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ABSTRACT

In this paper, we tackle the problem of (k, z)-clustering, a generalization of the
well-known k-means, k-medians and k-medoids problems that is known to be
APX hard, i.e., impossible to approximate within a multiplicative factor of 1.06 in
polynomial time for n and k unless P=NP. Due to the APX-hardness, the fastest
(1 + £)-approximation scheme proposed by Feldman et al. (2007), exhibits a
run time with a polynomial dependency on n, but an exponential dependency

20(k/€) on k. We observe that a (1 + )-approximation in truly polynomial time
is feasible if the data sets exhibit sufficiently skewed distributions. Indeed in prac-
tical scenarios, data sets often exhibit a heavy skewness, leading to the overall
clustering cost disproportionately dominated by a few clusters. We propose a
novel algorithm that adapts the traditional local search technique to effectively
manage (s,1 — **1)-skewed datasets with a run time of (nk/c)©(+1/9) for

discrete case and O(nk) + (klogn)©+1/) for continuous case. Our method
is particularly effective with Zipfian distributions with exponent p > 1, where
s=0 ( L

elz+1)/(p—1) ) *

1 INTRODUCTION

Clustering is a fundamental procedure widely used to extract structural insights from large datasets
by partitioning points into groups such that similar points are grouped together. Classic cluster-
ing problems, including k-means, k-median, and k-medoids, have been extensively studied since
the 1950s (Steinhaus et al., |1956; MacQueen et al., |1967; Rdusseeun & Kaufman), [1987). These
problems are fundamental in various fields, such as bioinformatics, computational geometry, data
science, and machine learning, attracting significant attention from both practical and theoretical
perspectives.

The quality of a clustering solution is often measured by a cost function with the objective of min-
imizing that cost. Specifically, the (k, z)-clustering problem aims to find k centers that minimize
> wex Minecc dist(z, ¢)*. In the continuous version of (k, z)-clustering, centers are chosen from
the entire space, while in the discrete version, the centers are restricted to a specific set. Continuous
(k, z)-clustering reduces to the well-known k-means problem when z = 2 and to k-median when
z = 1. The discrete version reduces to k-medoids when the centers are restricted to the input data
points and z = 1.

Numerous algorithms have been developed to tackle (k,z)-clustering more efficiently. |Feld-
man et al.| (2007) introduced an algorithm that approximates k-means with a running time of
20(k/€) . poly(n), which has potentially prohibitively exponential dependencies in k. The core
idea of the algorithm involves building a weak core set .S for a set of potential centers 7, both of
size poly(k). A brute-force search of (S, T") yields a (1 + ¢)-approximation. This approach converts
the continuous k-means problem into a discrete one, avoiding the exponential dependency on n.
However, eliminating the exponential dependency on k is crucial for broader applicability.

Despite advances, the (k, z)-clustering problem remains computationally challenging. It has been
proven to be APX-hard, meaning it cannot be approximated within a fixed constant factor in poly-
nomial time. Specifically, it cannot be approximated within a factor of 1.06 for the continuous case
and 1.17 for the discrete case unless P=NP (Cohen-Addad & Lee, |2022). We discuss a number of
additional related works in Appendix [A]
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Although eliminating the exponential dependency on k for the general (k, z)-clustering problem
is impossible due to its APX-hardness, there is hope for datasets with particular structures. In
real-world applications, the datasets are often skewed, with a few clusters dominating the overall
clustering cost. This observation motivates the exploration of whether (k, z)-clustering can be ap-
proximated within a 1 + ¢ factor in poly(n, k) time for heavily skewed datasets. Our work provides
a positive answer for datasets following such skewed distributions.

1.1 OUR CONTRIBUTIONS

Our contribution is a novel algorithm designed specifically for (k, z)-clustering on heavily skewed
datasets. Using the intrinsic structure of these datasets, our approach achieves a run time with
polynomial dependencies on n and k, significantly improving efficiency compared to the previous
(1 + €)-approximation algorithms. We define a data set as being (s, 1 — £)-skewed if the s highest-
cost clusters contribute at least a 1 — ¢ fraction of the total cost. In addition, we say a data set follows
a Zipfian distribution with exponent p if the i-th highest-cost cluster has a cost proportional to %p In

1
fact, a Zipfian distribution with exponent p is (s, 1 — €)-skewed for s > 7 (%) P~ for some constant

~. We say a solution P is a (1 + &)-approximation if Cost(X,P) < (1 + £)Cost(X,C), where C is
the optimal (k, z)-clustering solution.

Based on these characterizations, we propose two novel algorithms DISCRETEHEAVYSKEW
and CONTINUOUSHEAVYSKEW based on local search to efficiently handle skewed data. Our
DISCRETEHEAVY SKEW algorithm returns a (1+ ¢)-approximation for heavily skewed data in poly-
nomial time for n and k.

Theorem 1.1. Let X be a set of n data points, and let T be a set of potential centers such that
|T'| = poly(n). There exists a deterministic algorithm that, given any € > 0, for discrete (k, z)-
clustering, in (nk/e)° e time returns a (14 ¢)-approximation P as long as X is (s, 1 —e*t1)-
skewed. Furthermore, for z =1, X only needs to be (s, 1 — ¢)-skewed.

Our CONTINUOUSHEAVYSKEW returns a (1 4 ¢)-approximation for heavily skewed data in even a
shorter time.

Theorem 1.2. Let X be a set of n data points. There exists an algorithm that, given any € > 0, for
continuous (k, z)-clustering, in O(nk) + (klogn)®+1/) time returns a (1 + ¢)-approximation P
with probability at least 0.97 as long as X is (s,1 — e*T1)-skewed. Furthermore, for = = 1, X only
needs to be (s,1 — ¢)-skewed.

If randomness is expensive, there also exists a deterministic version of CONTINUOUSHEAVYSKEW

with (nk;)@(s“/ ¢) running time. For the discussion of running time, we assume dimension d as a
constant. For a large d, a dimension reduction technique introduced by [Makarychev et al.| (2019)

can be used to achieve a O(nk) + (klogn)©E *(+1/2)) running time.

Our DISCRETEHEAVYSKEW and CONTINUOUSHEAVYSKEW can return a (1 + ¢)-approximation
within a run-time with polynomial independence on n and k, while the previous algorithm by [Feld-
man et al.| (2007) only has polynomial independence on n, but has exponential independence on k.
The improvement of our algorithm makes the run time more feasible in the case where the input data
are heavily skewed. The dependence s on the exponent shows that the extent of the skewness of the
data affects the run-time of our algorithm. A more heavily skewed data will induce a less s, which
makes the run-time even shorter.

We now provide a high-level intuition behind our algorithms and analysis.

Heavy skew local search. We introduce an algorithm called HEAVYSKEWLOCALSEARCH, which
guarantees a (1 + ¢)-approximation for data sets following a heavily skewed distribution. The local
search, originally introduced by |Arya et al.| (2001)), seeks a local optimum where swapping up to ¢
centers no longer improves the result. The intuition behind our algorithm is that clustering costs are
dominated by a few clusters. We can use brute-force search to identify the centers of these dominant
clusters and employ a local search for the remaining ones. By accurately selecting the centers for
the high-cost clusters, which represent more than (1 — 52“) fraction of the total cost, and using
local search to achieve a constant approximation for the rest, we achieve an overall (1 + O(e))-
approximation. At first glance, it appears the only remaining step is to directly apply a local search
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to find centers with low costs: by the skewed distribution, we would get a (1 4+ O(¢))-approximation
for the total cost as long as we could get O(1)-approximation for the centers with low costs.

Unfortunately, the above idea does not work directly, and we need more technical ideas to address
the issues. In particular, although the local search returns a constant approximation for the entire
dataset, the solution for low-cost clusters may not be a constant approximation. This is because we
fix the location of the more expensive centers, which may adversely affect the accuracy of the local
search. The returned centers for the low-cost clusters will have an extra additive error due to the
influence of expensive centers. To tackle this issue, we take advantage of the multi-swap idea in the
Arya et al.[(2001), and we show that if we swap a sufficiently large number of centers simultaneously,
the additive error is small enough to ensure that the total cost is an (1 +&)-approximation. Of course,
we could not swap too many centers at the same time since otherwise, the running time even for a
single iteration will break the limit. Fortunately, we find that the swap of O(1/¢) points is sufficient
for (1 4 ¢)-approximation, and the efficiency for a single iteration is at least preserved.

Fast local search. While HEAVYSKEWLOCALSEARCH guarantees (1 + O(e))-approximation and
single-iteration efficiency, it does not immediately imply convergence in polynomial rounds. A natu-
ral approach would be to swap centers only if the improvement exceeds 1+¢. This strategy ensures a
polynomial run time, but may overlook smaller improvements. Although individual small improve-
ments may not alter the (1 4 ¢)-approximation, a series of such small gains can accumulate, leading
to deviations from the desired approximation. For example, if we ignore (1+¢/2) improvements for
successive m swaps, the cumulative improvement could be (1 + £/2)™ factor better than our result,
which means our result deviates significantly from the optimal when m is very large. Fortunately, if
we open the black-box of the local search, we could show that the number of accumulation is at most
O(k?). As such, we could rescale the parameter, so the accumulated error can still be controlled in
the rate 1 4 . This strategy balances large and small improvements, ensuring both accuracy and
efficiency.

Construction for potential center set. For continuous (k, z)-clustering, we propose an algorithm to
construct a potential center set, transforming the continuous (k, z)-clustering problem into a discrete
one. This approach restricts potential centers to a finite range, making the search computationally
feasible. [Feldman et al.[(2007) used similar strategy to build their PTAS. However, their construction
is based on the geometric property of k-means, where the center of each cluster is its centroid, a
property that does not hold for z # 2 in general (k, z)-clustering. Instead, we used the e-nets to
construct the potential center set, which is suitable for general z.

Construction for coreset. We can further improve the speed of the algorithm by prepocessing the
data into a coreset. Sensitivity sampling can generate a coreset of size poly(k) in O(nk) time.
Unfortunately, traditional sensitivity sampling merely preserves the cost for the entire set, not indi-
vidual clusters, potentially losing the skewness of the original data set. To address this, we adapt the
sensitivity sampling to maintain skewness. We prove that if we sample O (k) times number of points
in sensitivity sampling, it can preserve the cost for cluster whose cost is larger han 175, fraction of
the total cost, which ensures that the coreset accurately reflects the heavily skewed structure of the

original dataset. We defer all proofs to the appendix.

Empirical evaluations. Although our contribution is primarily theoretical, we performed exper-
iments to demonstrate its performance. We compared the precision of our algorithm with the k-
means and k-mediods algorithms available in the scikit-learn and scikit-learn-extra
library. These algorithms are popular in practice because of their fast execution, but they offer
weaker theoretical accuracy guarantees. We chose to compare our algorithm against these fast yet
lower-precision methods, rather than other (14 ¢)-approximation algorithms, because the latter have
exponential run time, making them infeasible for experiments. Our empirical evaluations show that
our algorithm outperforms these widely used algorithms in terms of accuracy, serving as a proof-of-
concept that complements our theoretical guarantees.

2 PRELIMINARIES

Given an integer n. > 0, let [n] denote the set {1, - - - ,n}. We use poly(n) for a fixed polynomial in n
and polylog(n) for poly(logn). Since the device stores data points in bits, it is generally acceptable
to rescale and assume X C [A]?, where A = poly(n).



Under review as a conference paper at ICLR 2025

In this paper, we focus on Euclidean (k, z)-clustering. For vectors 2,y € R%, let dist(z,y) denote
the Euclidean distance |z — y[|2 = Y2, (2; — ;)% For a point z and a set C, dist(z,C) :=
min.cc dist(z, ¢). For a weighted point  with weight w(x), Cost(x,C) := w(z) - dist(xz,C)?. The
total cost is Cost(X,C) = Y | Cost(z;,C). Given a weighted dataset X = {(z;,w(z;)) : i €
[n]}, the goal of continuous Euclidean (k, z)-clustering is to find k centers C = {cy,--- , ¢} C RY
that minimize the cost function Cost(X, C'). In discrete Euclidean (k, z)-clustering, k centers are
chosen from a finite set of potential centers 7" with size poly(n).

For a center set C = {c1,--- ,cx}, let N(¢;) = {& € X : Cost(z,¢;) < Cost(z,c;) forj # i}
represent the set of points assigned to center ¢;. Ties are broken arbitrarily so each z; belongs to
exactly one N (¢;).

Definition 2.1 ((s,1 — ¢)-skewed dataset). A data set X with optimal (k, z)-clustering centers
C = {c1,ca,- -+ , ¢k}, ordered by cost such that Cost(N(c;),C) > Cost(N(c;),C) fori < j, is an
(8,1 — ¢)-skewed dataset if y;_, Cost(N(c;),C) > (1 —¢) Zle Cost(N(¢;),C).

Definition 2.2 (Zipfian distribution dataset). A data set X with optimal (k, z)-clustering centers

C ={c1,ca, -+ ,ck} is a Zipfian distribution data set with exponent p if there exist constants 0 <
Y1 < Y2 and p > 1 such that for any i, v, - %p < Cost(N(¢;),C) <z - %p

As a highly skewed dataset, a Zipfian distribution dataset is in fact (s,1 — ¢)-skewed for s =
O((l)l/(P_l)).

€

Lemma 2.3. Let X = {x,22,...,2,} C [A]? be a Zipfian distribution dataset. There exists a
T
constant y > 0 such that for s > ~ (%) =1 X is (s,1 — g)-skewed.

Additionally, we introduce the concepts of e-coreset and e-net, which are often used to sample points
and generate potential center sets to speed up clustering.

Definition 2.4 (c-coreset). A weighted set S is an e-coreset of X if. for any set of centers C C R¢
that |C| <k, (1 —¢)Cost(X,C) < Cost(S,C) < (14 ¢)Cost(X,C).

Definition 2.5 (c-net). Let A C R? be a region. N is an e-net of A if for any x € A, there exists
y € N such that dist(x,y) < e.

3 CONSTRUCTION FOR CORESET AND POTENTIAL CENTER SET

In this section, we describe first describe our coreset construction, which is slightly non-standard,
due to the fact that we would like the optimal clustering on the coreset to preserve the skewed
distribution of costs. Note that by comparison, the general guarantees of coresets simply require
that all clustering costs are preserved up to a (1 + €)-factor, rather than the costs of all clusters being
preserved.

3.1 CORESET CONSTRUCTION MAINTAINING SKEWNESS

We adapt the sensitivity sampling framework to construct a coreset that maintains the skewness
of the original dataset. The sensitivity sampling framework assigns a value to each point, called
sensitivity, which intuitively quantifies the “importance” of that point. Each point is then sampled
with a probability proportional to its sensitivity.

First, we introduce the definition of sensitivity.

Definition 3.1 (Sensitivity). Forx € X, its sensitivity is defined as s(x) = supecga |c|<k chsstt((;(é))

We present an algorithm CORESETCONSTRUCTION that produces a weight set .S which is an e-
coreset of X . Furthermore, if X is an (s, 1 — ¢)-skewed dataset, then .S will also be an (s,1 — 3¢)-
skewed dataset.

Lemma 3.2. Let X be an (s, 1 —¢)-skewed dataset. There exists a constant v > 1, such that for any
e € (0, i],CORESETCONSTRUCTION returns an e-coreset S for X with probability at least 0.97.

Furthermore, S is (s,1 — 3¢)-skewed, and has a size ()f@(%2 log(nA)).
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Algorithm 1 CORESETCONSTRUCTION(X &, n, k, A)

Require: Dataset X, precision parameter ¢, size n, number of cluster k, range A
Ensure: A weighted set .S

1: 7 < some large enough constant, j < %’“ log(nA)

2: S« 0

3: forz € X do

4: s(z) « sensitivity of

5: With probability p, = min{u - s(x), 1}, w(z) < p%, S+ SU{(z,w(x))}
6: return S

Our algorithm is analogous to the conventional sensitivity sampling method, but employs a larger
sampling parameter, p = O(% log(nA)), in place of p = O(% log(nA)) as employed in the
traditional approach. With the augmented value of p, the coreset ensures preservation of both the
cost of the full set and the cost for clusters whose expense exceeds 175 of the total cost. This
modification allows the coresets to preserve the significantly skewed structure present in the original

dataset.

3.2 POTENTIAL CENTER SET CONSTRUCTION

In this section, we introduce an algorithm that produces a set T' of candidate centers for a dataset
S, ensuring that for any C C [A]? with |C| < k, there exists C' € T* such that Cost(S,C’) € (1 &
¢)Cost(S, C). The rationale for constructing such a set 7" relies on the observation that if dist(x, ¢) is
a (1 + O(e))-approximation of dist(z, ¢), then Cost(z, ¢’) will indeed be a (1+ ¢)-approximation of
Cost(z, ¢) due to the generalized triangle inequality. Consequently, we need to ensure the existence
of a center ¢ € T such that dist(z,c’) is a (1 + O(e))-approximation of dist(z, ¢). This can be
accomplished by constructing an O(e)-net for the ball B(z,2), where B(z,r) = {y € R? :
dist(z,y) < r}. Using this approach, we can approximate any center ¢ for which dist(z,c) €
[2i=1 2¢]. However, creating such nets for all possible distances would yield an excessive number
of centers because r can range from 0 to infinity. Thankfully, the optimal center must fall within the
range [A]¢ given that S C [A]?. Thus, we only need to construct an O(¢)-net for balls with radii
not exceeding A. Further, even though ¢ can be exceedingly close to x, necessitating an O(e)-net
for an infinite number of balls, we note that Cost(S,C) > 2% as long as the optimal clustering cost is
non-zero. Hence, we can avoid building nets for very small radii. Specifically, we need to construct
nets only for B(xz,2"1), where i € [log(+57) — 22 — 2,log A], with W representing the upper
bound of the point weights. This strategy helps maintain the size of 7" compact.

Algorithm 2 CENTERNET(S, €, A)

Require: Dataset S, precision parameter ¢, range A

Ensure: A potential center set T’
I: T < S, W < the maxium weight of S, My < log (757) — 22 — 2, M3 < log A
2: for i < M; to M5 do
3: N 0, r < 2i+1

4 for x € S do

5: Nj < an sz=r-netin B(z,r)
6: M — j\/z U/\/i,a:

7 T+ TUN,;

8: return '

We prove that for any C C [A]¢ and |C| < F, there exists a set C’ € T* that provides a (1 + ¢)-
approximation to C. Furthermore, the set T has a size of poly(k, logn) if |S| = poly(k).

Lemma 3.3. Let S be a weighted set whose maximum weight is at least 1. For ¢ € (0, 1], the set T
returned by CENTERNET satisfies: for any C C [A]? and |C| < k, there exists C' C T* such that

(1 —€)Cost(S,C) < Cost(S,C") < (1 + ¢€)Cost(S,C).

Furthermore, T has a size of |T| = |S| - 20(d10s £ loglog(*2))
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4 HEAVY SKEW LOCAL SEARCH ALGORITHM

We introduce an adapted local search algorithm designed for (k, z)-clustering, particularly useful
for data sets exhibiting significant skewness. For simplicity, within this section, we assume that C =
{c1,ca,...,ci} represents the optimal solution within the net T'. The centers in C are arranged so
that Cost (IV(¢;)) > Cost (N (c;)) for i < j. We denote Cg, as the subset of s centers corresponding
to the s most costly clusters.

4.1 HEAVY SKEW LOCAL SEARCH FOR k-MEDIAN

For an (s,1 — ¢)-skewed dataset, we can leverage the structure of the dataset to achieve efficient
clustering. The intuition is to search for the s most expensive clusters with high precision and then
perform a quicker, lower precision search for the remaining k£ — s cheaper clusters, aiming to achieve
a (1+¢)-approximation. This can be achieved by using a brute-force search for the s most expensive
clusters and a local search for the remaining k£ — s cheaper centers.

In particular, for any given set of s centers, we run a local search to determine the remaining k — s
centers. The local search procedure is used to identify a local optimum for the (k, z)-clustering
problem. When using a local search with a swap parameter ¢, no more than ¢ existing centers are
replaced with an equal number of new centers, provided that such a swap reduces the overall cost.
The process continues until no further improvements can be achieved by these swaps.

Unlike the classic local search, which can swap any center, we only swap the centers for the remain-
ing k — s ones, keeping the s guessed centers fixed throughout the local search. By brute-forcing all
possible locations for the s most expensive centers, we will eventually find the correct guess. For
that correct guess, since we fix the locations of the s centers and only swap the remaining k — s
centers, the final set returned will be the precise locations of the s most expensive centers and an
approximation for the remaining centers, ensuring a (1 + ¢)-approximation.

We must consider that the presence of s fixed centers may adversely affect the local search for the
remaining k — s centers. However, through a detailed analysis, we can show that with a carefully
chosen swap parameter ¢ = O(1/¢), we can mitigate such adverse effects and guarantee the (1+¢)-
approximation.

Algorithm 3 HEAVYSKEWLOCALSEARCH(S, T, ¢, A, k, s)

Require: Dataset .S, potential center set T, precision parameter ¢, set A C T with |A| = s, number
of clusters k, skewness parameter s
Ensure: A center set P with |P| =k

1: vy < some large enough constant, ¢ < 2

2: B <« Arbitrary subset of T with |B| = - s

3: while 38’ C T such that |B — B’| < 2t and Cost(S, AU B’) < Cost(S,.AU B) do
4: B« B

5: P+~ AuUB

6: return P

We claim that HEAVYSKEWLOCALSEARCH returns a (1 + €)-approximation if S is (1,1 — ¢)-
skewed and we choose the correct input set A = Cg, which is the centers of the s most high-cost
clusters.

Lemma 4.1. Ler S be an (s,1 — ¢)-skewed dataset, T be the potential center set, and A = Cp,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
v > 1, such that for any € € (0, 1], HEAVYSKEWLOCALSEARCH returns a (1 + €)-approximation
P for the (k,1)-clustering for S and T.

4.2 HEAVY SKEW LOCAL SEARCH FOR (k, z)-CLUSTERING

Our (1 + €)-approximation guarantee extends to general (k, z)-clustering. The framework remains
the same, but the cost function for the (k, z)-clustering is dist(x, ¢)* instead of dist(x, ¢), as in the
k-median case. This change affects the additivity of the cost function, requiring a more nuanced
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analysis of cost distortion. However, with the generalized triangle inequality and carefully chosen
parameters, an (1 + ¢)-approximation is still achievable for (s,1 — ¢**1)-skewed set S.

Lemma 4.2. Let S be an (s,1 — e*T1)-skewed dataset, T be the potential center set, and A = Cp,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
v > 1, such that for any € € (0, 3], HEAVYSKEWLOCALSEARCH returns a (1 + £)-approximation
P for the (k, z)-clustering for S and T.

Note that while (s,1 — ¢)-skewness is required for z = 1, (s,1 — ¢**1)-skewness is needed for
general (k, z)-clustering. This indicates that a heavier skewness is necessary for general (k, z)-
clustering to compensate for the loss of additivity.

5 PTAS FOR HEAVILY SKEWED DISTRIBUTION SET

Although HEAVYSKEWLOCALSEARCH guarantees a (1 + £)-approximation, it does not ensure the
existence of a PTAS for (k, z)-clustering because it cannot guarantee to terminate in polynomial
rounds. An intuitive approach might involve only swapping centers if the result improves signifi-
cantly, such as an improvement in the multiplier 1 + €', to ensure the polynomial iteration times.
However, this method misses smaller improvements, and a series of such small improvements can
accumulate, failing to maintain the desired approximation. For example, successive m swaps, each
improving by a factor of 1 + §, may result in (1 + %)m, which deviates significantly from 1 + ¢.

Through a comprehensive analysis, we demonstrate that by opting for a more precise choice of
the parameter, specifically e’ = O(%), it is possible to ensure a (1 + ¢)-approximation within
polynomial iteration times.

Algorithm 4 FASTLOCALSEARCH(S, T, ¢, A, k, s)

Require: Dataset S, potential center set T, precision parameter ¢, set A C T with |A| = s, number
of clusters k, skewness parameter s
Ensure: A center set P with |P| =k
I: 7 < some large enough constant, ¢ < X
2: B < Arbitrary subset of T" with |B| = h—s
3: T" ¢ constant approximation of total cost
4: while 38" C T such that |B — B'| < 2t and Cost(S, AU B’) < (1 — 55z)Cost(S, AU B) and
do
B+ B
P+ AUB
7: return P

AN

We claim that FASTLOCALSEARCH terminates within polynomial rounds and returns a (1 + 2¢)-
approximation for the optimal solution of clustering (.S, T').

Lemma 5.1. Let S be a dataset of n points, T be the potential center set, and A = Cg, which is
the set of centers of the s most high-cost clusters in optimal solution. There exists a constant v > 1,

2
such that for any e € (0, 1], FASTLOCALSEARCH terminates within O(%-) swaps, and returns a

(1 + 2¢)-approximation P, as long as S is (s,1 — ¢**1)-skewed. Furthermore, for z = 1, S only
needs to be (s, 1 — ¢)-skewed.

Finally, we give DISCRETEHEAVYSKEW and CONTINUOUSHEAVYSKEW as PTASs to approxi-
mate (k, z)-clustering within a (1 4 ) approximation. We construct DISCRETEHEAVYSKEW, the
algorithm deals with the discrete (k, z)-clustering problem first. Assume that we have an input set X
and a potential center set T' with | X| = n and |T'| = poly(n). We perform a brute-force search over
all possible locations of the centers of the s most expensive clusters and apply FASTLOCALSEARCH
on each guess. Since there are |T|* = poly(n) possible choices for the s centers, we only need to
apply FASTLOCALSEARCH polynomial number of times. The run time of a single application of
FASTLOCALSEARCH is poly(n, k) because it terminates in poly(n, k) swaps. As a result, we can
complete all the computations in poly(n, k) time.

We claim that DISCRETEHEAVYSKEW guarantee a (1 + ¢) approximation for (k, z)-clustering on
X and T within poly(n, k) run time if X is (s, 1 — ¢**!)-skewed.
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Algorithm 5 DISCRETEHEAVYSKEW (X, T, ¢, k, s)

Require: Dataset S, center set T', precision €, number of clusters k, skewness parameter s
Ensure: A center set P with |[P| =k
1: if |[X| < kand X C T then
2 P+ X
else
P < Arbitrary subset of T with |P| = k
for A € T° do
P’ <~ FASTLOCALSEARCH(S, T, §, A, k, 5)
if Cost(S, P’) < Cost(S, P) then
PP

PRIUN R

9: return P

Theorem 5.2. Let X be a set of n data points, and let T be a set of potential centers such that
|T'| = poly(n). Given any € > 0, DISCRETEHEAVYSKEW returns a (1 + ¢)-approximation P in
(nke)C+Y2) time for discrete (k, z)-clustering as long as X is (s, 1—&*+1)-skewed. Furthermore,
Sor z =1, X only needs to be (s,1 — ¢)-skewed.

We then construct CONTINUOUSHEAVYSKEW, the algorithm deals with the continuous (k, z)-
clustering problem. For a data set X, we can use CORESETCONSTRUCTION and CENTERNET
to construct the coreset .S and potential center set T', effectively transforming the continuous (k, z)-
clustering on X into the discrete (k, z)-clustering on (S, T). As a widely used sampling technique,
sensitivity sampling can be completed in @(nk) running time. Our construction of 7" also has a run
time of poly(k,logn) because the construction of an individual point in T requires a run time of
O(1), and T has a size of poly(k, logn). Then an application of DISCRETEHEAVYSKEW solves the
problem.

Algorithm 6 CONTINUOUSHEAVYSKEW (X ¢, k, s)

Require: Dataset X, precision €, number of clusters &, skewness parameter s,
Ensure: A center set P with [P| =k

1: if | X| < k then

2: P+ X

3: else
4: S < CORESETCONSTRUCTION(X, €, n, k, A)
5: T + CENTERNET(S, {,4)
6 P < DISCRETEHEAVYSKEW (X, T, £, k, 5)
7: return P

We claim that CONTINUOUSHEAVYSKEW guarantee a (1 + ¢) approximation for (k, z)-clustering
on X within poly(n, k) run time if X is (s, 1 — ¢"1)-skewed.

Theorem 5.3. Let X be a set of n data points. Given any € > 0, CONTINUOUSHEAVYSKEW re-
turns a (14 €)-approximation P in O(nk) + (klogn)© /%) time for continuous (k, z)-clustering
with probability at least 0.97, as long as X is (s,1 — e*T1)-skewed. Furthermore, for z = 1, X
only needs to be (s,1 — ¢)-skewed.

6 EXPERIMENTAL EVALUATIONS

Despite our primary focus on theoretical contributions, we performed experiments to validate its effi-
cacy. We evaluated the precision of our algorithm against the k-means and k-medoids algorithms of
the scikit-learnand scikit-learn-extra libraries. These algorithms are widely favored
for their quick execution times, but they have weaker theoretical accuracy assurances. We opted to
benchmark our algorithm against these fast yet less precise methods rather than other (1 + ) ap-
proximation algorithms, which are infeasible for experiment due to their exponential run times. Our
empirical results demonstrate that our algorithm surpasses these commonly used methods in terms
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Table 1: Improvement rate for k-means and k-medoids on synthetic data

k k-means (%) k-medoids (%)

Avg Min  Median | Avg Min  Median
28.32 3.78  12.77 16.86 1.11 10.57
27.16 5.32  20.07 25.87 14.22 2549
28.83 12.57 26.91 40.41 21.08 39.74
4795 744 4521 21.04 10.95 15.12
50.53 40.83 48.82 34.19 825  40.36
57.89 23.52 28.99 39.29 18.46 22.34

0| 37.23 24.42 26.28 42.65 22.85 47.17

=\ 00 A

of accuracy, thereby substantiating our theoretical claims for the (1 4 €)-accuracy of our algorithm
with practical evidence.

Our experiment is conducted using Python 3.9.6 on a 2020 MacBook Pro equipped with a 1.4
GHz Quad-Core Intel Core i5 processor. We evaluate our algorithm against KMeans from
scikit—-learn and KMedoids from scikit—-learn—-extra. For all algorithms, we gen-
erate initialization centers through uniform sampling. A maximum iteration limit is set such that
each algorithm updates at most 3 - k centers by the time they terminate.

6.1 SYNTHETIC DATA

Synthetic data is produced using the datagen function from the coreset library. This function
creates samples from a Dirichlet Process Mixture Model (DPMM) characterized by Gaussian like-
lihood and fixed cluster covariance, and operates based on the Chinese restaurant process. We set
s =t = 1 and the smallest center net scale as 0.01 for k-means.

1e6 le5

—e— Lioyd Avg —e— Kmedoids Avg

- Lloyd Min —x- K-medoids Min
M- Lloyd Median 25 ~H- Kmedoids Median
—e— Our k-means Avg —e— Our k-medoids Avg
-3- Our k-means Min N —x- Our k-medoids Min
% our k-means Median N Our k-medoids Median

Total Cost
w
Total Cost

:*:;;\
\*:;;:*»3——»___x
1 T ——
0.5
4 5 6 E 8 9 10 a 5 6 i 8 9 10
Figure 1: Comparison between Lloyd heuris- Figure 2: Comparison between KMedoids
tic and our algorithm for k-means and our algorithm for k-medoids

Our experiments illustrate an improvement range for k-means from 3.78% at k = 4 for the minimum
metric to 57.89% at k = 9 for the average metric, and for k-medoids from 1.11% at k = 4 for the
minimum metric to 47.17% at k = 10 for the median metric. This overall enhancement underscores
the superior performance of our algorithm in terms of accuracy when compared to KMeans from
scikit—learn and KMedoids from scikit-learn—extra across average, minimum, and
median metrics. Furthermore, the notable improvement observed in the average and median metric
implies a higher variability in KMeans and KMedoids when evaluated on synthetic data, whereas
our algorithm demonstrates significantly lower variance.

6.2 REAL WORLD DATA

We also conducted the experiment using the Exasens dataset (Exa20) from the UCI Machine Learn-
ing Repository, which comprises 399 instances and 4 features. This data set includes demographic
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Table 2: Improvement rate for k-means and k-medoids on real world data

k k-means (%) k-medoids (%)

Avg Min  Median | Avg Min  Median
82.49 83.53 82.39 32.50 17.84 22.68
82.58 587  85.69 24.98 23.69 24.77
86.11 21.90 88.61 31.01 29.30 29.02
89.94 39.12 91.79 30.22 11.48 3248
84.56 18.04 36.86 38.04 35.90 37.24
86.69 28.79 51.80 41.24  39.89 41.28

0| 88.91 41.94 38.71 42.02  40.29 42.67

=D 01 A

information on 4 groups of saliva samples (COPD, asthma, infection, HC) collected as part of the
joint research project Exasens. We utilized the StandardScaler from scikit-learn. The
parameters used were identical to those used in the synthetic data experiment, with the exception of
areduced center net scale of 0.0001, as the range of the real world data after scaling is approximately
100 times smaller than that of the synthetic data.

—8— Lloyd Avg —8— KMedoids Avg
—»- Lloyd Min —%- KMedoids Min

<& Lloyd Median ~& KMedoids Median
—e— Our Avg —e— Our Avg
-=- our Min 45 . ~x= Our Min
our Median

%o our Median

40

35

Total Cost
Total Cost

30

Figure 3: Comparison between Lloyd heuris- Figure 4: Comparison between KMedoids
tic and our algorithm for k-means and our algorithm for k-medoids

Our experimental results demonstrate an enhancement range for k-means from 5.87% at k = 5
for the minimum metric up to 91.79% at k = 7 for the median metric, and for k-medoids from
11.48% at k = 7 for the minimum metric to 42.67% at k = 10 for the median metric. This overall
improvement highlights the superior accuracy performance of our algorithm relative to KMeans
from scikit-learn and KMedoids from scikit—-learn—-extra, across various metrics
including average, minimum, and median. Additionally, the observed substantial improvement in
the average and median metric suggests greater variability in KMeans and KMedoids when tested
on real world data, while our algorithm displays considerably lower variance. Notably, KMeans
shows even higher variance with real-world data than with synthetic data, likely attributed to the
increased skewness present in real-world datasets.
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A RELATED WORK

Within this section, we present a review of related works. Initially, we discuss results studying
the APX-hardness of (k, z)-clustering. Subsequently, we describe the progression of (1 + ¢)-
approximation algorithms. Thereafter, we briefly introduce the theoretical accuracy guarantees for
popular algorithms used in practice. Additionally, we mention specific works on local search, an
algorithmic paradigm integral to our approach. Lastly, we review some literature on Zipfian distri-
butions.

APX-hardness for (k, z)-clustering The foundational work of (Guha & Khuller|(1999) was the first
to prove that (k, z)-clustering is APX-hard. It established that k-means and k-median are hard to
approximate within factors of 3.94 and 1.73, respectively, in general metric spaces. The natural
question arises: Is (k, z)-clustering still APX-hard in more specific metrics, such as doubling or
Euclidean metrics? Unfortunately, subsequent studies have confirmed that (k, z)-clustering remains
APX-hard even under these specific metrics (Ahmadian et al., 2019; [Trevisan, 2000 |Guruswami
& Indykl 2003} |Cohen-Addad & Karthik| 2019). According to the most recent research by |Cohen-
Addad & Lee|(2022), the inapproximability bounds are 1.17 and 1.06 for discrete and continuous
k-means, and 1.07 and 1.015 for discrete and continuous k-median in Euclidean space unless P=NP.

Development of (1 + ¢)-approximation algorithms Early attempts at developing (1 + ¢)-
approximation algorithms for k-means clustering began with |[Inaba et al.[ (1994), who proposed
an algorithm with a run time of O(n%*+1) for fixed k and . Subsequent work improved the runtime
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(Matousek!, 2000; |Har-Peled & Mazumdar, [2004), culminating in De La Vega et al.|(2003) present-
ing the first algorithm with a linear dependency on n. |Kumar et al.[(2004; 2005)); Chen|(2006) further
improved the run time with a new coreset construction. Finally, |Feldman et al.| (2007)) developed

a PTAS with a run time of O(nkd + 2@(’“/5)). However, all these PTASs assume fixed k and ¢,
resulting in algorithms that are polynomial in n but have exponential dependency on k.

Popular practical algorithms Lloyd| (1982) introduced the Lloyd heuristic, the most widely used
algorithm for k-means in practice. This algorithm iteratively computes the centroid of each clus-
ter to search of a local optimum. However, despite its popularity, Inaba et al.|(1994) demonstrated
that the Lloyd heuristic does not guarantee a solution close to the optimal k-means clustering in the
worst case. To address this, |Arthur & Vassilvitskii| (2006) proposed k-means++, an initialization
process that provides an O(log k)-approximation guarantee when combined with the Lloyd heuris-
tic. Together, these algorithms achieve a total runtime of O(dnk). For k-medoids, the most popular
algorithm is the PAM (Partitioning Around Medoids) algorithm, proposed by Rdusseeun & Kauf-
man|(1987). PAM can be seen as a discrete counterpart to the Lloyd heuristic. However, PAM lacks
a theoretical guarantee and has a runtime of O(T - k(n — k)?), where T is the number of iterations.

Local search technique. The local search technique, introduced by |Arya et al.| (2001)), iteratively
swaps t centers to seek a local optimum solution. |Arya et al.|(2001) demonstrated that local search
guarantees a (3 + %)—approximation for k-median, while Kanungo et al.|(2002) showed a (9 + )-
approximation for k-means. |(Cohen-Addad et al.| (2019)) established that local search is a PTAS for
k-means and k-median in constant-dimensional Euclidean space, and [Friggstad et al.|(2019) demon-
strated that local search is a PTAS in doubling metric spaces. Due to its simplicity, local search is
frequently used as a subroutine for clustering in various computational models, such as distributed
(Bateni et al., [2014), parallel (Blelloch & Tangwongsan, [2010), and streaming environments (Guha
et al., [2003). In addition, numerous studies have also examined local search from a theoretical
perspective (Cohen-Steiner et al., |2004; |Dhillon et al [2002; [Friggstad & Zhang; 2016}, Hansen &
Mladenovic, [2001; |Yang et al., 2008). Although traditionally recognized as a constant approxi-
mation algorithm, |(Cohen-Addad & Schwiegelshohn| (2017) explored its performance on data sets
with specific properties, showing that local search can achieve a (1 4 ¢)-approximation for certain
datasets, such as those with distributional stability.

Zipfian distribution. Zipf’s law, as proposed by Zipf|(1949), characterizes an empirical distribution
found in numerous real-world datasets. Mandelbrot et al.| (1953) refined this law by adding an
exponent parameter p, leading to the Mandelbrot-Zipf law, which serves as a more generalized model
for linguistic phenomena. In present-day network science, Zipf’s law is relevant to the analysis of
scale-free networks, where the degree distribution (the number of connections a node has) frequently
follows a power law, akin to a Zipfian distribution. Significant advancements in understanding such
networks were made by Barabasi & Albert (1999) with their preferential attachment model. Halevy
et al.[(2009) discuss how large-scale data processing often unveils Zipfian distributions in real-world
datasets, such as those pertaining to web queries and clickstream data. Additionally, the Mandelbrot-
Zipf law is observed across various domains including economics (Gabaix} |1999)), geography (Jiang
et al.| [2015), genomics (Furusawa & Kaneko) 2003)), language (Ferrer 1 Canchol [2005), and security
(Blocki et al., [2018)).

B (s,1— €)-SKEWED DATASET AND ZIPFIAN DISTRIBUTION

We will prove[Lemma 2.3|in this section.

Lemma B.1. Let X = {2, 72,...,2,} C [A]? be a Zipfian distribution dataset. There exists a
3
constant vy > 0 such that for s > ~v ()71, X is (s,1 — €)-skewed.

. 1 . . .
Proof. Since _; is continuous and decreasing on R,

i+l i
1 1 1

/ —dr < — < / —dx.
i xP P i1 TP

=1 % q 1 1
> wS) @l e
i=s4+1 s

Hence
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1
For s > v (%) p—1 substituting this into the above inequality, it yields

(oo}

1 1 €
B @ —— .
s T p—1 p7!

.

1=s+1

By the definition of Zipfian distribution dataset, we have
1 1
M= S COSt(N(Cl'),C) S Y2

P P’

b 1 & 1~ e
2
D Cost(N(e:) Zy <Y wpSyog
1=s+1 1=s+1 1=s+1
On the other hand, we know that
=1
Zl » =((p)

Hence

S \

for p > 1. Thus

1
Cost(X,C) ZCost ,C) > Zyl-i—pzm((p).
i=1
There exists a constant v > 0 such that
Y2 €
2, <y
P Rl ¢(p)
_1
Hence for s > v (1) 777,
ZCost ,C) <¢e-Cost(X,C),

i>5
which is equivalent to

> " Cost(N(c;),C) > (1 — €)Cost(X, C).

1<s
O
_1
Hence a Zipfian distribution is a (s, 1 — £)-skewed for s = O((1)77).
C CORESET AND CENTER NET
In[Appendix C.1] we will prove[Cemma 3.2} In[Appendix C.2] we will also introduce an algorithm

that produces a center net, providing a (1 + €)-approximation.

C.1 CORESET THAT KEEPS HEAVY SKEWNESS

Before proving we shall first revisit Bernstein’s inequality, as it is essential for the
subsequent proof.

Theorem C.1 (Bernstein’s inequality). Let Zy, Za,--- , Zy, be independent random variables and
a; < Zi < bi. Let Sy, =" | Zi, B, = E[S,], and R > max;c,) |b; — a;|. Then for any t > 0,

Pr[|S, — E,| >t] < 2e t'/2
n n X Y7 . D 4/ M
P\"V, v R-t/3

We first prove that under the condition of CORESETCONSTRUCTION returns an -
coreset S of X with probability at least 0.99.

Lemma C2. Let X = {x1,29,---,2,} C [A]? be a gs,l — ¢)-skewed dataset.
There exists a constant vy > 0, such that for any ¢ & (0,7], the set S returned by
CORESETCONSTRUCTION(X, ,n,k, A) is an e-coreset of X with probability at least 0.99 if

1= 25 log(nA).
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Proof. We want to use Bernstein’s inequality to bound the probability. For any C € (Rd)k, we
define the random variable to describe the cost of S

g _ w(z;) - Cost (x;,C), with probability p,,
‘0, with probability 1 — p,.
Let S, = Y., Z;. Then Cost (S,C) = S,,.
Denote E,, = E [S,,], then

n

E,=)» w(z;)-Cost(x;,C) - p;.

According to the algorithm, w(z;) = =, so

n

E, = Z 1 - Cost (x;,C) - p; = ZCost (x4,C) = Cost (X,C).
i=1

i=1 1%

Next, we analyze the variance of Z;. Let V,, = Var(S,,). Recall that the variance of a random
variable is bounded by its second moment, so

1 1
Var (Z;) <E[Z7] = o) - Cost (z;,C)* - p; = — - Cost (z;,C)*.

z Pz

Recall that p,, = min{us(x), 1}. For the case us(z) < 1,

Var (Z;) < usl(x) Cost (2;,C)>.
Recall the definition of s(z),
s(r) = max Cost(z, ') .
cre(rd)k Cost(X,C')
Therefore
Var (Z;) < iMCOSt(%,C)Q = iCost(X, C)Cost(x;,C).
Hence

Z Var (Z;) < Z lCost(X,C)Cost(at:i,C)

ps(zi)<1 ws(zi)<1

1
< Z —Cost(X, C)Cost(z;,C)

i=1

= lCost(X,C)Q.
u

For the case ps(x) > 1, we have p, = 1. Hence
Var (Z;) = E[2?] — (E[Zi])* = Cost(z;,C)? - 1 — Cost(z;,C)? = 0.

Then
> Var(Z) =0.
ps(x;)>1
Thus
Vi, = Z Var (Z;) + Z Var (Z;) < lCost(X, C)%.
ps(an) <1 ps(an>1 a

Next we analyze the range bound R. For the lower bound, 0 < Z; for any ¢ € [n]. For the upper
bound, by the definition of Z;, for the case p(x;) = us(z;),

Zi = ;Cost(asi,(?) < ! COSt(X7 C)

1
———" " Cost(x;,C) = —Cost(X,C).
o@D < uCost(mi7C)COS (24,C) MCOS( C)
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For the case p(z;) = 1,
Z; = Cost(z;,C) < Cost(X,C).

Hence Z; < Cost(X,C) for any i € [n].

Then by Bernstein’s inequality,

(cEn)2/2
Pr(|S, — En| > eBy] < 2exp [ ——orm) /2
rlls > eBa] < eXp( Vo R-2E,/3

<9 £2Cost(X,C)?/8
xp | —
- P %Cost(X, C)? + eCost(X,C)?/6

2
= 2exp —18/2 .
ﬁ+8/6

Since £ € (0, ] and p = "g%k log(nA), there exists v > 0 such that 4 > 1 > &. Hence

2 2 2
PrHSTL*En| >€En] <26Xp 7167/1 SQexp <M€> .
;4—; 4

By |Cohen-Addad et al.| (2023), there exists a collection of center set F that gives a good approx-
imation for any center set, and the guarantee of (1 + ¢)-approximation on F implies the (1 + ¢)-
approximation for any center set.

Lemma C.3 (Lemma 3.2 in (Cohen-Addad et al.,2023)). Let X C [A]¢ and let z > 1 be a constant.
Then there exists a set F of size | F| = (%)O(kd), such that (1 — ¢)Cost(X,C) < Cost(S,C) <
(1 + ¢)Cost(X,C) for any C € F, implies (1 — €)Cost(X,C) < Cost(S,C) < (1 + ¢)Cost(X,C)
for any set C C R with |C| = k.

Denote £ as the event that (1 — €)Cost(X,C) < Cost(S,C) < (1 + €)Cost(X,C) for any C € F.
Notice that (1 — €)Cost(S,C) < Cost(X,C) < (1 4 £)Cost(S,C) is equivalent to |Cost(S,C) —
Cost(X,C)| < eCost(X, C). By taking a union bound, we get

2
Pr[€] >1—|F|-2exp (—'ui>

O(kd) .

Since | F| = (%) nd = "%k log(nA), we get

A ~ydk
Pr[€] > 1 — exp (O(dk log ”?) - 747 log (m)) .

Thus there exists any constant v > 0 such that Pr [£] > 0.99.

Then by [Lemma C.3| with probability at least 0.99, (1 — &)Cost(X,C) < Cost(S,C) < (1 +
£)Cost(X,C) for any set C C R? with |C| = k, which is equivalent to that S is an e-coreset of
O

Next, we prove that under the condition of , S has a size of |S| = O(Clg—]f: log(nA)).

Lemma Cd. Let X = {x1,29,--- ,7,} C [A]? be a (s,1 — ¢)-skewed dataset. There exists a
constant vy > 0, such that for any € € (0, 1], S has a size of |S| = (’)(dg log(nA)) with probability
at least 0.99 if p = 2% log(nA).

g3

Proof. The proof is similar to the proof of We use Bernstein’s inequality to bound the
probability.

Define the random variable

7 _ 1, with probability p,,
* 10, with probability 1 — p,.

17
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Denote S,, = Z?:l Z;. Since Z; describe whether we sample the point z; or not, |S| = S,,. Let
E, =E|[S,]and V,, = Var (S,).

Since p, = min{ps(z), 1}, weget B, = > | E[Z;] < 3" | ps(x;). Varadarajan & Xiao|(2012)
proves that for (k, z)-clustering, Y ., s(z;) = O(k). Hence there exists some constant 7/ > 0,
such that " | s(z;) < 'k. Then E,, < ~'uk.

Since Z; is a Bernoulli random variable, Var (Z;) = p,, (1 — ps,) < pa,. Hence
Vi = ZVar (Zi) < pri < Z/‘S(xi) =7 k.
i=1 i=1 i=1

For the range bound, we have 0 < Z; < 1 for any 7. Then by Bernstein’s inequality,

1, 1)\2
Pr HS” - En| > ’Y/Mk} < 2exp <—Wk)/2>

Vi + R-E,/3
12,212 /9
< 2exp <_w/>
Y uk + o'k /3
"uk
< 2exp <7 K ) .
4
Since p = ng log(nA), there exists v > 0 such that

Pr||S, — E,| > +'uk] < 0.01.
Then with probability at least 0.99,

dk?
|S] = Sn < B+ 7k < 29k = O(—5-log(nA))

O

Finally, we demonstrate that under the assumption of S exhibits significant skewness.
Our proof establishes that the coreset S not only provides an accurate approximation of X, but
also effectively approximates the expensive clusters Nx (¢;). Specifically, we assert that .S offers a
(1 + ¢)-approximation for clusters whose cost exceeds 1555 Cost(X, Copr), with Copr representing
the optimal solution.

Lemma C.5. Let X = {zy,79, - ,2,} C [A]? be a (s,1 — ¢)-skewed dataset. Let Copr =
{c1,¢c2, -+, ci} be the optimal solution. Let Nx (¢;) = {x € X : dist(x,¢;) < dist(z,¢;),j # i}
Assume Nx (c;) is ordered in the way that Cost(Nx (¢;),Copr) > Cost(Nx (c;),Copr) for j > i.
There exists a constant vy > 0, such that for any ¢ € (0,1], if p = % log(nA), with proba-
bility at least 0.99, Cost(Ng(c;),Copr) € (1 £ €)Cost(Nx(c¢;),Copr) for Cost(Nx(¢;),Copr) >
——Cost(X,Copr), where Ng(c;) is the set of points in S that sampled from Nx (c;), and S is the

100k
set returned by CORESETCONSTRUCTION(X, €, n, k, A).

Proof. Let Nx(¢;) = {x1,x9, - ,z,} be a cluster such that Cost(Nx(c;),Copr) >
1557 Cost(X, Copr). For j € [m], we define

7 w(z;) - Cost (z;,Copr), with probability p,,
70, with probability 1 — p,.

Let S; = EafjeXi Zj, E,=E [Sz] and V; = Var (Sl)

By the same proof as the one of [Lemma C.2} we claim that for the case p,; = 1, Var(Z;) = 0, and
for the case p,; = pus(x;),

1
Var (Z]) < ;COS'L(AX7 COPT)COSt(l‘j,COPT).

18
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We also have

m

“ 1
E;, = ZE [Zj] = Z 7COSt(£Uj,COPT)pmj = COSt(NX (Ci), COPT)~
j=1

j=1 Pz,

E; is Cost(Nx (c;),Copr) here, which is different from the expextation in the proof of
It is because we only add the points in Nx (¢;) here, and we add all points in X in the proof of
ILemma C.2|

Similarly, for V;, we have

1
Z Var (Z;) < Z —Cost(X, Copr)Cost(x, Copr)
z;ENXx (ci):ps(x;)<1 2;ENx (ci):ps(x;)<1 K

1
< E *COSt(X, COPT)COSt(ZEj, COPT)
eNx(e) M
Zj x(¢i)

1
= ;COSt(.X7 COPT)COSt(NX (Ci), COPT)7

and
> Var (Z;) = 0.
2;ENx (¢i):ps(x;)<1
Hence
Vp = Z Var (Z;) + Z Var (Z;)
z;ENx (ci):ps(zi)<1 z;ENx (ci):ps(zi)>1

1
< ;COSt(X, COPT)COSt(NX (CZ‘), COPT)~

By the same proof of [Lemma C.2| for the bound of Z;, we have 0 < Z; < Cost(X,Copr) for any
j € [m].

Now we have E,, = Cost(Nx (¢;), Copr), R = Cost(X, Copr), and
1 1
V. < ;COSt(X, COPT)COSt(NX (Ci),CopT) = ;R -E,.
Then by Bernstein’s inequality,

Pr[|S, — E,| > cE,] < 2exp <(€E")2/2)

Vi +R-cE,/3
<9 e2E2/2
o[
=P\ IR B, + cR-E./6
2E, /2
= 2exp —%
(h+8) R

Since £ € (0, 1], there exists v > 0 such that 1 > 1. Then L + £ < 2. Thus

=

Pr HSn — En| > €En] < 2€Xp

A/ EI=
ml\?
==
=
e
N————

Since Cost(Nx(c;),Copr) > 1og5Cost(X,Copr), we get % > ipon- Recall that p =
245 Jog (nA). Then

Pr (S, — En| > cE,] < 2ex e
n T Bl 2 EEn] =SSP Tho0k

_ _nd
= 2exp ( 200 log(nA)> .
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Then there exists some constant v > 0 such that

~vd 1
P —F E, <2 ——l A .
r[|S, n| > eBy] < exp( 200 og (n )) Toon

It means for a cluster Nx(c¢;) that Cost(Nx (c;),Copr) > =-Cost(X, Copr), with probability at

100k
least 1 — we have |Cost(Nx (¢;), Copr) — Cost(Ns(c;),Copr)| < eCost(Nx (¢;), Copr)-

100 ’

Since we have k clusters in total, the number of the clusters Nx(c¢;) that Cost(X;,Copr)
7005 Cost(X, Copr) is at most k. By taking a union bound, we get that |Cost(N x(¢:),Copr)
COSt(Ns(CZ') COPT)| < ECOSt(Nx(Cl) COPT) for any COSt(Nx(Ci),CopT) COSt(X Copr

with probability at least 1 — 155~ > 0.99.

= 100k‘

[:J\_/\I\/

Finally, we complete the proof of

Lemma C.6. Let X be an (s,1 — ¢)-skewed dataset. There exists a constant v > 1, such that for
any € € (0, 1] CORESETCONSTRUCTION returns an e-coreset Sfor X with probability at least

0.97. Furthermore, S is (s,1 — 3¢)-skewed, and has a size ofO( log(nA))

Proof. By|Lemma C.2| [Lemma C.4]|and [Lemma C.5| we get that with probability at least 0.97, .S
is an e-coreset of X, |S| = (’)(dg log (nA)), and |Cost(Nx (¢;),Copr) — Cost(Ng(c;), Copr)| <
eCost(Nx (c;), Copr) for any cluster Nx (c;) that Cost(Nx (c;),Copr) > 1557 Cost(X, Copr)-

What we remain to prove is that S'is a (s, 1 — €)-skewed set.

WLOG, we can order the clusters Nx(¢;) in the way that Cost(Nx(c;),Copr) >
Cost(Nx(c;),Copr) for i < j. We divide {Nx(c;)}7—, into two part, the heavy ones H =
{1,---,m} and the light ones £ = {m+1,--- , k}, such that for any i € H, Cost(Nx(c;),Copr) >
107 Cost(X, Copr), and for any i € L, Cost(Nx (c;), Copr) < 1555 Cost(X, Copr).

Notice that the heavy clusters £ contribute at most —=-Cost(X, Copr). In fact, for the sum of Nx (¢;)

where i € L,

100

; <
;cOst(NX(cz),copT) < ; o OkCost(X Corr)

k
g
< g
= 100k COSt(X, COPT)

ﬁCOSI(X COPT)

We divide the sum of the s most heaviest clusters into two part:

Z Cost NX (Cl) COPT Z Cost NX (Cl) COPT Z COSt(NX (Ci),COPT).
1€[s] 1€[s|NH i€[s|NL

Since X is a (s,1 — ¢)-skewed set,

Z Cost(Nx (¢;),Copr) = Z Cost(Nx(¢;), Copr) — Z Cost(Nx (¢;),Copr)
i€[s]NH i€[s] i€[s]NL

g
> (1 — E)COSt(X, COPT) — mcost(Nx(Ci>7CopT)

101
(1 — 1005) Cost(Nx (¢;), Copr)-
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Since for ¢ € H, |Cost(Nx(c;),Copr) — Cost(Ng(c;i),Copr)] < eCost(Nx(c;),Copr) and
|Cost(X, Copr) — Cost(S, Copr)| < eCost(X, Copr), We get

Z COSt(Ns(Ci),COPT) > (1 — E) Z COSt(Nx(Ci),COPT)
1€[s]NH 1€ NH

101
>(1—¢) <1 - 1005) Cost(X, Copr)

201
> <1 — 1006) COSt(X, COPT)-

‘We also have
COSt(S7 COPT) < (1 + E)COSt(X, COPT).

Since fore € (0, 1], (1 +¢e)(1 —4e) <1 — 281¢, we get
Z COSt(Ns(Ci),COPT) > Z COSt(Ns(Ci),COPT)
1€[s] i€[s]NH
(1 —4e)(1 + ¢)Cost(X, Copr)
(1 — 3€)COSt(S, COPT)-
Therefore S is (s, 1 — 3¢)-skewed. O

>
>

C.2 (14 €)-APPROXIMATE CENTER NET

We will prove|[Lemma 3.3|in this section.

First, we prove that there always exists an e-net in ball B(xz, r) with size 20(4108(r/2))
Lemma C.7. There exists an e-net N in ball B(z,r), such that |N'| = 20(2108(r/)),

Proof. Notice that a
y € B(z,7),

j%-grid is an e-net. In fact, let A be a \Q/E-grid in B(x,r). Then for any

dist(y, V') <

Hence N has size with

d
N = (O(“/a)> — 9O(dlog(r/e)).
2e

Next, we demonstrate the following inequality to aid in constraining the cost distortion.
Lemma C.8. Let 0 < |a| < b, a can be either positive or negative. Then

|(b+ a)® — 0] < 2%[alb*L.

Proof. Fora > 0, since 0 < a < b, we have a’b*~% < ab*~!. Hence

|(b+a)z—bz|:(b+a)z—bzzz(Z.

i=1

)aibz—i, S 2zabz—1.

(3
For a < 0, we get
|(b4+a)* —=b*|=(b+a—a) — (b+a) <2%a|(b+a)*".
Since a < 0, we have b + a < b. Hence
| (b+a)” —b*| < 27|alb* .
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For a center ¢ € [A]¢, denote d,. as the distance dist(S, ¢). We establish the theorem by categorizing
c into three cases based on d.. The cases are: d. = 0, d. > 2M' where M; = log (%) — 2z,
and 0 < d. < 2M1, In the first case, we set ¢’ = c. We show that Cost(x, ¢) = Cost(x, ¢') in this
scenario, implying zero cost distortion. In the second case, we choose ¢’ so that dist(c, ¢’) < E;; . We
show that |Cost(z, ¢) — Cost(z, ¢’)| < $Cost(z, c), which results in a minor cost distortion. In the
third case, we set ¢’ as the closest = € S to c. We prove that |Cost(z, ¢) —Cost(z, ¢’)| < §Cost(z, c)
forz # ¢/, resulting in a small distortion. Furthermore, we establish that for Cost(z, ¢) where z = ¢/,
it is relatively small relative to the total cost. Ultimately, we prove that our selection of ¢’ leads to a
very minor distortion and provides a good approximation of C. We demonstrate the validity of these
three cases sequentially. Initially, for d. = 0, selecting ¢’ = ¢ does not result in cost distortion.

Lemma C.9. For a center ¢ € [A]%, let d. be the distance dist(S, c). Suppose d. = 0. Then there
exists ¢ € T such that Cost(x, c) = Cost(x,c') for any x € S.

Proof. In fact, d. = 0 means ¢ € S. Then we can just let ¢ = ¢, which leads Cost(x,c¢) =
Cost(x,c’) forany x € S. O

Second, given d.. € [2M1, 2M2+1) it is possible to select some ¢’ € T and produce a minor distortion
of the cost in comparison to the initial cost.

Lemma C.10. For a center ¢ € [A]%, let d.. be the distance dist(S, c). Suppose d. € [2M1,2M2+1)
where My = log (£57) — 22 — 2 and My = log A. Then there exists ¢’ € T such that |Cost(z, c) —
Cost(x,c')| < §Cost(x, c) for any x € S.

Proof. Assume d,. € [2*,2"1), where i € [M), My). Define . as the point in S closest to ¢. Given
d. € [2¢,2171), it follows that ¢ € B(z.,2'™"). Because i € [My, M>), an Sg;%-net has been
established in B(:vq, 2”1), and T includes such a net. Consequently, there exists some ¢’ € T such

that dist(c, ¢’) < £2.

For any z € S, let D1 = max{dist(z, ¢), dist(z, )|} and let Dy = min{dist(z, ¢), dist(z, ¢)|}.
Then by|[Lemma C.8| we get

\dist(z, ¢)* — dist(x, ¢)*| = |Di — Dj| < 2°|Dy — Do|Di 1.
By triangle inequality, we get

21’
|D1 — Do| = |dist(z, ¢) — dist(z, /)| < dist(e, ') < ;22.

If Dy = dist(z, ¢’), we have
g2!
22z °
Since d. € [2¢,2+1), for any # € S, dist(z,c) > d. > 2¢. Since ¢ € (0,1], we get 537% <
dist(z, ¢) for any « € S. Then
Dy < dist(z, ¢) + dist(zx, ¢) = 2dist(z, ¢).

Dy = dist(z, ¢) + (dist(x, ¢") — dist(z, ¢)) < dist(x, c) +

Hence .
g2t

22z

|dist(z, ¢)? — dist(z, ¢)?| < 27 =— (2 dist(z, ¢))* " = 2/ dist(x, ¢)* L.

Since 2¢ < dist(z, c), we get
\dist(z, ¢)* — dist(z, ¢')?| < gdist(x, ¢)*.

Since Cost(z, ¢) = w(z) - dist(z, ¢)*, we get
|Cost(x, ¢) — Cost(z, )| = w(z) - |dist(z, c)* — dist(x, ¢')?|

< w(zx) - gdist(os, c)?

= %Cost(x, c).
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Third, for d. < 2™, we can select a certain ¢ € T and produce minimal distortion in cost relative
to the initial cost for x # ¢/, and generate minor distortion in cost relative to the overall cost for
z=_c.

Lemma C.11. For a center ¢ € [A]%, let d.. be the distance dist(S, c). Suppose 0 < d. < 2™,
where My = log (ﬁ) —22—2. Let x.. be the point of S nearest to c. Let ¢’ = x., then Cost(z.,c) <
% - 5=, and |Cost(z, c) — Cost(x, )| < 5Cost(z,c) for any x # x. € S. Furthermore, for any
x € S, # w, is equivalent to dist(z,c) > 2M1,

Proof. Since W > 1and e € (0,1], log (%) < 0. Hence M; < —2. Then d. < 2™ < 1. Since
any x € S has integer coordinates and dist(z., c) = d. < %, for any x # z. € S, dist(z,¢) > § >
2Mit+L - Also, if dist(z, ¢) > 2M1 > dist(z., ¢), we must have & # x.. Hence forany z € S, x # .
is equivalent to dist(z, c) > 2M1.
For z # z. € S, let D1 = max{dist(z, ¢), dist(z, ¢')|} and let Dy = min{dist(z, ¢), dist(z, ¢)|}.
Then by triangle inequality,
|dist(z, ¢) — dist(z, )| < dist(c, ') = dist(z,, c) = d, < 2M*.
Then for D, we have
Dy < dist(z, ¢) + |dist(x, ¢) — dist(z, )| = dist(x, ¢) + d..
>2Mi > ., we get
D, < dist(z, ¢) + dist(z, ¢) = 2dist(z, ¢).

Since dist(z, c) > 1

Then similar to the proof of[Lemma C.10} by |[Lemma C.8| we get
|dist(z, ¢)* — dist(z, ')?| = | D7 — Dj|
< 2°|Dy — Do| D771
< 2%d, (2dist(z, ¢))* " .

Since 21 > d. and M, = log (ﬁ) — 2z — 2, we get
|dist(z, ¢)* — dist(z, ¢/)?| < 22*712Mdist(z, ¢)* !

€
— 273 : z—1 )
—delst(a:, c)

Since dist(z, ¢) > 3, we get
\dist(z, ¢)* — dist(z, ¢')?| < Q—Qﬁdist(x, c)*.
Hence
|Cost(x, ¢) — Cost(z, )| = w(z) - |dist(z, c)* — dist(x, ¢')?|
< w(x)Qﬁﬁdist(x,c)z.

Since k > 1and W > 1, we get

|Cost(z, ¢) — Cost(, )| < w(m)%dist(x, c)F = %Cost(x, c).

For z. = ¢/, since dist(z., ¢) = d. < 2M1, we get
Cost(z,, ¢) = w(z.)dist(z., c)* < w(z,) (2M1)Z .
Since 2M1 < 1 <1, (2M1)Z < 2M1 Hence

9,9 €
Cost(ze, ¢) < w(xe)2M = w(x.)272 QW'

Since W > w(x..), we get

e 1
Cost(ze, ¢) < -2
ost(ze, ¢) 5% 77
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Now we complete the proof of

Lemma C.12. Let S be a weighted set whose maximum weight is at least 1. For € € (0, 1], the set
T returned by CENTERNET satisfies: for any C C [A]? and |C| < k, there exists C' C T* such that

(1 —¢)Cost(S,C) < Cost(S,C") < (14 ¢)Cost(S,C).

Furthermore, T has a size of |T| = | S| - 20(d1os  loglog(*2)),

Proof. We first prove the accuracy claim in the theorem.

For any C = {cy, ¢, -+ ,cx} C [A]4, we will construct C’ C T such that
(1 —&)Cost(S,C) < Cost(S,C") < (1 + &)Cost(S,C).

For any ¢; € C, we select the corresponding ¢ € T' the way we used in[Lemma C.9} [Lemma C.10}
and [Cemnma C.11} Let €' = {¢f. ch. - - ,c}}.

We partition S into three subsets: Sy, S1, and Sy. Here, Sy comprises the points that coincide with
C. The set Sy consists of points whose distance from C is less than 221 but greater than 0. Lastly,
Sy contains points with a distance from C greater than 21,

Let

So = {z € S : dist(z,C) = 0},
S; ={z€S:0<dist(x,C) < 2},
Sy = {x € S :dist(x,C) > 2}

We will analyze the distortion of cost of Sy, S7, and S, one by one.

For & € Sy, since dist(z, C) = 0, there exists some ¢; € C such that d,, = 0. Then by [Lemma C.9
we will select ¢, = x. Hence we get

Cost(z,C’) = Cost(x,C) = 0.

Then
|Cost(Sp,C") — Cost(So,C)| = | Y Cost(z,C’) — Cost(,C)| = 0.

TE€So

For z € Sy, 0 < dist(z,C) < 2M1 means there exists some ¢; € C such that dist(x,c;) =
de, € (0,2M1). By |[Lemma C.11| we will select ¢, = x, which means Cost(z,C’) = 0. Also,

by|Lemma C.11} we have

e 1
Cost(z,C) < — —.
(z,€) < 2k 27
Observe that Cost(S,C) > 5=. Given that |S| > k and each point z € S has integer coordinates,
there must be some center ¢; € C such that at least two distinct points x1 # x5 are assigned to ¢;.
Since x1 # 2, at least one of them is at least % distance away from c;, which results in a cost of at

least 5. Therefore

Cost(z,C) < iCost(S, C).

Since x € S has integer coordinators, for any ¢; € C, there exists at most one x € S such that
dist(z, ¢;) < 2M1. Hence |S; | is at most k. Then

|Cost(Sy,C’) — Cost(Sy,C)| = | > Cost(x,C’) — Cost(z,C)|
€S
3
< —_
< Z 2kCost(S,C)

€Sy

IN

%Cost(S, C).
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For x € Sy, since dist(x,C) > 2M1, we have dist(z,¢;) > 2M1 for any ¢; € C. For ¢; € C that
de, > 21, by|Lemma C.10}

Cost(z, ¢;) — Cost(z, c})| < < Cost x,¢;).
¢ 2
For ¢; € C that d.., < 2™ since dist(z, ¢;) > 2M1, by |Lemma C.11| we also have
Cost(z, ¢;) — Cost(z, c})| < < Cost x,c;).
¢ 2
Hence |Cost(z, ¢;) — Cost(z, ¢;)| < §Cost(z, ¢;) is true for any ¢; € C. Then we can claim that
|Cost(z,C) — Cost(z,C")| < %Cost(x,C)

for any x € Ss.

Notice that the above claim is non-trivial because it is possible that x is assigned to ¢; € C, but is
assigned to c;» € (' fori # j. We may assume that x is assigned to ¢; € C, and is assigned to
c} € C’, where i and j can be either the same, or not the same. Since z is assigned to ¢; € C, and is
assigned to ¢ € C’, we have Cost(z, ¢;) > Cost(w, ¢;), and Cost(z, c;) > Cost(z, ;). Hence

Cost(z,C’) = Cost(x,c}) > (1 — %)Cost(m,cj)
>(1- %)Cost(m, )= (1— g)Cost(x,C),
and
Cost(z,C") = Cost(x cj) < Cost(x, c;)
<(1+ )Cost(a: ¢)=(1+ g)Cost(x,C).
Hence we get
|Cost(x,C") — Cost(x,C)| < %Cost(axC)7
for any x € S5. Then
|Cost(Sa,C’) — Cost(S2,C)| = | > Cost(x,C’) — Cost(z,C)|

TESy

< Z gCOSt(JE,C).

€S2

Since Sy C S, we get

|Cost(Ss, C’) — Cost(Sa,C)| < 3 =Cost(,C) = —Cost(5,C).
zeS 2 2

Then combining the bound of |Cost(S;,C’) — Cost(.S;,C)|, we get
2
|Cost(S,C") — Cost(S,C)| = | > (Cost(S;,C") — Cost(S;,C)) |
1=0

<0+ §Cost(S,C) + %Cost(S,C)

= eCost(S5,C).
Hence we complete our proof that C' C T gives an (1 + ¢)-approximation for C.
Subsequently, we shall demonstrate the assertion regarding the net size within the theorem.

By the CENTERNET(S, ¢, A), we know

TSU(ZLVj UN1>

i=M, z€S
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Since N; ;, is an 525 -net in B(z,r), by[Cemma C.7}
NG| = 20010 (m557))  gotatos(t)),
Hence

IT| < |S|+ (My — My) - || - 20(@1o8(2))
=1S] + (log A —log (ﬁ) +22+42)-19|- 9O(dlog( L))

= ‘S|20(d10g(%)10g10g(%))

By CORESETCONSTRUCTION(X, €, n, k, A), we know that

ax{—— 1.

wex s ()

Notice that s(z) > 5 forany z € X C [A]“. In fact, we can select C = {c1,ca,- - - , i} such that
l|cill = 100v/dA for any ¢; € C. By the definition of sensitivity,
Cost(x,C') _ Cost(z,C)
max > .
cre®d)y* Cost(X,C") — Cost(X,C)

s(xz) =

Since = € [A]?, we have dist(z, ¢;) € [99v/dA, 101v/dA]. Hence

99v/dA

1
s(x) > —— —_—
()—n.1o1\/&A 2n

>

Hence we have W < 27" Then
|T| _ ‘S|20(dlog(%)loglog(%))'
O

Currently, we have (S, T) where |S| = (’j(deﬁ) and |T| = 90(dlog(¢)) According to
and|[Lemma 3.3 an optimal solution for (S, T) is a (1 + 2¢)-approximate solution for X . Therefore,
using a brute force search, we can achieve a (1 4 2¢)-approximation within a running time of
9O(dklog( L)) Nevertheless, this is not a PTAS for & since the running time depends on 2°(**). For
heavily skewed datasets, the running time can be further optimized. In[Appendix D|and[Appendix E]
we will present a PTAS utilizing this heavily skewed property.

D LOCAL SEARCH ADAPTED FOR HEAVILY SKEWED SET

We will prove[Lemma 4.1|in[Appendix D.I|and [Lemma 4.2|in [Appendix D.2}

D.1 HEAVY SKEW LOCAL SEARCH FOR k-MEDIAN

For brevity, we will consider .S as the data set and 7" as a finite set of potential centers, with S
being a (s,1 — €)-skewed data set. We denote C = {c1,¢a,- -+, ci} as the optimal solution within
the net 7', and P as the heuristic solution produced by the algorithm. We assume Cost (N (¢;)) >
Cost (N(c;)) for ¢ < j, where N(c;) = {x € S : Cost(z,¢;) < Cost(x,c;j),j # i}. We define
Cg = {c1,¢a, -+ ,cs} as the expensive centers and Cc = C\Cg as the cheap centers. For U C C,
let N(U) = {x € S : Cost(z,U) < Cost(x,C\U)} denote the points assigned to If in the optimal
solution, and let N*(Uf) = {z € S : Cost(z,U) < Cost(x, P\U)} for U C P, representing
the points allocated to I/ in the heuristic solution P. We also denote O,, = dist(x,C) and A, =
dist(z, P).

We will establisiCemma 4.1] by demonstrating that HEAVYSKEWLOCALSEARCH successfully ap-
proximates N (C¢).
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We will employ the general framework for the analysis of local search algorithms as previously
utilized by |Arya et al,| (2001); Kanungo et al.| (2002); |Gupta & Tangwongsan| (2008), but with a
more nuanced analysis. Within this framework, we construct a series of swaps between the heuristic
centers and the optimal centers. Given that the set of heuristic centers represents a local optimum,
the cost will increase after each swap. Conversely, by swapping heuristic centers to optimal centers,
we can bound the cost distortion as y1 Y O, — v2 > A, if the swapping centers are chosen with
precision. Consequently, we can achieve 0 < 1 > O, — 2 > A, for certain swaps. Ultimately, by
constructing multiple such swaps and aggregating these inequalities, we derive the desired result.

Before conducting further analysis, we first present some notations and definitions to facilitate the
examination of the local search algorithm. We define an optimal center ¢ € C¢ as being captured by
a heuristic center b € B if b is the closest center to ¢ within B. Ties are resolved arbitrarily to ensure
that each ¢ € Cc is captured by exactly one heuristic center. We say that a heuristic center b has a
degree of m if it captures exactly m optimal centers in C¢.

We define b, as the heuristic center in B closest to ¢ € C, b, as the heuristic center in I3 closest to
x € S, ¢, as the optimal center in C closest to x, and ¢/, as the optimal center in C¢ closest to z.

We will examine the interchange between the center sets F and R. Initially, we establish that the
distance between x and the new centers can be constrained by O, and A, provided that F and R
satisfy the following condition.

Lemma D.1. Suppose F C Cc, R C B, and | F| = |R|. If the heuristic centers in R do not capture
any optimal centers in Cc\F, for x € (N*(R)\N(F)) N N(Cc),

dist(z, P\RUF) < 20, + A,.
Proof. Since xz ¢ N(F)andx € N(C¢), ¢, ¢ F. By the condition, the centers in R do not capture
cl» 50 b € B\R C P\R U F. Hence

dist(z, P\R U F) < dist(z, bc: ).

By triangle inequality,
dist(x, b ) < dist(z, ¢,) 4 dist(c],, ber ).

Since b, is the nearest center to ¢, dist(c},, b., ) < dist(c],, b, ), which leads
dist(, b, ) < dist(z, ¢,) + dist(c},, bs).
By triangle inequality,
dist(x, b, ) < dist(x, ¢,) + dist(c},, 2) + dist(z, b,
= 2dist(x, ) + dist(z, by).
Since O, = dist(z, ¢,,) and A, = dist(z, b,), it leads
dist(z, P\RU F) <20, + A,.
O

Next, we design a collection of partition pairs {(F;, R;)} that satisfy the requirement that the centers
within R; do not capture any center beyond F;.

Lemma D.2. Assume B is the heuristic center set and Cc is the cheap optimal center set. There
exists partition pair {(F;, R;)}._, that meets the following condition:

» {F.} is a partition of Cc. In other words, F; are disjoint from each other, and Cc =
Ut F.

* {R:} is a partition of B.
o |Fi| = | R4 fori € [1].

* Centers in R; do not capture any center c ¢ F; for i € [l].
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Proof. Recall that the degree of a heuristic center b is the number of optimal centers in Cc that is
captured by b. Also, every ¢ € C¢ is captured by exactly one heuristic center.

WOLG, we can denote B~g = {b1,---,b;} as the set of all the centers with positive degree, and
Bo = {bi+1,- -+ ,bk—s} as the set of centers with degree zero.

For any b; € Bs(, we construct F; as the optimal centers in C¢c captured by b;. Since every center
in C¢ is captured by exactly 1 heuristic center by definition, {F;} is a partition of C¢.

We construct R; as the union of b; and degb; — 1 centers with degree zero. We put centers of 5
into R; in such way that every center in By belongs to exactly one of {R;}. Such construction is
valid by the following discussion:

Since | F;| = deg b;, it leads that |Cc| = 22:1 |Fi| = 22:1 degb;. Since |B| = |Cc| = k — s and
|Bso| = 1, it leads that Zizl(deg b — 1) = |B| — 1 = |B| — |Bso|. It means we need |B| — |Bso|
zero degree centers for such construction. On the other hand, we have exact |By| = |B| — [B>o|
degree zero centers. Hence we can assign every zero degree center to exact one R;.

Since such construction of {R;} is valid, by the construction, {R;} is a partition of 5. Also, by the
construction, |R;| = degb; = | F;|.

We have proven the first three conditions. For the last one, notice that b; only captures the centers in
Fi, and every other centers in R; has 0 degree, which means they capture no centers. Hence R; do
not capture any center ¢ ¢ F;. O

We claim that any ¢-swapping holds the following inequality if R do not capture F.
Lemma D.3. Let (F,R) be a pairing that | F| = |R| < t and R don’t capture F, then

€N (F) N*(R)NN(Cg) N*(R)NN(Cc)

Proof. Since |F| < t, the swapping between F and R is a t-swapping. Since P returned by
HEAVYSKEWLOCALSEARCHis a local optimum for ¢-swapping, the total cost of S can only in-
crease, which means

0 < Cost(S, P\R U F) — Cost(S, P).

Now we analyze the bound of Cost(S, P\R U F) — Cost(S, P). For the sake of brevity, we will
denote Ay = Cost(U, P\R U F) — Cost(U,P) for any U C S in this proof. We also denote
Ay = Apyy.

Notice that A, can be positive only if x € N*(R). Since for z ¢ N*(R), the center in P nearest to
 still belongs to P\R U F, which means that the new cost of « can only decrease. It means A, < 0
for x ¢ N*(R). By splitting S into N*(R) and S\N*(R), we can express Ag in the following
method:

0 <Ag=AN<Rr)+As\N*(R)-

Since N(F)\N*(R) C S\N*(R) and A, < 0forz ¢ N*(R),
0 < An=(r) + ANFN\N=(R)-
By splitting N*(R) into N*(R) N N(F) and N*(R)\N(F), we get

= AN+ R\NF) T ANF)-

For z € N(F), Cost(z, P\RUF) < O, because ¢, € F C P\RUF. Hence A, < O, — A,.
Adding up all z € N(F), then

Anr < Z (Or — Az).

zEN(F)
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For z+ € N*(R)\N(F), we split N*(R)\N(F) into (N*(R)\N(F)) N N(Cg) and
(N*(R)\N(F)) N N (Ce).

For z € (N*(R)\N(F)) N N(Cg), we claim that Cost(z, P\R U F) < O,. In fact, ¢, € Cg
because z € N(Cg). By the HEAVYSKEWLOCALSEARCH, P = Cg U B, which means ¢, € P. On

the other hand, since R C B = P\Cg, R does not contain any center of Cg. Since ¢, € P and we
do not remove it after swapping, ¢, is still contained in P\ R U F. Hence Cost(z, P\RUF) < O,..

Since F C C¢, N(F) is disjoint from N(Cg). Hence (N*(R)\N(F)) N N(Cg) = N*(R) N
N(Cg). It means
AN+ R\NF)AN(Cr) = AN*(R)AN(CR)-
Summing over all z € N*(R) N N(Cg), we get
AN«R)AN(Cr) < Z (Op — Az).
2€N*(R)NN(Cr)

Hence
Aw-m\NENen S Y (0a—Ay).
2€N*(R)NN(Cx)

Forz € (N*(R)\N(F))NN(C¢), we can apply because R do not capture any optimal
centers in Cc\F. Hence

A, = dist(z, P\R U F) — A, < (20, + A,) — A, = 20,.
Summing over all z € (N*(R)\N(F)) N N(C¢), we get

AW+ R\NFNN(Ce) < > 20,.
2€(N*(R)\N(F)NN(Ce)

Z 20, < Z 20,.

2€(N*(R)\N(F))NN(Cc) 2EN*(R)NN(Ce)

Since O, > 0,

Hence

An-m\NE)Nee) < Y, 20.
zEN*(R)NN(Co)

Combining all the inequalities above, we get
0= Ane) + AN (R\N(F)
= AN + AN R\NE)NN () T AN (R)\N(F)AN(Co)
< > (Ow—A)+ Y (Os—A)+ Y. 20,
xEN(F) N*(R)NN(Cg) N*(R)NN(Cc)
O

The previous lemma only holds for ¢-swapping, in other words,
following inequality for the case |F| = |R| > t.

Lemma D.4. [f |F| = |R| > t, R has exactly one positive degree center, and R do not capture any
center outside F, the following inequality holds:

O<Z(OI—AI)+(1+1) Yo (Oa—A)+ D) 20,

2EN(F) N*(R)NN(Cg) N*(R)NN(Cc)

F| = |R| < t. We also claim the

Proof. Since R has exactly one positive degree center, we just denote it as b. Consider a swap
(¢,t) € F x (R\{b}). Since b’ € R\{b}, it is a zero degree center, which means it captures
no centers. Also, [{c}| = |{b'}| = 1 < ¢. It means the swapping pair meets the condition of

[Cemma D-3] which leads
0< > (Oo=A)+ > (O.—A)+ Y 20,

2EN(c) N*(b)AN (C) N*(¥)NN(Cc)

29



Under review as a conference paper at ICLR 2025

Consider all the possible combination of (¢,t’) € F x (R\{b}). Denote |F| = m. There are
m(m — 1) such pairs. Every center ¢ € F appears exactly m — 1 times in these pairs, and every
center b’ € R\{b} appears exactly m times. Every pair corresponds to one such inequality. We add
all these inequalities together, and get

0<(m=1) Y (O,—Ay)+m- > (0.—A,)

TEN(F) N*(R)NN(Cg)

+m- Z 20,

N*(R)NN(Cc)

which is equivalent to

0< Y (0.—As)+7 Yoo (Oa—A)+ Y 20.],

zeN(F) N*(R)NN(Cg) N*(R)NN(Ce)
where v = .

Since |F| =m > t,

1

t=1 >1+4+ -

+ -1~ + t
On the other hand, we demonstrated in the proof of [Cemma D.3] that the second and thlrd terms
in the above inequality are non-negative. Therefore, substituting v = ™ with 1 + 3 L does not
diminish the right-hand side, leading to the desired result. O

Now we have:
Lemma D.5.

> Ax<(3+§> > Oz+<1+1> > (0:—4).

fI:GN(Cc) .’I:EN(Cc) %GN(CE)

Proof. According to | there is a partition pair {(F;, R;)}._, that satisfies the four condi-

tions specified. For any pair ]—"L7 R ;) within this set, if | F;| < ¢,[L mma D.3|can be utilized, which
results
TEN(F;) N*(R;)NN(Cx) N*(R;)NN(Ce)

Since we have shown the second and third term is non-negative,

0< Z (Om—Ax)+’Vt Z (O:L’_Az)"‘ Z 20, |,

QTEN(]:,L) N*(R,‘,)QN(CE) N*(Ri)ﬂN(Cc)

where v, =1+ 1.
For any pair (F;, R;) that | F;| > ¢, we can apply and get

0< > (On—Ax)+m o (0 -A)+ D 20,

TN (Fi) N*(Ri)NN(Cg) N*(R:)NN(Co)

Each pair corresponds to an analogous inequality. Summing these inequalities from (F7,R1) to
(F1,R:), and considering that every optimal center in Cc and every heuristic center in B appears
exactly once, we obtain

0< Y (00— 4) +7 Yo (O-A)+ D> 20,

zEN(Ce) N*(B)NN(Cg) N*(B)NN(Ce)
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We have shown that O, — A, > 0 for z € N(Cg) in the proof of Hence

> (0x—A4A) < ) (0. — Ay).

N*(B)NN(Cg) N(Cg)
Since O, is non-negative,
> 0.5 00,
N*(B)NN(Cc) N(Ce)

Thus
0< > DAv | D (0a—A)+ Y 20, |,
wEN(Cc) N(Cg) N(Cc)
where v, = 1+ §.
Simplifying the above inequality, we get

>oo4< > Ox+(1+%) > (0. -4+ > 20,

TEN(Co) z€N(Ce) N(Cg) N(Cc)

:<3+§> ) 0w+<1+1> Yo (0. 4.

zEN(Co) zEN(CE)

In conclusion, we demonstrate

Lemma D.6. Let S be an (s,1 — €)-skewed dataset, T be the potential center set, and A = Cp,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
v > 1, such that for any € € (0, 3], HEAVYSKEWLOCALSEARCH returns a (1 + £)-approximation
P for the (k,1)-clustering for S and T.

Proof By , there exists ¥ > 0 such that for s > 7 (é)ﬁ, Cost(N(Cc),C) <
Cost(5,C).
100

There also exists v > 0 such that for ¢ > g % < 15—0.
By[Lemma D.5|
Cost(S,P) =D A,= > At Y. A

€S z€N(Cc) zeN(Cg)
1
<<3+t) > Oz+<1+t> Yo Oe—A)+ Y A
xEN(Cc) :CEN(CE) :CEN(CE)
2 1 1
zeN(Co) zEN(Cp)

Since A, > 0,

Cost(S,P) < Z O—|—<1+ ) Z O,.

zEN(Co) zEN(CE)

100°
Cost(S,P) <5 3 Oﬁ( +ﬁ) > 0.
zeN(Co) zEN(Ck)
— 5Cost(N(Co),C) + (1 + ﬁ) Cost(N(Cp),C).
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Since Cost(N(Cc),C) < 155Cost(S, C) and Cost(N(Cg),C) < Cost(S, P),

€ 5
< — J—
Cost(S,P) < 20Cos.t(S,C) + (1 + 100) Cost(S5,C)

(1 + 1%) Cost(S, C).

IN

Hence we complete our proof. [

D.2 HEAVY SKEW LOCAL SEARCH FOR (k, z)-CLUSTERING

Our guarantee of the 1 + e-approximation can also generate to general (k, z)-clustering. The frame-
work is the same, but the cost function for the (k, z)-clustering is dist(x, ¢)* rather than dist(z, ¢)
for the k-median case. The difference causes the cost function to lose its additivity, which requires
a more subtle analysis for the distortion of cost. Fortunately, despite the loss of additivity, with the
help of a generalized triangle inequality and stricter chosen parameters, an 1 + c-approximation is
still guaranteed.

For the sake of brevity, let us consider S to be a (s, 1 — £*T!)-skewed data set. The assumptions
and notations for T', P, C, Cg, Cc, N(c;), N(U), N*(U), O,, and A, remain identical to those in

Appendix D.1
Observe that for the k-median problem, we require that S be (s, 1 — ¢)-skewed, whereas for general

(k, z)-clustering, we stipulate that S be (s,1 — e*T1)-skewed. This implies a greater degree of
skewness is necessary for general (k, z)-clustering to offset the loss of additivity.

We first introduce the generalized triangle inequality by [Sohler & Woodruff (2018)).

Lemma D.7 (Claim 5 in (Sohler & Woodruff, 2018)). Suppose z > 1, x,y > 0, and € € (0, 1].
Then

22\ ?
(x+y)z§(1+€)-mz+(l+€> -y~

Recall that O, = dist(z,C) and A, = dist(x, P), thus our cost function in the (k, z)-clustering
scenario becomes Cost(x,C) = OZ and Cost(z, P) = AZ.

Notice that still holds for (k, z)-clustering, because it only analyzes the distance in its
proof. (k, z)-clustering only has a different cost function from k-median, so it will not affect the

validity of Notice that[Lemma D.2]also holds because its analysis does not depend on

cost function.

However, [Lemma D.3| and [Lemma D.4| no longer holds because we use the fact that 0 <
Cost(S, P\R U F) — Cost(S,P) for a t-swapping. We will give the adapted version of these two
lemmas in the (k, z)-clustering case.

For the sake of brevity, we denote f = N*(R)N N(Cg) and V = N*(R)N N(C¢). A, is still the
distortion of cost as we used in the previous subsection.

Lemma D.8. Let (F,R) be a pairing that | F| = |R| < t and R do not capture F. For ¢ € (0, 3],

0< Y (0i-A)+ (0 -A)+ Y (520; + 130.4;) ,
u 2

zEN(F)

where £ is a constant.

Proof. Ttis still true in (k, z)-clustering that
0 < Cost(S,P\RU F) — Cost(S, P)

and
Cost(S, PA\R U F) — Cost(S,P) < AN(]-‘) + AM\N(f) + AV\N(F).

However, we need a new bound for Ay (r), A\ v (7) and Ay y(F) this time.
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Forz € N(F), ¢, € P\RU F, so Cost(z, P\R UF) < O,. Hence
Anry = Z (Cost(xz, P\R U F) — Cost(z, P))

TEN(F)

<ZOZAZ

zEN(F)

For x € U\N(F), ¢, € Cp C P\R U F, so Cost(z, P\R U F) < O,. Hence

ApN(F) = Z (Cost(z, P\R U F) — Cost(z, P))
z€U\N(F)

< Y (0i- 4.

zEU\N (F)
Since ¢, € P, A, < O,. Thus we further get

Mpner) < Y (07 = 43).
zeU

For & € V\N(F), by [Emma D]}

dist(z, P\RU F) < 20, + A,.

Hence
ApnF = Y. (Cost(x,P\RUF) — Cost(z, P))
zEV\N(F)
< Y (20, + A - A7),
z€V\N(F)
Then
Ap\n(F) = z (Cost(z, P\R U F) — Cost(z, P))
z€V\N(F)
< Z ((2Ox + Aa:)z - A;)
TEV\N(F)

Since ((20, + Az)* — AZ) > 0, we get

Ay < (202 + Ag)* — A2).

eV
Since £ € (0, 3], by|Lemma D.7|

. 200z " .
(20, + Ay)* < (1 + ﬁ) AL + (1 + - ) -(20,)
€

RGP
(+100 w+6z

OZ.
Hence
Ap\nF) < Z ( O: + 100AZ>

Summing the above result and we get

0< > (0:-AD+ Zoz A?) +Z( OZ+1OOAZ>

zEN(F)
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= |R| > t, R has exactly one positive degree center, and R don’t capture any

center outsm’e F, fore € (0, ] the following inequality holds:
z z 6 z
< — = _
0< S (05— A+ (Z(ox )+ ¥ (Lore
zEN(F) u v

where v, = 1+ %

Proof. The proof is just a repetition of the proof of The only difference is that we
substitute [Lemma D.3| with [Lemma D.8l O

Lemma D.10. Fore € (0, 1], there exists &' > 0 such that

S oa<(e5) (Y o Y 04

xEN(Cc) xEN(Cc) wEN(CE)

where 7, = 1+ %

Proof. We repeat the proof of [Lemma D.5] but substitute [Cemma D.3| and [Cemma D.4] with
|[Lemma D.8|and [Lemma D.9] We get

0< > (OF=AD+v | > (0;-A0)+ ) (fo +100AZ> :
)

TzEN(F) N(Cg) N(Cc

where vy = 1 + %

Since €€ (0, %] and ~; > 1, there exists £’ > 0 such that 76'—25/ >1+ 1%5 Simplifying the above
inequality, we get

6 z ’Y gl z z z
(1_m> Z Aa:S ;T Z O;c+'7t Z (Ogc_Ax)7
z€N(Cc) zEN(Cc) zEN(Cg)
where v, =1+ 1.

Since £ € (0, 3],

(1—i)71—1+ c <14
100/ 100—e = 50
Hence we complete the proof. O

Finally, we will demonstrate

1
Proof. By , there exists v > 0 such that for s > ~(2)7~, Cost(N(Cc),C) <

z+1
Tooe Cost(S,C).

There also exists v > 0 such that for ¢ > %, % < —.

0
By |[Cemma D10}

Cost(S,P)= > Ai+ > A

z€N(Cc) z€N(Cg)

S Ot Y (0i-AD+ Y AL

z€N(Ce) zEN(Cg) zEN(Cg)

IN

where 7. = 1+ &5.
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Since Cost(N(C¢),C) < Cost(S C)and 3 < =5

1005/ 100°
PYE’Vté- Z Oz _ '75'7t§ St(N(CC),C)
zeN(Ce)
/ €z+1
S 100§,C08t(5 ,C)
< ’Ieo“(Y)t - g - Cost(S,C).
Sincev. =14 &, %=1+ 1,1 < 155, and e € (0, 3], we get

IN

7%’5 S 0i= (14 55) (14 155) o5 Cos(S.0)

€
%Cost(S, C).

IN

Hence

Cost(S,P)S%Cost(S,C)Jr’yE'yt Y-+ Y A
€N (Ck) z€N(Cg)

For 7.7, since € € (0, 1], it holds that

=(1+55) 1+ 15)
Vet (*50 * 100

€ g2

=14 - 4+ =
+50+100+5000

<1+ —
+10

Hence

(+5) S 0-an+ ¥ a<(i+S) Y o

zEN(CE) z€N(Cg) 2eN(Cg)

Thus we get

Cost(S,P) < %Cost(S,C) + (1 + —) Z (04

IEN CE)

€
= 2—5Cost(S,C) + (1 + TO) Cost(N(Cg),C).

Since N(Cg) C S, Cost(N(Cg),C) < Cost(5,C), which leads
Cost(S,P) < (14 ¢€) Cost(S,C).

Hence we complete our proof.

E PTAS FOR HEAVILY SKEWED SET

E.1 FAST LOCAL SEARCH

In this subsection, we will prove

Lemma E.1. Let S be a dataset of n points, T be the potential center set, and A = Cg, which is
the set of centers of the s most high-cost clusters in optimal solution. There exists a constant v > 1,

such that for any € € (0, ], FASTLOCALSEARCH ferminates within (’)(%2) swaps, and returns a
(1 + 2¢)-approximation P, as long as S is (s,1 — ¢**1)-skewed. Furthermore, for z = 1, S only

needs to be (s,1 — ¢)-skewed.
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At first glance, this theorem may appear trivial because [Cemma 4.1 guarantees a locally optimal so-
lution P which is a (1 + §)-approximation of the optimal solution. We might then assume that our
result P from FASTLOCALSEARCH yields a P such that Cost(S, P) < (1 — +5z) ~Cost(S,P') <
(1 + £)Cost(S,C). However, this assumption is incorrect because we can only ensure that for
any P” with no more than ¢ different centers from P, the condition (1 — %) Cost(S,P) <
Cost(S,P”) holds. We cannot guarantee that the locally optimal solution P’ returned by
HEAVYSKEWLOCALSEARCH is obtainable by just a single swap from our result P.

To establish [Lemma 5.1} it is necessary to replicate the proof framework used in [Lemma 4.1
and [Lemma 4.2] Specifically, we will demonstrate a variation of [Lemma D.3| [Lemma D.9|
and [Lemma D.5| The proofs of the corresponding variations for [Lemma D.8| [Lemma D.9] and
Lemma D.10| will be omitted due to their similarity to the k-median case. The notation introduced
m will be maintained throughout.

Lemma E.2. Let (F,R) be a pairing that |F| = |R| < t and R don’t capture F, then
€

5 Cost(8,C) < D (0r=Ad)+ > (00— Ax) + Y20,
u %

TEN(F)

Proof. We prove Cemma D.3|by these two fact:
0 < Cost(S,P\R U F) — Cost(S,P)
and
Cost(S, P\RUF) — Cost(S,P) < Y (00— Ax)+ Y (Op — Az) + > 20,
©EN(F) u v

The second inequality is still true because we do not use the fact that P is a local optimum to prove
the second inequality.

For the first inequality, it is no longer true because our P may not be the local optimum. However,
we have

Cost(S, P\RUF) > (1 — %)Cost(s, P)

because we only terminate local search if there does not exist P’ such that Cost(S,P’) < (1 —
7z )Cost(S, P).

Since I > Cost(S, P), we get
Cost(S, P\R U F) — Cost(S,P) > —iCost(S7 P)

k2
5
=2
5
> —ﬁCost(S, C)

Thus

€
—zCost(S,0) < D7 (00— Ax) + ) (Or — Ar) + D20,
zEN(F) u
O

Lemma E.3. If |F| = |R| > t, R has exactly one positive degree center, and R don’t capture any
center outside F, the following inequality holds:

_%COSI(S,C) < D (0.—Ay)+ (1 + 1) (Z(om — A+ ;20x> .

TEN(F) u

Proof. We just repeat the proof of but substitute [Lemma E.2|with[Lemma D.3] We use
Lemma E.2m(m — 1) times and add them together, where m = |F|. Hence we get

1Cost(S,C) <m Y (O — Az) + (m—1) (Z(oz A+ Y 20x> ,
%

zEN(F) u
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where 7 = —w
We divide m on both sides. Since we have proved that =1 < 1 4+ 1 and

(> ou(Or = Ap) +3°,,20,) > 0, we get
Teost(5,0) < Y (0n —Au) + (1 + 1) (Z(om — A+ Zzox> .
m zEN(F) u V

Since m = | F| < k, we have

Hence

—%Cost(S,C) < ) (0.4 + (1 + 1) (Z(om — A,) + ZVIQO:”) .

TEN(F) u

Lemma E.4.
—eCost(S,C)+ D> As<m D, Outm Y, (0.—A4A),

IEN Cc) J?EN Cc) mEN(CE)

where 1 =3+%, and’ygzl—i—;.

Proof. We tepeat_the proof of [Cemma D.3| but substitute |Lemma E.2| and [Lemma E.3| with
[Lemma D.3[and [Lemma D.4] Since we have the partition pair {(F;,R;)}._,, and we take the
inequality for each pair and add them together, we get

—TlCostSC Z A <m Z Oz + v Z (O, — A,).

’EEN(Cc) ’EGN(Cc) ’EGN(CE)

Since {(F;, Ri)}._, is a partition of (Cc, B), we have | < k. Then we get
—eCost(S,C) + Z A, <m Z Oz + 2 Z (O —Ay).

xzeN(Ce) xeN(Ce) 2EN(CE)

Finally, we demonstrate

Proof. For the portion of the theorem concerned with accuracy, the argument is simply a reitera-
tion of In the case of the k-median, the framework remains the same, but[Cemma E.2}
[Cemma E.3| and [Cemma E.4] are substituted with [Cemma D.3| [Cemma D.4] and [Cemma D.3] re-
spectively.

Then we get
—eCost(S,C) + Cost(S, P) < (1 +¢€)(S,C),
which is equivalent to
Cost(S,P) < (1 +2¢)(S,C).

The proof for the (k, z)-clustering scenario is excluded since it closely resembles that of the k-
median case.

Then, we will prove the portion of the theorem concerned with run time. The case for |S| < k is

just trivial. For |S| > k, we have shown in the proof of that Cost(S,C) > 5. We begin

our local search with Cost(S,. AU B) = T. Since we improve the cost of our center set with a factor

at least 1 — 7=, we can swap for at most r rounds, where
1 log (52 k>
r=log__ - —== 7g(2 FE) =0(—).
re? 221 log (1 — W) €
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E.2 DISCRETE HEAVY SKEW AND CONTINUOUS HEAVY SKEW

Finally, we will prove [Theorem 5.2|and [Theorem 5.3}

Theorem E.S5. Let X be a set of n data points, and let T be a set of potential centers such that
|T| = poly(n). Given any ¢ > 0, DISCRETEHEAVYSKEW returns a (1 + €)-approximation P in
(nk/e)CCt1e) time for discrete (k, z)-clustering as long as X is (s,1 — e*T')-skewed. Further-
more, for z = 1, X only needs to be (s,1 — ¢)-skewed.

Proof. If | X| = k and X C T, the problem is trivial since the optimal solution is just X, and the
optimal cost is just 0.

Otherwise, we will run FASTLOCALSEARCH(X, T, 5, A, k, s) for all possible A, and return the one
with cheapest cost. By|Lemma 5.1} we know that FASTLOCALSEARCH(X, T, §,Cp, k, s) returns a
set P’ with Cost(S, P’') < (T + ¢) Cost(.5,C), where C is the optimal solution for the clustering on
T. Hence, we prove the accuracy claim of the theorem.

If | X| = kand X C T, then naturally, the running time is polynomial.

Otherwise, we run FASTLOCALSEARCH(X, T', 5, A, k, s) for all possible A. Since A € T and

|T| = poly(n), we will repeat FASTLOCALSEARCH(X, T, £, A, k, 5) for 20(+1°6™) times.

For every time we run FASTLOCALSEARCH(X, T, 5, A, k, s), by [Lemma 5.1} we will terminate
k2

after no more than O(*-) swaps.

For every swap, we need to check whether the exists a swap meets our condition. For the worst case,

we may check every possible swapping. Since we swap for ¢ centers, it takes |T'|* = 90(z logn)
running time.

s+%)logn) . ﬁ _
€

By multiplying the three terms together, we get the total run time 20((
(nk/g)O(erl/a)_

For Zipfian data set with exponent p > 1, by [Lemma 2.3} s = O(1/e+1/(P=1)) Therefore, we
complete our proof. O

Next, we establish [Theorem 3.3}

Theorem E.6. Let X be a set of n data points. Given any € > 0, CONTINUOUSHEAVYSKEW re-
turns a (14 €)-approximation P in O(nk) + (klogn)°+1/9) time for continuous (k, z)-clustering
with probability at least 0.97, as long as X is (s,1 — e*T1)-skewed. Furthermore, for z = 1, X
only needs to be (s,1 — ¢)-skewed.

Proof. If | X| = k, the problem is trivial, as the optimal solution is just X and the optimal cost is
just 0.

In the case | X| > k, we will execute CORESETCONSTRUCTION(X, &,7,k, A) to form a coreset

S. According to |Lemma 3.2, when p > %’“ log(nA), there is at least a 0.97 probability that S
is an g-coreset of X, and S'is (s,1 — ¢)-skewed. Subsequently, we run CENTERNET(S, {,A)
to obtain 7. By the optimal solution C* for discrete (k, z)-clustering on 7" serves as
a (1 + i)—approximation of the optimal solution C for continuous (k, z)-clustering on S. Finally,
we carry out DISCRETEHEAVYSKEW (X, T', §,k, s) to produce a (1 + §)-approximation for the

)40
discrete (k, z)-clustering on T'. Therefore

Cost(X,P) <

. (1 + Z) Cost(S,C*)

1
1+ 2)2 Cost(X,C)

)
)
) : (1 + §)2Cost(5,0)
Z
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For running time, Bhattacharya et al| (2023) shows that sensitivity sampling can be completed in
O(nk) time.

For the construction of T, the run time is just the size of |T'|. By IT| = |S] -
90(dlog ; loglog(*2)) — (| Jog n)o(dpolylog(l/E))_

Then we run FASTLOCALSEARCH(X,T, %, A, k,s) for all possible A. Since A € T,
we repeat FASTLOCALSEARCH(X,T, 5, A, k,s) for |T'|° times. For every time we run
FASTLOCALSEARCH(X, T, £, A, k, s), by we will terminate after no more than
gpoly(|S |) swaps. For every swap, we need to check whether the swap meets our condition.
For the worst case, we may check every possible swapping. Since we swap for ¢ centers, it takes
|T|* = |T|°(/%) running time. Multiplying these three terms together, we get the running time for

FASTLOCALSEARCH is & poly(|S|) - [T|O¢+/9) = (klog n)O(@(s+1/2).,

By adding the running time for every part of the algorithm, the total running time is O(nk) +
(klogn)@(d(s+1/2) If we assume d as a constant, it would be O(nk) + (klogn)®+1/2)_ For a
large d, a dimension reduction technique introduced by Makarychev et al|(2019) can be used. It

reduce d to O(logg), which makes |T'| = || - 20(@1os 2 loglos(*2)) — (k]og n)6(1/52)‘ Then the

£2

running time for the algorithm will be O(nk) + (klogn)OE *(s+1/2), O

F SUPPLEMENTARY FOR SENSITIVITY EVALUATION AND DIMENSION
REDUCTION

As a widely used protocol, several studies propose algorithms to evaluate the sensitivity of a point
in a short run time. For instance, Algorithm 1 proposed by Draganov et al| (2024) computes the sen-
sitivity of all points in the dataset and returns a coreset by sensitivity sampling with @(nd lognA)
run time. Although [Draganov et al. (2024) only discuss the case that z = 1 and 2, their method
works for general z.

Algorithm 7 FASTCORESET(X, k, &, m)

Require: Dataset X, number of cluster k, precision parameter , target size m
Ensure: A weighted set S
1: Use a Johnson-Lindenstrauss embedding to embed X of X into d’ = O(log k) dimensions
2: Find approximate solution C = {é,---,¢x} on X and assignment & : X — C by
FASTKMEANS++
3: LetC; = 67 1(¢;). Compute the (1, z)-clustering solution ¢; of each C; in R?
4: For each point x € C; define s(z) = % + ﬁ
5: Compute a set S of m points randomly sampled from X proportionate to s(x).
6 Zzles s(z')
zeC;NS s(x)ym °

7: return The coreset S, with weight w(z) = Laies @) ((1 +¢e)|Ci| — \C}|)

s(z)m

: For each C;, define |C;| the estimated weight of C; by S, namely |C;| = 3

FASTKMEANS++ is an algorithm proposed by [Cohen-Addad et al.| (2020).

Theorem F.1. There exists an algorithm, cf. algorithm 1 in|Draganov et al) (2024), which com-
putes the sensitivity of all points in a dataset X and returns a coreset of X for (k, z)-clustering by
sensitivity sampling with O(ndlog(nA)) run time.

To avoid the exponential dependency on d, we can apply Johnson-Lindenstrauss to project the
’ og k .
coreset S into 7(S) C R?, where d' = (’)(1 %), and apply our algorithm to find a (1 + ¢)-

e2
approximation for 7(S). The (1 + O(e))-approximation for w(S) induces a cluster partition
{Aq, Ay, -+, A} of S, which is a good approximation of the optimal partition. Then we can find
the solution ¢; for the (1, z)-clustering for each A;, and C = {c¢1, ca, -+ , ¢} wouldbe a (1+0O(e))-

approximation for the (k, z)-clustering on S. poly(n, d, k) time is needed to generate S, and the size
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of the center net would be |T| = poly(n, k), which means that it takes poly(n, k) time and, finally,
it takes poly(n, k, d) time to solve the (1, z)-clustering for each A; since it is a convex optimization.
Therefore, the total run time is poly(n, k, d).

Theorem F.2. Let X be a set of n data points. There exists an algorithm that, given any

e > 0, for continuous (k, z)-clustering, in O(dnk) + (dk log n)@(s%(‘”_%)) time returns a (1 + €)-
approximation P with probability at least 0.97 as long as X is (s,1 — £*1)-skewed. Furthermore,
for z =1, X only needs to be (s,1 — ¢)-skewed.

We recall the theorem in Makarychev et al.|(2019).

Theorem F.3 (Theorem 1.3 in Makarychev et al.| (2019)). There exists a family of random maps
Tm,d @ RE — R that for every m > 1,¢,6 € (0, 1) and z > 1, the following holds. For any
x € R? we have

Pr (@) e o] 2 16

and for every finite X C R% we have
Pr [Cost, A =1 Cost,m(A) for all partitions A = { Ay, Aa, - , Aptof X] > 1=,

T~ T, d
where
4 k
z* - log =
d/ _ O( ! 56)
15
and
k
Cost, A = Z min Z dist(x — u;)*.
N uiERd
i=1 TEA;
Now we prove[Theorem F)

Proof. First, applying CORESETCONSTRUCTION, we can get a coreset S with size
(’)(%2 log(nA)). By , we can generate S in O(nd log(nA)) time.

’ z4.10g £
Second, we use 7 to project S to RY for d’ = (’)(%). Then we apply CENTERNET and
DISCRETEHEAVYSKEW to find a (1 + €)-approximation of the optimal solution on 7(.S) for (k, z)-
clustering. Assume 7(A) = {m(A1),7(A2), -+ ,m(Ax)} to be the partition of 7(S) corresponding
to this solution. We claim that A gives a (1 + O(¢))-approximation of S.

Assume B = {Bj, Bs,- -+ , By} to be the partition of S corresponding to the optimal solution for
(k, z)-clustering on S, and D = {D;, Da,---, Dy} to be the partition of 7(S) corresponding to
the optimal solution for (k, z)-clustering on 7(.5). By [Theorem F.3] Cost. A < (1 4 €)Cost.7(A).
Since Cost,7(A) is a (1 + ¢)-approximation of Cost, D, and D is the optimal solution of 7(.S) for
(k, z)-clustering, therefore

Cost, A < (1 +¢)Cost.m(A) < (1 +¢)*Cost,D < (1 + £)?Cost.7(B) < (1 + £)3Cost.B.

Let C = {ci,c2, -+ ,ci}, where ¢; = argmin, cpa Cost(A;,¢). Then Cost(S,C) = Cost, A <
(14 O(e)) Cost, B = Cost(.S, Copr). Since S is a (1 + ¢)-coreset of X, C would be a (1 + O(¢))-
approximation for (k, z)-clustering on X.

Fortunately, although (k, z)-clustering is APX-hard, it is possible to find a (1 4 ¢)-approximation of
¢; in polynomial time. In fact, the problem reduces to a (1, z)-clustering when we look for ¢;. We
can apply Weiszfeld’s algorithm to find a (1+¢)-approximation of ¢; when z = 1.
When z > 1, the problem becomes a convex optimization since the cost function is convex. Since
the cost function is also differentiable, we can use gradient descent to find a (1 + ¢)-approximation
of ¢;. Therefore, we can find a (1 + €)-approximation of ¢; in O(ndlog 1) time.

Since |S| = (’)(%2 log(nA)), thus the size of center net 7' would be

|T| = |S] + (log A — log (ﬁ) +2242)- 9] 9O(d' log(1))
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Table 3: Skewness of dataset in (2019)

| p=50% p=7% p=90% p=295%
k=38 12.5% 12.5% 12.5% 12.5%
k=16 | 6.25% 6.25% 6.25% 6.25%
k=32 | 6.25% 9.375%  12.5% 12.5%
k=64 | 1.563% 1.563%  3.125%  3.125%
k=128 | 0.781%  1.563%  1.563%  1.563%

Table 4: Skewness of dataset in (2019) when k € [80, 160]

| p=50% p=7% p=90% p=295%
k=280 | 1.25% 1.25% 2.5% 3.75%
k=100 | 1.0% 2.0% 2.0% 2.0%
k=120 | 0.833%  1.667%  1.667%  1.667%
k=140 | 0.714%  1.429%  1.429%  1.429%
k=160 | 0.625%  0.625%  0.625%  13.125%

according to the proof of [Lemma C.12| where W = poly(n) is the maximum weight of S. Since
4 k
d =02 AI;g =3 ), thus

24.10g £

(7] = 18] + Ollog(nA) + log 1) - || - 20C—E) _ g00astlasiloglos(n2) + rpaion(1)
&

Therefore, we can run DISCRETEHEAVYSKEW on 7 to find a (1 + ¢)-approximation .4 of 7(.S) in
(dklog n)O(s%(er%)), and find a (1 + €)-approximation solution to A in O(ndklog 1) time. Thus
we can find a (1 + O(e))-approximation to X in O(dnk) + (dk log n)o(s%(s'%)) time. O

G SUPPLEMENTARY EXPERIMENTS

G.1 INSTANCE FOR DATASET WITH HEAVY SKEWNESS

The run time of our algorithm depends on the skewness of the dataset. Due to the APX-hardness,
there does not exist any algorithm that is fast for any datasets. Therefore, our algorithm focuses on
performance on specific datasets that have heavy skewness only. We will display some datasets with
heavy skewness in real world.

offers a dataset contains information on the clickstream of an online store that offers
clothing for pregnant women, which has 165474 instances. We show the skewness of this dataset
in The table illustrates the contribution of the most expensive clusters to the total cost
in a k-means clustering solution. Each row corresponds to a value of k, the number of clusters.
Each column represents a threshold p, which denotes a percentage of the total cost (e.g., 50%, 70%,
etc.). The value in the cell in the row k and the column p indicates the proportion of clusters (as a
percentage of k) that contributes at least p of the total cost. For instance: A value of 12.5% in the
cell in row k& = 8 and column p = 95% means that the 12.5% most expensive clusters (1 clusters
out of 8) contribute at least 95% to the total cost. This table highlights the skewness of the dataset,
demonstrating that a small subset of clusters can dominate the total cost.

The dataset inclil (2019) has an extremely high skewness when k € [80, 160]. We further show its
skewness when k € [80, 160] in|Table 4|

(2020) is another dataset with a heavy skewness. The dataset attributes first names to genders
and has 147270 instances. We disply its skewness in[Table 5|by the same way as[Table 3|and[Table 4]

At last, we display the skewness of The dataset comprises 399 instances and 4 features. This
data set includes demographic information on 4 groups of saliva samples (COPD, asthma, infection,
HC) collected as part of the joint research project Exasens. Since this dataset has a relatively small
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Table 5: Skewness of dataset in

p=50% p=7% p=90% p=95% p=99%
k = 5000 9.66% 19.2% 28.6% 33.5% 40.28%
k = 6000 8.05% 16.1% 24.2% 28.85% 34.6%

k = 7000 6.4% 13.357% 19.857% 23.671%  29.514%
k = 8000 4.938% 9.913% 16.113%  18.95% 21.25%
k = 9000 3.756% 7.022% 9.356% 10.144%  10.767%
k = 10000 | 0.28% 0.43% 0.52% 0.55% 0.58%

Table 6: Skewness of dataset in

P 50%  75% 90% 95% 99%
k=4 1 2 2 2 3
k=5 1 2 2 2 3
k=6 |2 2 3 3 4
k=7 |2 3 4 4 )
k=8 |2 3 ) 6 6
k= 2 4 6 7 7
k=103 5 7 8 8

size, we will use relatively small k. Therefore, we will display the exact number of clusters that
contribute more than specific portion of total cost in rather than disply the percentage in
[Table 3] [Table 4} [Table 3

G.2 COMPARISON WITH LOCAL SEARCH

G.2.1 SYNTHETIC DATA

—e— Local Search Avg

=%~ Local Search Min

--&- Local Search Median

&+ Local Search Median ) —e— ourAvg

7 B N —8— OurAvy 140000 1
N R —»=- OurMin

—e— Local Search Avg 160000
—»- Local Search Min

% %

ase =)= our Min
Our Median

Our Median

120000

Total Cost
Total Cost

100000 4

80000 -

60000

Figure 5: Comparison between local search Figure 6: Comparison between local search
and our algorithm for k-means and our algorithm for k-medoids

Our experiments illustrate an improvement range for k-means from 11.54% at k = 4 for the mini-
mum metric to 54.87% at k = 10 for the median metric, and for k-medoids from 6.06% at k = 5
for the minimum metric to 31.86% at k = 7 for the average metric. This overall enhancement un-
derscores the superior performance of our algorithm in terms of accuracy when compared to local
search across average, minimum, and median metrics. Furthermore, the notable improvement ob-
served in the average and median metric implies a higher variability in local search when evaluated
on synthetic data, whereas our algorithm demonstrates significantly lower variance.
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Table 7: Improvement rate for k-means and k-medoids on synthetic data

k k-means (%) k-medoids (%)

Avg Min  Median | Avg Min  Median
24.85 11.54  25.07 16.40 8.14  16.98
31.88 24.59 29.48 25.15 6.06  10.93
45.64 37.95 41.42 29.28 17.80 19.76
37.10 29.61 35.79 31.86 16.15 26.94
39.39 16.65 41.34 30.83 22.13 30.65
45.08 22.91 46.45 20.64 17.16 21.5

0 | 53.07 32.52 54.87 26.64 15.18 26.82

=0 001U
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—»- Local Search Min

. -4+ Local Search Median 55
300 —8— Our Avg
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Figure 7: Comparison between Lloyd heuris- Figure 8: Comparison between KMedoids
tic and our algorithm for k-means and our algorithm for k-medoids

G.2.2 REAL WORLD DATA

Our experimental results demonstrate an enhancement range for k-means from 87.23% at k =
4 for the minimum metric up to 95.77% at k = 10 for the median metric, and for k-medoids
from 6.63% at k = 7 for the minimum metric to 40.60% at k = 10 for the median metric. This
overall improvement highlights the superior accuracy performance of our algorithm relative to local
search, across various metrics including average, minimum, and median. Additionally, the observed
substantial improvement in the average and median metric suggests greater variability in local search
when tested on real world data, while our algorithm displays considerably lower variance.
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Table 8: Improvement rate for k-means and k-medoids on real world data

k k-means (%) k-medoids (%)

Avg Min  Median | Avg Min  Median
92.20 87.23 92.81 39.63 19.01 25.95
88.75 88.81 88.73 25.49 12.28 27.00
91.02 91.11 91.15 38.30 14.64 31.04
92.79 92.94 92.68 29.32  6.63  33.63
94.20 94.29 94.25 33.18 6.77  35.20
95.30 95.44 95.29 36.05 15.21 40.52

0| 95.69 95.72 95.77 31.00 7.19  40.60

—\0 00U &
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