
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CLUSTERING ON SKEWED COST DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we tackle the problem of (k, z)-clustering, a generalization of the
well-known k-means, k-medians and k-medoids problems that is known to be
APX hard, i.e., impossible to approximate within a multiplicative factor of 1.06 in
polynomial time for n and k unless P=NP. Due to the APX-hardness, the fastest
(1 + ε)-approximation scheme proposed by Feldman et al. (2007), exhibits a
run time with a polynomial dependency on n, but an exponential dependency
2Õ(k/ε) on k. We observe that a (1 + ε)-approximation in truly polynomial time
is feasible if the data sets exhibit sufficiently skewed distributions. Indeed in prac-
tical scenarios, data sets often exhibit a heavy skewness, leading to the overall
clustering cost disproportionately dominated by a few clusters. We propose a
novel algorithm that adapts the traditional local search technique to effectively
manage (s, 1 − εz+1)-skewed datasets with a run time of (nk/ε)O(s+1/ε) for
discrete case and Õ(nk) + (k log n)Õ(s+1/ε) for continuous case. Our method
is particularly effective with Zipfian distributions with exponent p > 1, where
s = O

(
1

ε(z+1)/(p−1)

)
.

1 INTRODUCTION

Clustering is a fundamental procedure widely used to extract structural insights from large datasets
by partitioning points into groups such that similar points are grouped together. Classic cluster-
ing problems, including k-means, k-median, and k-medoids, have been extensively studied since
the 1950s (Steinhaus et al., 1956; MacQueen et al., 1967; Rdusseeun & Kaufman, 1987). These
problems are fundamental in various fields, such as bioinformatics, computational geometry, data
science, and machine learning, attracting significant attention from both practical and theoretical
perspectives.

The quality of a clustering solution is often measured by a cost function with the objective of min-
imizing that cost. Specifically, the (k, z)-clustering problem aims to find k centers that minimize∑

x∈X minc∈C dist(x, c)z . In the continuous version of (k, z)-clustering, centers are chosen from
the entire space, while in the discrete version, the centers are restricted to a specific set. Continuous
(k, z)-clustering reduces to the well-known k-means problem when z = 2 and to k-median when
z = 1. The discrete version reduces to k-medoids when the centers are restricted to the input data
points and z = 1.

Numerous algorithms have been developed to tackle (k, z)-clustering more efficiently. Feld-
man et al. (2007) introduced an algorithm that approximates k-means with a running time of
2Õ(k/ε) · poly(n), which has potentially prohibitively exponential dependencies in k. The core
idea of the algorithm involves building a weak core set S for a set of potential centers T , both of
size poly(k). A brute-force search of (S, T) yields a (1+ ε)-approximation. This approach converts
the continuous k-means problem into a discrete one, avoiding the exponential dependency on n.
However, eliminating the exponential dependency on k is crucial for broader applicability.

Despite advances, the (k, z)-clustering problem remains computationally challenging. It has been
proven to be APX-hard, meaning it cannot be approximated within a fixed constant factor in poly-
nomial time. Specifically, it cannot be approximated within a factor of 1.06 for the continuous case
and 1.17 for the discrete case unless P=NP (Cohen-Addad & Lee, 2022). We discuss a number of
additional related works in Appendix A.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Although eliminating the exponential dependency on k for the general (k, z)-clustering problem
is impossible due to its APX-hardness, there is hope for datasets with particular structures. In
real-world applications, the datasets are often skewed, with a few clusters dominating the overall
clustering cost. This observation motivates the exploration of whether (k, z)-clustering can be ap-
proximated within a 1 + ε factor in poly(n, k) time for heavily skewed datasets. Our work provides
a positive answer for datasets following such skewed distributions.

1.1 OUR CONTRIBUTIONS

Our contribution is a novel algorithm designed specifically for (k, z)-clustering on heavily skewed
datasets. Using the intrinsic structure of these datasets, our approach achieves a run time with
polynomial dependencies on n and k, significantly improving efficiency compared to the previous
(1 + ε)-approximation algorithms. We define a data set as being (s, 1− ε)-skewed if the s highest-
cost clusters contribute at least a 1−ε fraction of the total cost. In addition, we say a data set follows
a Zipfian distribution with exponent p if the i-th highest-cost cluster has a cost proportional to 1

ip . In

fact, a Zipfian distribution with exponent p is (s, 1− ε)-skewed for s > γ
(
1
ε

) 1
p−1 for some constant

γ. We say a solution P is a (1 + ε)-approximation if Cost(X,P) ≤ (1 + ε)Cost(X, C), where C is
the optimal (k, z)-clustering solution.

Based on these characterizations, we propose two novel algorithms DISCRETEHEAVYSKEW
and CONTINUOUSHEAVYSKEW based on local search to efficiently handle skewed data. Our
DISCRETEHEAVYSKEW algorithm returns a (1+ε)-approximation for heavily skewed data in poly-
nomial time for n and k.
Theorem 1.1. Let X be a set of n data points, and let T be a set of potential centers such that
|T | = poly(n). There exists a deterministic algorithm that, given any ε > 0, for discrete (k, z)-
clustering, in (nk/ε)O(s+1/ε) time returns a (1+ε)-approximation P as long as X is (s, 1−εz+1)-
skewed. Furthermore, for z = 1, X only needs to be (s, 1− ε)-skewed.

Our CONTINUOUSHEAVYSKEW returns a (1 + ε)-approximation for heavily skewed data in even a
shorter time.
Theorem 1.2. Let X be a set of n data points. There exists an algorithm that, given any ε > 0, for
continuous (k, z)-clustering, in Õ(nk)+ (k log n)Õ(s+1/ε) time returns a (1+ ε)-approximation P
with probability at least 0.97 as long as X is (s, 1− εz+1)-skewed. Furthermore, for z = 1, X only
needs to be (s, 1− ε)-skewed.

If randomness is expensive, there also exists a deterministic version of CONTINUOUSHEAVYSKEW

with (nk)Õ(s+1/ε) running time. For the discussion of running time, we assume dimension d as a
constant. For a large d, a dimension reduction technique introduced by Makarychev et al. (2019)
can be used to achieve a Õ(nk) + (k log n)Õ(ε−2(s+1/ε)) running time.

Our DISCRETEHEAVYSKEW and CONTINUOUSHEAVYSKEW can return a (1 + ε)-approximation
within a run-time with polynomial independence on n and k, while the previous algorithm by Feld-
man et al. (2007) only has polynomial independence on n, but has exponential independence on k.
The improvement of our algorithm makes the run time more feasible in the case where the input data
are heavily skewed. The dependence s on the exponent shows that the extent of the skewness of the
data affects the run-time of our algorithm. A more heavily skewed data will induce a less s, which
makes the run-time even shorter.

We now provide a high-level intuition behind our algorithms and analysis.

Heavy skew local search. We introduce an algorithm called HEAVYSKEWLOCALSEARCH, which
guarantees a (1 + ε)-approximation for data sets following a heavily skewed distribution. The local
search, originally introduced by Arya et al. (2001), seeks a local optimum where swapping up to t
centers no longer improves the result. The intuition behind our algorithm is that clustering costs are
dominated by a few clusters. We can use brute-force search to identify the centers of these dominant
clusters and employ a local search for the remaining ones. By accurately selecting the centers for
the high-cost clusters, which represent more than

(
1− εz+1

)
fraction of the total cost, and using

local search to achieve a constant approximation for the rest, we achieve an overall (1 +O(ε))-
approximation. At first glance, it appears the only remaining step is to directly apply a local search

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to find centers with low costs: by the skewed distribution, we would get a (1 +O(ε))-approximation
for the total cost as long as we could get O(1)-approximation for the centers with low costs.

Unfortunately, the above idea does not work directly, and we need more technical ideas to address
the issues. In particular, although the local search returns a constant approximation for the entire
dataset, the solution for low-cost clusters may not be a constant approximation. This is because we
fix the location of the more expensive centers, which may adversely affect the accuracy of the local
search. The returned centers for the low-cost clusters will have an extra additive error due to the
influence of expensive centers. To tackle this issue, we take advantage of the multi-swap idea in the
Arya et al. (2001), and we show that if we swap a sufficiently large number of centers simultaneously,
the additive error is small enough to ensure that the total cost is an (1+ε)-approximation. Of course,
we could not swap too many centers at the same time since otherwise, the running time even for a
single iteration will break the limit. Fortunately, we find that the swap of O(1/ε) points is sufficient
for (1 + ε)-approximation, and the efficiency for a single iteration is at least preserved.

Fast local search. While HEAVYSKEWLOCALSEARCH guarantees (1 +O(ε))-approximation and
single-iteration efficiency, it does not immediately imply convergence in polynomial rounds. A natu-
ral approach would be to swap centers only if the improvement exceeds 1+ε. This strategy ensures a
polynomial run time, but may overlook smaller improvements. Although individual small improve-
ments may not alter the (1+ ε)-approximation, a series of such small gains can accumulate, leading
to deviations from the desired approximation. For example, if we ignore (1+ε/2) improvements for
successive m swaps, the cumulative improvement could be (1 + ε/2)

m factor better than our result,
which means our result deviates significantly from the optimal when m is very large. Fortunately, if
we open the black-box of the local search, we could show that the number of accumulation is at most
O(k2). As such, we could rescale the parameter, so the accumulated error can still be controlled in
the rate 1 + ε. This strategy balances large and small improvements, ensuring both accuracy and
efficiency.

Construction for potential center set. For continuous (k, z)-clustering, we propose an algorithm to
construct a potential center set, transforming the continuous (k, z)-clustering problem into a discrete
one. This approach restricts potential centers to a finite range, making the search computationally
feasible. Feldman et al. (2007) used similar strategy to build their PTAS. However, their construction
is based on the geometric property of k-means, where the center of each cluster is its centroid, a
property that does not hold for z ̸= 2 in general (k, z)-clustering. Instead, we used the ε-nets to
construct the potential center set, which is suitable for general z.

Construction for coreset. We can further improve the speed of the algorithm by prepocessing the
data into a coreset. Sensitivity sampling can generate a coreset of size poly(k) in Õ(nk) time.
Unfortunately, traditional sensitivity sampling merely preserves the cost for the entire set, not indi-
vidual clusters, potentially losing the skewness of the original data set. To address this, we adapt the
sensitivity sampling to maintain skewness. We prove that if we sampleO(k) times number of points
in sensitivity sampling, it can preserve the cost for cluster whose cost is larger han ε

100k fraction of
the total cost, which ensures that the coreset accurately reflects the heavily skewed structure of the
original dataset. We defer all proofs to the appendix.

Empirical evaluations. Although our contribution is primarily theoretical, we performed exper-
iments to demonstrate its performance. We compared the precision of our algorithm with the k-
means and k-mediods algorithms available in the scikit-learn and scikit-learn-extra
library. These algorithms are popular in practice because of their fast execution, but they offer
weaker theoretical accuracy guarantees. We chose to compare our algorithm against these fast yet
lower-precision methods, rather than other (1+ε)-approximation algorithms, because the latter have
exponential run time, making them infeasible for experiments. Our empirical evaluations show that
our algorithm outperforms these widely used algorithms in terms of accuracy, serving as a proof-of-
concept that complements our theoretical guarantees.

2 PRELIMINARIES

Given an integer n > 0, let [n] denote the set {1, · · · , n}. We use poly(n) for a fixed polynomial in n
and polylog(n) for poly(log n). Since the device stores data points in bits, it is generally acceptable
to rescale and assume X ⊂ [∆]d, where ∆ = poly(n).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this paper, we focus on Euclidean (k, z)-clustering. For vectors x, y ∈ Rd, let dist(x, y) denote
the Euclidean distance ∥x − y∥22 =

∑d
i=1(xi − yi)

2. For a point x and a set C, dist(x, C) :=
minc∈C dist(x, c). For a weighted point x with weight w(x), Cost(x, C) := w(x) · dist(x, C)z . The
total cost is Cost(X, C) =

∑n
i=1 Cost(xi, C). Given a weighted dataset X = {(xi, w(xi)) : i ∈

[n]}, the goal of continuous Euclidean (k, z)-clustering is to find k centers C = {c1, · · · , ck} ⊂ Rd

that minimize the cost function Cost(X,C). In discrete Euclidean (k, z)-clustering, k centers are
chosen from a finite set of potential centers T with size poly(n).

For a center set C = {c1, · · · , ck}, let N(ci) = {x ∈ X : Cost(x, ci) ≤ Cost(x, cj) for j ̸= i}
represent the set of points assigned to center ci. Ties are broken arbitrarily so each xi belongs to
exactly one N(ci).

Definition 2.1 ((s, 1 − ε)-skewed dataset). A data set X with optimal (k, z)-clustering centers
C = {c1, c2, · · · , ck}, ordered by cost such that Cost(N(ci), C) ≥ Cost(N(cj), C) for i < j, is an
(s, 1− ε)-skewed dataset if

∑s
i=1 Cost(N(ci), C) ≥ (1− ε)

∑k
i=1 Cost(N(ci), C).

Definition 2.2 (Zipfian distribution dataset). A data set X with optimal (k, z)-clustering centers
C = {c1, c2, · · · , ck} is a Zipfian distribution data set with exponent p if there exist constants 0 <
γ1 < γ2 and p > 1 such that for any i, γ1 · 1

ip ≤ Cost(N(ci), C) ≤ γ2 · 1
ip .

As a highly skewed dataset, a Zipfian distribution dataset is in fact (s, 1 − ε)-skewed for s =

O(
(
1
ε

)1/(p−1)
).

Lemma 2.3. Let X = {x1, x2, . . . , xn} ⊆ [∆]d be a Zipfian distribution dataset. There exists a

constant γ > 0 such that for s > γ
(
1
ε

) 1
p−1 , X is (s, 1− ε)-skewed.

Additionally, we introduce the concepts of ε-coreset and ε-net, which are often used to sample points
and generate potential center sets to speed up clustering.

Definition 2.4 (ε-coreset). A weighted set S is an ε-coreset of X if, for any set of centers C ⊂ Rd

that |C| ≤ k, (1− ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 + ε)Cost(X, C).
Definition 2.5 (ε-net). Let A ⊂ Rd be a region. N is an ε-net of A if for any x ∈ A, there exists
y ∈ N such that dist(x, y) ≤ ε.

3 CONSTRUCTION FOR CORESET AND POTENTIAL CENTER SET

In this section, we describe first describe our coreset construction, which is slightly non-standard,
due to the fact that we would like the optimal clustering on the coreset to preserve the skewed
distribution of costs. Note that by comparison, the general guarantees of coresets simply require
that all clustering costs are preserved up to a (1+ ε)-factor, rather than the costs of all clusters being
preserved.

3.1 CORESET CONSTRUCTION MAINTAINING SKEWNESS

We adapt the sensitivity sampling framework to construct a coreset that maintains the skewness
of the original dataset. The sensitivity sampling framework assigns a value to each point, called
sensitivity, which intuitively quantifies the “importance” of that point. Each point is then sampled
with a probability proportional to its sensitivity.

First, we introduce the definition of sensitivity.

Definition 3.1 (Sensitivity). For x ∈ X , its sensitivity is defined as s(x) = supC⊂Rd,|C|≤k
Cost(x,C)
Cost(X,C) .

We present an algorithm CORESETCONSTRUCTION that produces a weight set S which is an ε-
coreset of X . Furthermore, if X is an (s, 1− ε)-skewed dataset, then S will also be an (s, 1− 3ε)-
skewed dataset.

Lemma 3.2. Let X be an (s, 1−ε)-skewed dataset. There exists a constant γ > 1, such that for any
ε ∈ (0, 1

4],CORESETCONSTRUCTION returns an ε-coreset S for X with probability at least 0.97.
Furthermore, S is (s, 1− 3ε)-skewed, and has a size of O(dk

2

ε3 log(n∆)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 CORESETCONSTRUCTION(X, ε, n, k,∆)

Require: Dataset X , precision parameter ε, size n, number of cluster k, range ∆
Ensure: A weighted set S

1: γ ← some large enough constant, µ← γdk
ε3 log(n∆)

2: S ← ∅
3: for x ∈ X do
4: s(x)← sensitivity of x
5: With probability px = min{µ · s(x), 1}, w(x)← 1

px
, S ← S ∪ {(x,w(x))}

6: return S

Our algorithm is analogous to the conventional sensitivity sampling method, but employs a larger
sampling parameter, µ = O(dkε3 log(n∆)), in place of µ = O(dkε2 log(n∆)) as employed in the
traditional approach. With the augmented value of µ, the coreset ensures preservation of both the
cost of the full set and the cost for clusters whose expense exceeds ε

100k of the total cost. This
modification allows the coresets to preserve the significantly skewed structure present in the original
dataset.

3.2 POTENTIAL CENTER SET CONSTRUCTION

In this section, we introduce an algorithm that produces a set T of candidate centers for a dataset
S, ensuring that for any C ⊂ [∆]d with |C| ≤ k, there exists C′ ∈ T k such that Cost(S, C′) ∈ (1 ±
ε)Cost(S, C). The rationale for constructing such a set T relies on the observation that if dist(x, c′) is
a (1 +O(ε))-approximation of dist(x, c), then Cost(x, c′) will indeed be a (1+ε)-approximation of
Cost(x, c) due to the generalized triangle inequality. Consequently, we need to ensure the existence
of a center c′ ∈ T such that dist(x, c′) is a (1 +O(ε))-approximation of dist(x, c). This can be
accomplished by constructing an O(ε)-net for the ball B(x, 2i), where B(x, r) = {y ∈ Rd :
dist(x, y) < r}. Using this approach, we can approximate any center c for which dist(x, c) ∈
[2i−1, 2i]. However, creating such nets for all possible distances would yield an excessive number
of centers because r can range from 0 to infinity. Thankfully, the optimal center must fall within the
range [∆]d given that S ⊂ [∆]d. Thus, we only need to construct an O(ε)-net for balls with radii
not exceeding ∆. Further, even though c can be exceedingly close to x, necessitating an O(ε)-net
for an infinite number of balls, we note that Cost(S, C) ≥ 1

2z as long as the optimal clustering cost is
non-zero. Hence, we can avoid building nets for very small radii. Specifically, we need to construct
nets only for B(x, 2i+1), where i ∈ [log(ε

kW) − 2z − 2, log∆], with W representing the upper
bound of the point weights. This strategy helps maintain the size of T compact.

Algorithm 2 CENTERNET(S, ε,∆)

Require: Dataset S, precision parameter ε, range ∆
Ensure: A potential center set T

1: T ← S, W ← the maxium weight of S, M1 ← log
(

ε
kW

)
− 2z − 2, M2 ← log∆

2: for i←M1 to M2 do
3: Ni ← ∅, r ← 2i+1

4: for x ∈ S do
5: Ni,x ← an εr

22z+1 -net in B(x, r)
6: Ni ← Ni ∪Ni,x

7: T ← T ∪Ni

8: return T

We prove that for any C ⊂ [∆]d and |C| ≤ k, there exists a set C′ ∈ T k that provides a (1 + ε)-
approximation to C. Furthermore, the set T has a size of poly(k, log n) if |S| = poly(k).
Lemma 3.3. Let S be a weighted set whose maximum weight is at least 1. For ε ∈ (0, 1], the set T
returned by CENTERNET satisfies: for any C ⊂ [∆]d and |C| ≤ k, there exists C′ ⊂ T k such that

(1− ε)Cost(S, C) ≤ Cost(S, C′) ≤ (1 + ε)Cost(S, C).

Furthermore, T has a size of |T | = |S| · 2O(d log 1
ε log log(k∆

ε)).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 HEAVY SKEW LOCAL SEARCH ALGORITHM

We introduce an adapted local search algorithm designed for (k, z)-clustering, particularly useful
for data sets exhibiting significant skewness. For simplicity, within this section, we assume that C =
{c1, c2, . . . , ck} represents the optimal solution within the net T . The centers in C are arranged so
that Cost (N(ci)) ≥ Cost (N(cj)) for i ≤ j. We denote CE as the subset of s centers corresponding
to the s most costly clusters.

4.1 HEAVY SKEW LOCAL SEARCH FOR k-MEDIAN

For an (s, 1 − ε)-skewed dataset, we can leverage the structure of the dataset to achieve efficient
clustering. The intuition is to search for the s most expensive clusters with high precision and then
perform a quicker, lower precision search for the remaining k−s cheaper clusters, aiming to achieve
a (1+ε)-approximation. This can be achieved by using a brute-force search for the s most expensive
clusters and a local search for the remaining k − s cheaper centers.

In particular, for any given set of s centers, we run a local search to determine the remaining k − s
centers. The local search procedure is used to identify a local optimum for the (k, z)-clustering
problem. When using a local search with a swap parameter t, no more than t existing centers are
replaced with an equal number of new centers, provided that such a swap reduces the overall cost.
The process continues until no further improvements can be achieved by these swaps.

Unlike the classic local search, which can swap any center, we only swap the centers for the remain-
ing k− s ones, keeping the s guessed centers fixed throughout the local search. By brute-forcing all
possible locations for the s most expensive centers, we will eventually find the correct guess. For
that correct guess, since we fix the locations of the s centers and only swap the remaining k − s
centers, the final set returned will be the precise locations of the s most expensive centers and an
approximation for the remaining centers, ensuring a (1 + ε)-approximation.

We must consider that the presence of s fixed centers may adversely affect the local search for the
remaining k − s centers. However, through a detailed analysis, we can show that with a carefully
chosen swap parameter t = O(1/ε), we can mitigate such adverse effects and guarantee the (1+ε)-
approximation.

Algorithm 3 HEAVYSKEWLOCALSEARCH(S, T, ε,A, k, s)
Require: Dataset S, potential center set T , precision parameter ε, setA ⊂ T with |A| = s, number

of clusters k, skewness parameter s
Ensure: A center set P with |P| = k

1: γ ← some large enough constant, t← γ
ε

2: B ← Arbitrary subset of T with |B| = k − s
3: while ∃B′ ⊂ T such that |B − B′| ≤ 2t and Cost(S,A ∪ B′) < Cost(S,A ∪ B) do
4: B ← B′
5: P ← A∪ B
6: return P

We claim that HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation if S is (1, 1 − ε)-
skewed and we choose the correct input set A = CE , which is the centers of the s most high-cost
clusters.

Lemma 4.1. Let S be an (s, 1 − ε)-skewed dataset, T be the potential center set, and A = CE ,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
γ > 1, such that for any ε ∈ (0, 1

2], HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation
P for the (k, 1)-clustering for S and T .

4.2 HEAVY SKEW LOCAL SEARCH FOR (k, z)-CLUSTERING

Our (1 + ε)-approximation guarantee extends to general (k, z)-clustering. The framework remains
the same, but the cost function for the (k, z)-clustering is dist(x, c)z instead of dist(x, c), as in the
k-median case. This change affects the additivity of the cost function, requiring a more nuanced

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

analysis of cost distortion. However, with the generalized triangle inequality and carefully chosen
parameters, an (1 + ε)-approximation is still achievable for (s, 1− εz+1)-skewed set S.
Lemma 4.2. Let S be an (s, 1− εz+1)-skewed dataset, T be the potential center set, and A = CE ,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
γ > 1, such that for any ε ∈ (0, 1

2], HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation
P for the (k, z)-clustering for S and T .

Note that while (s, 1 − ε)-skewness is required for z = 1, (s, 1 − εz+1)-skewness is needed for
general (k, z)-clustering. This indicates that a heavier skewness is necessary for general (k, z)-
clustering to compensate for the loss of additivity.

5 PTAS FOR HEAVILY SKEWED DISTRIBUTION SET

Although HEAVYSKEWLOCALSEARCH guarantees a (1 + ε)-approximation, it does not ensure the
existence of a PTAS for (k, z)-clustering because it cannot guarantee to terminate in polynomial
rounds. An intuitive approach might involve only swapping centers if the result improves signifi-
cantly, such as an improvement in the multiplier 1 + ε′, to ensure the polynomial iteration times.
However, this method misses smaller improvements, and a series of such small improvements can
accumulate, failing to maintain the desired approximation. For example, successive m swaps, each
improving by a factor of 1 + ε

2 , may result in
(
1 + ε

2

)m
, which deviates significantly from 1 + ε.

Through a comprehensive analysis, we demonstrate that by opting for a more precise choice of
the parameter, specifically ε′ = O(ε

k2), it is possible to ensure a (1 + ε)-approximation within
polynomial iteration times.

Algorithm 4 FASTLOCALSEARCH(S, T, ε,A, k, s)
Require: Dataset S, potential center set T , precision parameter ε, setA ⊂ T with |A| = s, number

of clusters k, skewness parameter s
Ensure: A center set P with |P| = k

1: γ ← some large enough constant, t← γ
ε

2: B ← Arbitrary subset of T with |B| = k − s
3: Γ← constant approximation of total cost
4: while ∃B′ ⊂ T such that |B − B′| ≤ 2t and Cost(S,A ∪ B′) < (1 − ε

Γk2)Cost(S,A ∪ B) and
do

5: B ← B′
6: P ← A∪ B
7: return P

We claim that FASTLOCALSEARCH terminates within polynomial rounds and returns a (1 + 2ε)-
approximation for the optimal solution of clustering (S, T).
Lemma 5.1. Let S be a dataset of n points, T be the potential center set, and A = CE , which is
the set of centers of the s most high-cost clusters in optimal solution. There exists a constant γ > 1,
such that for any ε ∈ (0, 1

2], FASTLOCALSEARCH terminates within O(k
2

ε) swaps, and returns a
(1 + 2ε)-approximation P , as long as S is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, S only
needs to be (s, 1− ε)-skewed.

Finally, we give DISCRETEHEAVYSKEW and CONTINUOUSHEAVYSKEW as PTASs to approxi-
mate (k, z)-clustering within a (1 + ε) approximation. We construct DISCRETEHEAVYSKEW, the
algorithm deals with the discrete (k, z)-clustering problem first. Assume that we have an input set X
and a potential center set T with |X| = n and |T | = poly(n). We perform a brute-force search over
all possible locations of the centers of the s most expensive clusters and apply FASTLOCALSEARCH
on each guess. Since there are |T |s = poly(n) possible choices for the s centers, we only need to
apply FASTLOCALSEARCH polynomial number of times. The run time of a single application of
FASTLOCALSEARCH is poly(n, k) because it terminates in poly(n, k) swaps. As a result, we can
complete all the computations in poly(n, k) time.

We claim that DISCRETEHEAVYSKEW guarantee a (1 + ε) approximation for (k, z)-clustering on
X and T within poly(n, k) run time if X is (s, 1− εz+1)-skewed.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 5 DISCRETEHEAVYSKEW(X,T, ε, k, s)

Require: Dataset S, center set T , precision ε, number of clusters k, skewness parameter s
Ensure: A center set P with |P| = k

1: if |X| ≤ k and X ⊂ T then
2: P ← X
3: else
4: P ← Arbitrary subset of T with |P| = k
5: for A ∈ T s do
6: P ′ ← FASTLOCALSEARCH(S, T, ε

2 ,A, k, s)
7: if Cost(S,P ′) < Cost(S,P) then
8: P ← P ′

9: return P

Theorem 5.2. Let X be a set of n data points, and let T be a set of potential centers such that
|T | = poly(n). Given any ε > 0, DISCRETEHEAVYSKEW returns a (1 + ε)-approximation P in
(nkε)O(s+1/ε) time for discrete (k, z)-clustering as long as X is (s, 1−εz+1)-skewed. Furthermore,
for z = 1, X only needs to be (s, 1− ε)-skewed.

We then construct CONTINUOUSHEAVYSKEW, the algorithm deals with the continuous (k, z)-
clustering problem. For a data set X , we can use CORESETCONSTRUCTION and CENTERNET
to construct the coreset S and potential center set T , effectively transforming the continuous (k, z)-
clustering on X into the discrete (k, z)-clustering on (S, T). As a widely used sampling technique,
sensitivity sampling can be completed in Õ(nk) running time. Our construction of T also has a run
time of poly(k, log n) because the construction of an individual point in T requires a run time of
O(1), and T has a size of poly(k, log n). Then an application of DISCRETEHEAVYSKEW solves the
problem.

Algorithm 6 CONTINUOUSHEAVYSKEW(X, ε, k, s)

Require: Dataset X , precision ε, number of clusters k, skewness parameter s,
Ensure: A center set P with |P| = k

1: if |X| ≤ k then
2: P ← X
3: else
4: S ← CORESETCONSTRUCTION(X, ε, n, k,∆)
5: T ← CENTERNET(S, ε

4 ,∆)
6: P ← DISCRETEHEAVYSKEW(X,T, ε

4 , k, s)

7: return P

We claim that CONTINUOUSHEAVYSKEW guarantee a (1 + ε) approximation for (k, z)-clustering
on X within poly(n, k) run time if X is (s, 1− εz+1)-skewed.

Theorem 5.3. Let X be a set of n data points. Given any ε > 0, CONTINUOUSHEAVYSKEW re-
turns a (1+ε)-approximation P in Õ(nk)+(k log n)Õ(s+1/ε) time for continuous (k, z)-clustering
with probability at least 0.97, as long as X is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, X
only needs to be (s, 1− ε)-skewed.

6 EXPERIMENTAL EVALUATIONS

Despite our primary focus on theoretical contributions, we performed experiments to validate its effi-
cacy. We evaluated the precision of our algorithm against the k-means and k-medoids algorithms of
the scikit-learn and scikit-learn-extra libraries. These algorithms are widely favored
for their quick execution times, but they have weaker theoretical accuracy assurances. We opted to
benchmark our algorithm against these fast yet less precise methods rather than other (1 + ε) ap-
proximation algorithms, which are infeasible for experiment due to their exponential run times. Our
empirical results demonstrate that our algorithm surpasses these commonly used methods in terms

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Improvement rate for k-means and k-medoids on synthetic data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 28.32 3.78 12.77 16.86 1.11 10.57
5 27.16 5.32 20.07 25.87 14.22 25.49
6 28.83 12.57 26.91 40.41 21.08 39.74
7 47.95 7.44 45.21 21.04 10.95 15.12
8 50.53 40.83 48.82 34.19 8.25 40.36
9 57.89 23.52 28.99 39.29 18.46 22.34
10 37.23 24.42 26.28 42.65 22.85 47.17

of accuracy, thereby substantiating our theoretical claims for the (1 + ε)-accuracy of our algorithm
with practical evidence.

Our experiment is conducted using Python 3.9.6 on a 2020 MacBook Pro equipped with a 1.4
GHz Quad-Core Intel Core i5 processor. We evaluate our algorithm against KMeans from
scikit-learn and KMedoids from scikit-learn-extra. For all algorithms, we gen-
erate initialization centers through uniform sampling. A maximum iteration limit is set such that
each algorithm updates at most 3 · k centers by the time they terminate.

6.1 SYNTHETIC DATA

Synthetic data is produced using the datagen function from the coreset library. This function
creates samples from a Dirichlet Process Mixture Model (DPMM) characterized by Gaussian like-
lihood and fixed cluster covariance, and operates based on the Chinese restaurant process. We set
s = t = 1 and the smallest center net scale as 0.01 for k-means.

Figure 1: Comparison between Lloyd heuris-
tic and our algorithm for k-means

Figure 2: Comparison between KMedoids
and our algorithm for k-medoids

Our experiments illustrate an improvement range for k-means from 3.78% at k = 4 for the minimum
metric to 57.89% at k = 9 for the average metric, and for k-medoids from 1.11% at k = 4 for the
minimum metric to 47.17% at k = 10 for the median metric. This overall enhancement underscores
the superior performance of our algorithm in terms of accuracy when compared to KMeans from
scikit-learn and KMedoids from scikit-learn-extra across average, minimum, and
median metrics. Furthermore, the notable improvement observed in the average and median metric
implies a higher variability in KMeans and KMedoids when evaluated on synthetic data, whereas
our algorithm demonstrates significantly lower variance.

6.2 REAL WORLD DATA

We also conducted the experiment using the Exasens dataset (Exa20) from the UCI Machine Learn-
ing Repository, which comprises 399 instances and 4 features. This data set includes demographic

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Improvement rate for k-means and k-medoids on real world data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 82.49 83.53 82.39 32.50 17.84 22.68
5 82.58 5.87 85.69 24.98 23.69 24.77
6 86.11 21.90 88.61 31.01 29.30 29.02
7 89.94 39.12 91.79 30.22 11.48 32.48
8 84.56 18.04 36.86 38.04 35.90 37.24
9 86.69 28.79 51.80 41.24 39.89 41.28
10 88.91 41.94 38.71 42.02 40.29 42.67

information on 4 groups of saliva samples (COPD, asthma, infection, HC) collected as part of the
joint research project Exasens. We utilized the StandardScaler from scikit-learn. The
parameters used were identical to those used in the synthetic data experiment, with the exception of
a reduced center net scale of 0.0001, as the range of the real world data after scaling is approximately
100 times smaller than that of the synthetic data.

Figure 3: Comparison between Lloyd heuris-
tic and our algorithm for k-means

Figure 4: Comparison between KMedoids
and our algorithm for k-medoids

Our experimental results demonstrate an enhancement range for k-means from 5.87% at k = 5
for the minimum metric up to 91.79% at k = 7 for the median metric, and for k-medoids from
11.48% at k = 7 for the minimum metric to 42.67% at k = 10 for the median metric. This overall
improvement highlights the superior accuracy performance of our algorithm relative to KMeans
from scikit-learn and KMedoids from scikit-learn-extra, across various metrics
including average, minimum, and median. Additionally, the observed substantial improvement in
the average and median metric suggests greater variability in KMeans and KMedoids when tested
on real world data, while our algorithm displays considerably lower variance. Notably, KMeans
shows even higher variance with real-world data than with synthetic data, likely attributed to the
increased skewness present in real-world datasets.

REFERENCES

Clickstream Data for Online Shopping. UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5QK7X.

Gender by Name. UCI Machine Learning Repository, 2020. DOI:
https://doi.org/10.24432/C55G7X.

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-
means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4):
FOCS17–97, 2019.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristic for k-median and facility location problems. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pp. 21–29, 2001.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni. Distributed
balanced clustering via mapping coresets. Advances in Neural Information Processing Systems,
27, 2014.

Sayan Bhattacharya, Martin Costa, Silvio Lattanzi, and Nikos Parotsidis. Fully dynamic k-clustering
in õ (k) update time. 2023.

Guy E Blelloch and Kanat Tangwongsan. Parallel approximation algorithms for facility-location
problems. In Proceedings of the twenty-second annual ACM symposium on Parallelism in algo-
rithms and architectures, pp. 315–324, 2010.

Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the economics of offline password crack-
ing. In 2018 IEEE Symposium on Security and Privacy (SP), pp. 853–871. IEEE, 2018.

Ke Chen. On k-median clustering in high dimensions. In Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pp. 1177–1185. Citeseer, 2006.

Vincent Cohen-Addad and CS Karthik. Inapproximability of clustering in lp metrics. In 2019 IEEE
60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 519–539. IEEE, 2019.

Vincent Cohen-Addad and Euiwoong Lee. Johnson coverage hypothesis: Inapproximability of k-
means and k-median in ℓp-metrics. In Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1493–1530. SIAM, 2022.

Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering in-
stances. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
49–60. IEEE, 2017.

Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM Journal on Com-
puting, 48(2):644–667, 2019.

Vincent Cohen-Addad, Silvio Lattanzi, Ashkan Norouzi-Fard, Christian Sohler, and Ola Svensson.
Fast and accurate k-means++ via rejection sampling. Advances in Neural Information Processing
Systems, 33:16235–16245, 2020.

Vincent Cohen-Addad, David P Woodruff, and Samson Zhou. Streaming euclidean k-median and
k-means with o (log n) space. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 883–908. IEEE, 2023.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape approximation. In
ACM SIGGRAPH 2004 Papers, pp. 905–914. ACM New York, NY, 2004.

W Fernandez De La Vega, Marek Karpinski, Claire Kenyon, and Yuval Rabani. Approximation
schemes for clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pp. 50–58, 2003.

Inderjit S Dhillon, Yuqiang Guan, and Jacob Kogan. Iterative clustering of high dimensional text
data augmented by local search. In 2002 IEEE International Conference on Data Mining, 2002.
Proceedings., pp. 131–138. IEEE, 2002.

Andrew Draganov, David Saulpic, and Chris Schwiegelshohn. Settling time vs. accuracy tradeoffs
for clustering big data. Proceedings of the ACM on Management of Data, 2(3):1–25, 2024.

Exa20. Exasens. UCI Machine Learning Repository, 2020. DOI:
https://doi.org/10.24432/C5M03M.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clustering based on
weak coresets. In Proceedings of the twenty-third annual symposium on Computational geometry,
pp. 11–18, 2007.

Ramon Ferrer i Cancho. The variation of zipf’s law in human language. The European Physical
Journal B-Condensed Matter and Complex Systems, 44:249–257, 2005.

Zachary Friggstad and Yifeng Zhang. Tight analysis of a multiple-swap heuristic for budgeted red-
blue median. arXiv preprint arXiv:1603.00973, 2016.

Zachary Friggstad, Mohsen Rezapour, and Mohammad R Salavatipour. Local search yields a ptas
for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.

Chikara Furusawa and Kunihiko Kaneko. Zipf’s law in gene expression. Physical review letters, 90
(8):088102, 2003.

Xavier Gabaix. Zipf’s law and the growth of cities. American Economic Review, 89(2):129–132,
1999.

Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. Jour-
nal of algorithms, 31(1):228–248, 1999.

Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Cluster-
ing data streams: Theory and practice. IEEE transactions on knowledge and data engineering,
15(3):515–528, 2003.

Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for facility
location. arXiv preprint arXiv:0809.2554, 2008.

Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of geometric prob-
lems. In SODA, volume 3, pp. 537–538, 2003.

Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data. IEEE
intelligent systems, 24(2):8–12, 2009.

Pierre Hansen and Nenad Mladenović. J-means: a new local search heuristic for minimum sum of
squares clustering. Pattern recognition, 34(2):405–413, 2001.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and ran-
domization to variance-based k-clustering. In Proceedings of the tenth annual symposium on
Computational geometry, pp. 332–339, 1994.

Bin Jiang, Junjun Yin, and Qingling Liu. Zipf’s law for all the natural cities around the world.
International Journal of Geographical Information Science, 29(3):498–522, 2015.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. A local search approximation algorithm for k-means clustering. In Proceedings of
the eighteenth annual symposium on Computational geometry, pp. 10–18, 2002.

Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+/spl epsiv/)-
approximation algorithm for k-means clustering in any dimensions. In 45th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 454–462. IEEE, 2004.

Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear time algorithms for clustering problems
in any dimensions. In Automata, Languages and Programming: 32nd International Colloquium,
ICALP 2005, Lisbon, Portugal, July 11-15, 2005. Proceedings 32, pp. 1374–1385. Springer, 2005.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281–297. Oakland, CA, USA, 1967.

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pp. 1027–1038, 2019.

Benoit Mandelbrot et al. An informational theory of the statistical structure of language. Communi-
cation theory, 84:486–502, 1953.

Jiřı́ Matoušek. On approximate geometric k-clustering. Discrete & Computational Geometry, 24
(1):61–84, 2000.

LKPJ Rdusseeun and P Kaufman. Clustering by means of medoids. In Proceedings of the statistical
data analysis based on the L1 norm conference, neuchatel, switzerland, volume 31, 1987.

Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace approximation:
Goodbye dimension. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pp. 802–813, 2018.

Hugo Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci, 1(804):
801, 1956.

Luca Trevisan. When hamming meets euclid: The approximability of geometric tsp and steiner tree.
SIAM Journal on Computing, 30(2):475–485, 2000.

Kasturi Varadarajan and Xin Xiao. On the sensitivity of shape fitting problems. arXiv preprint
arXiv:1209.4893, 2012.

Endre Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est minimum.
Tohoku Mathematical Journal, First Series, 43:355–386, 1937.

Yi Yang, Min Shao, Sencun Zhu, Bhuvan Urgaonkar, and Guohong Cao. Towards event source
unobservability with minimum network traffic in sensor networks. In Proceedings of the first
ACM conference on Wireless network security, pp. 77–88, 2008.

George Kingsley Zipf. The Principle of Least Effort. CH3, 1949.

A RELATED WORK

Within this section, we present a review of related works. Initially, we discuss results studying
the APX-hardness of (k, z)-clustering. Subsequently, we describe the progression of (1 + ε)-
approximation algorithms. Thereafter, we briefly introduce the theoretical accuracy guarantees for
popular algorithms used in practice. Additionally, we mention specific works on local search, an
algorithmic paradigm integral to our approach. Lastly, we review some literature on Zipfian distri-
butions.

APX-hardness for (k, z)-clustering The foundational work of Guha & Khuller (1999) was the first
to prove that (k, z)-clustering is APX-hard. It established that k-means and k-median are hard to
approximate within factors of 3.94 and 1.73, respectively, in general metric spaces. The natural
question arises: Is (k, z)-clustering still APX-hard in more specific metrics, such as doubling or
Euclidean metrics? Unfortunately, subsequent studies have confirmed that (k, z)-clustering remains
APX-hard even under these specific metrics (Ahmadian et al., 2019; Trevisan, 2000; Guruswami
& Indyk, 2003; Cohen-Addad & Karthik, 2019). According to the most recent research by Cohen-
Addad & Lee (2022), the inapproximability bounds are 1.17 and 1.06 for discrete and continuous
k-means, and 1.07 and 1.015 for discrete and continuous k-median in Euclidean space unless P=NP.

Development of (1 + ε)-approximation algorithms Early attempts at developing (1 + ε)-
approximation algorithms for k-means clustering began with Inaba et al. (1994), who proposed
an algorithm with a run time ofO(ndk+1) for fixed k and ε. Subsequent work improved the runtime

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(Matoušek, 2000; Har-Peled & Mazumdar, 2004), culminating in De La Vega et al. (2003) present-
ing the first algorithm with a linear dependency on n. Kumar et al. (2004; 2005); Chen (2006) further
improved the run time with a new coreset construction. Finally, Feldman et al. (2007) developed
a PTAS with a run time of O(nkd + 2Õ(k/ε)). However, all these PTASs assume fixed k and ε,
resulting in algorithms that are polynomial in n but have exponential dependency on k.

Popular practical algorithms Lloyd (1982) introduced the Lloyd heuristic, the most widely used
algorithm for k-means in practice. This algorithm iteratively computes the centroid of each clus-
ter to search of a local optimum. However, despite its popularity, Inaba et al. (1994) demonstrated
that the Lloyd heuristic does not guarantee a solution close to the optimal k-means clustering in the
worst case. To address this, Arthur & Vassilvitskii (2006) proposed k-means++, an initialization
process that provides an O(log k)-approximation guarantee when combined with the Lloyd heuris-
tic. Together, these algorithms achieve a total runtime of Õ(dnk). For k-medoids, the most popular
algorithm is the PAM (Partitioning Around Medoids) algorithm, proposed by Rdusseeun & Kauf-
man (1987). PAM can be seen as a discrete counterpart to the Lloyd heuristic. However, PAM lacks
a theoretical guarantee and has a runtime of O(T · k(n− k)2), where T is the number of iterations.

Local search technique. The local search technique, introduced by Arya et al. (2001), iteratively
swaps t centers to seek a local optimum solution. Arya et al. (2001) demonstrated that local search
guarantees a

(
3 + 2

t

)
-approximation for k-median, while Kanungo et al. (2002) showed a (9 + ε)-

approximation for k-means. Cohen-Addad et al. (2019) established that local search is a PTAS for
k-means and k-median in constant-dimensional Euclidean space, and Friggstad et al. (2019) demon-
strated that local search is a PTAS in doubling metric spaces. Due to its simplicity, local search is
frequently used as a subroutine for clustering in various computational models, such as distributed
(Bateni et al., 2014), parallel (Blelloch & Tangwongsan, 2010), and streaming environments (Guha
et al., 2003). In addition, numerous studies have also examined local search from a theoretical
perspective (Cohen-Steiner et al., 2004; Dhillon et al., 2002; Friggstad & Zhang, 2016; Hansen &
Mladenović, 2001; Yang et al., 2008). Although traditionally recognized as a constant approxi-
mation algorithm, Cohen-Addad & Schwiegelshohn (2017) explored its performance on data sets
with specific properties, showing that local search can achieve a (1 + ε)-approximation for certain
datasets, such as those with distributional stability.

Zipfian distribution. Zipf’s law, as proposed by Zipf (1949), characterizes an empirical distribution
found in numerous real-world datasets. Mandelbrot et al. (1953) refined this law by adding an
exponent parameter p, leading to the Mandelbrot-Zipf law, which serves as a more generalized model
for linguistic phenomena. In present-day network science, Zipf’s law is relevant to the analysis of
scale-free networks, where the degree distribution (the number of connections a node has) frequently
follows a power law, akin to a Zipfian distribution. Significant advancements in understanding such
networks were made by Barabási & Albert (1999) with their preferential attachment model. Halevy
et al. (2009) discuss how large-scale data processing often unveils Zipfian distributions in real-world
datasets, such as those pertaining to web queries and clickstream data. Additionally, the Mandelbrot-
Zipf law is observed across various domains including economics (Gabaix, 1999), geography (Jiang
et al., 2015), genomics (Furusawa & Kaneko, 2003), language (Ferrer i Cancho, 2005), and security
(Blocki et al., 2018).

B (s, 1− ε)-SKEWED DATASET AND ZIPFIAN DISTRIBUTION

We will prove Lemma 2.3 in this section.
Lemma B.1. Let X = {x1, x2, . . . , xn} ⊆ [∆]d be a Zipfian distribution dataset. There exists a

constant γ > 0 such that for s > γ
(
1
ε

) 1
p−1 , X is (s, 1− ε)-skewed.

Proof. Since 1
xp is continuous and decreasing on R>0,∫ i+1

i

1

xp
dx ≤ 1

ip
≤
∫ i

i−1

1

xp
dx.

Hence
∞∑

i=s+1

1

ip
≤
∫ ∞

s

1

xp
dx =

1

p− 1
· 1

sp−1
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For s > γ
(
1
ε

) 1
p−1 , substituting this into the above inequality, it yields

∞∑
i=s+1

1

is
≤ 1

p− 1
· ε

γp−1
.

By the definition of Zipfian distribution dataset, we have

γ1 ·
1

ip
≤ Cost(N(ci), C) ≤ γ2 ·

1

ip
.

Hence
k∑

i=s+1

Cost(N(ci), C) ≤
k∑

i=s+1

γ2 ·
1

ip
≤

∞∑
i=s+1

γ2 ·
1

ip
≤ γ2

p− 1
· ε

γp−1
.

On the other hand, we know that
∞∑
i=1

1

ip
= ζ(p)

for p > 1. Thus

Cost(X, C) =
k∑

i=1

Cost(N(ci), C) ≥
k∑

i=1

γ1 ·
1

ip
≥ γ1 · ζ(p).

There exists a constant γ > 0 such that
γ2

p− 1
· ε

γp−1
≤ γ1 · ζ(p).

Hence for s ≥ γ
(
1
ε

) 1
p−1 , ∑

i>s

Cost(N(ci), C) ≤ ε · Cost(X, C),

which is equivalent to ∑
i≤s

Cost(N(ci), C) ≥ (1− ε)Cost(X, C).

Hence a Zipfian distribution is a (s, 1− ε)-skewed for s = O(
(
1
ε

) 1
p−1).

C CORESET AND CENTER NET

In Appendix C.1, we will prove Lemma 3.2. In Appendix C.2, we will also introduce an algorithm
that produces a center net, providing a (1 + ε)-approximation.

C.1 CORESET THAT KEEPS HEAVY SKEWNESS

Before proving Lemma 3.2, we shall first revisit Bernstein’s inequality, as it is essential for the
subsequent proof.
Theorem C.1 (Bernstein’s inequality). Let Z1, Z2, · · · , Zn be independent random variables and
ai ≤ Zi ≤ bi. Let Sn =

∑n
i=1 Zi, En = E [Sn], and R ≥ maxi∈[n] |bi − ai|. Then for any t > 0,

Pr [|Sn − En| > t] < 2 exp

(
− t2/2

Vn +R · t/3

)
.

We first prove that under the condition of Lemma 3.2, CORESETCONSTRUCTION returns an ε-
coreset S of X with probability at least 0.99.
Lemma C.2. Let X = {x1, x2, · · · , xn} ⊂ [∆]d be a (s, 1 − ε)-skewed dataset.
There exists a constant γ > 0, such that for any ε ∈ (0, 1

4], the set S returned by
CORESETCONSTRUCTION(X, ε, n, k,∆) is an ε-coreset of X with probability at least 0.99 if
µ = γdk

ε3 log(n∆).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. We want to use Bernstein’s inequality to bound the probability. For any C ∈
(
Rd
)k

, we
define the random variable to describe the cost of S:

Zi =

{
w(xi) · Cost (xi, C) , with probability px,

0, with probability 1− px.

Let Sn =
∑n

i=1 Zi. Then Cost (S, C) = Sn.

Denote En = E [Sn], then

En =

n∑
i=1

w(xi) · Cost (xi, C) · pi.

According to the algorithm, w(xi) =
1
px

, so

En =

n∑
i=1

1

px
· Cost (xi, C) · pi =

n∑
i=1

Cost (xi, C) = Cost (X, C) .

Next, we analyze the variance of Zi. Let Vn = Var (Sn). Recall that the variance of a random
variable is bounded by its second moment, so

Var (Zi) ≤ E
[
Z2
i

]
=

1

p2x
· Cost (xi, C)2 · pi =

1

px
· Cost (xi, C)2 .

Recall that px = min{µs(x), 1}. For the case µs(x) ≤ 1,

Var (Zi) ≤
1

µs(x)
Cost (xi, C)2 .

Recall the definition of s(x),

s(x) = max
C′∈(Rd)k

Cost(x, C′)
Cost(X, C′)

.

Therefore

Var (Zi) ≤
1

µ

Cost(X, C)
Cost(xi, C)

Cost(xi, C)2 =
1

µ
Cost(X, C)Cost(xi, C).

Hence ∑
µs(xi)≤1

Var (Zi) ≤
∑

µs(xi)≤1

1

µ
Cost(X, C)Cost(xi, C)

≤
n∑

i=1

1

µ
Cost(X, C)Cost(xi, C)

=
1

µ
Cost(X, C)2.

For the case µs(x) > 1, we have px = 1. Hence

Var (Zi) = E
[
Z2
i

]
− (E [Zi])

2
= Cost(xi, C)2 · 1− Cost(xi, C)2 = 0.

Then ∑
µs(xi)>1

Var (Zi) = 0.

Thus
Vn =

∑
µs(xi)≤1

Var (Zi) +
∑

µs(xi)>1

Var (Zi) ≤
1

µ
Cost(X, C)2.

Next we analyze the range bound R. For the lower bound, 0 ≤ Zi for any i ∈ [n]. For the upper
bound, by the definition of Zi, for the case p(xi) = µs(xi),

Zi =
1

µs(xi)
Cost(xi, C) ≤

1

µ

Cost(X, C)
Cost(xi, C)

Cost(xi, C) =
1

µ
Cost(X, C).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For the case p(xi) = 1,
Zi = Cost(xi, C) ≤ Cost(X, C).

Hence Zi ≤ Cost(X, C) for any i ∈ [n].

Then by Bernstein’s inequality,

Pr [|Sn − En| > εEn] < 2 exp

(
− (εEn)

2/2

Vn +R · εEn/3

)
≤ 2 exp

(
− ε2Cost(X, C)2/8

1
µCost(X, C)2 + εCost(X, C)2/6

)

= 2 exp

(
− ε2/2

1
µ + ε/6

)
.

Since ε ∈ (0, 1
4] and µ = γdk

ε3 log(n∆), there exists γ > 0 such that µ ≥ 1 ≥ ε
6 . Hence

Pr [|Sn − En| > εEn] < 2 exp

(
− ε2/2

1
µ + 1

µ

)
≤ 2 exp

(
−µε2

4

)
.

By Cohen-Addad et al. (2023), there exists a collection of center set F that gives a good approx-
imation for any center set, and the guarantee of (1 + ε)-approximation on F implies the (1 + ε)-
approximation for any center set.

Lemma C.3 (Lemma 3.2 in (Cohen-Addad et al., 2023)). Let X ⊂ [∆]d and let z ≥ 1 be a constant.

Then there exists a set F of size |F| =
(
n∆
ε

)O(kd)
, such that (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤

(1 + ε)Cost(X, C) for any C ∈ F , implies (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 + ε)Cost(X, C)
for any set C ⊂ Rd with |C| = k.

Denote E as the event that (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 + ε)Cost(X, C) for any C ∈ F .
Notice that (1 − ε)Cost(S, C) ≤ Cost(X, C) ≤ (1 + ε)Cost(S, C) is equivalent to |Cost(S, C) −
Cost(X, C)| ≤ εCost(X, C). By taking a union bound, we get

Pr [E] ≥ 1− |F| · 2 exp
(
−µε2

4

)
.

Since |F| =
(
n∆
ε

)O(kd)
and µ = γdk

ε3 log(n∆), we get

Pr [E] ≥ 1− exp

(
O(dk log n∆

ε
)− γdk

4ε
log (n∆)

)
.

Thus there exists any constant γ > 0 such that Pr [E] ≥ 0.99.

Then by Lemma C.3, with probability at least 0.99, (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 +
ε)Cost(X, C) for any set C ⊂ Rd with |C| = k, which is equivalent to that S is an ε-coreset of
X .

Next, we prove that under the condition of Lemma 3.2, S has a size of |S| = O(dk
2

ε3 log(n∆)).

Lemma C.4. Let X = {x1, x2, · · · , xn} ⊂ [∆]d be a (s, 1 − ε)-skewed dataset. There exists a
constant γ > 0, such that for any ε ∈ (0, 1

4], S has a size of |S| = O(dk
2

ε3 log(n∆)) with probability
at least 0.99 if µ = γdk

ε3 log(n∆).

Proof. The proof is similar to the proof of Lemma C.2. We use Bernstein’s inequality to bound the
probability.

Define the random variable

Zi =

{
1, with probability px,

0, with probability 1− px.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Denote Sn =
∑n

i=1 Zi. Since Zi describe whether we sample the point xi or not, |S| = Sn. Let
En = E [Sn] and Vn = Var (Sn).

Since px = min{µs(x), 1}, we get En =
∑n

i=1 E [Zi] ≤
∑n

i=1 µs(xi). Varadarajan & Xiao (2012)
proves that for (k, z)-clustering,

∑n
i=1 s(xi) = O(k). Hence there exists some constant γ′ > 0,

such that
∑n

i=1 s(xi) ≤ γ′k. Then En ≤ γ′µk.

Since Zi is a Bernoulli random variable, Var (Zi) = pxi
(1− pxi

) ≤ pxi
. Hence

Vn =

n∑
i=1

Var (Zi) ≤
n∑

i=1

pxi
≤

n∑
i=1

µs(xi) = γ′µk.

For the range bound, we have 0 ≤ Zi ≤ 1 for any i. Then by Bernstein’s inequality,

Pr [|Sn − En| > γ′µk] < 2 exp

(
− (γ′µk)2/2

Vn +R · En/3

)
≤ 2 exp

(
− γ′2µ2k2/2

γ′µk + γ′µk/3

)
≤ 2 exp

(
−γ′µk

4

)
.

Since µ = γdk
ε3 log(n∆), there exists γ > 0 such that

Pr [|Sn − En| > γ′µk] < 0.01.

Then with probability at least 0.99,

|S| = Sn ≤ En + γ′µk ≤ 2γ′µk = O(dk
2

ε3
log(n∆))

Finally, we demonstrate that under the assumption of Lemma 3.2, S exhibits significant skewness.
Our proof establishes that the coreset S not only provides an accurate approximation of X , but
also effectively approximates the expensive clusters NX(ci). Specifically, we assert that S offers a
(1 + ε)-approximation for clusters whose cost exceeds ε

100kCost(X, COPT), with COPT representing
the optimal solution.

Lemma C.5. Let X = {x1, x2, · · · , xn} ⊂ [∆]d be a (s, 1 − ε)-skewed dataset. Let COPT =
{c1, c2, · · · , ck} be the optimal solution. Let NX(ci) = {x ∈ X : dist(x, ci) ≤ dist(x, cj), j ̸= i}.
Assume NX(ci) is ordered in the way that Cost(NX(ci), COPT) ≥ Cost(NX(cj), COPT) for j > i.
There exists a constant γ > 0, such that for any ε ∈ (0, 1], if µ = γdk

ε3 log(n∆), with proba-
bility at least 0.99, Cost(NS(ci), COPT) ∈ (1 ± ε)Cost(NX(ci), COPT) for Cost(NX(ci), COPT) ≥

ε
100kCost(X, COPT), where NS(ci) is the set of points in S that sampled from NX(ci), and S is the
set returned by CORESETCONSTRUCTION(X, ε, n, k,∆).

Proof. Let NX(ci) = {x1, x2, · · · , xm} be a cluster such that Cost(NX(ci), COPT) ≥
ε

100kCost(X, COPT). For j ∈ [m], we define

Zj =

{
w(xj) · Cost (xj , COPT) , with probability px,

0, with probability 1− px.

Let Si =
∑

xj∈Xi
Zj , Ei = E [Si] and Vi = Var (Si).

By the same proof as the one of Lemma C.2, we claim that for the case pxj = 1, Var (Zj) = 0, and
for the case pxj = µs(xj),

Var (Zj) ≤
1

µ
Cost(X, COPT)Cost(xj , COPT).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We also have

Ei =

m∑
j=1

E [Zj] =

m∑
j=1

1

pxj

Cost(xj , COPT)pxj
= Cost(NX(ci), COPT).

Ei is Cost(NX(ci), COPT) here, which is different from the expextation in the proof of Lemma C.2.
It is because we only add the points in NX(ci) here, and we add all points in X in the proof of
Lemma C.2.

Similarly, for Vi, we have∑
xj∈NX(ci):µs(xi)≤1

Var (Zi) ≤
∑

xj∈NX(ci):µs(xi)≤1

1

µ
Cost(X, COPT)Cost(xj , COPT)

≤
∑

xj∈NX(ci)

1

µ
Cost(X, COPT)Cost(xj , COPT)

=
1

µ
Cost(X, COPT)Cost(NX(ci), COPT),

and ∑
xj∈NX(ci):µs(xi)<1

Var (Zi) = 0.

Hence

Vn =
∑

xj∈NX(ci):µs(xi)≤1

Var (Zi) +
∑

xj∈NX(ci):µs(xi)>1

Var (Zi)

≤ 1

µ
Cost(X, COPT)Cost(NX(ci), COPT).

By the same proof of Lemma C.2, for the bound of Zj , we have 0 ≤ Zj ≤ Cost(X, COPT) for any
j ∈ [m].

Now we have En = Cost(NX(ci), COPT), R = Cost(X, COPT), and

Vn ≤
1

µ
Cost(X, COPT)Cost(NX(ci), COPT) =

1

µ
R · En.

Then by Bernstein’s inequality,

Pr [|Sn − En| > εEn] < 2 exp

(
− (εEn)

2/2

Vn +R · εEn/3

)
≤ 2 exp

(
− ε2E2

n/2
1
µR · En + εR · En/6

)

= 2 exp

− ε2En/2(
1
µ + ε

6

)
R

 .

Since ε ∈ (0, 1
4], there exists γ > 0 such that µ > 1. Then 1

µ + ε
6 ≤

2
µ . Thus

Pr [|Sn − En| > εEn] < 2 exp

(
−ε2µEn

4R

)
.

Since Cost(NX(ci), COPT) ≥ ε
100kCost(X, COPT), we get En

R ≥ ε
100k . Recall that µ =

γdk
ε3 log (n∆). Then

Pr [|Sn − En| > εEn] < 2 exp

(
− ε3µ

400k

)
= 2 exp

(
− γd

400
log (n∆)

)
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Then there exists some constant γ > 0 such that

Pr [|Sn − En| > εEn] ≤ 2 exp

(
− γd

400
log (n∆)

)
≤ 1

100n
.

It means for a cluster NX(ci) that Cost(NX(ci), COPT) ≥ ε
100kCost(X, COPT), with probability at

least 1− 1
100n , we have |Cost(NX(ci), COPT)− Cost(NS(ci), COPT)| ≤ εCost(NX(ci), COPT).

Since we have k clusters in total, the number of the clusters NX(ci) that Cost(Xi, COPT) ≥
ε

100kCost(X, COPT) is at most k. By taking a union bound, we get that |Cost(NX(ci), COPT) −
Cost(NS(ci), COPT)| ≤ εCost(NX(ci), COPT) for any Cost(NX(ci), COPT) ≥ ε

100kCost(X, COPT)

with probability at least 1− k
100n ≥ 0.99.

Finally, we complete the proof of Lemma 3.2.

Lemma C.6. Let X be an (s, 1 − ε)-skewed dataset. There exists a constant γ > 1, such that for
any ε ∈ (0, 1

4],CORESETCONSTRUCTION returns an ε-coreset S for X with probability at least
0.97. Furthermore, S is (s, 1− 3ε)-skewed, and has a size of O(dk

2

ε3 log(n∆)).

Proof. By Lemma C.2, Lemma C.4 and Lemma C.5, we get that with probability at least 0.97, S
is an ε-coreset of X , |S| = O(dk

2

ε3 log (n∆)), and |Cost(NX(ci), COPT) − Cost(NS(ci), COPT)| ≤
εCost(NX(ci), COPT) for any cluster NX(ci) that Cost(NX(ci), COPT) ≥ ε

100kCost(X, COPT).

What we remain to prove is that S is a (s, 1− ε)-skewed set.

WLOG, we can order the clusters NX(ci) in the way that Cost(NX(ci), COPT) ≥
Cost(NX(cj), COPT) for i < j. We divide {NX(ci)}ni=1 into two part, the heavy ones H =
{1, · · · ,m} and the light ones L = {m+1, · · · , k}, such that for any i ∈ H, Cost(NX(ci), COPT) ≥

ε
100kCost(X, COPT), and for any i ∈ L, Cost(NX(ci), COPT) <

ε
100kCost(X, COPT).

Notice that the heavy clusters L contribute at most ε
100Cost(X, COPT). In fact, for the sum of NX(ci)

where i ∈ L, ∑
i∈L

Cost(NX(ci), COPT) ≤
∑
i∈L

ε

100k
Cost(X, COPT)

≤
k∑

i=1

ε

100k
Cost(X, COPT)

=
ε

100
Cost(X, COPT).

We divide the sum of the s most heaviest clusters into two part:∑
i∈[s]

Cost(NX(ci), COPT) =
∑

i∈[s]∩H

Cost(NX(ci), COPT) +
∑

i∈[s]∩L

Cost(NX(ci), COPT).

Since X is a (s, 1− ε)-skewed set,∑
i∈[s]∩H

Cost(NX(ci), COPT) =
∑
i∈[s]

Cost(NX(ci), COPT)−
∑

i∈[s]∩L

Cost(NX(ci), COPT)

≥ (1− ε)Cost(X, COPT)−
ε

100
Cost(NX(ci), COPT)

=

(
1− 101

100
ε

)
Cost(NX(ci), COPT).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Since for i ∈ H, |Cost(NX(ci), COPT) − Cost(NS(ci), COPT)| ≤ εCost(NX(ci), COPT) and
|Cost(X, COPT)− Cost(S, COPT)| ≤ εCost(X, COPT), we get∑

i∈[s]∩H

Cost(NS(ci), COPT) ≥ (1− ε)
∑

i∈[i]∩H

Cost(NX(ci), COPT)

≥ (1− ε)

(
1− 101

100
ε

)
Cost(X, COPT)

≥
(
1− 201

100
ε

)
Cost(X, COPT).

We also have
Cost(S, COPT) ≤ (1 + ε)Cost(X, COPT).

Since for ε ∈ (0, 1
4], (1 + ε)(1− 4ε) ≤ 1− 201

100ε, we get∑
i∈[s]

Cost(NS(ci), COPT) ≥
∑

i∈[s]∩H

Cost(NS(ci), COPT)

≥ (1− 4ε)(1 + ε)Cost(X, COPT)

≥ (1− 3ε)Cost(S, COPT).

Therefore S is (s, 1− 3ε)-skewed.

C.2 (1 + ε)-APPROXIMATE CENTER NET

We will prove Lemma 3.3 in this section.

First, we prove that there always exists an ε-net in ball B(x, r) with size 2O(d log(r/ε)).

Lemma C.7. There exists an ε-net N in ball B(x, r), such that |N | = 2O(d log(r/ε)).

Proof. Notice that a 2ε√
d

-grid is an ε-net. In fact, let N be a 2ε√
d

-grid in B(x, r). Then for any
y ∈ B(x, r),

dist(y,N) ≤

√√√√ d∑
i=1

(
ε√
d

)2

= ε.

Hence N has size with

|N | =

(
O(r
√
d

2ε
)

)d

= 2O(d log(r/ε)).

Next, we demonstrate the following inequality to aid in constraining the cost distortion.
Lemma C.8. Let 0 < |a| < b, a can be either positive or negative. Then

| (b+ a)
z − bz| ≤ 2z|a|bz−1.

Proof. For a > 0, since 0 < a < b, we have aibz−i ≤ abz−1. Hence

| (b+ a)
z − bz| = (b+ a)

z − bz =

z∑
i=1

(
z

i

)
aibz−i ≤ 2zabz−1.

For a < 0, we get

| (b+ a)
z − bz| = (b+ a− a)

z − (b+ a)
z ≤ 2z|a|(b+ a)z−1.

Since a < 0, we have b+ a ≤ b. Hence

| (b+ a)
z − bz| ≤ 2z|a|bz−1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For a center c ∈ [∆]d, denote dc as the distance dist(S, c). We establish the theorem by categorizing
c into three cases based on dc. The cases are: dc = 0, dc ≥ 2M1 where M1 = log

(
ε

kW

)
− 2z,

and 0 < dc < 2M1 . In the first case, we set c′ = c. We show that Cost(x, c) = Cost(x, c′) in this
scenario, implying zero cost distortion. In the second case, we choose c′ so that dist(c, c′) ≤ εdc

2z . We
show that |Cost(x, c) − Cost(x, c′)| ≤ ε

2Cost(x, c), which results in a minor cost distortion. In the
third case, we set c′ as the closest x ∈ S to c. We prove that |Cost(x, c)−Cost(x, c′)| ≤ ε

2Cost(x, c)
for x ̸= c′, resulting in a small distortion. Furthermore, we establish that for Cost(x, c) where x = c′,
it is relatively small relative to the total cost. Ultimately, we prove that our selection of c′ leads to a
very minor distortion and provides a good approximation of C. We demonstrate the validity of these
three cases sequentially. Initially, for dc = 0, selecting c′ = c does not result in cost distortion.
Lemma C.9. For a center c ∈ [∆]d, let dc be the distance dist(S, c). Suppose dc = 0. Then there
exists c′ ∈ T such that Cost(x, c) = Cost(x, c′) for any x ∈ S.

Proof. In fact, dc = 0 means c ∈ S. Then we can just let c′ = c, which leads Cost(x, c) =
Cost(x, c′) for any x ∈ S.

Second, given dc ∈ [2M1 , 2M2+1), it is possible to select some c′ ∈ T and produce a minor distortion
of the cost in comparison to the initial cost.
Lemma C.10. For a center c ∈ [∆]d, let dc be the distance dist(S, c). Suppose dc ∈ [2M1 , 2M2+1),
where M1 = log

(
ε

kW

)
− 2z − 2 and M2 = log∆. Then there exists c′ ∈ T such that |Cost(x, c)−

Cost(x, c′)| ≤ ε
2Cost(x, c) for any x ∈ S.

Proof. Assume dc ∈ [2i, 2i+1), where i ∈ [M1,M2). Define xc as the point in S closest to c. Given
dc ∈ [2i, 2i+1), it follows that c ∈ B(xc, 2

i+1). Because i ∈ [M1,M2), an ε2i+1

22z+1 -net has been
established in B(xc, 2

i+1), and T includes such a net. Consequently, there exists some c′ ∈ T such
that dist(c, c′) ≤ ε2i

22z .

For any x ∈ S, let D1 = max{dist(x, c), dist(x, c′)|} and let D2 = min{dist(x, c), dist(x, c′)|}.
Then by Lemma C.8, we get

|dist(x, c)z − dist(x, c′)z| = |Dz
1 −Dz

2 | ≤ 2z|D1 −D2|Dz−1
1 .

By triangle inequality, we get

|D1 −D2| = |dist(x, c)− dist(x, c′)| ≤ dist(c, c′) ≤ ε2i

22z
.

If D1 = dist(x, c′), we have

D1 = dist(x, c) + (dist(x, c′)− dist(x, c)) ≤ dist(x, c) +
ε2i

22z
.

Since dc ∈ [2i, 2i+1), for any x ∈ S, dist(x, c) ≥ dc ≥ 2i. Since ε ∈ (0, 1], we get ε2i+1

23z ≤
dist(x, c) for any x ∈ S. Then

D1 ≤ dist(x, c) + dist(x, c) = 2dist(x, c).

Hence

|dist(x, c)z − dist(x, c′)z| ≤ 2z
ε2i

22z
(2 · dist(x, c))z−1

= ε2i−1dist(x, c)z−1.

Since 2i ≤ dist(x, c), we get

|dist(x, c)z − dist(x, c′)z| ≤ ε

2
dist(x, c)z.

Since Cost(x, c) = w(x) · dist(x, c)z , we get
|Cost(x, c)− Cost(x, c′)| = w(x) · |dist(x, c)z − dist(x, c′)z|

≤ w(x) · ε
2

dist(x, c)z

=
ε

2
Cost(x, c).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Third, for dc < 2M1 , we can select a certain c′ ∈ T and produce minimal distortion in cost relative
to the initial cost for x ̸= c′, and generate minor distortion in cost relative to the overall cost for
x = c′.
Lemma C.11. For a center c ∈ [∆]d, let dc be the distance dist(S, c). Suppose 0 < dc < 2M1 ,
where M1 = log

(
ε

kW

)
−2z−2. Let xc be the point of S nearest to c. Let c′ = xc, then Cost(xc, c) ≤

ε
2k ·

1
2z , and |Cost(x, c) − Cost(x, c′)| ≤ ε

2Cost(x, c) for any x ̸= xc ∈ S. Furthermore, for any
x ∈ S, x ̸= xc is equivalent to dist(x, c) ≥ 2M1 .

Proof. Since W ≥ 1 and ε ∈ (0, 1], log
(

ε
kW

)
≤ 0. Hence M1 ≤ −2. Then dc < 2M1 ≤ 1

4 . Since
any x ∈ S has integer coordinates and dist(xc, c) = dc ≤ 1

4 , for any x ̸= xc ∈ S, dist(x, c) ≥ 1
2 ≥

2M1+1. Also, if dist(x, c) ≥ 2M1 > dist(xc, c), we must have x ̸= xc. Hence for any x ∈ S, x ̸= xc

is equivalent to dist(x, c) ≥ 2M1 .

For x ̸= xc ∈ S, let D1 = max{dist(x, c), dist(x, c′)|} and let D2 = min{dist(x, c), dist(x, c′)|}.
Then by triangle inequality,

|dist(x, c)− dist(x, c′)| ≤ dist(c, c′) = dist(xc, c) = dc < 2M1 .

Then for D1, we have

D1 ≤ dist(x, c) + |dist(x, c)− dist(x, c′)| = dist(x, c) + dc.

Since dist(x, c) ≥ 1
4 ≥ 2M1 > dc, we get

D1 ≤ dist(x, c) + dist(x, c) = 2dist(x, c).

Then similar to the proof of Lemma C.10, by Lemma C.8, we get

|dist(x, c)z − dist(x, c′)z| = |Dz
1 −Dz

2 |
≤ 2z|D1 −D2|Dz−1

1

≤ 2zdc (2dist(x, c))z−1
.

Since 2M1 > dc and M1 = log
(

ε
kW

)
− 2z − 2, we get

|dist(x, c)z − dist(x, c′)z| ≤ 22z−12M1dist(x, c)z−1

= 2−3 ε

kW
dist(x, c)z−1.

Since dist(x, c) ≥ 1
2 , we get

|dist(x, c)z − dist(x, c′)z| ≤ 2−2 ε

kW
dist(x, c)z.

Hence

|Cost(x, c)− Cost(x, c′)| = w(x) · |dist(x, c)z − dist(x, c′)z|

≤ w(x)2−2 ε

kW
dist(x, c)z.

Since k ≥ 1 and W ≥ 1, we get

|Cost(x, c)− Cost(x, c′)| ≤ w(x)
ε

2
dist(x, c)z =

ε

2
Cost(x, c).

For xc = c′, since dist(xc, c) = dc < 2M1 , we get

Cost(xc, c) = w(xc)dist(xc, c)
z ≤ w(xc)

(
2M1

)z
.

Since 2M1 ≤ 1
4 < 1,

(
2M1

)z ≤ 2M1 . Hence

Cost(xc, c) ≤ w(xc)2
M1 = w(xc)2

−2z−2 ε

kW
.

Since W ≥ w(xc), we get

Cost(xc, c) ≤
ε

2k

1

2z
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Now we complete the proof of Lemma 3.3.

Lemma C.12. Let S be a weighted set whose maximum weight is at least 1. For ε ∈ (0, 1], the set
T returned by CENTERNET satisfies: for any C ⊂ [∆]d and |C| ≤ k, there exists C′ ⊂ T k such that

(1− ε)Cost(S, C) ≤ Cost(S, C′) ≤ (1 + ε)Cost(S, C).

Furthermore, T has a size of |T | = |S| · 2O(d log 1
ε log log(k∆

ε)).

Proof. We first prove the accuracy claim in the theorem.

For any C = {c1, c2, · · · , ck} ⊂ [∆]d, we will construct C′ ⊂ T such that

(1− ε)Cost(S, C) ≤ Cost(S, C′) ≤ (1 + ε)Cost(S, C).

For any ci ∈ C, we select the corresponding c′i ∈ T the way we used in Lemma C.9, Lemma C.10,
and Lemma C.11. Let C′ = {c′1, c′2, · · · , c′k}.
We partition S into three subsets: S0, S1, and S2. Here, S0 comprises the points that coincide with
C. The set S1 consists of points whose distance from C is less than 2M1 but greater than 0. Lastly,
S2 contains points with a distance from C greater than 2M1 .

Let

S0 = {x ∈ S : dist(x, C) = 0},
S1 = {x ∈ S : 0 < dist(x, C) < 2M1},
S2 = {x ∈ S : dist(x, C) ≥ 2M1}.

We will analyze the distortion of cost of S0, S1, and S2 one by one.

For x ∈ S0, since dist(x, C) = 0, there exists some ci ∈ C such that dxi
= 0. Then by Lemma C.9,

we will select c′i = x. Hence we get

Cost(x, C′) = Cost(x, C) = 0.

Then
|Cost(S0, C′)− Cost(S0, C)| = |

∑
x∈S0

Cost(x, C′)− Cost(x, C)| = 0.

For x ∈ S1, 0 < dist(x, C) < 2M1 means there exists some ci ∈ C such that dist(x, ci) =
dci ∈ (0, 2M1). By Lemma C.11, we will select c′i = x, which means Cost(x, C′) = 0. Also,
by Lemma C.11, we have

Cost(x, C) ≤ ε

2k

1

2z
.

Observe that Cost(S, C) ≥ 1
2z . Given that |S| > k and each point x ∈ S has integer coordinates,

there must be some center ci ∈ C such that at least two distinct points x1 ̸= x2 are assigned to ci.
Since x1 ̸= x2, at least one of them is at least 1

2 distance away from ci, which results in a cost of at
least 1

2z . Therefore

Cost(x, C) ≤ ε

2k
Cost(S, C).

Since x ∈ S has integer coordinators, for any ci ∈ C, there exists at most one x ∈ S such that
dist(x, ci) < 2M1 . Hence |S1| is at most k. Then

|Cost(S1, C′)− Cost(S1, C)| = |
∑
x∈S1

Cost(x, C′)− Cost(x, C)|

≤
∑
x∈S1

ε

2k
Cost(S, C)

≤ ε

2
Cost(S, C).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

For x ∈ S2, since dist(x, C) ≥ 2M1 , we have dist(x, ci) ≥ 2M1 for any ci ∈ C. For ci ∈ C that
dci ≥ 2M1 , by Lemma C.10,

|Cost(x, ci)− Cost(x, c′i)| ≤
ε

2
Cost(x, ci).

For ci ∈ C that dci < 2M1 , since dist(x, ci) ≥ 2M1 , by Lemma C.11, we also have

|Cost(x, ci)− Cost(x, c′i)| ≤
ε

2
Cost(x, ci).

Hence |Cost(x, ci)− Cost(x, c′i)| ≤ ε
2Cost(x, ci) is true for any ci ∈ C. Then we can claim that

|Cost(x, C)− Cost(x, C′)| ≤ ε

2
Cost(x, C)

for any x ∈ S2.

Notice that the above claim is non-trivial because it is possible that x is assigned to ci ∈ C, but is
assigned to c′j ∈ C′ for i ̸= j. We may assume that x is assigned to ci ∈ C, and is assigned to
c′j ∈ C′, where i and j can be either the same, or not the same. Since x is assigned to ci ∈ C, and is
assigned to c′j ∈ C′, we have Cost(x, cj) ≥ Cost(x, ci), and Cost(x, c′i) ≥ Cost(x, c′j). Hence

Cost(x, C′) = Cost(x, c′j) ≥ (1− ε

2
)Cost(x, cj)

≥ (1− ε

2
)Cost(x, ci) = (1− ε

2
)Cost(x, C),

and

Cost(x, C′) = Cost(x, c′j) ≤ Cost(x, c′i)

≤ (1 +
ε

2
)Cost(x, ci) = (1 +

ε

2
)Cost(x, C).

Hence we get
|Cost(x, C′)− Cost(x, C)| ≤ ε

2
Cost(x, C),

for any x ∈ S2. Then

|Cost(S2, C′)− Cost(S2, C)| = |
∑
x∈S2

Cost(x, C′)− Cost(x, C)|

≤
∑
x∈S2

ε

2
Cost(x, C).

Since S2 ⊂ S, we get

|Cost(S2, C′)− Cost(S2, C)| ≤
∑
x∈S

ε

2
Cost(x, C) = ε

2
Cost(S, C).

Then combining the bound of |Cost(Si, C′)− Cost(Si, C)|, we get

|Cost(S, C′)− Cost(S, C)| = |
2∑

i=0

(Cost(Si, C′)− Cost(Si, C)) |

≤ 0 +
ε

2
Cost(S, C) + ε

2
Cost(S, C)

= εCost(S, C).

Hence we complete our proof that C′ ⊂ T gives an (1 + ε)-approximation for C.

Subsequently, we shall demonstrate the assertion regarding the net size within the theorem.

By the CENTERNET(S, ε,∆), we know

T = S
⋃(

M2⋃
i=M1

⋃
x∈S

Ni,x

)
.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Since Ni,x is an εr
22z+1 -net in B(x, r), by Lemma C.7,

|Ni,x| = 2
O(d log

(
r· 22z+1

εr

)
)
= 2O(d log(1

ε)).

Hence

|T | ≤ |S|+ (M2 −M1) · |S| · 2O(d log(1
ε))

= |S|+ (log∆− log
(ε

kW

)
+ 2z + 2) · |S| · 2O(d log(1

ε))

= |S|2O(d log(1
ε) log log(kW∆

ε)).

By CORESETCONSTRUCTION(X, ε, n, k,∆), we know that

W = max
x∈X
{ 1

µs(x)
}.

Notice that s(x) ≥ 1
2n for any x ∈ X ⊂ [∆]d. In fact, we can select C = {c1, c2, · · · , ck} such that

∥ci∥ = 100
√
d∆ for any ci ∈ C. By the definition of sensitivity,

s(x) = max
C′∈(Rd)k

Cost(x, C′)
Cost(X, C′)

≥ Cost(x, C)
Cost(X, C)

.

Since x ∈ [∆]d, we have dist(x, ci) ∈ [99
√
d∆, 101

√
d∆]. Hence

s(x) ≥ 99
√
d∆

n · 101
√
d∆
≥ 1

2n
.

Hence we have W ≤ 2n
µ . Then

|T | = |S|2O(d log(1
ε) log log(k∆

ε)).

Currently, we have (S, T) where |S| = Õ(dk
2

ε) and |T | = 2Õ(d log(dk
ε)). According to Lemma 3.2

and Lemma 3.3, an optimal solution for (S, T) is a (1+2ε)-approximate solution for X . Therefore,
using a brute force search, we can achieve a (1 + 2ε)-approximation within a running time of
2Õ(dk log(dk

ε)). Nevertheless, this is not a PTAS for k since the running time depends on 2O(k). For
heavily skewed datasets, the running time can be further optimized. In Appendix D and Appendix E,
we will present a PTAS utilizing this heavily skewed property.

D LOCAL SEARCH ADAPTED FOR HEAVILY SKEWED SET

We will prove Lemma 4.1 in Appendix D.1 and Lemma 4.2 in Appendix D.2.

D.1 HEAVY SKEW LOCAL SEARCH FOR k-MEDIAN

For brevity, we will consider S as the data set and T as a finite set of potential centers, with S
being a (s, 1 − ε)-skewed data set. We denote C = {c1, c2, · · · , ck} as the optimal solution within
the net T , and P as the heuristic solution produced by the algorithm. We assume Cost (N(ci)) ≥
Cost (N(cj)) for i ≤ j, where N(ci) = {x ∈ S : Cost(x, ci) ≤ Cost(x, cj), j ̸= i}. We define
CE = {c1, c2, · · · , cs} as the expensive centers and CC = C\CE as the cheap centers. For U ⊂ C,
let N(U) = {x ∈ S : Cost(x,U) ≤ Cost(x, C\U)} denote the points assigned to U in the optimal
solution, and let N∗(U) = {x ∈ S : Cost(x,U) ≤ Cost(x,P\U)} for U ⊂ P , representing
the points allocated to U in the heuristic solution P . We also denote Ox = dist(x, C) and Ax =
dist(x,P).
We will establishLemma 4.1 by demonstrating that HEAVYSKEWLOCALSEARCH successfully ap-
proximates N(CC).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We will employ the general framework for the analysis of local search algorithms as previously
utilized by Arya et al. (2001); Kanungo et al. (2002); Gupta & Tangwongsan (2008), but with a
more nuanced analysis. Within this framework, we construct a series of swaps between the heuristic
centers and the optimal centers. Given that the set of heuristic centers represents a local optimum,
the cost will increase after each swap. Conversely, by swapping heuristic centers to optimal centers,
we can bound the cost distortion as γ1

∑
Ox − γ2

∑
Ax if the swapping centers are chosen with

precision. Consequently, we can achieve 0 ≤ γ1
∑

Ox−γ2
∑

Ax for certain swaps. Ultimately, by
constructing multiple such swaps and aggregating these inequalities, we derive the desired result.

Before conducting further analysis, we first present some notations and definitions to facilitate the
examination of the local search algorithm. We define an optimal center c ∈ CC as being captured by
a heuristic center b ∈ B if b is the closest center to c within B. Ties are resolved arbitrarily to ensure
that each c ∈ CC is captured by exactly one heuristic center. We say that a heuristic center b has a
degree of m if it captures exactly m optimal centers in CC .

We define bc as the heuristic center in B closest to c ∈ C, bx as the heuristic center in B closest to
x ∈ S, cx as the optimal center in C closest to x, and c′x as the optimal center in CC closest to x.

We will examine the interchange between the center sets F and R. Initially, we establish that the
distance between x and the new centers can be constrained by Ox and Ax, provided that F and R
satisfy the following condition.

Lemma D.1. Suppose F ⊂ CC ,R ⊂ B, and |F| = |R|. If the heuristic centers inR do not capture
any optimal centers in CC\F , for x ∈ (N∗(R)\N(F)) ∩N(CC),

dist(x,P\R ∪ F) ≤ 2Ox +Ax.

Proof. Since x /∈ N(F) and x ∈ N(CC), c′x /∈ F . By the condition, the centers inR do not capture
c′x, so bc′x ∈ B\R ⊂ P\R ∪ F . Hence

dist(x,P\R ∪ F) ≤ dist(x, bc′x).

By triangle inequality,
dist(x, bc′x) ≤ dist(x, c′x) + dist(c′x, bc′x).

Since bc′x is the nearest center to c′x, dist(c′x, bc′x) ≤ dist(c′x, bx), which leads

dist(x, bc′x) ≤ dist(x, c′x) + dist(c′x, bx).

By triangle inequality,

dist(x, bc′x) ≤ dist(x, c′x) + dist(c′x, x) + dist(x, bx)

= 2dist(x, c′x) + dist(x, bx).

Since Ox = dist(x, c′x) and Ax = dist(x, bx), it leads

dist(x,P\R ∪ F) ≤ 2Ox +Ax.

Next, we design a collection of partition pairs {(Fi,Ri)} that satisfy the requirement that the centers
withinRi do not capture any center beyond Fi.

Lemma D.2. Assume B is the heuristic center set and CC is the cheap optimal center set. There
exists partition pair {(Fi,Ri)}li=1 that meets the following condition:

• {Fi} is a partition of CC . In other words, Fi are disjoint from each other, and CC =
∪li=1Fi.

• {Ri} is a partition of B.

• |Fi| = |Ri| for i ∈ [l].

• Centers inRi do not capture any center c /∈ Fi for i ∈ [l].

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof. Recall that the degree of a heuristic center b is the number of optimal centers in CC that is
captured by b. Also, every c ∈ CC is captured by exactly one heuristic center.

WOLG, we can denote B>0 = {b1, · · · , bl} as the set of all the centers with positive degree, and
B0 = {bl+1, · · · , bk−s} as the set of centers with degree zero.

For any bi ∈ B>0, we construct Fi as the optimal centers in CC captured by bi. Since every center
in CC is captured by exactly 1 heuristic center by definition, {Fi} is a partition of CC .

We construct Ri as the union of bi and deg bi − 1 centers with degree zero. We put centers of B0
into Ri in such way that every center in B0 belongs to exactly one of {Ri}. Such construction is
valid by the following discussion:

Since |Fi| = deg bi, it leads that |CC | =
∑l

i=1 |Fi| =
∑l

i=1 deg bi. Since |B| = |CC | = k − s and
|B>0| = l, it leads that

∑l
i=1(deg bi − 1) = |B| − l = |B| − |B>0|. It means we need |B| − |B>0|

zero degree centers for such construction. On the other hand, we have exact |B0| = |B| − |B>0|
degree zero centers. Hence we can assign every zero degree center to exact oneRi.

Since such construction of {Ri} is valid, by the construction, {Ri} is a partition of B. Also, by the
construction, |Ri| = deg bi = |Fi|.
We have proven the first three conditions. For the last one, notice that bi only captures the centers in
Fi, and every other centers in Ri has 0 degree, which means they capture no centers. Hence Ri do
not capture any center c /∈ Fi.

We claim that any t-swapping holds the following inequality ifR do not capture F .

Lemma D.3. Let (F ,R) be a pairing that |F| = |R| ≤ t andR don’t capture F , then

0 ≤
∑

x∈N(F)

(Ox −Ax) +
∑

N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox.

Proof. Since |F| ≤ t, the swapping between F and R is a t-swapping. Since P returned by
HEAVYSKEWLOCALSEARCHis a local optimum for t-swapping, the total cost of S can only in-
crease, which means

0 ≤ Cost(S,P\R ∪ F)− Cost(S,P).

Now we analyze the bound of Cost(S,P\R ∪ F) − Cost(S,P). For the sake of brevity, we will
denote ∆U = Cost(U ,P\R ∪ F) − Cost(U ,P) for any U ⊂ S in this proof. We also denote
∆x = ∆{x}.

Notice that ∆x can be positive only if x ∈ N∗(R). Since for x /∈ N∗(R), the center in P nearest to
x still belongs to P\R∪F , which means that the new cost of x can only decrease. It means ∆x ≤ 0
for x /∈ N∗(R). By splitting S into N∗(R) and S\N∗(R), we can express ∆S in the following
method:

0 ≤ ∆S = ∆N∗(R) +∆S\N∗(R).

Since N(F)\N∗(R) ⊂ S\N∗(R) and ∆x ≤ 0 for x /∈ N∗(R),

0 ≤ ∆N∗(R) +∆N(F)\N∗(R).

By splitting N∗(R) into N∗(R) ∩N(F) and N∗(R)\N(F), we get

0 ≤ ∆N∗(R)\N(F) +∆N∗(R)∩N(F) +∆N(F)\N∗(R)

= ∆N∗(R)\N(F) +∆N(F).

For x ∈ N(F), Cost(x,P\R ∪ F) ≤ Ox because cx ∈ F ⊂ P\R ∪ F . Hence ∆x ≤ Ox − Ax.
Adding up all x ∈ N(F), then

∆N(F) ≤
∑

x∈N(F)

(Ox −Ax).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

For x ∈ N∗(R)\N(F), we split N∗(R)\N(F) into (N∗(R)\N(F)) ∩ N(CE) and
(N∗(R)\N(F)) ∩N(CC).
For x ∈ (N∗(R)\N(F)) ∩ N(CE), we claim that Cost(x,P\R ∪ F) ≤ Ox. In fact, cx ∈ CE
because x ∈ N(CE). By the HEAVYSKEWLOCALSEARCH, P = CE ∪B, which means cx ∈ P . On
the other hand, since R ⊂ B = P\CE , R does not contain any center of CE . Since cx ∈ P and we
do not remove it after swapping, cx is still contained in P\R∪F . Hence Cost(x,P\R∪F) ≤ Ox.

Since F ⊂ CC , N(F) is disjoint from N(CE). Hence (N∗(R)\N(F)) ∩ N(CE) = N∗(R) ∩
N(CE). It means

∆(N∗(R)\N(F))∩N(CE) = ∆N∗(R)∩N(CE).

Summing over all x ∈ N∗(R) ∩N(CE), we get

∆N∗(R)∩N(CE) ≤
∑

x∈N∗(R)∩N(CE)

(Ox −Ax).

Hence
∆(N∗(R)\N(F))∩N(CE) ≤

∑
x∈N∗(R)∩N(CE)

(Ox −Ax).

For x ∈ (N∗(R)\N(F))∩N(CC), we can apply Lemma D.1 becauseR do not capture any optimal
centers in CC\F . Hence

∆x = dist(x,P\R ∪ F)−Ax ≤ (2Ox +Ax)−Ax = 2Ox.

Summing over all x ∈ (N∗(R)\N(F)) ∩N(CC), we get

∆(N∗(R)\N(F))∩N(CC) ≤
∑

x∈(N∗(R)\N(F))∩N(CC)

2Ox.

Since Ox ≥ 0, ∑
x∈(N∗(R)\N(F))∩N(CC)

2Ox ≤
∑

x∈N∗(R)∩N(CC)

2Ox.

Hence
∆(N∗(R)\N(F))∩N(CC) ≤

∑
x∈N∗(R)∩N(CC)

2Ox.

Combining all the inequalities above, we get

0 ≤ ∆N(F) +∆N∗(R)\N(F)

= ∆N(F) +∆(N∗(R)\N(F))∩N(CE) +∆(N∗(R)\N(F))∩N(CC)

≤
∑

x∈N(F)

(Ox −Ax) +
∑

N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox.

The previous lemma only holds for t-swapping, in other words, |F| = |R| ≤ t. We also claim the
following inequality for the case |F| = |R| > t.
Lemma D.4. If |F| = |R| > t,R has exactly one positive degree center, andR do not capture any
center outside F , the following inequality holds:

0 ≤
∑

x∈N(F)

(Ox −Ax) +

(
1 +

1

t

) ∑
N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox

 .

Proof. Since R has exactly one positive degree center, we just denote it as b. Consider a swap
(c, b′) ∈ F × (R\{b}). Since b′ ∈ R\{b}, it is a zero degree center, which means it captures
no centers. Also, |{c}| = |{b′}| = 1 ≤ t. It means the swapping pair meets the condition of
Lemma D.3, which leads

0 ≤
∑

x∈N(c)

(Ox −Ax) +
∑

N∗(b′)∩N(CE)

(Ox −Ax) +
∑

N∗(b′)∩N(CC)

2Ox.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Consider all the possible combination of (c, b′) ∈ F × (R\{b}). Denote |F| = m. There are
m(m − 1) such pairs. Every center c ∈ F appears exactly m − 1 times in these pairs, and every
center b′ ∈ R\{b} appears exactly m times. Every pair corresponds to one such inequality. We add
all these inequalities together, and get

0 ≤(m− 1)
∑

x∈N(F)

(Ox −Ax) +m ·
∑

N∗(R)∩N(CE)

(Ox −Ax)

+m ·
∑

N∗(R)∩N(CC)

2Ox,

which is equivalent to

0 ≤
∑

x∈N(F)

(Ox −Ax) + γ

 ∑
N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox

 ,

where γ = m
m−1 .

Since |F| = m > t,

t = 1 +
1

m− 1
≥ 1 +

1

t
.

On the other hand, we demonstrated in the proof of Lemma D.3 that the second and third terms
in the above inequality are non-negative. Therefore, substituting γ = m

m−1 with 1 + 1
t does not

diminish the right-hand side, leading to the desired result.

Now we have:

Lemma D.5. ∑
x∈N(CC)

Ax ≤
(
3 +

2

t

) ∑
x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

(Ox −Ax) .

Proof. According to Lemma D.2, there is a partition pair {(Fi,Ri)}li=1 that satisfies the four condi-
tions specified. For any pair (Fi,Ri) within this set, if |Fi| ≤ t, Lemma D.3 can be utilized, which
results

0 ≤
∑

x∈N(Fi)

(Ox −Ax) +
∑

N∗(Ri)∩N(CE)

(Ox −Ax) +
∑

N∗(Ri)∩N(CC)

2Ox.

Since we have shown the second and third term is non-negative,

0 ≤
∑

x∈N(Fi)

(Ox −Ax) + γt

 ∑
N∗(Ri)∩N(CE)

(Ox −Ax) +
∑

N∗(Ri)∩N(CC)

2Ox

 ,

where γt = 1 + 1
t .

For any pair (Fi,Ri) that |Fi| > t, we can apply Lemma D.4 and get

0 ≤
∑

x∈N(Fi)

(Ox −Ax) + γt

 ∑
N∗(Ri)∩N(CE)

(Ox −Ax) +
∑

N∗(Ri)∩N(CC)

2Ox

 .

Each pair corresponds to an analogous inequality. Summing these inequalities from (F1,R1) to
(Fl,Rl), and considering that every optimal center in CC and every heuristic center in B appears
exactly once, we obtain

0 ≤
∑

x∈N(CC)

(Ox −Ax) + γt

 ∑
N∗(B)∩N(CE)

(Ox −Ax) +
∑

N∗(B)∩N(CC)

2Ox

 .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

We have shown that Ox −Ax ≥ 0 for x ∈ N(CE) in the proof of Lemma D.3. Hence∑
N∗(B)∩N(CE)

(Ox −Ax) ≤
∑

N(CE)

(Ox −Ax).

Since Ox is non-negative, ∑
N∗(B)∩N(CC)

2Ox ≤
∑

N(CC)

2Ox

Thus

0 ≤
∑

x∈N(CC)

(Ox −Ax) + γt

 ∑
N(CE)

(Ox −Ax) +
∑

N(CC)

2Ox

 ,

where γt = 1 + 1
t .

Simplifying the above inequality, we get

∑
x∈N(CC)

Ax ≤
∑

x∈N(CC)

Ox + (1 +
1

t
)

 ∑
N(CE)

(Ox −Ax) +
∑

N(CC)

2Ox


=

(
3 +

2

t

) ∑
x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

(Ox −Ax).

In conclusion, we demonstrate Lemma 4.1.

Lemma D.6. Let S be an (s, 1 − ε)-skewed dataset, T be the potential center set, and A = CE ,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
γ > 1, such that for any ε ∈ (0, 1

2], HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation
P for the (k, 1)-clustering for S and T .

Proof. By Lemma 2.3, there exists γ > 0 such that for s > γ
(
1
ε

) 1
p−1 , Cost(N(CC), C) ≤

ε
100Cost(S, C).

There also exists γ > 0 such that for t > γ
ϵ , 1

t ≤
ε

100 .

By Lemma D.5,

Cost(S,P) =
∑
x∈S

Ax =
∑

x∈N(CC)

Ax +
∑

x∈N(CE)

Ax

≤
(
3 +

2

t

) ∑
x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

(Ox −Ax) +
∑

x∈N(CE)

Ax

=

(
3 +

2

t

) ∑
x∈N(CC)

Ox +
∑

x∈N(CE)

((
1 +

1

t

)
Ox −

1

t
Ax

)
.

Since Ax ≥ 0,

Cost(S,P) ≤ (3 +
2

t
)
∑

x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

Ox.

Since 1
t ≤

ε
100 ≤

1
100 ,

Cost(S,P) ≤ 5
∑

x∈N(CC)

Ox +
(
1 +

ε

100

) ∑
x∈N(CE)

Ox

= 5Cost(N(CC), C) +
(
1 +

ε

100

)
Cost(N(CE), C).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Since Cost(N(CC), C) ≤ ε
100Cost(S, C) and Cost(N(CE), C) ≤ Cost(S,P),

Cost(S,P) ≤ ε

20
Cost(S, C) +

(
1 +

ε

100

)
Cost(S, C)

≤
(
1 +

ε

10

)
Cost(S, C).

Hence we complete our proof.

D.2 HEAVY SKEW LOCAL SEARCH FOR (k, z)-CLUSTERING

Our guarantee of the 1+ ε-approximation can also generate to general (k, z)-clustering. The frame-
work is the same, but the cost function for the (k, z)-clustering is dist(x, c)z rather than dist(x, c)
for the k-median case. The difference causes the cost function to lose its additivity, which requires
a more subtle analysis for the distortion of cost. Fortunately, despite the loss of additivity, with the
help of a generalized triangle inequality and stricter chosen parameters, an 1 + ε-approximation is
still guaranteed.

For the sake of brevity, let us consider S to be a (s, 1 − εz+1)-skewed data set. The assumptions
and notations for T , P , C, CE , CC , N(ci), N(U), N∗(U), Ox, and Ax remain identical to those in
Appendix D.1.

Observe that for the k-median problem, we require that S be (s, 1− ε)-skewed, whereas for general
(k, z)-clustering, we stipulate that S be (s, 1 − εz+1)-skewed. This implies a greater degree of
skewness is necessary for general (k, z)-clustering to offset the loss of additivity.

We first introduce the generalized triangle inequality by Sohler & Woodruff (2018).

Lemma D.7 (Claim 5 in (Sohler & Woodruff, 2018)). Suppose z ≥ 1, x, y ≥ 0, and ε ∈ (0, 1].
Then

(x+ y)z ≤ (1 + ε) · xz +

(
1 +

2z

ε

)z

· yz.

Recall that Ox = dist(x, C) and Ax = dist(x,P), thus our cost function in the (k, z)-clustering
scenario becomes Cost(x, C) = Oz

x and Cost(x,P) = Az
x.

Notice that Lemma D.1 still holds for (k, z)-clustering, because it only analyzes the distance in its
proof. (k, z)-clustering only has a different cost function from k-median, so it will not affect the
validity of Lemma D.1. Notice that Lemma D.2 also holds because its analysis does not depend on
cost function.

However, Lemma D.3 and Lemma D.4 no longer holds because we use the fact that 0 ≤
Cost(S,P\R ∪ F) − Cost(S,P) for a t-swapping. We will give the adapted version of these two
lemmas in the (k, z)-clustering case.

For the sake of brevity, we denote U = N∗(R) ∩N(CE) and V = N∗(R) ∩N(CC). ∆x is still the
distortion of cost as we used in the previous subsection.

Lemma D.8. Let (F ,R) be a pairing that |F| = |R| ≤ t andR do not capture F . For ε ∈ (0, 1
2],

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) +
∑
U

(Oz
x −Az

x) +
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

)
,

where ξ is a constant.

Proof. It is still true in (k, z)-clustering that

0 ≤ Cost(S,P\R ∪ F)− Cost(S,P)

and
Cost(S,P\R ∪ F)− Cost(S,P) ≤ ∆N(F) +∆U\N(F) +∆V\N(F).

However, we need a new bound for ∆N(F), ∆U\N(F) and ∆V\N(F) this time.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

For x ∈ N(F), cx ∈ P\R ∪ F , so Cost(x,P\R ∪ F) ≤ Ox. Hence

∆N(F) =
∑

x∈N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈N(F)

(Oz
x −Az

x).

For x ∈ U\N(F), cx ∈ CE ⊂ P\R ∪ F , so Cost(x,P\R ∪ F) ≤ Ox. Hence

∆U\N(F) =
∑

x∈U\N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈U\N(F)

(Oz
x −Az

x).

Since cx ∈ P , Ax ≤ Ox. Thus we further get

∆U\N(F) ≤
∑
x∈U

(Oz
x −Az

x).

For x ∈ V\N(F), by Lemma D.1,

dist(x,P\R ∪ F) ≤ 2Ox +Ax.

Hence

∆V\N(F) =
∑

x∈V\N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈V\N(F)

((2Ox +Ax)
z −Az

x).

Then

∆V\N(F) =
∑

x∈V\N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈V\N(F)

((2Ox +Ax)
z −Az

x).

Since ((2Ox +Ax)
z −Az

x) ≥ 0, we get

∆V\N(F) ≤
∑
x∈V

((2Ox +Ax)
z −Az

x).

Since ε ∈ (0, 1
2], by Lemma D.7,

(2Ox +Ax)
z ≤

(
1 +

ε

100

)
Az

x +

(
1 +

200z

ε

)z

· (2Ox)
z

≤
(
1 +

ε

100

)
Az

x +
ξ

εz
Oz

x.

Hence

∆V\N(F) ≤
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

)
.

Summing the above result and we get

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) +
∑
U

(Oz
x −Az

x) +
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Lemma D.9. If |F| = |R| > t, R has exactly one positive degree center, and R don’t capture any
center outside F , for ε ∈ (0, 1

2], the following inequality holds:

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) + γt

(∑
U

(Oz
x −Az

x) +
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

))
,

where γt = 1 + 1
t .

Proof. The proof is just a repetition of the proof of Lemma D.4. The only difference is that we
substitute Lemma D.3 with Lemma D.8.

Lemma D.10. For ε ∈ (0, 1
2], there exists ξ′ > 0 such that

∑
x∈N(CC)

Az
x ≤

(
1 +

ε

50

)
·

γtξ
′

εz

∑
x∈N(CC)

Oz
x + γt

∑
x∈N(CE)

(Oz
x −Az

x)

 ,

where γt = 1 + 1
t .

Proof. We repeat the proof of Lemma D.5, but substitute Lemma D.3 and Lemma D.4 with
Lemma D.8 and Lemma D.9. We get

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) + γt

 ∑
N(CE)

(Oz
x −Az

x) +
∑

N(CC)

(
ξ

εz
Oz

x +
ε

100
Az

x

) ,

where γt = 1 + 1
t .

Since ε ∈ (0, 1
2] and γt ≥ 1, there exists ξ′ > 0 such that γtξ

′

εz ≥ 1 + γtξ
εz . Simplifying the above

inequality, we get(
1− ε

100

) ∑
x∈N(CC)

Az
x ≤

γtξ
′

εz

∑
x∈N(CC)

Oz
x + γt

∑
x∈N(CE)

(Oz
x −Az

x),

where γt = 1 + 1
t .

Since ε ∈ (0, 1
2], (

1− ε

100

)−1

= 1 +
ε

100− ε
≤ 1 +

ε

50
.

Hence we complete the proof.

Finally, we will demonstrate Lemma 4.2.

Proof. By Lemma 2.3, there exists γ > 0 such that for s > γ
(
z
ε

) 1
p−1 , Cost(N(CC), C) ≤

εz+1

100ξ′ Cost(S, C).

There also exists γ > 0 such that for t > γ
ϵ , 1

t ≤
ε

100 .

By Lemma D.10,

Cost(S,P) =
∑

x∈N(CC)

Az
x +

∑
x∈N(CE)

Az
x

≤ γεγtξ
′

εz

∑
x∈N(CC)

Oz
x + γεγt

∑
x∈N(CE)

(Oz
x −Az

x) +
∑

x∈N(CE)

Az
x,

where γε = 1 + ε
50 .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Since Cost(N(CC), C) ≤ εz+1

100ξ′ Cost(S, C) and 1
t ≤

ε
100 ,

γεγtξ
′

εz

∑
x∈N(CC)

Oz
x =

γεγtξ
′

εz
Cost(N(CC), C)

≤ γεγt
ξ′

εz
εz+1

100ξ′
Cost(S, C)

≤ γεγt
100
· ε · Cost(S, C).

Since γε = 1 + ε
50 , γt = 1 + 1

t , 1
t ≤

ε
100 , and ε ∈ (0, 1

2], we get

γεγtξ
′

εz

∑
x∈N(CC)

Oz
x ≤

(
1 +

ε

50

)(
1 +

ε

100

) ε

100
Cost(S, C)

≤ ε

25
Cost(S, C).

Hence
Cost(S,P) ≤ ε

25
Cost(S, C) + γεγt

∑
x∈N(CE)

(Oz
x −Az

x) +
∑

x∈N(CE)

Az
x.

For γεγt, since ε ∈ (0, 1
2], it holds that

γεγt =
(
1 +

ε

50

)(
1 +

ε

100

)
= 1 +

ε

50
+

ε

100
+

ε2

5000

≤ 1 +
ε

10
.

Hence (
1 +

ε

10

) ∑
x∈N(CE)

(Oz
x −Az

x) +
∑

x∈N(CE)

Az
x ≤

(
1 +

ε

10

) ∑
x∈N(CE)

Oz
x.

Thus we get

Cost(S,P) ≤ ε

25
Cost(S, C) +

(
1 +

ε

10

) ∑
x∈N(CE)

Oz
x

=
ε

25
Cost(S, C) +

(
1 +

ε

10

)
Cost(N(CE), C).

Since N(CE) ⊂ S, Cost(N(CE), C) ≤ Cost(S, C), which leads

Cost(S,P) ≤ (1 + ε)Cost(S, C).

Hence we complete our proof.

E PTAS FOR HEAVILY SKEWED SET

E.1 FAST LOCAL SEARCH

In this subsection, we will prove Lemma 5.1.

Lemma E.1. Let S be a dataset of n points, T be the potential center set, and A = CE , which is
the set of centers of the s most high-cost clusters in optimal solution. There exists a constant γ > 1,
such that for any ε ∈ (0, 1

2], FASTLOCALSEARCH terminates within O(k
2

ε) swaps, and returns a
(1 + 2ε)-approximation P , as long as S is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, S only
needs to be (s, 1− ε)-skewed.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

At first glance, this theorem may appear trivial because Lemma 4.1 guarantees a locally optimal so-
lution P ′ which is a (1 + ε

2)-approximation of the optimal solution. We might then assume that our
result P from FASTLOCALSEARCH yields a P such that Cost(S,P) ≤

(
1− ε

Γk2

)−1
Cost(S,P ′) ≤

(1 + ε)Cost(S, C). However, this assumption is incorrect because we can only ensure that for
any P ′′ with no more than t different centers from P , the condition

(
1− ε

k2

)
Cost(S,P) ≤

Cost(S,P ′′) holds. We cannot guarantee that the locally optimal solution P ′ returned by
HEAVYSKEWLOCALSEARCH is obtainable by just a single swap from our result P .

To establish Lemma 5.1, it is necessary to replicate the proof framework used in Lemma 4.1
and Lemma 4.2. Specifically, we will demonstrate a variation of Lemma D.3, Lemma D.9,
and Lemma D.5. The proofs of the corresponding variations for Lemma D.8, Lemma D.9, and
Lemma D.10 will be omitted due to their similarity to the k-median case. The notation introduced
in Appendix D will be maintained throughout.
Lemma E.2. Let (F ,R) be a pairing that |F| = |R| ≤ t andR don’t capture F , then

− ε

k2
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +
∑
U

(Ox −Ax) +
∑
V

2Ox.

Proof. We prove Lemma D.3 by these two fact:

0 ≤ Cost(S,P\R ∪ F)− Cost(S,P)
and

Cost(S,P\R ∪ F)− Cost(S,P) ≤
∑

x∈N(F)

(Ox −Ax) +
∑
U

(Ox −Ax) +
∑
V

2Ox.

The second inequality is still true because we do not use the fact that P is a local optimum to prove
the second inequality.

For the first inequality, it is no longer true because our P may not be the local optimum. However,
we have

Cost(S,P\R ∪ F) ≥ (1− ε

Γk2
)Cost(S,P)

because we only terminate local search if there does not exist P ′ such that Cost(S,P ′) < (1 −
ε

Γk2)Cost(S,P).
Since Γ ≥ Cost(S,P), we get

Cost(S,P\R ∪ F)− Cost(S,P) ≥ − ε

Γk2
Cost(S,P)

≥ − ε

k2

≥ − ε

k2
Cost(S, C).

Thus
− ε

k2
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +
∑
U

(Ox −Ax) +
∑
V

2Ox.

Lemma E.3. If |F| = |R| > t, R has exactly one positive degree center, and R don’t capture any
center outside F , the following inequality holds:

− ε

k
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +

(
1 +

1

t

)(∑
U

(Ox −Ax) +
∑
V

2Ox

)
.

Proof. We just repeat the proof of Lemma D.4, but substitute Lemma E.2 with Lemma D.3. We use
Lemma E.2 m(m− 1) times and add them together, where m = |F|. Hence we get

γCost(S, C) ≤ m
∑

x∈N(F)

(Ox −Ax) + (m− 1)

(∑
U

(Ox −Ax) +
∑
V

2Ox

)
,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

where γ = − εm(m−1)
k2 .

We divide m on both sides. Since we have proved that m−1
m ≤ 1 + 1

t and
(
∑

U (Ox −Ax) +
∑

V 2Ox) ≥ 0, we get

γ

m
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +

(
1 +

1

t

)(∑
U

(Ox −Ax) +
∑
V

2Ox

)
.

Since m = |F| ≤ k, we have
γ

m
= −ε(m− 1)

k2
≥ − ε

k
.

Hence

− ε

k
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +

(
1 +

1

t

)(∑
U

(Ox −Ax) +
∑
V

2Ox

)
.

Lemma E.4.
−εCost(S, C) +

∑
x∈N(CC)

Ax ≤ γ1
∑

x∈N(CC)

Ox + γ2
∑

x∈N(CE)

(Ox −Ax) ,

where γ1 = 3 + 2
t , and γ2 = 1 + 1

t .

Proof. We repeat the proof of Lemma D.5, but substitute Lemma E.2 and Lemma E.3 with
Lemma D.3 and Lemma D.4. Since we have the partition pair {(Fi,Ri)}li=1, and we take the
inequality for each pair and add them together, we get

−ε · l
k

Cost(S, C) +
∑

x∈N(CC)

Ax ≤ γ1
∑

x∈N(CC)

Ox + γ2
∑

x∈N(CE)

(Ox −Ax) .

Since {(Fi,Ri)}li=1 is a partition of (CC ,B), we have l ≤ k. Then we get

−εCost(S, C) +
∑

x∈N(CC)

Ax ≤ γ1
∑

x∈N(CC)

Ox + γ2
∑

x∈N(CE)

(Ox −Ax) .

Finally, we demonstrate Lemma 5.1.

Proof. For the portion of the theorem concerned with accuracy, the argument is simply a reitera-
tion of Lemma 4.1. In the case of the k-median, the framework remains the same, but Lemma E.2,
Lemma E.3, and Lemma E.4 are substituted with Lemma D.3, Lemma D.4, and Lemma D.5, re-
spectively.

Then we get
−εCost(S, C) + Cost(S,P) ≤ (1 + ε)(S, C),

which is equivalent to
Cost(S,P) ≤ (1 + 2ε)(S, C).

The proof for the (k, z)-clustering scenario is excluded since it closely resembles that of the k-
median case.

Then, we will prove the portion of the theorem concerned with run time. The case for |S| ≤ k is
just trivial. For |S| > k, we have shown in the proof of Lemma 3.3 that Cost(S, C) ≥ 1

2z . We begin
our local search with Cost(S,A∪B) = Γ. Since we improve the cost of our center set with a factor
at least 1− ε

Γk2 , we can swap for at most r rounds, where

r = log1− ε
Γk2

1

2zΓ
=

log
(

1
2zΓ

)
log
(
1− ε

Γk2

) = O(k
2

ε
).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.2 DISCRETE HEAVY SKEW AND CONTINUOUS HEAVY SKEW

Finally, we will prove Theorem 5.2 and Theorem 5.3.
Theorem E.5. Let X be a set of n data points, and let T be a set of potential centers such that
|T | = poly(n). Given any ε > 0, DISCRETEHEAVYSKEW returns a (1 + ε)-approximation P in
(nk/ε)O(s+1/ε) time for discrete (k, z)-clustering as long as X is (s, 1 − εz+1)-skewed. Further-
more, for z = 1, X only needs to be (s, 1− ε)-skewed.

Proof. If |X| = k and X ⊂ T , the problem is trivial since the optimal solution is just X , and the
optimal cost is just 0.

Otherwise, we will run FASTLOCALSEARCH(X,T, ε
2 ,A, k, s) for all possibleA, and return the one

with cheapest cost. By Lemma 5.1, we know that FASTLOCALSEARCH(X,T, ε
2 , CE , k, s) returns a

set P ′ with Cost(S,P ′) ≤ (1 + ε)Cost(S, C), where C is the optimal solution for the clustering on
T . Hence, we prove the accuracy claim of the theorem.

If |X| = k and X ⊂ T , then naturally, the running time is polynomial.

Otherwise, we run FASTLOCALSEARCH(X,T, ε
2 ,A, k, s) for all possible A. Since A ∈ T s and

|T | = poly(n), we will repeat FASTLOCALSEARCH(X,T, ε
2 ,A, k, s) for 2O(s logn) times.

For every time we run FASTLOCALSEARCH(X,T, ε
2 ,A, k, s), by Lemma 5.1, we will terminate

after no more than O(k
2

ε) swaps.

For every swap, we need to check whether the exists a swap meets our condition. For the worst case,
we may check every possible swapping. Since we swap for t centers, it takes |T |t = 2O(1

ε logn)

running time.

By multiplying the three terms together, we get the total run time 2O((s+ 1
ε) logn) · k2

ε =

(nk/ε)O(s+1/ε).

For Zipfian data set with exponent p > 1, by Lemma 2.3, s = O(1/ε(z+1)/(p−1)). Therefore, we
complete our proof.

Next, we establish Theorem 5.3.
Theorem E.6. Let X be a set of n data points. Given any ε > 0, CONTINUOUSHEAVYSKEW re-
turns a (1+ε)-approximation P in Õ(nk)+(k log n)Õ(s+1/ε) time for continuous (k, z)-clustering
with probability at least 0.97, as long as X is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, X
only needs to be (s, 1− ε)-skewed.

Proof. If |X| = k, the problem is trivial, as the optimal solution is just X and the optimal cost is
just 0.

In the case |X| > k, we will execute CORESETCONSTRUCTION(X, ε, n, k,∆) to form a coreset
S. According to Lemma 3.2, when µ > γdk

ε3 log(n∆), there is at least a 0.97 probability that S
is an ε

8 -coreset of X , and S is (s, 1 − ε)-skewed. Subsequently, we run CENTERNET(S, ε
4 ,∆)

to obtain T . By Lemma 3.3, the optimal solution C∗ for discrete (k, z)-clustering on T serves as
a
(
1 + ε

4

)
-approximation of the optimal solution C for continuous (k, z)-clustering on S. Finally,

we carry out DISCRETEHEAVYSKEW(X,T, ε
4 , k, s) to produce a (1 + ε

4)-approximation for the
discrete (k, z)-clustering on T . Therefore

Cost(X,P) ≤
(
1 +

ε

8

)
Cost(S,P)

≤
(
1 +

ε

8

)
·
(
1 +

ε

4

)
Cost(S, C∗)

≤
(
1 +

ε

8

)
·
(
1 +

ε

4

)2
Cost(S, C)

≤
(
1 +

ε

8

)2
·
(
1 +

ε

4

)2
Cost(X, C)

≤ (1 + ε)Cost(X, C).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

For running time, Bhattacharya et al. (2023) shows that sensitivity sampling can be completed in
Õ(nk) time.

For the construction of T , the run time is just the size of |T |. By Lemma 3.3, |T | = |S| ·
2O(d log 1

ε log log(k∆
ε)) = (k log n)

O(dpolylog(1/ε)).

Then we run FASTLOCALSEARCH(X,T, ε
4 ,A, k, s) for all possible A. Since A ∈ T s,

we repeat FASTLOCALSEARCH(X,T, ε
4 ,A, k, s) for |T |s times. For every time we run

FASTLOCALSEARCH(X,T, ε
4 ,A, k, s), by Lemma 5.1, we will terminate after no more than

k2

ε poly(|S|) swaps. For every swap, we need to check whether the swap meets our condition.
For the worst case, we may check every possible swapping. Since we swap for t centers, it takes
|T |t = |T |O(1/ε) running time. Multiplying these three terms together, we get the running time for
FASTLOCALSEARCH is k2

ε poly(|S|) · |T |O(s+/ε) = (k log n)Õ(d(s+1/ε)).

By adding the running time for every part of the algorithm, the total running time is Õ(nk) +
(k log n)Õ(d(s+1/ε)). If we assume d as a constant, it would be Õ(nk) + (k log n)Õ(s+1/ε). For a
large d, a dimension reduction technique introduced by Makarychev et al. (2019) can be used. It
reduce d to O(log

k
ε

ε2), which makes |T | = |S| · 2O(d log 1
ε log log(k∆

ε)) = (k log n)
Õ(1/ε2). Then the

running time for the algorithm will be Õ(nk) + (k log n)Õ(ε−2(s+1/ε)).

F SUPPLEMENTARY FOR SENSITIVITY EVALUATION AND DIMENSION
REDUCTION

As a widely used protocol, several studies propose algorithms to evaluate the sensitivity of a point
in a short run time. For instance, Algorithm 1 proposed by Draganov et al. (2024) computes the sen-
sitivity of all points in the dataset and returns a coreset by sensitivity sampling with Õ(nd log n∆)
run time. Although Draganov et al. (2024) only discuss the case that z = 1 and 2, their method
works for general z.

Algorithm 7 FASTCORESET(X, k, ε,m)

Require: Dataset X , number of cluster k, precision parameter ε, target size m
Ensure: A weighted set S

1: Use a Johnson-Lindenstrauss embedding to embed X̃ of X into d′ = O(log k) dimensions
2: Find approximate solution C̃ = {c̃1, · · · , c̃k} on X̃ and assignment σ̃ : X̃ → C̃ by

FASTKMEANS++
3: Let Ci = σ̃−1(c̃i). Compute the (1, z)-clustering solution ci of each Ci in Rd

4: For each point x ∈ Ci define s(x) = distz(x,ci)
Cost(C,ci) + 1

|Ci| .
5: Compute a set S of m points randomly sampled from X proportionate to s(x).

6: For each Ci, define |Ĉi| the estimated weight of Ci by S, namely |Ĉi| =
∑

x∈Ci∩S

∑
x′∈S s(x′)

s(x)m .

7: return The coreset S, with weight w(x) =
∑

x;∈S s(x′)

s(x)m

(
(1 + ε) |Ci| − |Ĉi|

)
.

FASTKMEANS++ is an algorithm proposed by Cohen-Addad et al. (2020).

Theorem F.1. There exists an algorithm, cf. algorithm 1 in Draganov et al. (2024), which com-
putes the sensitivity of all points in a dataset X and returns a coreset of X for (k, z)-clustering by
sensitivity sampling with Õ(nd log(n∆)) run time.

To avoid the exponential dependency on d, we can apply Johnson–Lindenstrauss to project the
coreset S into π(S) ⊂ Rd′

, where d′ = O(log
k
ε

ε2), and apply our algorithm to find a (1 + ε)-
approximation for π(S). The (1 + O(ε))-approximation for π(S) induces a cluster partition
{A1, A2, · · · , Ak} of S, which is a good approximation of the optimal partition. Then we can find
the solution ci for the (1, z)-clustering for each Ai, and C = {c1, c2, · · · , ck}would be a (1+O(ε))-
approximation for the (k, z)-clustering on S. poly(n, d, k) time is needed to generate S, and the size

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

of the center net would be |T | = poly(n, k), which means that it takes poly(n, k) time and, finally,
it takes poly(n, k, d) time to solve the (1, z)-clustering for each Ai since it is a convex optimization.
Therefore, the total run time is poly(n, k, d).

Theorem F.2. Let X be a set of n data points. There exists an algorithm that, given any
ε > 0, for continuous (k, z)-clustering, in Õ(dnk) + (dk log n)Õ(1

ε2
(s+ 1

ε)) time returns a (1 + ε)-
approximation P with probability at least 0.97 as long as X is (s, 1− εz+1)-skewed. Furthermore,
for z = 1, X only needs to be (s, 1− ε)-skewed.

We recall the theorem in Makarychev et al. (2019).

Theorem F.3 (Theorem 1.3 in Makarychev et al. (2019)). There exists a family of random maps
πm,d : Rd → Rd′

that for every m ≥ 1, ε, δ ∈ (0, 1
4) and z ≥ 1, the following holds. For any

x ∈ Rd we have
Pr

π∼πm,d

[∥π(x)∥ ≈1+ε ∥x∥] ≥ 1− δ

and for every finite X ⊂ Rd we have

Pr
π∼πm,d

[CostzA ≈1+ε Costzπ(A) for all partitions A = {A1, A2, · · · , Ak} of X] ≥ 1− δ,

where

d′ = O(
z4 · log k

εδ

ε2
)

and

CostzA =

k∑
i=1

min
ui∈Rd

∑
x∈Ai

dist(x− ui)
z.

Now we prove Theorem F.2.

Proof. First, applying CORESETCONSTRUCTION, we can get a coreset S with size
O(dk

2

ε3 log(n∆)). By Theorem F.1, we can generate S in Õ(nd log(n∆)) time.

Second, we use π to project S to Rd′
for d′ = O(z

4·log k
εδ

ε2). Then we apply CENTERNET and
DISCRETEHEAVYSKEW to find a (1+ ε)-approximation of the optimal solution on π(S) for (k, z)-
clustering. Assume π(A) = {π(A1), π(A2), · · · , π(Ak)} to be the partition of π(S) corresponding
to this solution. We claim that A gives a (1 +O(ε))-approximation of S.

Assume B = {B1, B2, · · · , Bk} to be the partition of S corresponding to the optimal solution for
(k, z)-clustering on S, and D = {D1, D2, · · · , Dk} to be the partition of π(S) corresponding to
the optimal solution for (k, z)-clustering on π(S). By Theorem F.3, CostzA ≤ (1 + ε)Costzπ(A).
Since Costzπ(A) is a (1 + ε)-approximation of CostzD, and D is the optimal solution of π(S) for
(k, z)-clustering, therefore

CostzA ≤ (1 + ε)Costzπ(A) ≤ (1 + ε)2CostzD ≤ (1 + ε)2Costzπ(B) ≤ (1 + ε)3CostzB.

Let C = {c1, c2, · · · , ck}, where ci = argminc∈Rd Cost(Ai, c). Then Cost(S, C) = CostzA ≤
(1 +O(ε))CostzB = Cost(S, COPT). Since S is a (1 + ε)-coreset of X , C would be a (1 +O(ε))-
approximation for (k, z)-clustering on X .

Fortunately, although (k, z)-clustering is APX-hard, it is possible to find a (1+ ε)-approximation of
ci in polynomial time. In fact, the problem reduces to a (1, z)-clustering when we look for ci. We
can apply Weiszfeld’s algorithm (Weiszfeld, 1937) to find a (1+ε)-approximation of ci when z = 1.
When z > 1, the problem becomes a convex optimization since the cost function is convex. Since
the cost function is also differentiable, we can use gradient descent to find a (1 + ε)-approximation
of ci. Therefore, we can find a (1 + ε)-approximation of ci in O(nd log 1

ε) time.

Since |S| = O(dk
2

ε3 log(n∆)), thus the size of center net T would be

|T | = |S|+ (log∆− log
(ε

kW

)
+ 2z + 2) · |S| · 2O(d′ log(1

ε))

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 3: Skewness of dataset in cli (2019)

p = 50% p = 75% p = 90% p = 95%
k = 8 12.5% 12.5% 12.5% 12.5%
k = 16 6.25% 6.25% 6.25% 6.25%
k = 32 6.25% 9.375% 12.5% 12.5%
k = 64 1.563% 1.563% 3.125% 3.125%
k = 128 0.781% 1.563% 1.563% 1.563%

Table 4: Skewness of dataset in cli (2019) when k ∈ [80, 160]

p = 50% p = 75% p = 90% p = 95%
k = 80 1.25% 1.25% 2.5% 3.75%
k = 100 1.0% 2.0% 2.0% 2.0%
k = 120 0.833% 1.667% 1.667% 1.667%
k = 140 0.714% 1.429% 1.429% 1.429%
k = 160 0.625% 0.625% 0.625% 13.125%

according to the proof of Lemma C.12, where W = poly(n) is the maximum weight of S. Since

d′ = O(z
4·log k

εδ

ε2), thus

|T | = |S|+O(log(n∆) + log
1

ε
) · |S| · 2O(

z4·log k
εδ

ε2
) = 2O(log d+log k+log log(n∆)+ 1

ε2
polylog(1

ε)).

Therefore, we can run DISCRETEHEAVYSKEW on T to find a (1 + ε)-approximation A of π(S) in
(dk log n)Õ(1

ε2
(s+ 1

ε)), and find a (1 + ε)-approximation solution to A in O(ndk log 1
ε) time. Thus

we can find a (1 +O(ε))-approximation to X in Õ(dnk) + (dk log n)Õ(1
ε2
(s+ 1

ε)) time.

G SUPPLEMENTARY EXPERIMENTS

G.1 INSTANCE FOR DATASET WITH HEAVY SKEWNESS

The run time of our algorithm depends on the skewness of the dataset. Due to the APX-hardness,
there does not exist any algorithm that is fast for any datasets. Therefore, our algorithm focuses on
performance on specific datasets that have heavy skewness only. We will display some datasets with
heavy skewness in real world.

cli (2019) offers a dataset contains information on the clickstream of an online store that offers
clothing for pregnant women, which has 165474 instances. We show the skewness of this dataset
in Table 3. The table illustrates the contribution of the most expensive clusters to the total cost
in a k-means clustering solution. Each row corresponds to a value of k, the number of clusters.
Each column represents a threshold p, which denotes a percentage of the total cost (e.g., 50%, 70%,
etc.). The value in the cell in the row k and the column p indicates the proportion of clusters (as a
percentage of k) that contributes at least p of the total cost. For instance: A value of 12.5% in the
cell in row k = 8 and column p = 95% means that the 12.5% most expensive clusters (1 clusters
out of 8) contribute at least 95% to the total cost. This table highlights the skewness of the dataset,
demonstrating that a small subset of clusters can dominate the total cost.

The dataset in cli (2019) has an extremely high skewness when k ∈ [80, 160]. We further show its
skewness when k ∈ [80, 160] in Table 4

gen (2020) is another dataset with a heavy skewness. The dataset attributes first names to genders
and has 147270 instances. We disply its skewness in Table 5 by the same way as Table 3 and Table 4.

At last, we display the skewness of Exa20. The dataset comprises 399 instances and 4 features. This
data set includes demographic information on 4 groups of saliva samples (COPD, asthma, infection,
HC) collected as part of the joint research project Exasens. Since this dataset has a relatively small

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 5: Skewness of dataset in gen (2020)

p = 50% p = 75% p = 90% p = 95% p = 99%
k = 5000 9.66% 19.2% 28.6% 33.5% 40.28%
k = 6000 8.05% 16.1% 24.2% 28.85% 34.6%
k = 7000 6.4% 13.357% 19.857% 23.671% 29.514%
k = 8000 4.938% 9.913% 16.113% 18.95% 21.25%
k = 9000 3.756% 7.022% 9.356% 10.144% 10.767%
k = 10000 0.28% 0.43% 0.52% 0.55% 0.58%

Table 6: Skewness of dataset in Exa20

p 50% 75% 90% 95% 99%
k = 4 1 2 2 2 3
k = 5 1 2 2 2 3
k = 6 2 2 3 3 4
k = 7 2 3 4 4 5
k = 8 2 3 5 6 6
k = 9 2 4 6 7 7
k = 10 3 5 7 8 8

size, we will use relatively small k. Therefore, we will display the exact number of clusters that
contribute more than specific portion of total cost in Table 5, rather than disply the percentage in
Table 3, Table 4, Table 5.

G.2 COMPARISON WITH LOCAL SEARCH

G.2.1 SYNTHETIC DATA

Figure 5: Comparison between local search
and our algorithm for k-means

Figure 6: Comparison between local search
and our algorithm for k-medoids

Our experiments illustrate an improvement range for k-means from 11.54% at k = 4 for the mini-
mum metric to 54.87% at k = 10 for the median metric, and for k-medoids from 6.06% at k = 5
for the minimum metric to 31.86% at k = 7 for the average metric. This overall enhancement un-
derscores the superior performance of our algorithm in terms of accuracy when compared to local
search across average, minimum, and median metrics. Furthermore, the notable improvement ob-
served in the average and median metric implies a higher variability in local search when evaluated
on synthetic data, whereas our algorithm demonstrates significantly lower variance.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 7: Improvement rate for k-means and k-medoids on synthetic data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 24.85 11.54 25.07 16.40 8.14 16.98
5 31.88 24.59 29.48 25.15 6.06 10.93
6 45.64 37.95 41.42 29.28 17.80 19.76
7 37.10 29.61 35.79 31.86 16.15 26.94
8 39.39 16.65 41.34 30.83 22.13 30.65
9 45.08 22.91 46.45 20.64 17.16 21.5
10 53.07 32.52 54.87 26.64 15.18 26.82

Figure 7: Comparison between Lloyd heuris-
tic and our algorithm for k-means

Figure 8: Comparison between KMedoids
and our algorithm for k-medoids

G.2.2 REAL WORLD DATA

Our experimental results demonstrate an enhancement range for k-means from 87.23% at k =
4 for the minimum metric up to 95.77% at k = 10 for the median metric, and for k-medoids
from 6.63% at k = 7 for the minimum metric to 40.60% at k = 10 for the median metric. This
overall improvement highlights the superior accuracy performance of our algorithm relative to local
search, across various metrics including average, minimum, and median. Additionally, the observed
substantial improvement in the average and median metric suggests greater variability in local search
when tested on real world data, while our algorithm displays considerably lower variance.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 8: Improvement rate for k-means and k-medoids on real world data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 92.20 87.23 92.81 39.63 19.01 25.95
5 88.75 88.81 88.73 25.49 12.28 27.00
6 91.02 91.11 91.15 38.30 14.64 31.04
7 92.79 92.94 92.68 29.32 6.63 33.63
8 94.20 94.29 94.25 33.18 6.77 35.20
9 95.30 95.44 95.29 36.05 15.21 40.52
10 95.69 95.72 95.77 31.00 7.19 40.60

44

	Introduction
	Our contributions

	Preliminaries
	Construction for Coreset and Potential Center Set
	Coreset construction maintaining skewness
	Potential center set construction

	Heavy skew local search algorithm
	Heavy skew local search for k-median
	Heavy skew local search for (k,z)-clustering

	PTAS for heavily skewed distribution set
	Experimental evaluations
	Synthetic data
	Real world data

	Related work
	s, 1-eps-skewed dataset and Zipfian distribution
	Coreset and center net
	Coreset that keeps heavy skewness
	(1+eps)-approximate center net

	Local search adapted for heavily skewed set
	Heavy skew local search for k-median
	Heavy skew local search for (k,z)-clustering

	PTAS for heavily skewed Set
	Fast local search
	Discrete heavy skew and continuous heavy skew

	Supplementary for sensitivity evaluation and dimension reduction
	Supplementary experiments
	Instance for dataset with heavy skewness
	Comparison with local search
	Synthetic data
	Real world data

