
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2025

DIFFERENTIALLY PRIVATE ONE PERMUTATION

HASHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Minwise hashing (MinHash) is a standard hashing algorithm for large-scale search
and learning with the binary Jaccard similarity. One permutation hashing (OPH)
is an effective and efficient alternative of MinHash which splits the data into K
bins and generates hash values within each bin. In this paper, to protect the pri-
vacy of the output sketches, we combine differential privacy (DP) with OPH, and
propose DP-OPH framework with three variants: DP-OPH-fix, DP-OPH-re and
DP-OPH-rand, depending on the densification strategy to deal with empty bins
in OPH. Detailed algorithm design and privacy and utility analysis are provided.
The proposed DP-OPH methods significantly improves the DP minwise hashing
(DP-MH) alternative in the literature. Experiments on similarity search confirm
the effectiveness of our proposed algorithms. We also provide an extension to
real-value data, named DP-BCWS, in the appendix.

1 INTRODUCTION

Let u,v ∈ {0, 1}D be two D-dimensional binary vectors. In this paper, we focus on the
hashing algorithms for the Jaccard similarity (a.k.a. the “resemblance”) defined as J(u,v) =
∑D

i=1
1{ui=vi=1}

∑
D
i=1

1{ui+vi≥1}
. This is a widely used similarity measure in machine learning applications. u and

v can also be viewed as two sets of items represented by the locations of non-zero entries. In indus-
trial applications with massive data size, directly calculating the pairwise Jaccard similarity among
the data points becomes too expensive. To accelerate large-scale search and learning, the celebrated

“minwise hashing” (MinHash) algorithm (Broder, 1997; Broder et al., 1997) has been a standard
hashing technique for approximating the Jaccard similarity in massive binary datasets. It has seen
numerous applications such as near neighbor search, duplicate detection, malware detection, cluster-
ing, large-scale learning, social networks, and computer vision (Indyk & Motwani, 1998; Charikar,
2002; Fetterly et al., 2003; Das et al., 2007; Buehrer & Chellapilla, 2008; Bendersky & Croft, 2009;
Chierichetti et al., 2009; Pandey et al., 2009; Lee et al., 2010; Deng et al., 2012; Chum & Matas,
2012; Tamersoy et al., 2014; Shrivastava & Li, 2014; Zhu et al., 2017; Nargesian et al., 2018;
Wang et al., 2019; Lemiesz, 2021; Feng & Deng, 2021; Li & Li, 2022). The output of MinHash
is an integer. For large-scale applications, to store and use the hash values (or called sketches)
more conveniently and efficiently, Li & König (2010) proposed b-bit MinHash that only stores the
last b bits of the hashed integers, which is memory-efficient and convenient for similarity search
and machine learning. Thus, it has been a popular coding strategy for the MinHash values and its
alternatives (Li et al., 2011; 2015; Shah & Meinshausen, 2017; Yu & Weber, 2022).

1.1 ONE PERMUTATION HASHING (OPH) FOR JACCARD SIMILARITY APPROXIMATION

To use MinHash in practice, we need to generate K hash values to achieve good utility. This requires
applying K random permutations (or hash functions as approximations) per data point, yielding
an O(Kf) complexity where f is the number of non-zero elements. One permutation hashing
(OPH) (Li et al., 2012) provides a strategy to significantly reduce the complexity to O(f). The idea
of OPH is: to generate K hashes, we split the data vector into K non-overlapping bins, and conduct
MinHash within each bin. Yet, empty bins may arise which breaks the alignment of the hashes. To
deal with empty bins, densification schemes (Shrivastava, 2017; Li et al., 2019) are proposed that fill
the empty bins with some non-empty bin. It is shown that OPH with densification provides unbiased
Jaccard estimator, and the estimation variance can often be smaller than that of MinHash. OPH has

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2025

been widely used as an improved method over MinHash for the Jaccard similarity (Dahlgaard et al.,
2017; Zhao et al., 2020; Jia et al., 2021; Tseng et al., 2021; Jiang et al., 2022).

1.2 HASHING/SKETCHING AND DIFFERENTIAL PRIVACY

MinHash and OPH both belong to the broad family of probabilistic hashing/sketching methods
designed for various purposes and tasks. Examples of more sketching methods include the ran-
dom projection (RP) based methods for cosine estimation (Charikar, 2002; Vempala, 2005), the
count-sketch (CS) for frequency estimation (Charikar et al., 2004), and the Flajolet-Martin (FM)
sketch (Flajolet & Martin, 1985) and HyperLogLog sketch (Flajolet et al., 2007) for cardinality es-
timation, etc. Since the data sketches produce “summaries” of the original data, sketching/hashing
may also cause data privacy leakage. Therefore, protecting the privacy of the data sketches has
become an important topic which has gained growing research interests in recent years.

Differential privacy (DP) (Dwork et al., 2006b) has become a popular privacy definition with rigor-
ous mathematical formulation, which has been widely applied to clustering, regression and classifi-
cation, principle component analysis, matrix completion, optimization, deep learning (Blum et al.,
2005; Chaudhuri & Monteleoni, 2008; Feldman et al., 2009; Gupta et al., 2010; Chaudhuri et al.,
2011; Kasiviswanathan et al., 2013; Zhang et al., 2012; Abadi et al., 2016; Agarwal et al., 2018;
Ge et al., 2018; Wei et al., 2020; Dong et al., 2022), etc. Prior efforts have also been con-
ducted on combining differential privacy with the aforementioned hashing algorithms, e.g., for
RP (Blocki et al., 2012; Kenthapadi et al., 2013; Stausholm, 2021), count-sketch (Zhao et al., 2022),
and FM sketch (Smith et al., 2020; Dickens et al., 2022). Some works (e.g., Blocki et al. (2012);
Smith et al. (2020); Dickens et al. (2022)) assumed “internal randomness”, i.e., the randomness of
the hash functions are kept private, and showed that many hashing methods themselves already pos-
sess strong DP property under some data conditions. However, this setting is more restrictive in
practice as it requires that the hash keys or projection matrices cannot be accessed by any adver-
sary. In another setup (e.g., Kenthapadi et al. (2013); Stausholm (2021); Zhao et al. (2022)), both
the randomness of the hash functions and the algorithm outputs are treated as public information,
and perturbation mechanisms are developed to make the algorithms differentially private.

Contributions. While prior works have proposed DP algorithms for some sketching methods men-
tioned earlier, the differential privacy of OPH and MinHash for the Jaccard similarity has not been
well studied. In this paper, we mainly focus on the differential privacy of one permutation hash-
ing (OPH), the state-of-the-art framework for hashing the Jaccard similarity. We consider the more
practical and general setup where the randomness of the algorithm is external/public.

We develop three variants under the DP-OPH framework, DP-OPH-fix, DP-OPH-re, and DP-OPH-
rand, corresponding to fixed densification, re-randomized densification, and no densification for
OPH, respectively. We provide detailed algorithm design and privacy analysis for each variant, and
compare them with a DP MinHash (DP-MH) method. In our retrieval experiments, we show that
the proposed DP-OPH method substantially improves DP-MH, and re-randomized densification is
superior over fixed densification in terms of differential privacy. DP-OPH-rand performs the best
when ǫ is small, while DP-OPH-re is the most performant in when larger ǫ is allowed. We also
extend our algorithms to real-value datasets and develop DP-BCWS algorithm in Appendix A.

2 BACKGROUND: MINHASH, b-BIT CODING, AND DIFFERENTIAL PRIVACY

Algorithm 1 Minwise hashing (MinHash)

Input: Binary vector u ∈ {0, 1}D; number of hash values K
Output: K MinHash values h1(u), ..., hK(u)

1: Generate K independent permutations π1, ..., πK : [D]→ [D] with seeds 1, ...,K respectively
2: for k = 1 to K do
3: hk(u)← mini:ui 6=0 πk(i)
4: end for

Minwise hashing (MinHash). The MinHash method is summarized in Algorithm 1. We first
generate K independent permutations π1, ..., πK : [D] 7→ [D]. Here, [D] denotes {1, ..., D}. For
each permutation, the hash value is the first non-zero location in the permuted vector, i.e., hk(u) =

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2025

mini:vi 6=0 πk(i), ∀k = 1, ...,K. Analogously, for another data vector v ∈ {0, 1}D, we also obtain
K hash values, hk(v). The MinHash estimator of J(u,v) is the average over the hash collisions:

ĴMH(u,v) =
1

K

K
∑

k=1

1{hk(u) = hk(v)}, (1)

where 1{·} is the indicator function. By standard probability calculation, we can show that
E[ĴMH] = J and V ar[ĴMH] = J(1−J)

K . In practice, K does not need to be very large to achieve
good utility. For instance, usually 128 ∼ 1024 hash values would be sufficient for search and
learning problems (Indyk & Motwani, 1998; Li et al., 2011; Shrivastava & Li, 2014).

b-bit coding of the hash value. Li & König (2010) proposed “b-bit minwise hashing” as a conve-
nient coding strategy for the integer hash value h(u) generated by MinHash (or by OPH which will
be introduced later). Basically, we only keep the last b-bits of each hash value. In our analysis, for
convenience, we assume that “taking the last b-bits” can be achieved by some “rehashing” trick to
map the integer values onto {0, ..., 2b− 1} uniformly. There are at least three benefits of this coding
strategy: (i) storing only b bits saves the storage cost compared with storing the full 32 or 64 bit
integers; (ii) the last few bits are more convenient for the purpose of indexing, e.g., in approximate
nearest neighbor search (Indyk & Motwani, 1998); (iii) we can transform the last few bits into a
positional representation, allowing us to approximate the Jaccard similarity by inner product, which
is required by training large-scale linear models (Li et al., 2011). Given these advantages, in this
work, we will adopt this b-bit coding strategy in our private algorithm design.

Differential privacy (DP). We formally define differential privacy (DP) as follows.

Definition 2.1 (Differential privacy (Dwork et al., 2006b)). For a randomized algorithmM : U 7→
Range(M) and ǫ, δ ≥ 0, if for any two neighboring datasets U and U ′, the following holds

Pr[M(U) ∈ Z] ≤ eǫPr[M(U ′) ∈ Z] + δ

for ∀Z ⊂ Range(M), then algorithmM is said to satisfy (ǫ, δ)-DP. If δ = 0,M is called ǫ-DP.

Intuitively, DP requires that the distributions of the outputs before and after a small change in the
data are close, so that an adversary cannot detect the change based on the outputs. Smaller ǫ and δ
implies stronger privacy. The parameter δ is usually interpreted as the “failure probability” allowed
for the ǫ-DP guarantee to be violated.

Privacy statement and applications. We follow the standard attribute-level DP setup in aforemen-
tioned related works on DP hashing/sketching: u,u′ ∈ {0, 1}D are called neighboring if they differ
in one dimension. Treating the binary vectors as sets, with our proposed DP-OPH algorithms, an ad-
versary cannot detect from the output sketches whether any item exists in the set or not, which holds
independently for all the data vectors in the database. DP-OPH can naturally be applied as a private
variant of OPH in cases where MinHash-type methods are found to be useful. As a concrete exam-
ple application, the bioinformatics community releases sets of MinHashes for all known genomes
on a regular basis (Ondov et al., 2016; Brown & Irber, 2016), which are used for downstream ML
tasks like similarity search, classification, clustering, etc. (Berlin et al., 2015) In this type of data,
each data point corresponds to (a large set of) genes of a human, which contains the biological
information of an individual which is highly sensitive and confidential. Our methods protect the
identification of any gene from the released sketches in the DP sense.

3 HASHING FOR JACCARD SIMILARITY WITH DIFFERENTIAL PRIVACY

In this section, we present DP-OPH algorithms based on privatizing the b-bit hash values from OPH
and utility analysis, and demonstrate its advantage over a DP-MinHash alternative.

3.1 ONE PERMUTATION HASHING (OPH)

Algorithm 2 outlines the steps of OPH: we first use a permutation π (same for all data vectors) to
randomly split the feature dimensions [D] into K bins B1, ...,BK with equal length d = D/K
(assuming integer division holds). Then, for each bin Bk, we set the smallest permuted index of “1”
as the k-th OPH hash value. If Bk is empty (i.e., it does not contain any “1”), we record an “E”
representing empty bin. Li et al. (2012) showed that we can construct statistically unbiased Jaccard

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2025

Algorithm 2 One Permutation Hashing (OPH)

Input: Binary vector u ∈ {0, 1}D; number of hash values K
Output: K OPH hash values h1(u), ..., hK(u)

1: Let d = D/K. Use a permutation π : [D] 7→ [D] with fixed seed to randomly split [D] into K
equal-size bins B1, ...,BK , with Bk = {j ∈ [D] : (k − 1)d+ 1 ≤ π(j) ≤ kd}

2: for k = 1 to K do
3: if Bin Bk is non-empty then
4: hk(u)← minj∈Bk,uj 6=0 π(j)
5: else
6: hk(u)← E
7: end if
8: end for

Algorithm 3 OPH-fix and OPH-re: OPH with fixed and re-randomized densification

Input: OPH hash values h1(u), ..., hK(u) each in [D] ∪ {E}; bins B1, ...,BK ; d = D/K
Output: K densified OPH hash values h1(u), ..., hK(u)

1: Let NonEmptyBin = {k ∈ [K] : hk(u) 6= E}
2: for k = 1 to K do
3: if hk(u) = E then
4: Uniformly randomly select k′ ∈ NonEmptyBin
5: hk(u)← hk′(u) ⊲ fixed densification
6: Or
7: MapToIndex = SortedIndex (π(Bk)) + (k′ − 1)d
8: π(k) : π(Bk′) 7→MapToIndex ⊲ within-bin partial permutation
9: hk(u)← min

j∈Bk′ ,uj 6=0
π(k) (π(j)) ⊲ re-randomized densification

10: end if
11: end for

estimators by ignoring the empty bins. However, this estimator is unstable when the data is relatively
sparse; moreover, since empty bins are different for every distinct data vector, the vanilla OPH hash
values do not form a metric space (i.e., the hash values of different data points are not aligned).

Densification for OPH. To tackle the issue caused by empty bins, a series of works has been con-
ducted to densify the OPH. The general idea is to “borrow” the data/hash from non-empty bins, with
some careful design. In Algorithm 3, we present two recent representatives of OPH densification
methods: fixed densification (Shrivastava, 2017) and re-randomized densification (Li et al., 2019),
noted as OPH-fix and OPH-re, respectively. Given an OPH hash vector from Algorithm 2 (possibly
containing “E”s), we denote the set of non-empty bins NonEmptyBin = {k ∈ [K] : hk(u) 6= E}.
The densification procedure scans over k = 1, ...,K. For each k with hk(u) = E, we do:

1. Uniformly randomly pick a bin k′ ∈ NonEmptyBin that is non-empty.

2. (a) OPH-fix: we directly copy the k′-th hash value: hk(u)← hk′(u).
(b) OPH-re: we apply an additional minwise hashing to bin Bk′ using the “partial permu-

tation” of Bk to get the hash for hk(u).

Specifically, In Algorithm 2, for re-randomized densification, SortedIndex and MapToIndex are
used to define the within bin “partial permutation” π(k) of bin Bk for re-randomizing the empty bins.

It is shown that for both variants, the Jaccard estimator of the same form as (1) is unbiased. Li et al.
(2019) showed that re-randomized densification always achieves smaller Jaccard estimation variance
than that of fixed densification, and the improvement is especially significant when the data is sparse.
Similar to b-bit MinHash, we can also keep the last b bits of the OPH hash values for convenient use.

3.2 DIFFERENTIAL PRIVATE ONE PERMUTATION HASHING (DP-OPH)

DP-OPH with densification. To privatize densified OPH, in Algorithm 4, we first take the last b
bits of the hash values. Since the output space is finite with cardinality 2b, we apply the randomized

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Under review as a conference paper at ICLR 2025

Algorithm 4 Differentially Private Densified One Permutation Hashing (DP-OPH-fix, DP-OPH-re)

Input: Densified OPH hash values h1(u), ..., hK(u); number of bits b; ǫ > 0, 0 < δ < 1
f : lower bound on the number of non-zeros in each data vector

Output: b-bit DP-OPH values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: Set N = F−1
fix(1−δ;D,K, f) (for DP-OPH-fix) or N = F−1

re (1−δ;D,K, f) (for DP-OPH-re),
and let ǫ′ = ǫ/N

3: for k = 1 to K do

4: h̃k(u) =

{

hk(u), with prob. eǫ
′

eǫ′+2b−1

i, with prob. 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: end for

response technique (Dwork & Roth, 2014; Wang et al., 2017) to flip the bits to achieve DP. After
running Algorithm 3, suppose a densified OPH hash value hk(u) = j, j ∈ 0, ..., 2b − 1. With

some ǫ′ > 0 that will be specified later, we output h̃k(u) = j with probability eǫ
′

eǫ′+2b−1
, and

h̃k(u) = i for i 6= j with probability 1
eǫ′+2b−1

. It is easy to verify that, for a neighboring data u′,

when hk(u
′) = j, for ∀i ∈ 0, ..., 2b − 1, we have P (h̃k(u)=i)

P (h̃k(u′)=i)
= 1; when hk(u

′) 6= j, we have

e−ǫ′ ≤ P (h̃k(u)=i)

P (h̃k(u′)=i)
≤ eǫ

′

. Therefore, for a single hash value, this bit flipping satisfies ǫ′-DP.

It remains to determine ǫ′. Naively, since the perturbations (flipping) of the hash values are indepen-
dent, by the composition property of DP (Dwork et al., 2006a), simply setting ǫ′ = ǫ/K for all K
MinHash values would achieve overall ǫ-DP (for the hashed vector). However, since K is usually
around hundreds, a very large ǫ value is required for this strategy to be useful. To this end, we can
trade a small δ in the DP definition for a significantly reduced ǫ. Note that, not all the K hashed bits
will change after we switch from u to its neighbor u′. Assume each data vector contains at least f
non-zeros, which is realistic since many data in practice have both high dimensionality D as well as
many non-zero elements. Intuitively, when the data is not too sparse, u and u′ tends to be similar.
Therefore, the number of different hash values from Algorithm 3, X =

∑K
k=1 1{hk(u) 6= hk(u

′)},
can be upper bounded by some N with probability 1− δ. In the proof, this allows us to set ǫ′ = ǫ/N
in the flipping probability and count δ as the failure probability in (ǫ, δ)-DP.

Next, we derive the distribution of X . Accordingly, in Algorithm 4, we set N = F−1
fix(1−δ;D, f,K)

for DP-OPH-fix, N = F−1
re (1 − δ;D, f,K) for DP-OPH-re, where Ffix(x) = P (X ≤ x) is the

cumulative mass function (CMF) of X with OPH-fix ((2) + (3)), and Fre is the CMF of X with
OPH-re ((2) + (4)), and F−1 is the inverse CMF. The proof can be found in Appendix B.

Lemma 3.1. Let u,u′ ∈ {0, 1}D be neighbors. Denote X =
∑K

k=1 1{hk(u) 6= hk(u
′)} where

the hashes are generated by Algorithm 3. Denote f = |u|, d = D/K. We have

P (X = x) =

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

Θ(x, j, z|K), for x = 0, ...,K − ⌈f/d⌉, (2)

with Θ(x, j, z|K) = P̃ (x|z, j)P
(

f̃ = z|K − j
)

P (Nemp = j), where P
(

f̃ = z|K − j
)

is given

in Lemma B.2, and P (Nemp = j) is from Lemma B.1. Moreover,

For OPH-fix: P̃ (x|z, j) = 1{x = 0}
(

1− P 6=

)

+ 1{x > 0}P 6= · gbino

(

x− 1;
1

K − j
, j

)

, (3)

For OPH-re: P̃ (x|z, j) =
(

1− P 6=

)

· gbino

(

x;
P 6=

K − j
, j

)

+ P 6= · gbino

(

x− 1;
P 6=

K − j
, j

)

, (4)

where gbino(x; p, n) is the CMF of Binomial(p, n), and P 6=(z, b) =
(

1− 1
2b

)

1
z .

The privacy guarantee of DP-OPH with densification is shown as below.

Theorem 3.2. Both DP-OPH-fix and DP-OPH-re in Algorithm 4 achieve (ǫ, δ)-DP.

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2025

Algorithm 5 Differentially Private One Permutation Hashing with Random Bits (DP-OPH-rand)

Input: OPH hash values h1(u), ..., hK(u) from Algorithm 2; number of bits b; ǫ > 0

Output: DP-OPH-rand hash values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: for k = 1 to K do
3: if hk(u) 6= E then

4: h̃k(u) =

{

hk(u), with prob. eǫ

eǫ+2b−1

i, with prob. 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: else
6: h̃k(u) = i with probability 1

2b
, for i = 0, ..., 2b − 1 ⊲ Assign random bits to empty bin

7: end if
8: end for

Algorithm 6 Differentially Private MinHash (DP-MH)

Input: MinHash values h1(u), ..., hK(u); number of bits b; ǫ > 0, 0 < δ < 1
f : lower bound on the number of non-zeros in each data vector

Output: DP-MH values h̃(u) = [h̃1(u), ..., h̃K(u)]

1: Take the last b bits of all hash values ⊲ After which hk(u) ∈ {0, ..., 2
b − 1}

2: Set N = F−1
bino(1− δ; 1

f ,K), and ǫ′ = ǫ/N

3: for k = 1 to K do

4: h̃k(u) =

{

hk(u), with prob. eǫ
′

eǫ′+2b−1

i, with prob. 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

5: end for

DP-OPH without densification. From the practical perspective, we may also choose to privatize
the OPH without densification (i.e., add DP to the output of Algorithm 2). The first step is to take
the last b bits of every non-empty hash and get K hash values from {0, ..., 2b − 1} ∪ {E}. Then, for
non-empty bins, we keep the hash value with probability eǫ

eǫ+2b−1
, and randomly flip it otherwise.

For empty bins (i.e., hk(u) = E), we simply assign a random value in {0, ..., 2b− 1} to h̃k(u). The
formal procedure of this so-called DP-OPH-rand method is summarized in Algorithm 5.

Theorem 3.3. Algorithm 5 achieves ǫ-DP.

Compared with Algorithm 4, DP-OPH-rand achieves strict DP with smaller flipping probability
(effectively, N ≡ 1 in Algorithm 4). This demonstrates the essential benefit of the binning operation
in OPH, since the change in one data coordinate will only affect one hash value (if densification
is not applied). As a result, the non-empty hash values are less perturbed in DP-OPH-rand than in
DP-OPH-fix or DP-OPH-re. But this comes with an extra cost as we have to assign random bits to
empty bins which do not provide any useful information, and this extra cost does not diminish as ǫ
increases because the number of empty bins only depends on the data itself and K.

DP-MinHash. While we have presented our main DP-OPH algorithms, we also present a DP Min-
Hash (DP-MH) method (Algorithm 6) as a baseline comparison. The mechanism of DP-MH is
similar to that of densified DP-OPH. The difference between Algorithm 6 and Algorithm 4 is in the
calculation of N . In Algorithm 6, we set N = F−1

bino(1−δ; 1
f ,K) where F−1

bino(x; p, n) is the inverse
cumulative mass function of Binomial(p, n) with n trials and success probability p.

Theorem 3.4. Algorithm 6 is (ǫ, δ)-DP.

The proof strategy is similar to Theorem 3.2 by noting that X =
∑K

k=1 1{hk(u) 6= hk(u
′)} for

neighboring u and u′ follows Binomial(1f ,K). In a related work, Aumüller et al. (2020) also
proposed to apply randomized response to MinHash. However, the authors incorrectly used a tail
bound for the binomial distribution (see their Lemma 1) which is only valid for small deviation. In
DP, δ is often very small (e.g., 10−6), so the large deviation tail bound should be used which is

6

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2025

looser than the one used therein1. That said, in their paper, the perturbation is underestimated and
their method does not satisfy DP. In our Algorithm 6, we fix it by using the exact probability mass
function to compute the tail probability, avoiding any loss due to the concentration bounds.

3.3 COMPARISON OF DP-OPH AND DP-MH

We first analyze the mean of the Jaccard estimators and derive unbiased estimators of J . To simplify
the formula, we assume that u and v have the same “privacy discount factor” N (which implies that
u and v have similar sparsity). The results can be easily extended to the general case.

Theorem 3.5. For u, v ∈ {0, 1}D, denote fu = |u|, fv = |v|, a = |u ∩ v|. Suppose u and v have
the same privacy discount factor N in Algorithm 4 or Algorithm 6. Then, J = a

fu+fv−a . Denote

p = exp(ǫ/N)
exp(ǫ/N)+2b−1

. For DP-OPH-fix, DP-OPH-re, and DP-MH, define Ĵ = 1
K

∑K
k=1 1{h̃k(u) =

h̃k(v)}. We have E[Ĵ] = (2bp+1)2

2b(2b−1)
J + 1

2b
. Thus, an unbiased estimator is Ĵunbias =

(2b−1)(2bĴ−1)
(2bp−1)2

.

The variances of the unbiased estimators defined in Theorem 3.5 are given as below.

Theorem 3.6. Define JB = J + (1 − J) 1
2b

, J̃ = a−1
fu+fv−a−1 . Denote c1 = p2 + (1−p)2

2b−1
, and

c2 = 2p(1−p)
2b−1

+ 2b−2
(2b−1)2

(1− p)2. Define ζ(m) = E[1
f̃
|m] where the conditional distribution of f̃ is

given in Lemma B.2, and:

τ11 = JJ̃, τ10 = J − JJ̃, τ00 = 1− 2J + JJ̃,

τ11,f (m) =
1

m
J +

m− 1

m
JJ̃, τ10,f (m) =

m− 1

m
(J − JJ̃), τ00,f (m) = 1− (2−

1

m
)J +

m− 1

m
JJ̃,

τ11,r(m) =
ζ(m)

m
J +

m− ζ(m)

m
JJ̃, τ10,r(m) =

m− ζ(m)

m
(J − JJ̃),

τ00,r(m) = 1− (2−
ζ(m)

m
)J +

m− ζ(m)

m
JJ̃.

Further denote P11 = τ11 + 1
2b−1 τ10 + 1

22b
τ00, P10 = JB − P11, P00 = 1 − 2JB + P11,

and (P11,f , P10,f , P00,f) and (P11,r, P10,r, P00,r) analogously by replacing (τ11, τ10, τ00) with
(τ11,f , τ10,f , τ00,f) and (τ11,r, τ10,r, τ00,r), respectively. We have for DP-MH:

V ar[Ĵunbias,MH] =
1

K

(

(2bp+ 1)2

(2bp− 1)2
J +

2b − 1

(2bp− 1)2

)(

(2b − 1)2

(2bp− 1)2
−

(2bp+ 1)2

(2bp− 1)2
J

)

.

For DP-OPH: Let m = K −Nemp where Nemp is distributed as Lemma B.1.

V ar[Ĵunbias,OPH] =
22b(2b − 1)2

(2bp− 1)4

[

1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)

+
1

K2
A−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2
]

,

A = Em [m(m− 1)HN + (K −m)(K +m− 1)HE] ,

with HN = c21P11 + 2c1c2P10 + c22P00. For DP-OPH-fix, HE = c21P11,f + 2c1c2P10,f + c22P00,f ;

for DP-OPH-re, HE = c21P11,r + 2c1c2P10,r + c22P00,r.

Comparison: Densified DP-OPH vs. DP-MH. We show that OPH is a better method than MinHash
from the privacy perspective. Firstly, we compare N , the privacy discount factor, in DP-OPH-fix,
DP-OPH-re, and DP-MH. Smaller N leads to smaller bit flipping probability which benefits the
utility. In Figure 1, we plot N vs. f , for D = 1024, K = 64, and δ = 10−6. Similar comparison
also holds for other D,K combinations. We observe that N in DP-OPH is typically smaller than
that in DP-MH. Moreover, N for DP-OPH-re is consistently smaller than that of DP-OPH-fix. This
illustrates that re-randomization in densification is an important step to achieve stronger privacy.

In Figure 2, we plot the empirical MSE of the unbiased estimators. The data is simulated with
fu = fv = f , and a = f/2 (see notations in Theorem 3.5). The empirical MSE matches the
variances in Theorem 3.6. DP-OPH-re has smaller variance than DP-OPH-fix and DP-MH.

1For X following a Binomial distribution with mean µ, Aumüller et al. (2020) used the concentration in-

equality P (X ≥ (1 + ξ)µ) ≤ exp(− ξ2µ

3
), which only holds when 0 ≤ ξ ≤ 1. For large deviations (large ξ),

the valid Binomial tail bound should be P (X ≥ (1 + ξ)µ) ≤ exp(− ξ2µ

ξ+2
).

7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Under review as a conference paper at ICLR 2025

100 200 300 400 500

f

1

2

3

4

5

6

N

b = 1

DP-OPH-fix

DP-OPH-re

DP-MH

100 200 300 400 500

f

1

2

3

4

5

6

N

b = 2

DP-OPH-fix

DP-OPH-re

DP-MH

100 200 300 400 500

f

0

2

4

6

8

N

b = 4

DP-OPH-fix

DP-OPH-re

DP-MH

Figure 1: Comparison of the privacy discount factor N for densified DP-OPH and DP-MH, against
the number of non-zero elements in the data vector f . D = 1024,K = 64, δ = 10−6.

0 10 20 30

10
-2

10
0

10
2

10
4

M
S

E

f = 100

DP-OPH-fix

DP-OPH-re

DP-MH

theory

0 10 20 30

10
-2

10
0

10
2

M
S

E

f = 300

DP-OPH-fix

DP-OPH-re

DP-MH

theory

0 10 20 30

10
-2

10
0

10
2

M
S

E

f = 500

DP-OPH-fix

DP-OPH-re

DP-MH

theory

Figure 2: MSE comparison of the unbiased Jaccard estimators (Theorem 3.5). The dash curves are
theoretical variances in Theorem 3.6. D = 1024,K = 64, δ = 10−6. b = 4.

4 EXPERIMENTS

We conduct similarity search on two datasets from genome and web where MinHash-type algorithms
are widely used: (1) the Leukemia gene expression dataset (https://sbcb.inf.ufrgs.br/cumida); (2) the
Webspam (Chang & Lin, 2011) dataset for spam detection. Both datasets are binarilized to 0/1. For
Leukemia, we first standardize the features columns (to mean 0 and std 1), and then keep entries
larger than 1 to be 1 and zero out the others. For Webspam, the entries are non-negative and we
simply set the positive elements to 1. For Leukemia, we treat each data point as the query and other
points as the database for search. For Webspam, we use the training set as the database, and the test
set as queries. For each query point, we set the ground truth (“gold-standard”) neighbors as the top
50 data points in the database with the highest Jaccard similarities to the query.

Setup. To search with DP-OPH and DP-MH, we generate the private hash values and compute the
collision estimator between the query and each data point. Then, we retrieve the data points with the
highest estimated Jaccard similarities to the query. For densified DP-OPH (Algorithm 4) and DP-
MH (Algorithm 6), we ensure the lower bound f on the number of non-zero elements by filtering
the data points with at least f non-zeros. We use f = 1000, 500 for Leukemia and Webspam,
respectively, which cover 100% and 90% of the total data points.

Results. In Figure 3, we report the precision for Leukemia with b = 1, 2, 4 and ǫ ∈ [1, 30]. The ǫ
range is common in the literature of DP hashing, e.g., the [2.45, 33.5] reported in Zhao et al. (2022)
which studied private count-sketch. The recall comparisons are similar. The results are averaged
over all query points and over 5 runs. We observe that:

• DP-OPH-re outperforms DP-MH and DP-OPH-fix, at all ǫ levels. That is, DP-OPH-re is a
uniformly more superior method than the existing DP-MH method for private hashing.

• DP-OPH-rand achieves good accuracy with small ǫ (e.g., ǫ < 5), but stops improving with ǫ
afterwards (due to the random bits for the empty bins), justifying the trade-off discussed in
Section 3.2. When ǫ gets larger (e.g., ǫ = 5 ∼ 15), DP-OPH-re performs the best.

The results on Webspam are presented in Figure 4. Similarly, DP-OPH-re achieves better perfor-
mance than DP-MH and DP-OPH-fix for all ǫ. DP-OPH-rand performs the best with ǫ < 10. DP-
OPH-re bypasses DP-OPH-rand as ǫ grows larger.

8

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2025

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

p
re

c
is

io
n

b = 1 K = 256

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

p
re

c
is

io
n b = 1 K = 512

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n b = 1 K = 1024

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

p
re

c
is

io
n b = 2 K = 256

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

b = 2 K = 512

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

b = 2 K = 1024

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

b = 4 K = 256

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

b = 4 K = 512

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

b = 4 K = 1024

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

Figure 3: Precision@1 results on Leukemia gene expression dataset with b = 1, 2, 4. δ = 10−6.
Dotted curves are for non-private OPH-re.

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n b = 2 K = 64

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

p
re

c
is

io
n

b = 2 K = 128

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

0 10 20 30
0

0.2

0.4

0.6

0.8

1

p
re

c
is

io
n

b = 2 K = 256

DP-OPH-fix

DP-OPH-re

DP-OPH-rand

DP-MH

Figure 4: Precision@10 results on Webspam dataset with b = 2. δ = 10−6.

5 CONCLUSION

In this paper, we study differentially privatized one permutation hashing (DP-OPH) methods. We
develop three variants depending on the densification procedure of OPH, and provide privacy and
utility analyses of our algorithms. We show the significant advantages of our DP-OPH over the DP
MinHash alternative proposed in prior literature for hashing the Jaccard similarity at various privacy
levels. Experiments are conducted on retrieval tasks to justify the effectiveness of the proposed
DP-OPH, and provide guidance on the appropriate choice of the DP-OPH variant in different sce-
narios. In Appendix A, we also provide DP-BCWS which is based on bin-wise consistent weighted
samples (BCWS) (Li et al., 2019) for weighted Jaccard similarity (for non-negative data). Given
the efficiency and good performance, we expect DP-OPH to serve as a useful privatized alternative
in practical applications where MinHash-type methods are heavily used. In the appendix, we also
provide an extension of DP-OPH to real-value data called DP-BCWS.

9

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2025

REFERENCES

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 308–318, Vienna, Austria,
2016.

Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Brendan McMahan.
cpSGD: Communication-efficient and differentially-private distributed SGD. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pp. 7575–7586, Montréal, Canada, 2018.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL
http://www.ics.uci.edu/\simmlearn/{MLR}epository.html.

Martin Aumüller, Anders Bourgeat, and Jana Schmurr. Differentially private sketches for jaccard
similarity estimation. CoRR, abs/2008.08134, 2020.

Michael Bendersky and W. Bruce Croft. Finding text reuse on the web. In Proceedings of the
Second International Conference on Web Search and Web Data Mining (WSDM), pp. 262–271,
Barcelona, Spain, 2009.

Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin, and Adam M
Phillippy. Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nature biotechnology, 33(6):623–630, 2015.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In Proceedings of the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 410–419, New Brunswick, NJ, 2012.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the SuLQ
framework. In Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pp. 128–138, Baltimore, MD, 2005.

Andrei Z Broder. On the resemblance and containment of documents. In Proceedings of the Com-
pression and Complexity of Sequences (SEQUENCES), pp. 21–29, Salerno, Italy, 1997.

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering
of the web. Comput. Networks, 29(8-13):1157–1166, 1997.

C. Titus Brown and Luiz Irber. sourmash: a library for minhash sketching of DNA. J. Open Source
Softw., 1(5):27, 2016.

Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to web graph com-
pression with communities. In Proceedings of the International Conference on Web Search and
Web Data Mining (WSDM), pp. 95–106, Stanford, CA, 2008.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci., 312(1):3–15, 2004.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
Thiry-Fourth Annual ACM Symposium on Theory of Computing (STOC), pp. 380–388, Montreal,
Canada, 2002.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Advances in
Neural Information Processing Systems (NIPS), pp. 289–296, Vancouver, Canada, 2008.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical
risk minimization. J. Mach. Learn. Res., 12:1069–1109, 2011.

10

http://www.ics.uci.edu/$\sim $mlearn/{MLR}epository.html

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2025

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and
Prabhakar Raghavan. On compressing social networks. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pp. 219–228, Paris,
France, 2009.

Ondrej Chum and Jiri Matas. Fast computation of min-hash signatures for image collections. In
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3077–3084, Providence, RI, 2012.

Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. Practical hash functions for
similarity estimation and dimensionality reduction. In Advances in Neural Information Processing
Systems (NIPS), pp. 6615–6625, Long Beach, CA, USA, 2017.

Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyamsundar Rajaram. Google news personal-
ization: scalable online collaborative filtering. In Proceedings of the 16th International Confer-
ence on World Wide Web (WWW), pp. 271–280, Banff, Alberta, Canada, 2007.

Fan Deng, Stefan Siersdorfer, and Sergej Zerr. Efficient jaccard-based diversity analysis of large
document collections. In Proceedings of the 21st ACM International Conference on Information
and Knowledge Management (CIKM), pp. 1402–1411, Maui, HI, 2012.

Charlie Dickens, Justin Thaler, and Daniel Ting. Order-invariant cardinality estimators are differen-
tially private. In Advances in Neural Information Processing Systems (NeurIPS), New Orleans,
LA, 2022.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):3–37, 2022.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture
Notes in Computer Science, pp. 486–503. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the Third Theory of Cryptography Conference (TCC),
pp. 265–284, New York, NY, 2006b.

Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. Private coresets. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 361–370, Bethesda, MD,
2009.

Weiqi Feng and Dong Deng. Allign: Aligning all-pair near-duplicate passages in long texts. In
Proceedings of the International Conference on Management of Data (SIGMOD), pp. 541–553,
Virtual Event, China, 2021.

Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener. A large-scale study of the
evolution of web pages. In Proceedings of the Twelfth International World Wide Web Conference
(WWW), pp. 669–678, Budapest, Hungary, 2003.

Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications.
J. Comput. Syst. Sci., 31(2):182–209, 1985.

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. In Discrete Mathematics and Theoretical
Computer Science, pp. 137–156, 2007.

Jason Ge, Zhaoran Wang, Mengdi Wang, and Han Liu. Minimax-optimal privacy-preserving sparse
PCA in distributed systems. In Proceedings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS), pp. 1589–1598, Playa Blanca, Lanzarote, Canary Islands, Spain,
2018.

11

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2025

Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially
private combinatorial optimization. In Proceedings of the Twenty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 1106–1125, Austin, TX, 2010.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of
Computing (STOC), pp. 604–613, Dallas, TX, 1998.

Sergey Ioffe. Improved consistent sampling, weighted minhash and L1 sketching. In Proceedings of
the 10th IEEE International Conference on Data Mining (ICDM), pp. 246–255, Sydney, Australia,
2010.

Peng Jia, Pinghui Wang, Junzhou Zhao, Shuo Zhang, Yiyan Qi, Min Hu, Chao Deng, and Xiaohong
Guan. Bidirectionally densifying LSH sketches with empty bins. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD), pp. 830–842, Virtual Event, China, 2021.

Nan Jiang, Chen Luo, Vihan Lakshman, Yesh Dattatreya, and Yexiang Xue. Massive text normal-
ization via an efficient randomized algorithm. In WWW ’22: The ACM Web Conference 2022,
Virtual Event, Lyon, France, April 25 - 29, 2022, pp. 2946–2956. ACM, 2022.

Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Analyz-
ing graphs with node differential privacy. In Proceedings of the 10th Theory of Cryptography
Conference, TCC, volume 7785, pp. 457–476, Tokyo, Japan, 2013.

Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. Privacy via the
johnson-lindenstrauss transform. J. Priv. Confidentiality, 5(1), 2013.

David C. Lee, Qifa Ke, and Michael Isard. Partition min-hash for partial duplicate image discovery.
In Proceedings of the 11th European Conference on Computer Vision (ECCV), Part I, pp. 648–
662, Heraklion, Crete, Greece, 2010.

Jakub Lemiesz. On the algebra of data sketches. Proc. VLDB Endow., 14(9):1655–1667, 2021.

Jin Li, Sudipta Sengupta, Ran Kalach, Ronakkumar N Desai, Paul Adrian Oltean, and James Robert
Benton. Using index partitioning and reconciliation for data deduplication, August 18 2015. US
Patent 9,110,936.

Ping Li and Arnd Christian König. b-bit minwise hashing. In Proceedings of the 19th International
Conference on World Wide Web (WWW), pp. 671–680, Raleigh, NC, 2010.

Ping Li, Anshumali Shrivastava, Joshua L. Moore, and Arnd Christian König. Hashing algorithms
for large-scale learning. In Advances in Neural Information Processing Systems (NIPS), pp. 2672–
2680, Granada, Spain, 2011.

Ping Li, Art B Owen, and Cun-Hui Zhang. One permutation hashing. In Advances in Neural
Information Processing Systems (NIPS), pp. 3122–3130, Lake Tahoe, NV, 2012.

Ping Li, Xiaoyun Li, and Cun-Hui Zhang. Re-randomized densification for one permutation hash-
ing and bin-wise consistent weighted sampling. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 15900–15910, Vancouver, Canada, 2019.

Ping Li, Xiaoyun Li, Gennady Samorodnitsky, and Weijie Zhao. Consistent sampling through ex-
tremal process. In Proceedings of the Web Conference (WWW), pp. 1317–1327, Virtual Event /
Ljubljana, Slovenia, April 19-23, 2021, 2021.

Xiaoyun Li and Ping Li. C-MinHash: Improving minwise hashing with circulant permutation. In
Proceedings of the International Conference on Machine Learning (ICML), pp. 12857–12887,
Baltimore, MD, 2022.

Mark Manasse, Frank McSherry, and Kunal Talwar. Consistent weighted sampling. Technical
Report MSR-TR-2010-73, Microsoft Research, 2010.

Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table union search on open data.
Proc. VLDB Endow., 11(7):813–825, 2018.

12

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2025

Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey
Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation using
minhash. Genome biology, 17(1):1–14, 2016.

Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja Josifovski, Ravi Kumar, and Sergei Vas-
silvitskii. Nearest-neighbor caching for content-match applications. In Proceedings of the 18th
International Conference on World Wide Web (WWW), pp. 441–450, Madrid, Spain, 2009.

Rajen Dinesh Shah and Nicolai Meinshausen. On b-bit min-wise hashing for large-scale regression
and classification with sparse data. J. Mach. Learn. Res., 18:178:1–178:42, 2017.

Anshumali Shrivastava. Optimal densification for fast and accurate minwise hashing. In Proceed-
ings of the 34th International Conference on Machine Learning (ICML), pp. 3154–3163, Sydney,
Australia, 2017.

Anshumali Shrivastava and Ping Li. In defense of minhash over simhash. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 886–
894, Reykjavik, Iceland, 2014.

Adam D. Smith, Shuang Song, and Abhradeep Thakurta. The flajolet-martin sketch itself preserves
differential privacy: Private counting with minimal space. In Advances in Neural Information
Processing Systems, virtual, 2020.

Nina Mesing Stausholm. Improved differentially private euclidean distance approximation. In Pro-
ceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems (PODS), pp. 42–56, Virtual Event, China, 2021.

Acar Tamersoy, Kevin A. Roundy, and Duen Horng Chau. Guilt by association: large scale malware
detection by mining file-relation graphs. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 1524–1533, New York, NY,
2014.

Tom Tseng, Laxman Dhulipala, and Julian Shun. Parallel index-based structural graph clustering
and its approximation. In Proceedings of the International Conference on Management of Data
(SIGMOD), pp. 1851–1864, Virtual Event, China, 2021.

Santosh S Vempala. The random projection method, volume 65. American Mathematical Soc.,
2005.

Pinghui Wang, Yiyan Qi, Yuanming Zhang, Qiaozhu Zhai, Chenxu Wang, John C. S. Lui, and Xiao-
hong Guan. A memory-efficient sketch method for estimating high similarities in streaming sets.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), pp. 25–33, Anchorage, AK, 2019.

Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private proto-
cols for frequency estimation. In Proceedings of the 26th USENIX Security Symposium, USENIX
Security (USENIX), pp. 729–745, Vancouver, Canada, 2017.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi Jin, Tony Q. S.
Quek, and H. Vincent Poor. Federated learning with differential privacy: Algorithms and perfor-
mance analysis. IEEE Trans. Inf. Forensics Secur., 15:3454–3469, 2020.

Jia Xu, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, Ge Yu, and Marianne Winslett. Differentially
private histogram publication. VLDB J., 22(6):797–822, 2013.

Yun William Yu and Griffin M. Weber. Hyperminhash: Minhash in loglog space. IEEE Trans.
Knowl. Data Eng., 34(1):328–339, 2022.

Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional mechanism:
Regression analysis under differential privacy. Proc. VLDB Endow., 5(11):1364–1375, 2012.

Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and Yu-Xiang Wang.
Differentially private linear sketches: Efficient implementations and applications. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

13

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2025

Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun, and Ping Li.
Distributed hierarchical GPU parameter server for massive scale deep learning ads systems. In
Proceedings of Machine Learning and Systems 2020 (MLSys), Austin, TX, 2020.

Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. Interactive navigation of open
data linkages. Proc. VLDB Endow., 10(12):1837–1840, 2017.

14

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2025

A EXTENSION: DIFFERENTIALLY PRIVATE BIN-WISE CONSISTENT

WEIGHTED SAMPLING (DP-BCWS) FOR WEIGHTED JACCARD

SIMILARITY

Algorithm 7 Consistent Weighted Sampling (CWS)

Input: Non-negative data vector u ∈ R
D
+

Output: Consistent weighted sampling hash h∗ = (i∗, t∗)

1: for every non-zero vi do
2: ri ∼ Gamma(2, 1), ci ∼ Gamma(2, 1), βi ∼ Uniform(0, 1)

3: ti ← ⌊
log ui

ri
+ βi⌋, yi ← exp(ri(ti − βi))

4: ai ← ci/(yi exp(ri))
5: end for
6: i∗ ← argmini ai, t∗ ← ti∗

In our main paper, we focused on DP hashing algorithms for the binary Jaccard similarity. Indeed,
our algorithm can also be extended to hashing the weighted Jaccard similarity: (recall the definition)

Jw(u,v) =

∑D
i=1 min{ui, vi}

∑D
i=1 max{ui, vi}

, (5)

for two non-negative data vectors u,v ∈ R+. The standard hashing algorithm for (5) is called
Consistent Weighted Sampling (CWS) as summarized in Algorithm 7 (Ioffe, 2010; Manasse et al.,
2010; Li et al., 2021). To generate one hash value, we need three length-D random vectors r ∼
Gamma(2, 1), c ∼ Gamma(2, 1) and β ∼ Uniform(0, 1). We denote Algorithm 7 as a function
CWS(u; r, c,β). Li et al. (2019) proposed bin-wise CWS (BCWS) which exploits the same idea
of binning as in OPH. The binning and densification procedure of BCWS is exactly the same as
OPH (Algorithm 2 and Algorithm 3), except that every time we apply CWS, instead of MinHash,
to the data in the bins to generate hash values. Note that in CWS, the output contains two values:
i∗ is a location index similar to the output of OPH, and t∗ is a real-value scalar. Prior studies (e.g.,
Li et al. (2021)) showed that the second element has minimal impact on the estimation accuracy in
most practical cases (i.e., only counting the collision of the first element suffices). Therefore, in our
study, we only keep the first integer element as the hash output for subsequent learning tasks.

For weighted data vectors, we follow the prior DP literature on weighted sets (e.g., Xu et al. (2013);
Smith et al. (2020); Dickens et al. (2022); Zhao et al. (2022)) and define the neighboring data vec-
tors as those who differ in one element. To privatize BCWS, there are also three possible ways
depending on the densification option. Since the DP algorithm design for densified BCWS requires
rigorous and non-trivial computations which might be an independent study, here we empirically
test the (b-bit) DP-BCWS method with random bits for empty bins. The details are provided in
Algorithm 8. In general, we first randomly split the data entries into K equal length bins, and ap-
ply CWS to the data uBk

in each non-empty bin Bk using the random numbers (rBk
, cBk

,βBk
) to

generated K hash values (possibly including empty bins). After each hash is truncated to b bits, we
uniformly randomly assign a hash value in {0, ..., 2b − 1} to every empty bin.

Using the same proof arguments as Theorem 3.3, we have the following guarantee.

Theorem A.1. Algorithm 8 satisfies ǫ-DP.

Empirical evaluation. In Figure 5, we train an l2-regularized logistic regression on the DailySports
dataset2. and report the test accuracy with various b and K values. The l2 regularization parameter
λ is tuned over a fine grid from 10−4 to 10. Similar to the results in the previous section, the
performance of DP-BCWS becomes stable as long as ǫ > 5. Note that, linear logistic regression
only gives ≈ 75% accuracy on original DailySports dataset (without DP). With DP-BCWS, the
accuracy can reach ≈ 98% with K = 1024 and ǫ = 5.

2https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities

15

https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2025

Algorithm 8 Differential Private Bin-wise Consistent Weighted Sampling (DP-BCWS)

Input: Binary vector u ∈ {0, 1}D; number of hash values K; number of bits per hash b

Output: DP-BCWS hash values h̃1(u), ..., h̃K(u)

1: Generate length-D random vectors r ∼ Gamma(2, 1), c ∼ Gamma(2, 1), β ∼
Uniform(0, 1)

2: Let d = D/K. Use a permutation π : [D] 7→ [D] with fixed seed to randomly split [D] into K
equal-size bins B1, ...,BK , with Bk = {j ∈ [D] : (k − 1)d+ 1 ≤ π(j) ≤ kd}

3: for k = 1 to K do
4: if Bin Bk is non-empty then
5: hk(u)← CWS(uBk

; rBk
, cBk

,βBk
) ⊲ Run CWS within each non-empty bin

6: hk(u)← last b bits of hk(u)

7: h̃k(u) =

{

hk(u), with probability eǫ

eǫ+2b−1

i, with probability 1
eǫ′+2b−1

, for i ∈ {0, ..., 2b − 1}, i 6= hk(u)

8: else
9: hk(u)← E

10: h̃k(u) = i with probability 1
2b

, for i = 0, ..., 2b − 1 ⊲ Assign random bits to empty bin
11: end if
12: end for

2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

te
s
t
a
c
c
u
ra

c
y

b = 1

K = 128

K = 256

K = 512

K = 1024

2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

te
s
t
a
c
c
u
ra

c
y

b = 2

K = 128

K = 256

K = 512

K = 1024

2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

te
s
t
a
c
c
u
ra

c
y

b = 4
K = 128

K = 256

K = 512

K = 1024

Figure 5: Test classification accuracy of DP-BCWS on DailySports dataset (Asuncion & Newman,
2007) with l2-regularized logistic regression.

In Figure 6, we train a neural network with two hidden layers of size 256 and 128 respectively on
MNIST. We use the ReLU activation function and the standard cross-entropy loss. We see that,
in a reasonable privacy regime (e.g., ǫ < 10), DP-BCWS is able to achieve ≈ 95% test accuracy
with proper K and b combinations (one can choose the values depending on practical scenarios and
needs). For example, with b = 4 and K = 128, DP-BCWS achieves ≈ 97% accuracy at ǫ = 8.

2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

te
s
t
a
c
c
u
ra

c
y

b = 1

K = 32

K = 64

K = 128

K = 256

2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

te
s
t
a
c
c
u
ra

c
y

b = 2

K = 32

K = 64

K = 128

K = 256

2 4 6 8 10 12
0.6

0.7

0.8

0.9

1

te
s
t
a
c
c
u
ra

c
y

b = 4
K = 32

K = 64

K = 128

K = 256

Figure 6: Test classification accuracy of DP-BCWS on MNIST with 2-hidden layer neural network.

16

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2025

B PROOFS

Lemma B.1 (Li et al. (2012)). Let f = |{i : ui = 1}|, and Iemp,k be the indicator function that the

k-th bin is empty, and Nemp =
∑K

k=1 Iemp,k. Suppose mod(D,K) = 0. We have

P (Nemp = j) =

K−j
∑

ℓ=0

(−1)ℓ
(

K

j

)(

K − j

ℓ

)(

D(1− (j + ℓ)/K)

f

)/(

D

f

)

.

Lemma B.2 (Li et al. (2019)). Conditional on the event that m bins are non-empty, let f̃ be the
number of non-zero elements in a non-empty bin. Denote d = D/K. The conditional probability

distribution of f̃ is given by

P
(

f̃ = j
∣

∣m
)

=

(

d
j

)

H(m− 1, f − j|d)

H(m, f |d)
, j = max{1, f − (m− 1)d}, ...,min{d, f −m+ 1},

where H(·) follows the recursion: for any 0 < k ≤ K and 0 ≤ n ≤ f ,

H(k, n|d) =

min{d,n−k+1}
∑

i=max{1,n−(k−1)d}

(

d

i

)

H(k − 1, n− i|d), H(1, n|d) =

(

d

n

)

.

B.1 PROOF OF LEMMA 3.1

Proof. Without loss of generality, suppose u and u′ differ in the i-th dimension, and by the symme-
try of DP, we can assume that ui = 1 and u′

i = 0. We know that i is assigned to the ⌈mod(π(i), d)⌉-
th bin. Among the K hash values, this change will affect all the bins that uses the data/hash of the
k∗ = ⌈mod(π(i), d)⌉-th bin (after permutation), both in the first scan (if it is non-empty) and in
the densification process. Let Nemp be the number of empty bins in h(u), and f̃ be the number of
non-zero elements in the k∗-th bin. We have, for x = 0, ...,K − ⌈f/d⌉,

P (X = x) =

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

P
(

f̃ = z,Nemp = j
)

=

K−⌈f/d⌉
∑

j=max(0,K−f)

min(f,d)
∑

z=1

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

P
(

f̃ = z|K − j
)

P (Nemp = j) ,

where P
(

f̃ = z|K − j
)

is given in Lemma B.2 and P (Nemp = j) can be calculated by

Lemma B.1. To compute the first conditional probability, we need to compute the number of times
the k∗-th bin is picked to generated hash values, and the hash values are different for u and u′.
Conditional on {f̃ = z,Nemp = j}, denote Ω = {k : Bk is empty}, and let Rk be the non-empty
bin used for the k-th hash value hk(u), which takes value in [K] \ Ω. We know that |Ω| = j. We
can write

X = 1{hk∗(u) 6= hk∗(u′)}+
∑

k∈Ω

1{Rk = k∗, hk(u) 6= hk(u
′)}.

Here we separate out the first term because the k∗-th hash always uses the k∗-bin. Note that the
densification bin selection is uniform, and the bin selection is independent of the permutation for
hashing. For the fixed densification, since the hash value hk∗(u) is generated and used for all hash
values that use Bk∗ , we have

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

= 1{x = 0} (1− P 6=) + 1{x > 0}P 6= · gbino

(

x− 1;
1

K − j
, j

)

,

where gbino(x; p, n) is the probability mass function of the binomial distribution with n trials and
success rate p, and P 6= = P (hk∗(u) 6= hk∗(u′)) =

(

1− 1
2b

)

1
z . Based on the same reasoning, for

re-randomized densification, we have

P
(

X = x
∣

∣

∣
f̃ = z,Nemp = j

)

= (1− P 6=) · gbino

(

x;
P 6=

K − j
, j

)

+ P 6= · gbino

(

x− 1;
P 6=

K − j
, j

)

.

Combining all the parts together completes the proof.

17

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2025

B.2 PROOF OF THEOREM 3.2

Proof. Let u and u′ be neighbors only differing in one element. Denote S = {k ∈ [K] : hk(u) 6=
hk(u

′)} and Sc = [K] \ S. As discussed before, we can verify that for k ∈ Sc, we have
P (h̃k(u)=i)

P (h̃k(u′)=i)
= 1 for any i = 0, ..., 2b − 1. For k ∈ S, e−ǫ′ ≤ P (h̃k(u)=i)

P (h̃k(u′)=i)
≤ eǫ

′

holds for any

i = 0, ..., 2b − 1. Thus, for any Z ∈ {0, ..., 2b − 1}K , the absolute privacy loss can be bounded by
∣

∣

∣

∣

∣

log
P (h̃(u) = Z)

P (h̃(u′) = Z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log
∏

k∈S

P (h̃k(u) = i)

P (h̃k(u′) = i)

∣

∣

∣

∣

∣

≤ |S|ǫ′ = |S|
ǫ

N
. (6)

By Lemma 3.1, with probability 1−δ, |S| ≤ F−1
fix(1−δ) = N for DP-OPH-fix; |S| ≤ F−1

re (1−δ) =

N for DP-OPH-re. Hence, (6) is bounded by ǫ with probability 1−δ. This proves the (ǫ, δ)-DP.

B.3 PROOF OF THEOREM 3.3

Proof. The proof is similar to the proof of Theorem 3.2. Since the original hash vector h(u) is
not densified, there only exists exactly one hash value such that hk(u) 6= hk(u) may happen for
u′ that differs in one element from u. W.l.o.g., assume ui = 1 and u′

i = 0, and i ∈ Bk. If
bin k is non-empty for both u and u′ (after permutation), then for any Z ∈ {0, ..., 2b − 1}K ,
∣

∣

∣
log P (h̃(u)=Z)

P (h̃(u′)=Z)

∣

∣

∣
≤ ǫ according to our analysis in Theorem 3.2 (the probability of hash in [K] \ {k}

cancels out). If bin k is empty for u′, since 1 ≤ eǫ

eǫ+2b−1
/ 1
2b
≤ eǫ and e−ǫ ≤ 1

2b
/ 1
eǫ+2b−1

≤ 1, we

also have
∣

∣

∣
log P (h̃(u)=Z)

P (h̃(u′)=Z)

∣

∣

∣
≤ ǫ. Therefore, the algorithm is ǫ-DP as claimed.

B.4 PROOF OF THEOREM 3.5

Proof. For the two densified DP-OPH variants, DP-OPH-fix and DP-OPH-re, and the DP MinHash
(DP-MH) methods, each full-precision (and unprivatized) hash value of h(u) and h(v) has collision
probability equal to P (h(u) = h(v)) = J(u,v). Let h(b)(u) denote the b-bit hash values. Since
we assume the last b bits are uniformly assigned, we have P (h(b)(u) = h(b)(v)) = J + (1− J) 1

2b
.

Denote p = exp(ǫ/N)
exp(ǫ/N)+2b−1

. By simple probability calculation, the privatized b-bit hash values has
collision probability

P (h̃(u) = h̃(v))

= P (h̃(u) = h̃(v)|h(b)(u) = h(b)(v))P (h(b)(u) = h(b)(v))

+ P (h̃(u) = h̃(v)|h(b)(u) 6= h(b)(v))P (h(b)(u) 6= h(b)(v))

=

[

p2 +
(1− p)2

2b − 1

](

1

2b
+

2b − 1

2b
J

)

+

[

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

](

2b − 1

2b
−

2b − 1

2b
J

)

=

[

p2 +
(1− p)2

2b − 1
−

2p(1− p)

2b − 1
−

2b − 2

(2b − 1)2
(1− p)2

]

2b − 1

2b
J

+
1

2b

[

p2 +
(1− p)2

2b − 1
+ 2p(1− p) +

2b − 2

2b − 1
(1− p)2

]

=

[

p2 +
(1− p)2 − 2(2b − 1)p(1− p)

(2b − 1)2

]

2b − 1

2b
J +

1

2b
[

p2 + 2p(1− p) + (1− p)2
]

=
(2bp+ 1)2

2b(2b − 1)
J +

1

2b
,

which implies J = (2b−1)(2bP (h̃(u)=h̃(v))−1)
(2bp−1)2

. Therefore, let Ĵ = 1
K

∑K
k=1 1{h̃k(u) = h̃k(v)}, then

an unbiased estimator of J can be formulated as

Ĵunbias =
(2b − 1)(2bĴ − 1)

(2bp− 1)2
.

18

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2025

B.5 PROOF OF THEOREM 3.6

Proof. As before, define Ĵ = 1
K

∑K
k=1 1{h̃k(u) = h̃k(v)}. For all three methods, we know that

E[Ĵ] = (2bp+1)2

2b(2b−1)
J + 1

2b
. Denote JB = P (h(b)(u) = h(b)(v)) = J + (1 − J) 1

2b
. Ĵunbias =

(2b−1)(2bĴ−1)
(2bp−1)2

.

MinHash. We have

V ar[Ĵ] = E[Ĵ2]− E[Ĵ]2

=
1

K2
E

K
∑

i=1

1{h̃i(u) = h̃i(v)}] +
∑

i6=j

1{h̃i(u) = h̃i(v)}1{h̃j(u) = h̃j(v)}

−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

=
1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)

+
K − 1

K
A−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

,

where A = E[1{h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)}] for i 6= j. The key is to calculate A. By
symmetry,

A

= P (h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)|h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) = h

(b)
j (v))P (h

(b)
i (u) = h

(b)
i (v), h

(b)
j (u) = h

(b)
j (v))

+ 2P (h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)|h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))P (h

(b)
i (u) = h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))

+ P (h̃i(u) = h̃i(v), h̃j(u) = h̃j(v)|h
(b)
i (u) 6= h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))P (h

(b)
i (u) 6= h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v))

:= A11 + 2A01 +A00.

By independence, we have

A11 =

(

p2 +
(1− p)2

2b − 1

)2

J2
B

A10 =

(

p2 +
(1− p)2

2b − 1

)(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)

JB(1− JB)

A00 =

(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)2

(1− JB)
2,

which leads to

A =

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

.

Thus, we have

V ar[Ĵ] =
1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)(

2b − 1

2b
−

(2bp+ 1)2

2b(2b − 1)
J

)

and

V ar[Ĵunbias,MH] =
22b(2b − 1)2

(2bp− 1)4
V ar[Ĵ]

=
1

K

(

(2bp+ 1)2

(2bp− 1)2
J +

2b − 1

(2bp− 1)2

)(

(2b − 1)2

(2bp− 1)2
−

(2bp+ 1)2

(2bp− 1)2
J

)

.

DP-OPH-fix. We write Ĵ = 1
K

∑K
k=1(Ĩ

N
k + ĨEk), where ĨNk is the indicator function of hash

collision at the k-th bin and when the bin is non-empty, and ĨNk is the indicator function of hash

19

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2025

collision at the k-th bin and when the bin is empty. Similar to previous analysis,

V ar[Ĵ] =
1

K2
E

[

(

K
∑

k=1

(ĨNk + ĨEk))2

]

−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

=
1

K

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)

+
1

K2
A−

(

(2bp+ 1)2

2b(2b − 1)
J +

1

2b

)2

,

where

A = E[
∑

i6=j

(ĨNi + ĨEi)(ĨNj + ĨEj)]

= Em

[

E[m(m− 1)ĨNi ĨNj + 2m(K −m)ĨNi ĨEj + (K −m)(K −m− 1)ĨEi ĨEj]|m
]

. (7)

Here the condition on “·|m” means the event that there are m simultaneously non-empty bins.
Denote Ik = 1{hk(u) = hk(v)} be the collision indicator of the original hash values, and

I
(b)
k = 1{h

(b)
k (u) = h

(b)
k (v)} be the collision indicator of the b-bit hash values. For two non-empty

bins i and j, we have

τ11 := P (hi(u) = hi(v), hj(u) = hj(v)|m) = E[IiIj |m] = JJ̃,

τ10 := P (hi(u) = hi(v), hj(u) 6= hj(v)|m) = E[Ii(1− Ij)|m] = J − JJ̃,

τ00 := P (hi(u) 6= hi(v), hj(u) 6= hj(v)|m) = E[(1− Ii)(1− Ij)|m] = 1− 2J + JJ̃,

and using total probability formula (conditional on hi and hj),

P (h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) = h

(b)
j (v)|m) = E[I

(b)
i I

(b)
j |m]

= τ11 + 2
1

2b
τ10 +

1

22b
τ00

= JJ̃ +
1

2b−1
(J − JJ̃) +

1

22b
(1− 2J + JJ̃) := P11

P (h
(b)
i (u) = h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v)|m) = E[I

(b)
i (1− I

(b)
j)|m] = JB − P11 := P10

P (h
(b)
i (u) 6= h

(b)
i (v), h

(b)
j (u) 6= h

(b)
j (v)|m) = E[(1− I

(b)
i)(1− I

(b)
j)|m] = 1− 2JB + P11 := P00.

Thus,

E[ĨNi ĨNj |m] =

(

p2 +
(1− p)2

2b − 1

)2

P11 + 2

(

p2 +
(1− p)2

2b − 1

)(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)

P10

+

(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)2

P00.

For two empty bins i and j, we have, for fixed densification,

τ11,f = P (hi(u) = hi(v), hj(u) = hj(v)|m) =
1

m
J +

m− 1

m
JJ̃,

τ10,f = P (hi(u) = hi(v), hj(u) 6= hj(v)|m) = E[Ii(1− Ij)] =
m− 1

m
(J − JJ̃),

τ00,f = P (hi(u) 6= hi(v), hj(u) 6= hj(v)|m) = E[(1− Ii)(1− Ij)] = 1− (2−
1

m
)J +

m− 1

m
JJ̃.

Similarly,

E[ĨEi ĨEj |m] =

(

p2 +
(1− p)2

2b − 1

)2

P11,f + 2

(

p2 +
(1− p)2

2b − 1

)(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)

P10,f

+

(

2p(1− p)

2b − 1
+

2b − 2

(2b − 1)2
(1− p)2

)2

P00,f ,

where

P11,f = τ11,f +
1

2b−1
τ10,f +

1

22b
τ00,f , P10,f = JB − P11,f , P00,f = 1− 2JB + P11,f .

It is not hard to note that E[ĨNi ĨEj |m] = E[ĨEi ĨEj |m]. Putting pieces together into (7), we get the
variance for DP-OPH-fix.

20

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2025

DP-OPH-re. For DP-OPH-re, most calculations are the same as DP-OPH-fix. According
to Li et al. (2019), we have

τ11,r = P (hi(u) = hi(v), hj(u) = hj(v)|m) = E[IiIj] =
ζ(m)

m
J +

m− ζ(m)

m
JJ̃,

τ10,r = P (hi(u) = hi(v), hj(u) 6= hj(v)|m) = E[Ii(1− Ij)] =
m− ζ(m)

m
(J − JJ̃),

τ00,r = P (hi(u) 6= hi(v), hj(u) 6= hj(v)|m) = E[(1− Ii)(1− Ij)]

= 1− (2−
ζ(m)

m
)J +

m− ζ(m)

m
JJ̃,

with ζ(m) = E[1
f̃
|m] where the conditional distribution of f̃ is given in Lemma B.2. We then get

P11,r, P10,r, P00,r correspondingly. Plugging them into the formula above completes the proof.

21

	Introduction
	One Permutation Hashing (OPH) for Jaccard Similarity Approximation
	Hashing/Sketching and Differential Privacy

	Background: MinHash, b-bit Coding, and Differential Privacy
	Hashing for Jaccard Similarity with Differential Privacy
	One Permutation Hashing (OPH)
	Differential Private One Permutation Hashing (DP-OPH)
	Comparison of DP-OPH and DP-MH

	Experiments
	Conclusion
	Extension: Differentially Private Bin-wise Consistent Weighted Sampling (DP-BCWS) for Weighted Jaccard Similarity
	Proofs
	Proof of Lemma 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.5
	Proof of Theorem 3.6

