarized in Algorithm 1. We first
generate K independent permutations π1, ..., πK : [D] 7→ [D]. Here, [D] denotes {1, ..., D}. For
each permutation, the hash value is the first non-zero location in the permuted vector, i.e., hk(u) =
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mini:vi 6=0 πk(i), ∀k = 1, ...,K. Analogously, for another data vector v ∈ {0, 1}D, we also obtain
K hash values, hk(v). The MinHash estimator of J(u,v) is the average over the hash collisions:

ĴMH(u,v) =
1

K

K
∑

k=1

1{hk(u) = hk(v)}, (1)

where 1{·} is the indicator function. By standard probability calculation, we can show that
E[ĴMH ] = J and V ar[ĴMH ] = J(1−J)

K . In practice, K does not need to be very large to achieve
good utility. For instance, usually 128 ∼ 1024 hash values would be sufficient for search and
learning problems (Indyk & Motwani, 1998; Li et al., 2011; Shrivastava & Li, 2014).

b-bit coding of the hash value. Li & König (2010) proposed “b-bit minwise hashing” as a conve-
nient coding strategy for the integer hash value h(u) generated by MinHash (or by OPH which will
be introduced later). Basically, we only keep the last b-bits of each hash value. In our analysis, for
convenience, we assume that “taking the last b-bits” can be achieved by some “rehashing” trick to
map the integer values onto {0, ..., 2b− 1} uniformly. There are at least three benefits of this coding
strategy: (i) storing only b bits saves the storage cost compared with storing the full 32 or 64 bit
integers; (ii) the last few bits are more convenient for the purpose of indexing, e.g., in approximate
nearest neighbor search (Indyk & Motwani, 1998); (iii) we can transform the last few bits into a
positional representation, allowing us to approximate the Jaccard similarity by inner product, which
is required by training large-scale linear models (Li et al., 2011). Given these advantages, in this
work, we will adopt this b-bit coding strategy in our private algorithm design.

Differential privacy (DP). We formally define differential privacy (DP) as follows.

Definition 2.1 (Differential privacy (Dwork et al., 2006b)). For a randomized algorithmM : U 7→
Range(M) and ǫ, δ ≥ 0, if for any two neighboring datasets U and U ′, the following holds

Pr[M(U) ∈ Z] ≤ eǫPr[M(U ′) ∈ Z] + δ

for ∀Z ⊂ Range(M), then algorithmM is said to satisfy (ǫ, δ)-DP. If δ = 0,M is called ǫ-DP.

Intuitively, DP requires that the distributions of the outputs before and after a small change in the
data are close, so that an adversary cannot detect the change based on the outputs. Smaller ǫ and δ
implies stronger privacy. The parameter δ is usually interpreted as the “failure probability” allowed
for the ǫ-DP guarantee to be violated.

Privacy statement and applications. We follow the standard attribute-level DP setup in aforemen-
tioned related works on DP hashing/sketching: u,u′ ∈ {0, 1}D are called neighboring if they differ
in one dimension. Treating the binary vectors as sets, with our proposed DP-OPH algorithms, an ad-
versary cannot detect from the output sketches whether any item exists in the set or not, which holds
independently for all the data vectors in the database. DP-OPH can naturally be applied as a private
variant of OPH in cases where MinHash-type methods are found to be useful. As a concrete exam-
ple application, the bioinformatics community releases sets of MinHashes for all known genomes
on a regular basis (Ondov et al., 2016; Brown & Irber, 2016), which are used for downstream ML
tasks like similarity search, classification, clustering, etc. (Berlin et al., 2015) In this type of data,
each data point corresponds to (a large set of) genes of a human, which contains the biological
information of an individual which is highly sensitive and confidential. Our methods protect the
identification of any gene from the released sketches in the DP sense.

3 HASHING FOR JACCARD SIMILARITY WITH DIFFERENTIAL PRIVACY

In this section, we present DP-OPH algorithms based on privatizing the b-bit hash values from OPH
and utility analysis, and demonstrate its advantage over a DP-MinHash alternative.

3.1 ONE PERMUTATION HASHING (OPH)

Algorithm 2 outlines the steps of OPH: we first use a permutation π (same for all data vectors) to
randomly split the feature dimensions [D] into K bins B1, ...,BK with equal length d = D/K
(assuming integer division holds). Then, for each bin Bk, we set the smallest permuted index of “1”
as the k-th OPH hash value. If Bk is empty (i.e., it does not contain any “1”), we record an “E”
representing empty bin. Li et al. (2012) showed that we can construct statistically unbiased Jaccard
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Algorithm 2 One Permutation Hashing (OPH)

Input: Binary vector u ∈ {0, 1}D; number of hash values K
Output: K OPH hash values h1(u), ..., hK(u)

1: Let d = D/K. Use a permutation π : [D] 7→ [D] with fixed seed to randomly split [D] into K
equal-size bins B1, ...,BK , with Bk = {j ∈ [D] : (k − 1)d+ 1 ≤ π(j) ≤ kd}

2: for k = 1 to K do
3: if Bin Bk is non-empty then
4: hk(u)← minj∈Bk,uj 6=0 π(j)
5: else
6: hk(u)← E
7: end if
8: end for

Algorithm 3 OPH-fix and OPH-re: OPH with fixed and re-randomized densification

Input: OPH hash values h1(u), ..., hK(u) each in [D] ∪ {E}; bins B1, ...,BK ; d = D/K
Output: K densified OPH hash values h1(u), ..., hK(u)

1: Let NonEmptyBin = {k ∈ [K] : hk(u) 6= E}
2: for k = 1 to K do
3: if hk(u) = E then
4: Uniformly randomly select k′ ∈ NonEmptyBin
5: hk(u)← hk′(u) ⊲ fixed densification
6: Or
7: MapToIndex = SortedIndex (π(Bk)) + (k′ − 1)d
8: π(k) : π(Bk′) 7→MapToIndex ⊲ within-bin partial permutation
9: hk(u)← min

j∈Bk′ ,uj 6=0
π(k) (π(j)) ⊲ re-randomized densification

10: end if
11: end for

estimators by ignoring the empty bins. However, this estimator is unstable when the data is relatively
sparse; moreover, since empty bins are different for every distinct data vector, the vanilla OPH hash
values do not form a metric space (i.e., the hash values of different data points are not aligned).

Densification for OPH. To tackle the issue caused by empty bins, a series of works has been con-
ducted to densify the OPH. The general idea is to “borrow” the data/hash from non-empty bins, with
some careful design. In Algorithm 3, we present two recent representatives of OPH densification
methods: fixed densification (Shrivastava, 2017) and re-randomized densification (Li et al., 2019),
noted as OPH-fix and OPH-re, respectively. Given an OPH hash vector from Algorithm 2 (possibly
containing “E”s), we denote the set of non-empty bins NonEmptyBin = {k ∈ [K] : hk(u) 6= E}.
The densification procedure scans over k = 1, ...,K. For each k with hk(u) = E, we do:

1. Uniformly randomly pick a bin k′ ∈ NonEmptyBin that is non-empty.

2. (a) OPH-fix: we directly copy the k′-th hash value: hk(u)← hk′(u).
(b) OPH-re: we apply an additional minwise hashing to bin Bk′ using the “partial permu-

tation” of Bk to get the hash for hk(u).

Specifically, In Algorithm 2, for re-randomized densification, SortedIndex and MapToIndex are
used to define the within bin “partial permutation” π(k) of bin Bk for re-randomizing the empty bins.

It is shown that for both variants, the Jaccard estimator of the same form as (1) is unbiased. Li et al.
(2019) showed that re-randomized densification always achieves smaller Jaccard estimation variance
than that of fixed densification, and the improvement is especially significant when the data is sparse.
Similar to b-bit MinHash, we can also keep the last b bits of the OPH hash values for convenient use.

3.2 DIFFERENTIAL PRIVATE ONE PERMUTATION HASHING (DP-OPH)

DP-OPH with densification. To privatize densified OPH, in Algorithm 4, we first take the last b
bits of the hash values. Since the output space is finite with cardinality 2b, we apply the randomized

4
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Algorithm 4 Differentially Private Densified One Permutation Hashing (DP-OPH-fix, DP-OPH-re)

Input: Densified OPH hash values h1(u), ..., hK(u); number of bits b; ǫ > 0, 0 < δ < 1
f : lower bound on the number of non-zeros in each data vector

Output: b-bit DP-OPH values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: Set N = F−1
fix(1−δ;D,K, f) (for DP-OPH-fix) or N = F−1

re (1−δ;D,K, f) (for DP-OPH-re),
and let ǫ′ = ǫ/N

3: for k = 1 to K do

4: h̃k(u) =

{

hk(u), with prob. eǫ
′

eǫ′+2b−1

i, with prob. 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: end for

response technique (Dwork & Roth, 2014; Wang et al., 2017) to flip the bits to achieve DP. After
running Algorithm 3, suppose a densified OPH hash value hk(u) = j, j ∈ 0, ..., 2b − 1. With

some ǫ′ > 0 that will be specified later, we output h̃k(u) = j with probability eǫ
′

eǫ′+2b−1
, and

h̃k(u) = i for i 6= j with probability 1
eǫ′+2b−1

. It is easy to verify that, for a neighboring data u′,

when hk(u
′) = j, for ∀i ∈ 0, ..., 2b − 1, we have P (h̃k(u)=i)

P (h̃k(u′)=i)
= 1; when hk(u

′) 6= j, we have

e−ǫ′ ≤ P (h̃k(u)=i)

P (h̃k(u′)=i)
≤ eǫ

′

. Therefore, for a single hash value, this bit flipping satisfies ǫ′-DP.

It remains to determine ǫ′. Naively, since the perturbations (flipping) of the hash values are indepen-
dent, by the composition property of DP (Dwork et al., 2006a), simply setting ǫ′ = ǫ/K for all K
MinHash values would achieve overall ǫ-DP (for the hashed vector). However, since K is usually
around hundreds, a very large ǫ value is required for this strategy to be useful. To this end, we can
trade a small δ in the DP definition for a significantly reduced ǫ. Note that, not all the K hashed bits
will change after we switch from u to its neighbor u′. Assume each data vector contains at least f
non-zeros, which is realistic since many data in practice have both high dimensionality D as well as
many non-zero elements. Intuitively, when the data is not too sparse, u and u′ tends to be similar.
Therefore, the number of different hash values from Algorithm 3, X =

∑K
k=1 1{hk(u) 6= hk(u

′)},
can be upper bounded by some N with probability 1− δ. In the proof, this allows us to set ǫ′ = ǫ/N
in the flipping probability and count δ as the failure probability in (ǫ, δ)-DP.

Next, we derive the distribution of X . Accordingly, in Algorithm 4, we set N = F−1
fix(1−δ;D, f,K)

for DP-OPH-fix, N = F−1
re (1 − δ;D, f,K) for DP-OPH-re, where Ffix(x) = P (X ≤ x) is the

cumulative mass function (CMF) of X with OPH-fix ((2) + (3)), and Fre is the CMF of X with
OPH-re ((2) + (4)), and F−1 is the inverse CMF. The proof can be found in Appendix B.

Lemma 3.1. Let u,u′ ∈ {0, 1}D be neighbors. Denote X =
∑K

k=1 1{hk(u) 6= hk(u
′)} where

the hashes are generated by Algorithm 3. Denote f = |u|, d = D/K. We have

P (X = x) =

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

Θ(x, j, z|K), for x = 0, ...,K − ⌈f/d⌉, (2)

with Θ(x, j, z|K) = P̃ (x|z, j)P
(

f̃ = z|K − j
)

P (Nemp = j), where P
(

f̃ = z|K − j
)

is given

in Lemma B.2, and P (Nemp = j) is from Lemma B.1. Moreover,

For OPH-fix: P̃ (x|z, j) = 1{x = 0}
(

1− P 6=

)

+ 1{x > 0}P 6= · gbino

(

x− 1;
1

K − j
, j

)

, (3)

For OPH-re: P̃ (x|z, j) =
(

1− P 6=

)

· gbino

(

x;
P 6=

K − j
, j

)

+ P 6= · gbino

(

x− 1;
P 6=

K − j
, j

)

, (4)

where gbino(x; p, n) is the CMF of Binomial(p, n), and P 6=(z, b) =
(

1− 1
2b

)

1
z .

The privacy guarantee of DP-OPH with densification is shown as below.

Theorem 3.2. Both DP-OPH-fix and DP-OPH-re in Algorithm 4 achieve (ǫ, δ)-DP.

5



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2025

Algorithm 5 Differentially Private One Permutation Hashing with Random Bits (DP-OPH-rand)

Input: OPH hash values h1(u), ..., hK(u) from Algorithm 2; number of bits b; ǫ > 0

Output: DP-OPH-rand hash values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: for k = 1 to K do
3: if hk(u) 6= E then

4: h̃k(u) =

{

hk(u), with prob. eǫ

eǫ+2b−1

i, with prob. 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: else
6: h̃k(u) = i with probability 1

2b
, for i = 0, ..., 2b − 1 ⊲ Assign random bits to empty bin

7: end if
8: end for

Algorithm 6 Differentially Private MinHash (DP-MH)

Input: MinHash values h1(u), ..., hK(u); number of bits b; ǫ > 0, 0 < δ < 1
f : lower bound on the number of non-zeros in each data vector

Output: DP-MH values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: Set N = F−1
bino(1− δ; 1

f ,K), and ǫ′ = ǫ/N

3: for k = 1 to K do

4: h̃k(u) =

{

hk(u), with prob. eǫ
′

eǫ′+2b−1

i, with prob. 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: end for

DP-OPH without densification. From the practical perspective, we may also choose to privatize
the OPH without densification (i.e., add DP to the output of Algorithm 2). The first step is to take
the last b bits of every non-empty hash and get K hash values from {0, ..., 2b − 1} ∪ {E}. Then, for
non-empty bins, we keep the hash value with probability eǫ

eǫ+2b−1
, and randomly flip it otherwise.

For empty bins (i.e., hk(u) = E), we simply assign a random value in {0, ..., 2b− 1} to h̃k(u). The
formal procedure of this so-called DP-OPH-rand method is summarized in Algorithm 5.

Theorem 3.3. Algorithm 5 achieves ǫ-DP.

Compared with Algorithm 4, DP-OPH-rand achieves strict DP with smaller flipping probability
(effectively, N ≡ 1 in Algorithm 4). This demonstrates the essential benefit of the binning operation
in OPH, since the change in one data coordinate will only affect one hash value (if densification
is not applied). As a result, the non-empty hash values are less perturbed in DP-OPH-rand than in
DP-OPH-fix or DP-OPH-re. But this comes with an extra cost as we have to assign random bits to
empty bins which do not provide any useful information, and this extra cost does not diminish as ǫ
increases because the number of empty bins only depends on the data itself and K.

DP-MinHash. While we have presented our main DP-OPH algorithms, we also present a DP Min-
Hash (DP-MH) method (Algorithm 6) as a baseline comparison. The mechanism of DP-MH is
similar to that of densified DP-OPH. The difference between Algorithm 6 and Algorithm 4 is in the
calculation of N . In Algorithm 6, we set N = F−1

bino(1−δ; 1
f ,K) where F−1

bino(x; p, n) is the inverse
cumulative mass function of Binomial(p, n) with n trials and success probability p.

Theorem 3.4. Algorithm 6 is (ǫ, δ)-DP.

The proof strategy is similar to Theorem 3.2 by noting that X =
∑K

k=1 1{hk(u) 6= hk(u
′)} for

neighboring u and u′ follows Binomial( 1f ,K). In a related work, Aumüller et al. (2020) also
proposed to apply randomized response to MinHash. However, the authors incorrectly used a tail
bound for the binomial distribution (see their Lemma 1) which is only valid for small deviation. In
DP, δ is often very small (e.g., 10−6), so the large deviation tail bound should be used which is
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looser than the one used therein1. That said, in their paper, the perturbation is underestimated and
their method does not satisfy DP. In our Algorithm 6, we fix it by using the exact probability mass
function to compute the tail probability, avoiding any loss due to the concentration bounds.

3.3 COMPARISON OF DP-OPH AND DP-MH

We first analyze the mean of the Jaccard estimators and derive unbiased estimators of J . To simplify
the formula, we assume that u and v have the same “privacy discount factor” N (which implies that
u and v have similar sparsity). The results can be easily extended to the general case.

Theorem 3.5. For u, v ∈ {0, 1}D, denote fu = |u|, fv = |v|, a = |u ∩ v|. Suppose u and v have
the same privacy discount factor N in Algorithm 4 or Algorithm 6. Then, J = a

fu+fv−a . Denote

p = exp(ǫ/N)
exp(ǫ/N)+2b−1

. For DP-OPH-fix, DP-OPH-re, and DP-MH, define Ĵ = 1
K

∑K
k=1 1{h̃k(u) =

h̃k(v)}. We have E[Ĵ ] = (2bp+1)2

2b(2b−1)
J + 1

2b
. Thus, an unbiased estimator is Ĵunbias =

(2b−1)(2bĴ−1)
(2bp−1)2

.

The variances of the unbiased estimators defined in Theorem 3.5 are given as below.

Theorem 3.6. Define JB = J + (1 − J) 1
2b

, J̃ = a−1
fu+fv−a−1 . Denote c1 = p2 + (1−p)2

2b−1
, and

c2 = 2p(1−p)
2b−1

+ 2b−2
(2b−1)2

(1− p)2. Define ζ(m) = E[ 1
f̃
|m] where the conditional distribution of f̃ is

given in Lemma B.2, and:

τ11 = JJ̃, τ10 = J − JJ̃, τ00 = 1− 2J + JJ̃,

τ11,f (m) =
1

m
J +

m− 1

m
JJ̃, τ10,f (m) =

m− 1

m
(J − JJ̃), τ00,f (m) = 1− (2−

1

m
)J +

m− 1

m
JJ̃,

τ11,r(m) =
ζ(m)

m
J +

m− ζ(m)

m
JJ̃, τ10,r(m) =

m− ζ(m)

m
(J − JJ̃),

τ00,r(m) = 1− (2−
ζ(m)

m
)J +

m− ζ(m)

m
JJ̃.

Further denote P11 = τ11 + 1
2b−1 τ10 + 1

22b
τ00, P10 = JB − P11, P00 = 1 − 2JB + P11,

and (P11,f , P10,f , P00,f ) and (P11,r, P10,r, P00,r) analogously by replacing (τ11, τ10, τ00) with
(τ11,f , τ10,f , τ00,f ) and (τ11,r, τ10,r, τ00,r), respectively. We have for DP-MH:

V ar[Ĵunbias,MH ] =
1

K

(

(2bp+ 1)2

(2bp− 1)2
J +

2b − 1

(2bp− 1)2

)(

(2b − 1)2

(2bp− 1)2
−

(2bp+ 1)2

(2bp− 1)2
J

)

.

For DP-OPH: Let m = K −Nemp where Nemp is distributed as Lemma B.1.

V ar[Ĵunbias,OPH ] =
22b(2b − 1)2

(2bp− 1)4

[

1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)

+
1

K2
A−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2
]

,

A = Em [m(m− 1)HN + (K −m)(K +m− 1)HE ] ,

with HN = c21P11 + 2c1c2P10 + c22P00. For DP-OPH-fix, HE = c21P11,f + 2c1c2P10,f + c22P00,f ;

for DP-OPH-re, HE = c21P11,r + 2c1c2P10,r + c22P00,r.

Comparison: Densified DP-OPH vs. DP-MH. We show that OPH is a better method than MinHash
from the privacy perspective. Firstly, we compare N , the privacy discount factor, in DP-OPH-fix,
DP-OPH-re, and DP-MH. Smaller N leads to smaller bit flipping probability which benefits the
utility. In Figure 1, we plot N vs. f , for D = 1024, K = 64, and δ = 10−6. Similar comparison
also holds for other D,K combinations. We observe that N in DP-OPH is typically smaller than
that in DP-MH. Moreover, N for DP-OPH-re is consistently smaller than that of DP-OPH-fix. This
illustrates that re-randomization in densification is an important step to achieve stronger privacy.

In Figure 2, we plot the empirical MSE of the unbiased estimators. The data is simulated with
fu = fv = f , and a = f/2 (see notations in Theorem 3.5). The empirical MSE matches the
variances in Theorem 3.6. DP-OPH-re has smaller variance than DP-OPH-fix and DP-MH.

1For X following a Binomial distribution with mean µ, Aumüller et al. (2020) used the concentration in-

equality P (X ≥ (1 + ξ)µ) ≤ exp(− ξ2µ

3
), which only holds when 0 ≤ ξ ≤ 1. For large deviations (large ξ),

the valid Binomial tail bound should be P (X ≥ (1 + ξ)µ) ≤ exp(− ξ2µ

ξ+2
).
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Figure 1: Comparison of the privacy discount factor N for densified DP-OPH and DP-MH, against
the number of non-zero elements in the data vector f . D = 1024,K = 64, δ = 10−6.
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Figure 2: MSE comparison of the unbiased Jaccard estimators (Theorem 3.5). The dash curves are
theoretical variances in Theorem 3.6. D = 1024,K = 64, δ = 10−6. b = 4.

4 EXPERIMENTS

We conduct similarity search on two datasets from genome and web where MinHash-type algorithms
are widely used: (1) the Leukemia gene expression dataset (https://sbcb.inf.ufrgs.br/cumida); (2) the
Webspam (Chang & Lin, 2011) dataset for spam detection. Both datasets are binarilized to 0/1. For
Leukemia, we first standardize the features columns (to mean 0 and std 1), and then keep entries
larger than 1 to be 1 and zero out the others. For Webspam, the entries are non-negative and we
simply set the positive elements to 1. For Leukemia, we treat each data point as the query and other
points as the database for search. For Webspam, we use the training set as the database, and the test
set as queries. For each query point, we set the ground truth (“gold-standard” ) neighbors as the top
50 data points in the database with the highest Jaccard similarities to the query.

Setup. To search with DP-OPH and DP-MH, we generate the private hash values and compute the
collision estimator between the query and each data point. Then, we retrieve the data points with the
highest estimated Jaccard similarities to the query. For densified DP-OPH (Algorithm 4) and DP-
MH (Algorithm 6), we ensure the lower bound f on the number of non-zero elements by filtering
the data points with at least f non-zeros. We use f = 1000, 500 for Leukemia and Webspam,
respectively, which cover 100% and 90% of the total data points.

Results. In Figure 3, we report the precision for Leukemia with b = 1, 2, 4 and ǫ ∈ [1, 30]. The ǫ
range is common in the literature of DP hashing, e.g., the [2.45, 33.5] reported in Zhao et al. (2022)
which studied private count-sketch. The recall comparisons are similar. The results are averaged
over all query points and over 5 runs. We observe that:

• DP-OPH-re outperforms DP-MH and DP-OPH-fix, at all ǫ levels. That is, DP-OPH-re is a
uniformly more superior method than the existing DP-MH method for private hashing.

• DP-OPH-rand achieves good accuracy with small ǫ (e.g., ǫ < 5), but stops improving with ǫ
afterwards (due to the random bits for the empty bins), justifying the trade-off discussed in
Section 3.2. When ǫ gets larger (e.g., ǫ = 5 ∼ 15), DP-OPH-re performs the best.

The results on Webspam are presented in Figure 4. Similarly, DP-OPH-re achieves better perfor-
mance than DP-MH and DP-OPH-fix for all ǫ. DP-OPH-rand performs the best with ǫ < 10. DP-
OPH-re bypasses DP-OPH-rand as ǫ grows larger.
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Figure 3: Precision@1 results on Leukemia gene expression dataset with b = 1, 2, 4. δ = 10−6.
Dotted curves are for non-private OPH-re.
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Figure 4: Precision@10 results on Webspam dataset with b = 2. δ = 10−6.

5 CONCLUSION

In this paper, we study differentially privatized one permutation hashing (DP-OPH) methods. We
develop three variants depending on the densification procedure of OPH, and provide privacy and
utility analyses of our algorithms. We show the significant advantages of our DP-OPH over the DP
MinHash alternative proposed in prior literature for hashing the Jaccard similarity at various privacy
levels. Experiments are conducted on retrieval tasks to justify the effectiveness of the proposed
DP-OPH, and provide guidance on the appropriate choice of the DP-OPH variant in different sce-
narios. In Appendix A, we also provide DP-BCWS which is based on bin-wise consistent weighted
samples (BCWS) (Li et al., 2019) for weighted Jaccard similarity (for non-negative data). Given
the efficiency and good performance, we expect DP-OPH to serve as a useful privatized alternative
in practical applications where MinHash-type methods are heavily used. In the appendix, we also
provide an extension of DP-OPH to real-value data called DP-BCWS.
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A EXTENSION: DIFFERENTIALLY PRIVATE BIN-WISE CONSISTENT

WEIGHTED SAMPLING (DP-BCWS) FOR WEIGHTED JACCARD

SIMILARITY

Algorithm 7 Consistent Weighted Sampling (CWS)

Input: Non-negative data vector u ∈ R
D
+

Output: Consistent weighted sampling hash h∗ = (i∗, t∗)

1: for every non-zero vi do
2: ri ∼ Gamma(2, 1), ci ∼ Gamma(2, 1), βi ∼ Uniform(0, 1)

3: ti ← ⌊
log ui

ri
+ βi⌋, yi ← exp(ri(ti − βi))

4: ai ← ci/(yi exp(ri))
5: end for
6: i∗ ← argmini ai, t∗ ← ti∗

In our main paper, we focused on DP hashing algorithms for the binary Jaccard similarity. Indeed,
our algorithm can also be extended to hashing the weighted Jaccard similarity: (recall the definition)

Jw(u,v) =

∑D
i=1 min{ui, vi}

∑D
i=1 max{ui, vi}

, (5)

for two non-negative data vectors u,v ∈ R+. The standard hashing algorithm for (5) is called
Consistent Weighted Sampling (CWS) as summarized in Algorithm 7 (Ioffe, 2010; Manasse et al.,
2010; Li et al., 2021). To generate one hash value, we need three length-D random vectors r ∼
Gamma(2, 1), c ∼ Gamma(2, 1) and β ∼ Uniform(0, 1). We denote Algorithm 7 as a function
CWS(u; r, c,β). Li et al. (2019) proposed bin-wise CWS (BCWS) which exploits the same idea
of binning as in OPH. The binning and densification procedure of BCWS is exactly the same as
OPH (Algorithm 2 and Algorithm 3), except that every time we apply CWS, instead of MinHash,
to the data in the bins to generate hash values. Note that in CWS, the output contains two values:
i∗ is a location index similar to the output of OPH, and t∗ is a real-value scalar. Prior studies (e.g.,
Li et al. (2021)) showed that the second element has minimal impact on the estimation accuracy in
most practical cases (i.e., only counting the collision of the first element suffices). Therefore, in our
study, we only keep the first integer element as the hash output for subsequent learning tasks.

For weighted data vectors, we follow the prior DP literature on weighted sets (e.g., Xu et al. (2013);
Smith et al. (2020); Dickens et al. (2022); Zhao et al. (2022)) and define the neighboring data vec-
tors as those who differ in one element. To privatize BCWS, there are also three possible ways
depending on the densification option. Since the DP algorithm design for densified BCWS requires
rigorous and non-trivial computations which might be an independent study, here we empirically
test the (b-bit) DP-BCWS method with random bits for empty bins. The details are provided in
Algorithm 8. In general, we first randomly split the data entries into K equal length bins, and ap-
ply CWS to the data uBk

in each non-empty bin Bk using the random numbers (rBk
, cBk

,βBk
) to

generated K hash values (possibly including empty bins). After each hash is truncated to b bits, we
uniformly randomly assign a hash value in {0, ..., 2b − 1} to every empty bin.

Using the same proof arguments as Theorem 3.3, we have the following guarantee.

Theorem A.1. Algorithm 8 satisfies ǫ-DP.

Empirical evaluation. In Figure 5, we train an l2-regularized logistic regression on the DailySports
dataset2. and report the test accuracy with various b and K values. The l2 regularization parameter
λ is tuned over a fine grid from 10−4 to 10. Similar to the results in the previous section, the
performance of DP-BCWS becomes stable as long as ǫ > 5. Note that, linear logistic regression
only gives ≈ 75% accuracy on original DailySports dataset (without DP). With DP-BCWS, the
accuracy can reach ≈ 98% with K = 1024 and ǫ = 5.

2https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
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Algorithm 8 Differential Private Bin-wise Consistent Weighted Sampling (DP-BCWS)

Input: Binary vector u ∈ {0, 1}D; number of hash values K; number of bits per hash b

Output: DP-BCWS hash values h̃1(u), ..., h̃K(u)

1: Generate length-D random vectors r ∼ Gamma(2, 1), c ∼ Gamma(2, 1), β ∼
Uniform(0, 1)

2: Let d = D/K. Use a permutation π : [D] 7→ [D] with fixed seed to randomly split [D] into K
equal-size bins B1, ...,BK , with Bk = {j ∈ [D] : (k − 1)d+ 1 ≤ π(j) ≤ kd}

3: for k = 1 to K do
4: if Bin Bk is non-empty then
5: hk(u)← CWS(uBk

; rBk
, cBk

,βBk
) ⊲ Run CWS within each non-empty bin

6: hk(u)← last b bits of hk(u)

7: h̃k(u) =

{

hk(u), with probability eǫ

eǫ+2b−1

i, with probability 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

8: else
9: hk(u)← E

10: h̃k(u) = i with probability 1
2b

, for i = 0, ..., 2b − 1 ⊲ Assign random bits to empty bin
11: end if
12: end for
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Figure 5: Test classification accuracy of DP-BCWS on DailySports dataset (Asuncion & Newman,
2007) with l2-regularized logistic regression.

In Figure 6, we train a neural network with two hidden layers of size 256 and 128 respectively on
MNIST. We use the ReLU activation function and the standard cross-entropy loss. We see that,
in a reasonable privacy regime (e.g., ǫ < 10), DP-BCWS is able to achieve ≈ 95% test accuracy
with proper K and b combinations (one can choose the values depending on practical scenarios and
needs). For example, with b = 4 and K = 128, DP-BCWS achieves ≈ 97% accuracy at ǫ = 8.
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Figure 6: Test classification accuracy of DP-BCWS on MNIST with 2-hidden layer neural network.
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B PROOFS

Lemma B.1 (Li et al. (2012)). Let f = |{i : ui = 1}|, and Iemp,k be the indicator function that the

k-th bin is empty, and Nemp =
∑K

k=1 Iemp,k. Suppose mod(D,K) = 0. We have

P (Nemp = j) =

K−j
∑

ℓ=0

(−1)ℓ
(

K

j

)(

K − j

ℓ

)(

D(1− (j + ℓ)/K)

f

)/(

D

f

)

.

Lemma B.2 (Li et al. (2019)). Conditional on the event that m bins are non-empty, let f̃ be the
number of non-zero elements in a non-empty bin. Denote d = D/K. The conditional probability

distribution of f̃ is given by

P
(

f̃ = j
∣

∣m
)

=

(

d
j

)

H(m− 1, f − j|d)

H(m, f |d)
, j = max{1, f − (m− 1)d}, ...,min{d, f −m+ 1},

where H(·) follows the recursion: for any 0 < k ≤ K and 0 ≤ n ≤ f ,

H(k, n|d) =

min{d,n−k+1}
∑

i=max{1,n−(k−1)d}

(

d

i

)

H(k − 1, n− i|d), H(1, n|d) =

(

d

n

)

.

B.1 PROOF OF LEMMA 3.1

Proof. Without loss of generality, suppose u and u′ differ in the i-th dimension, and by the symme-
try of DP, we can assume that ui = 1 and u′

i = 0. We know that i is assigned to the ⌈mod(π(i), d)⌉-
th bin. Among the K hash values, this change will affect all the bins that uses the data/hash of the
k∗ = ⌈mod(π(i), d)⌉-th bin (after permutation), both in the first scan (if it is non-empty) and in
the densification process. Let Nemp be the number of empty bins in h(u), and f̃ be the number of
non-zero elements in the k∗-th bin. We have, for x = 0, ...,K − ⌈f/d⌉,

P (X = x) =

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

P
(

f̃ = z,Nemp = j
)

=

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

P
(

f̃ = z|K − j
)

P (Nemp = j) ,

where P
(

f̃ = z|K − j
)

is given in Lemma B.2 and P (Nemp = j) can be calculated by

Lemma B.1. To compute the first conditional probability, we need to compute the number of times
the k∗-th bin is picked to generated hash values, and the hash values are different for u and u′.
Conditional on {f̃ = z,Nemp = j}, denote Ω = {k : Bk is empty}, and let Rk be the non-empty
bin used for the k-th hash value hk(u), which takes value in [K] \ Ω. We know that |Ω| = j. We
can write

X = 1{hk∗(u) 6= hk∗(u′)}+
∑

k∈Ω

1{Rk = k∗, hk(u) 6= hk(u
′)}.

Here we separate out the first term because the k∗-th hash always uses the k∗-bin. Note that the
densification bin selection is uniform, and the bin selection is independent of the permutation for
hashing. For the fixed densification, since the hash value hk∗(u) is generated and used for all hash
values that use Bk∗ , we have

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

= 1{x = 0} (1− P 6=) + 1{x > 0}P 6= · gbino

(

x− 1;
1

K − j
, j

)

,

where gbino(x; p, n) is the probability mass function of the binomial distribution with n trials and
success rate p, and P 6= = P (hk∗(u) 6= hk∗(u′)) =

(

1− 1
2b

)

1
z . Based on the same reasoning, for

re-randomized densification, we have

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

= (1− P 6=) · gbino

(

x;
P 6=

K − j
, j

)

+ P 6= · gbino

(

x− 1;
P 6=

K − j
, j

)

.

Combining all the parts together completes the proof.
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B.2 PROOF OF THEOREM 3.2

Proof. Let u and u′ be neighbors only differing in one element. Denote S = {k ∈ [K] : hk(u) 6=
hk(u

′)} and Sc = [K] \ S. As discussed before, we can verify that for k ∈ Sc, we have
P (h̃k(u)=i)

P (h̃k(u′)=i)
= 1 for any i = 0, ..., 2b − 1. For k ∈ S, e−ǫ′ ≤ P (h̃k(u)=i)

P (h̃k(u′)=i)
≤ eǫ

′

holds for any

i = 0, ..., 2b − 1. Thus, for any Z ∈ {0, ..., 2b − 1}K , the absolute privacy loss can be bounded by
∣

∣

∣

∣

∣

log
P (h̃(u) = Z)

P (h̃(u′) = Z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log
∏

k∈S

P (h̃k(u) = i)

P (h̃k(u′) = i)

∣

∣

∣

∣

∣

≤ |S|ǫ′ = |S|
ǫ

N
. (6)

By Lemma 3.1, with probability 1−δ, |S| ≤ F−1
fix(1−δ) = N for DP-OPH-fix; |S| ≤ F−1

re (1−δ) =

N for DP-OPH-re. Hence, (6) is bounded by ǫ with probability 1−δ. This proves the (ǫ, δ)-DP.

B.3 PROOF OF THEOREM 3.3

Proof. The proof is similar to the proof of Theorem 3.2. Since the original hash vector h(u) is
not densified, there only exists exactly one hash value such that hk(u) 6= hk(u) may happen for
u′ that differs in one element from u. W.l.o.g., assume ui = 1 and u′

i = 0, and i ∈ Bk. If
bin k is non-empty for both u and u′ (after permutation), then for any Z ∈ {0, ..., 2b − 1}K ,
∣

∣

∣
log P (h̃(u)=Z)

P (h̃(u′)=Z)

∣

∣

∣
≤ ǫ according to our analysis in Theorem 3.2 (the probability of hash in [K] \ {k}

cancels out). If bin k is empty for u′, since 1 ≤ eǫ

eǫ+2b−1
/ 1
2b
≤ eǫ and e−ǫ ≤ 1

2b
/ 1
eǫ+2b−1

≤ 1, we

also have
∣

∣

∣
log P (h̃(u)=Z)

P (h̃(u′)=Z)

∣

∣

∣
≤ ǫ. Therefore, the algorithm is ǫ-DP as claimed.

B.4 PROOF OF THEOREM 3.5

Proof. For the two densified DP-OPH variants, DP-OPH-fix and DP-OPH-re, and the DP MinHash
(DP-MH) methods, each full-precision (and unprivatized) hash value of h(u) and h(v) has collision
probability equal to P (h(u) = h(v)) = J(u,v). Let h(b)(u) denote the b-bit hash values. Since
we assume the last b bits are uniformly assigned, we have P (h(b)(u) = h(b)(v)) = J + (1− J) 1

2b
.

Denote p = exp(ǫ/N)
exp(ǫ/N)+2b−1

. By simple probability calculation, the privatized b-bit hash values has
collision probability

P (h̃(u) = h̃(v))

= P (h̃(u) = h̃(v)|h(b)(u) = h(b)(v))P (h(b)(u) = h(b)(v))

+ P (h̃(u) = h̃(v)|h(b)(u) 6= h(b)(v))P (h(b)(u) 6= h(b)(v))

=

[

p2 +
(1− p)2

2b − 1

](

1

2b
+

2b − 1

2b
J

)

+

[

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

](

2b − 1

2b
−

2b − 1

2b
J

)

=

[

p2 +
(1− p)2

2b − 1
−

2p(1− p)

2b − 1
−

2b − 2

(2b − 1)2
(1− p)2

]

2b − 1

2b
J

+
1

2b

[

p2 +
(1− p)2

2b − 1
+ 2p(1− p) +

2b − 2

2b − 1
(1− p)2

]

=

[

p2 +
(1− p)2 − 2(2b − 1)p(1− p)

(2b − 1)2

]

2b − 1

2b
J +

1

2b
[

p2 + 2p(1− p) + (1− p)2
]

=
(2bp+ 1)2

2b(2b − 1)
J +

1

2b
,

which implies J = (2b−1)(2bP (h̃(u)=h̃(v))−1)
(2bp−1)2

. Therefore, let Ĵ = 1
K

∑K
k=1 1{h̃k(u) = h̃k(v)}, then

an unbiased estimator of J can be formulated as

Ĵunbias =
(2b − 1)(2bĴ − 1)

(2bp− 1)2
.
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B.5 PROOF OF THEOREM 3.6

Proof. As before, define Ĵ = 1
K

∑K
k=1 1{h̃k(u) = h̃k(v)}. For all three methods, we know that

E[Ĵ ] = (2bp+1)2

2b(2b−1)
J + 1

2b
. Denote JB = P (h(b)(u) = h(b)(v)) = J + (1 − J) 1

2b
. Ĵunbias =

(2b−1)(2bĴ−1)
(2bp−1)2

.

MinHash. We have

V ar[Ĵ ] = E[Ĵ2]− E[Ĵ ]2

=
1

K2
E





K
∑

i=1

1{h̃i(u) = h̃i(v)}] +
∑

i6=j

1{h̃i(u) = h̃i(v)}1{h̃j(u) = h̃j(v)}



−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

=
1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)

+
K − 1

K
A−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

,

where A = E[1{h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)}] for i 6= j. The key is to calculate A. By
symmetry,

A

= P (h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)|h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) = h

(b)
j (v))P (h

(b)
i (u) = h

(b)
i (v), h

(b)
j (u) = h

(b)
j (v))

+ 2P (h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)|h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))P (h

(b)
i (u) = h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))

+ P (h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)|h
(b)
i (u) 6= h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))P (h

(b)
i (u) 6= h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))

:= A11 + 2A01 +A00.

By independence, we have

A11 =

(

p2 +
(1− p)2

2b − 1

)2

J2
B

A10 =

(

p2 +
(1− p)2

2b − 1

)(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)

JB(1− JB)

A00 =

(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)2

(1− JB)
2,

which leads to

A =

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

.

Thus, we have

V ar[Ĵ ] =
1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)(

2b − 1

2b
−

(2bp+ 1)2

2b(2b − 1)
J

)

and

V ar[Ĵunbias,MH ] =
22b(2b − 1)2

(2bp− 1)4
V ar[Ĵ ]

=
1

K

(

(2bp+ 1)2

(2bp− 1)2
J +

2b − 1

(2bp− 1)2

)(

(2b − 1)2

(2bp− 1)2
−

(2bp+ 1)2

(2bp− 1)2
J

)

.

DP-OPH-fix. We write Ĵ = 1
K

∑K
k=1(Ĩ

N
k + ĨEk ), where ĨNk is the indicator function of hash

collision at the k-th bin and when the bin is non-empty, and ĨNk is the indicator function of hash
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collision at the k-th bin and when the bin is empty. Similar to previous analysis,

V ar[Ĵ ] =
1

K2
E

[

(

K
∑

k=1

(ĨNk + ĨEk ))2

]

−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

=
1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)

+
1

K2
A−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

,

where

A = E[
∑

i6=j

(ĨNi + ĨEi )(ĨNj + ĨEj )]

= Em

[

E[m(m− 1)ĨNi ĨNj + 2m(K −m)ĨNi ĨEj + (K −m)(K −m− 1)ĨEi ĨEj ]|m
]

. (7)

Here the condition on “·|m” means the event that there are m simultaneously non-empty bins.
Denote Ik = 1{hk(u) = hk(v)} be the collision indicator of the original hash values, and

I
(b)
k = 1{h

(b)
k (u) = h

(b)
k (v)} be the collision indicator of the b-bit hash values. For two non-empty

bins i and j, we have

τ11 := P (hi(u) = hi(v), hj(u) = hj(v)|m) = E[IiIj |m] = JJ̃,

τ10 := P (hi(u) = hi(v), hj(u) 6= hj(v)|m) = E[Ii(1− Ij)|m] = J − JJ̃,

τ00 := P (hi(u) 6= hi(v), hj(u) 6= hj(v)|m) = E[(1− Ii)(1− Ij)|m] = 1− 2J + JJ̃,

and using total probability formula (conditional on hi and hj),

P (h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) = h

(b)
j (v)|m) = E[I

(b)
i I

(b)
j |m]

= τ11 + 2
1

2b
τ10 +

1

22b
τ00

= JJ̃ +
1

2b−1
(J − JJ̃) +

1

22b
(1− 2J + JJ̃) := P11

P (h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v)|m) = E[I

(b)
i (1− I

(b)
j )|m] = JB − P11 := P10

P (h
(b)
i (u) 6= h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v)|m) = E[(1− I

(b)
i )(1− I

(b)
j )|m] = 1− 2JB + P11 := P00.

Thus,

E[ĨNi ĨNj |m] =

(

p2 +
(1− p)2

2b − 1

)2

P11 + 2

(

p2 +
(1− p)2

2b − 1

)(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)

P10

+

(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)2

P00.

For two empty bins i and j, we have, for fixed densification,

τ11,f = P (hi(u) = hi(v), hj(u) = hj(v)|m) =
1

m
J +

m− 1

m
JJ̃,

τ10,f = P (hi(u) = hi(v), hj(u) 6= hj(v)|m) = E[Ii(1− Ij)] =
m− 1

m
(J − JJ̃),

τ00,f = P (hi(u) 6= hi(v), hj(u) 6= hj(v)|m) = E[(1− Ii)(1− Ij)] = 1− (2−
1

m
)J +

m− 1

m
JJ̃.

Similarly,

E[ĨEi ĨEj |m] =

(

p2 +
(1− p)2

2b − 1

)2

P11,f + 2

(

p2 +
(1− p)2

2b − 1

)(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)

P10,f

+

(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)2

P00,f ,

where

P11,f = τ11,f +
1

2b−1
τ10,f +

1

22b
τ00,f , P10,f = JB − P11,f , P00,f = 1− 2JB + P11,f .

It is not hard to note that E[ĨNi ĨEj |m] = E[ĨEi ĨEj |m]. Putting pieces together into (7), we get the
variance for DP-OPH-fix.

20



1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2025

DP-OPH-re. For DP-OPH-re, most calculations are the same as DP-OPH-fix. According
to Li et al. (2019), we have

τ11,r = P (hi(u) = hi(v), hj(u) = hj(v)|m) = E[IiIj ] =
ζ(m)

m
J +

m− ζ(m)

m
JJ̃,

τ10,r = P (hi(u) = hi(v), hj(u) 6= hj(v)|m) = E[Ii(1− Ij)] =
m− ζ(m)

m
(J − JJ̃),

τ00,r = P (hi(u) 6= hi(v), hj(u) 6= hj(v)|m) = E[(1− Ii)(1− Ij)]

= 1− (2−
ζ(m)

m
)J +

m− ζ(m)

m
JJ̃,

with ζ(m) = E[ 1
f̃
|m] where the conditional distribution of f̃ is given in Lemma B.2. We then get

P11,r, P10,r, P00,r correspondingly. Plugging them into the formula above completes the proof.
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