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ABSTRACT

In this paper, we tackle the problem of (k, z)-clustering, a generalization of the
well-known k-means, k-medians and k-medoids problems that is known to be
APX hard, i.e., impossible to approximate within a multiplicative factor of 1.06 in
polynomial time for n and k unless P=NP. Due to the APX-hardness, the fastest
(1 + ε)-approximation scheme proposed by Feldman et al. (2007), exhibits a
run time with a polynomial dependency on n, but an exponential dependency
2Õ(k/ε) on k. We observe that a (1 + ε)-approximation in truly polynomial time
is feasible if the data sets exhibit sufficiently skewed distributions. Indeed in prac-
tical scenarios, data sets often exhibit a heavy skewness, leading to the overall
clustering cost disproportionately dominated by a few clusters. We propose a
novel algorithm that adapts the traditional local search technique to effectively
manage (s, 1 − εz+1)-skewed datasets with a run time of (nk/ε)O(s+1/ε) for
discrete case and Õ(nk) + (k log n)Õ(s+1/ε) for continuous case. Our method
is particularly effective with Zipfian distributions with exponent p > 1, where
s = O

(
1

ε(z+1)/(p−1)

)
.

1 INTRODUCTION

Clustering is a fundamental procedure widely used to extract structural insights from large datasets
by partitioning points into groups such that similar points are grouped together. Classic cluster-
ing problems, including k-means, k-median, and k-medoids, have been extensively studied since
the 1950s (Steinhaus et al., 1956; MacQueen et al., 1967; Rdusseeun & Kaufman, 1987). These
problems are fundamental in various fields, such as bioinformatics, computational geometry, data
science, and machine learning, attracting significant attention from both practical and theoretical
perspectives.

The quality of a clustering solution is often measured by a cost function with the objective of min-
imizing that cost. Specifically, the (k, z)-clustering problem aims to find k centers that minimize∑

x∈X minc∈C dist(x, c)z . In the continuous version of (k, z)-clustering, centers are chosen from
the entire space, while in the discrete version, the centers are restricted to a specific set. Continuous
(k, z)-clustering reduces to the well-known k-means problem when z = 2 and to k-median when
z = 1. The discrete version reduces to k-medoids when the centers are restricted to the input data
points and z = 1.

Numerous algorithms have been developed to tackle (k, z)-clustering more efficiently. Feld-
man et al. (2007) introduced an algorithm that approximates k-means with a running time of
2Õ(k/ε) · poly(n), which has potentially prohibitively exponential dependencies in k. The core
idea of the algorithm involves building a weak core set S for a set of potential centers T , both of
size poly(k). A brute-force search of (S, T ) yields a (1+ ε)-approximation. This approach converts
the continuous k-means problem into a discrete one, avoiding the exponential dependency on n.
However, eliminating the exponential dependency on k is crucial for broader applicability.

Despite advances, the (k, z)-clustering problem remains computationally challenging. It has been
proven to be APX-hard, meaning it cannot be approximated within a fixed constant factor in poly-
nomial time. Specifically, it cannot be approximated within a factor of 1.06 for the continuous case
and 1.17 for the discrete case unless P=NP (Cohen-Addad & Lee, 2022). We discuss a number of
additional related works in Appendix A.
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Although eliminating the exponential dependency on k for the general (k, z)-clustering problem
is impossible due to its APX-hardness, there is hope for datasets with particular structures. In
real-world applications, the datasets are often skewed, with a few clusters dominating the overall
clustering cost. This observation motivates the exploration of whether (k, z)-clustering can be ap-
proximated within a 1 + ε factor in poly(n, k) time for heavily skewed datasets. Our work provides
a positive answer for datasets following such skewed distributions.

1.1 OUR CONTRIBUTIONS

Our contribution is a novel algorithm designed specifically for (k, z)-clustering on heavily skewed
datasets. Using the intrinsic structure of these datasets, our approach achieves a run time with
polynomial dependencies on n and k, significantly improving efficiency compared to the previous
(1 + ε)-approximation algorithms. We define a data set as being (s, 1− ε)-skewed if the s highest-
cost clusters contribute at least a 1−ε fraction of the total cost. In addition, we say a data set follows
a Zipfian distribution with exponent p if the i-th highest-cost cluster has a cost proportional to 1

ip . In

fact, a Zipfian distribution with exponent p is (s, 1− ε)-skewed for s > γ
(
1
ε

) 1
p−1 for some constant

γ. We say a solution P is a (1 + ε)-approximation if Cost(X,P) ≤ (1 + ε)Cost(X, C), where C is
the optimal (k, z)-clustering solution.

Based on these characterizations, we propose two novel algorithms DISCRETEHEAVYSKEW
and CONTINUOUSHEAVYSKEW based on local search to efficiently handle skewed data. Our
DISCRETEHEAVYSKEW algorithm returns a (1+ε)-approximation for heavily skewed data in poly-
nomial time for n and k.
Theorem 1.1. Let X be a set of n data points, and let T be a set of potential centers such that
|T | = poly(n). There exists a deterministic algorithm that, given any ε > 0, for discrete (k, z)-
clustering, in (nk/ε)O(s+1/ε) time returns a (1+ε)-approximation P as long as X is (s, 1−εz+1)-
skewed. Furthermore, for z = 1, X only needs to be (s, 1− ε)-skewed.

Our CONTINUOUSHEAVYSKEW returns a (1 + ε)-approximation for heavily skewed data in even a
shorter time.
Theorem 1.2. Let X be a set of n data points. There exists an algorithm that, given any ε > 0, for
continuous (k, z)-clustering, in Õ(nk)+ (k log n)Õ(s+1/ε) time returns a (1+ ε)-approximation P
with probability at least 0.97 as long as X is (s, 1− εz+1)-skewed. Furthermore, for z = 1, X only
needs to be (s, 1− ε)-skewed.

If randomness is expensive, there also exists a deterministic version of CONTINUOUSHEAVYSKEW

with (nk)Õ(s+1/ε) running time. For the discussion of running time, we assume dimension d as a
constant. For a large d, a dimension reduction technique introduced by Makarychev et al. (2019)
can be used to achieve a Õ(nk) + (k log n)Õ(ε−2(s+1/ε)) running time.

Our DISCRETEHEAVYSKEW and CONTINUOUSHEAVYSKEW can return a (1 + ε)-approximation
within a run-time with polynomial independence on n and k, while the previous algorithm by Feld-
man et al. (2007) only has polynomial independence on n, but has exponential independence on k.
The improvement of our algorithm makes the run time more feasible in the case where the input data
are heavily skewed. The dependence s on the exponent shows that the extent of the skewness of the
data affects the run-time of our algorithm. A more heavily skewed data will induce a less s, which
makes the run-time even shorter.

We now provide a high-level intuition behind our algorithms and analysis.

Heavy skew local search. We introduce an algorithm called HEAVYSKEWLOCALSEARCH, which
guarantees a (1 + ε)-approximation for data sets following a heavily skewed distribution. The local
search, originally introduced by Arya et al. (2001), seeks a local optimum where swapping up to t
centers no longer improves the result. The intuition behind our algorithm is that clustering costs are
dominated by a few clusters. We can use brute-force search to identify the centers of these dominant
clusters and employ a local search for the remaining ones. By accurately selecting the centers for
the high-cost clusters, which represent more than

(
1− εz+1

)
fraction of the total cost, and using

local search to achieve a constant approximation for the rest, we achieve an overall (1 +O(ε))-
approximation. At first glance, it appears the only remaining step is to directly apply a local search

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to find centers with low costs: by the skewed distribution, we would get a (1 +O(ε))-approximation
for the total cost as long as we could get O(1)-approximation for the centers with low costs.

Unfortunately, the above idea does not work directly, and we need more technical ideas to address
the issues. In particular, although the local search returns a constant approximation for the entire
dataset, the solution for low-cost clusters may not be a constant approximation. This is because we
fix the location of the more expensive centers, which may adversely affect the accuracy of the local
search. The returned centers for the low-cost clusters will have an extra additive error due to the
influence of expensive centers. To tackle this issue, we take advantage of the multi-swap idea in the
Arya et al. (2001), and we show that if we swap a sufficiently large number of centers simultaneously,
the additive error is small enough to ensure that the total cost is an (1+ε)-approximation. Of course,
we could not swap too many centers at the same time since otherwise, the running time even for a
single iteration will break the limit. Fortunately, we find that the swap of O(1/ε) points is sufficient
for (1 + ε)-approximation, and the efficiency for a single iteration is at least preserved.

Fast local search. While HEAVYSKEWLOCALSEARCH guarantees (1 +O(ε))-approximation and
single-iteration efficiency, it does not immediately imply convergence in polynomial rounds. A natu-
ral approach would be to swap centers only if the improvement exceeds 1+ε. This strategy ensures a
polynomial run time, but may overlook smaller improvements. Although individual small improve-
ments may not alter the (1+ ε)-approximation, a series of such small gains can accumulate, leading
to deviations from the desired approximation. For example, if we ignore (1+ε/2) improvements for
successive m swaps, the cumulative improvement could be (1 + ε/2)

m factor better than our result,
which means our result deviates significantly from the optimal when m is very large. Fortunately, if
we open the black-box of the local search, we could show that the number of accumulation is at most
O(k2). As such, we could rescale the parameter, so the accumulated error can still be controlled in
the rate 1 + ε. This strategy balances large and small improvements, ensuring both accuracy and
efficiency.

Construction for potential center set. For continuous (k, z)-clustering, we propose an algorithm to
construct a potential center set, transforming the continuous (k, z)-clustering problem into a discrete
one. This approach restricts potential centers to a finite range, making the search computationally
feasible. Feldman et al. (2007) used similar strategy to build their PTAS. However, their construction
is based on the geometric property of k-means, where the center of each cluster is its centroid, a
property that does not hold for z ̸= 2 in general (k, z)-clustering. Instead, we used the ε-nets to
construct the potential center set, which is suitable for general z.

Construction for coreset. We can further improve the speed of the algorithm by prepocessing the
data into a coreset. Sensitivity sampling can generate a coreset of size poly(k) in Õ(nk) time.
Unfortunately, traditional sensitivity sampling merely preserves the cost for the entire set, not indi-
vidual clusters, potentially losing the skewness of the original data set. To address this, we adapt the
sensitivity sampling to maintain skewness. We prove that if we sampleO(k) times number of points
in sensitivity sampling, it can preserve the cost for cluster whose cost is larger han ε

100k fraction of
the total cost, which ensures that the coreset accurately reflects the heavily skewed structure of the
original dataset. We defer all proofs to the appendix.

Empirical evaluations. Although our contribution is primarily theoretical, we performed exper-
iments to demonstrate its performance. We compared the precision of our algorithm with the k-
means and k-mediods algorithms available in the scikit-learn and scikit-learn-extra
library. These algorithms are popular in practice because of their fast execution, but they offer
weaker theoretical accuracy guarantees. We chose to compare our algorithm against these fast yet
lower-precision methods, rather than other (1+ε)-approximation algorithms, because the latter have
exponential run time, making them infeasible for experiments. Our empirical evaluations show that
our algorithm outperforms these widely used algorithms in terms of accuracy, serving as a proof-of-
concept that complements our theoretical guarantees.

2 PRELIMINARIES

Given an integer n > 0, let [n] denote the set {1, · · · , n}. We use poly(n) for a fixed polynomial in n
and polylog(n) for poly(log n). Since the device stores data points in bits, it is generally acceptable
to rescale and assume X ⊂ [∆]d, where ∆ = poly(n).
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In this paper, we focus on Euclidean (k, z)-clustering. For vectors x, y ∈ Rd, let dist(x, y) denote
the Euclidean distance ∥x − y∥22 =

∑d
i=1(xi − yi)

2. For a point x and a set C, dist(x, C) :=
minc∈C dist(x, c). For a weighted point x with weight w(x), Cost(x, C) := w(x) · dist(x, C)z . The
total cost is Cost(X, C) =

∑n
i=1 Cost(xi, C). Given a weighted dataset X = {(xi, w(xi)) : i ∈

[n]}, the goal of continuous Euclidean (k, z)-clustering is to find k centers C = {c1, · · · , ck} ⊂ Rd

that minimize the cost function Cost(X,C). In discrete Euclidean (k, z)-clustering, k centers are
chosen from a finite set of potential centers T with size poly(n).

For a center set C = {c1, · · · , ck}, let N(ci) = {x ∈ X : Cost(x, ci) ≤ Cost(x, cj) for j ̸= i}
represent the set of points assigned to center ci. Ties are broken arbitrarily so each xi belongs to
exactly one N(ci).

Definition 2.1 ((s, 1 − ε)-skewed dataset). A data set X with optimal (k, z)-clustering centers
C = {c1, c2, · · · , ck}, ordered by cost such that Cost(N(ci), C) ≥ Cost(N(cj), C) for i < j, is an
(s, 1− ε)-skewed dataset if

∑s
i=1 Cost(N(ci), C) ≥ (1− ε)

∑k
i=1 Cost(N(ci), C).

Definition 2.2 (Zipfian distribution dataset). A data set X with optimal (k, z)-clustering centers
C = {c1, c2, · · · , ck} is a Zipfian distribution data set with exponent p if there exist constants 0 <
γ1 < γ2 and p > 1 such that for any i, γ1 · 1

ip ≤ Cost(N(ci), C) ≤ γ2 · 1
ip .

As a highly skewed dataset, a Zipfian distribution dataset is in fact (s, 1 − ε)-skewed for s =

O(
(
1
ε

)1/(p−1)
).

Lemma 2.3. Let X = {x1, x2, . . . , xn} ⊆ [∆]d be a Zipfian distribution dataset. There exists a

constant γ > 0 such that for s > γ
(
1
ε

) 1
p−1 , X is (s, 1− ε)-skewed.

Additionally, we introduce the concepts of ε-coreset and ε-net, which are often used to sample points
and generate potential center sets to speed up clustering.

Definition 2.4 (ε-coreset). A weighted set S is an ε-coreset of X if, for any set of centers C ⊂ Rd

that |C| ≤ k, (1− ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 + ε)Cost(X, C).
Definition 2.5 (ε-net). Let A ⊂ Rd be a region. N is an ε-net of A if for any x ∈ A, there exists
y ∈ N such that dist(x, y) ≤ ε.

3 CONSTRUCTION FOR CORESET AND POTENTIAL CENTER SET

In this section, we describe first describe our coreset construction, which is slightly non-standard,
due to the fact that we would like the optimal clustering on the coreset to preserve the skewed
distribution of costs. Note that by comparison, the general guarantees of coresets simply require
that all clustering costs are preserved up to a (1+ ε)-factor, rather than the costs of all clusters being
preserved.

3.1 CORESET CONSTRUCTION MAINTAINING SKEWNESS

We adapt the sensitivity sampling framework to construct a coreset that maintains the skewness
of the original dataset. The sensitivity sampling framework assigns a value to each point, called
sensitivity, which intuitively quantifies the “importance” of that point. Each point is then sampled
with a probability proportional to its sensitivity.

First, we introduce the definition of sensitivity.

Definition 3.1 (Sensitivity). For x ∈ X , its sensitivity is defined as s(x) = supC⊂Rd,|C|≤k
Cost(x,C)
Cost(X,C) .

We present an algorithm CORESETCONSTRUCTION that produces a weight set S which is an ε-
coreset of X . Furthermore, if X is an (s, 1− ε)-skewed dataset, then S will also be an (s, 1− 3ε)-
skewed dataset.

Lemma 3.2. Let X be an (s, 1−ε)-skewed dataset. There exists a constant γ > 1, such that for any
ε ∈ (0, 1

4 ],CORESETCONSTRUCTION returns an ε-coreset S for X with probability at least 0.97.
Furthermore, S is (s, 1− 3ε)-skewed, and has a size of O(dk

2

ε3 log(n∆)).
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Algorithm 1 CORESETCONSTRUCTION(X, ε, n, k,∆)

Require: Dataset X , precision parameter ε, size n, number of cluster k, range ∆
Ensure: A weighted set S

1: γ ← some large enough constant, µ← γdk
ε3 log(n∆)

2: S ← ∅
3: for x ∈ X do
4: s(x)← sensitivity of x
5: With probability px = min{µ · s(x), 1}, w(x)← 1

px
, S ← S ∪ {(x,w(x))}

6: return S

Our algorithm is analogous to the conventional sensitivity sampling method, but employs a larger
sampling parameter, µ = O(dkε3 log(n∆)), in place of µ = O(dkε2 log(n∆)) as employed in the
traditional approach. With the augmented value of µ, the coreset ensures preservation of both the
cost of the full set and the cost for clusters whose expense exceeds ε

100k of the total cost. This
modification allows the coresets to preserve the significantly skewed structure present in the original
dataset.

3.2 POTENTIAL CENTER SET CONSTRUCTION

In this section, we introduce an algorithm that produces a set T of candidate centers for a dataset
S, ensuring that for any C ⊂ [∆]d with |C| ≤ k, there exists C′ ∈ T k such that Cost(S, C′) ∈ (1 ±
ε)Cost(S, C). The rationale for constructing such a set T relies on the observation that if dist(x, c′) is
a (1 +O(ε))-approximation of dist(x, c), then Cost(x, c′) will indeed be a (1+ε)-approximation of
Cost(x, c) due to the generalized triangle inequality. Consequently, we need to ensure the existence
of a center c′ ∈ T such that dist(x, c′) is a (1 +O(ε))-approximation of dist(x, c). This can be
accomplished by constructing an O(ε)-net for the ball B(x, 2i), where B(x, r) = {y ∈ Rd :
dist(x, y) < r}. Using this approach, we can approximate any center c for which dist(x, c) ∈
[2i−1, 2i]. However, creating such nets for all possible distances would yield an excessive number
of centers because r can range from 0 to infinity. Thankfully, the optimal center must fall within the
range [∆]d given that S ⊂ [∆]d. Thus, we only need to construct an O(ε)-net for balls with radii
not exceeding ∆. Further, even though c can be exceedingly close to x, necessitating an O(ε)-net
for an infinite number of balls, we note that Cost(S, C) ≥ 1

2z as long as the optimal clustering cost is
non-zero. Hence, we can avoid building nets for very small radii. Specifically, we need to construct
nets only for B(x, 2i+1), where i ∈ [log( ε

kW ) − 2z − 2, log∆], with W representing the upper
bound of the point weights. This strategy helps maintain the size of T compact.

Algorithm 2 CENTERNET(S, ε,∆)

Require: Dataset S, precision parameter ε, range ∆
Ensure: A potential center set T

1: T ← S, W ← the maxium weight of S, M1 ← log
(

ε
kW

)
− 2z − 2, M2 ← log∆

2: for i←M1 to M2 do
3: Ni ← ∅, r ← 2i+1

4: for x ∈ S do
5: Ni,x ← an εr

22z+1 -net in B(x, r)
6: Ni ← Ni ∪Ni,x

7: T ← T ∪Ni

8: return T

We prove that for any C ⊂ [∆]d and |C| ≤ k, there exists a set C′ ∈ T k that provides a (1 + ε)-
approximation to C. Furthermore, the set T has a size of poly(k, log n) if |S| = poly(k).
Lemma 3.3. Let S be a weighted set whose maximum weight is at least 1. For ε ∈ (0, 1], the set T
returned by CENTERNET satisfies: for any C ⊂ [∆]d and |C| ≤ k, there exists C′ ⊂ T k such that

(1− ε)Cost(S, C) ≤ Cost(S, C′) ≤ (1 + ε)Cost(S, C).

Furthermore, T has a size of |T | = |S| · 2O(d log 1
ε log log( k∆

ε )).
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4 HEAVY SKEW LOCAL SEARCH ALGORITHM

We introduce an adapted local search algorithm designed for (k, z)-clustering, particularly useful
for data sets exhibiting significant skewness. For simplicity, within this section, we assume that C =
{c1, c2, . . . , ck} represents the optimal solution within the net T . The centers in C are arranged so
that Cost (N(ci)) ≥ Cost (N(cj)) for i ≤ j. We denote CE as the subset of s centers corresponding
to the s most costly clusters.

4.1 HEAVY SKEW LOCAL SEARCH FOR k-MEDIAN

For an (s, 1 − ε)-skewed dataset, we can leverage the structure of the dataset to achieve efficient
clustering. The intuition is to search for the s most expensive clusters with high precision and then
perform a quicker, lower precision search for the remaining k−s cheaper clusters, aiming to achieve
a (1+ε)-approximation. This can be achieved by using a brute-force search for the s most expensive
clusters and a local search for the remaining k − s cheaper centers.

In particular, for any given set of s centers, we run a local search to determine the remaining k − s
centers. The local search procedure is used to identify a local optimum for the (k, z)-clustering
problem. When using a local search with a swap parameter t, no more than t existing centers are
replaced with an equal number of new centers, provided that such a swap reduces the overall cost.
The process continues until no further improvements can be achieved by these swaps.

Unlike the classic local search, which can swap any center, we only swap the centers for the remain-
ing k− s ones, keeping the s guessed centers fixed throughout the local search. By brute-forcing all
possible locations for the s most expensive centers, we will eventually find the correct guess. For
that correct guess, since we fix the locations of the s centers and only swap the remaining k − s
centers, the final set returned will be the precise locations of the s most expensive centers and an
approximation for the remaining centers, ensuring a (1 + ε)-approximation.

We must consider that the presence of s fixed centers may adversely affect the local search for the
remaining k − s centers. However, through a detailed analysis, we can show that with a carefully
chosen swap parameter t = O(1/ε), we can mitigate such adverse effects and guarantee the (1+ε)-
approximation.

Algorithm 3 HEAVYSKEWLOCALSEARCH(S, T, ε,A, k, s)
Require: Dataset S, potential center set T , precision parameter ε, setA ⊂ T with |A| = s, number

of clusters k, skewness parameter s
Ensure: A center set P with |P| = k

1: γ ← some large enough constant, t← γ
ε

2: B ← Arbitrary subset of T with |B| = k − s
3: while ∃B′ ⊂ T such that |B − B′| ≤ 2t and Cost(S,A ∪ B′) < Cost(S,A ∪ B) do
4: B ← B′
5: P ← A∪ B
6: return P

We claim that HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation if S is (1, 1 − ε)-
skewed and we choose the correct input set A = CE , which is the centers of the s most high-cost
clusters.

Lemma 4.1. Let S be an (s, 1 − ε)-skewed dataset, T be the potential center set, and A = CE ,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
γ > 1, such that for any ε ∈ (0, 1

2 ], HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation
P for the (k, 1)-clustering for S and T .

4.2 HEAVY SKEW LOCAL SEARCH FOR (k, z)-CLUSTERING

Our (1 + ε)-approximation guarantee extends to general (k, z)-clustering. The framework remains
the same, but the cost function for the (k, z)-clustering is dist(x, c)z instead of dist(x, c), as in the
k-median case. This change affects the additivity of the cost function, requiring a more nuanced

6
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analysis of cost distortion. However, with the generalized triangle inequality and carefully chosen
parameters, an (1 + ε)-approximation is still achievable for (s, 1− εz+1)-skewed set S.
Lemma 4.2. Let S be an (s, 1− εz+1)-skewed dataset, T be the potential center set, and A = CE ,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
γ > 1, such that for any ε ∈ (0, 1

2 ], HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation
P for the (k, z)-clustering for S and T .

Note that while (s, 1 − ε)-skewness is required for z = 1, (s, 1 − εz+1)-skewness is needed for
general (k, z)-clustering. This indicates that a heavier skewness is necessary for general (k, z)-
clustering to compensate for the loss of additivity.

5 PTAS FOR HEAVILY SKEWED DISTRIBUTION SET

Although HEAVYSKEWLOCALSEARCH guarantees a (1 + ε)-approximation, it does not ensure the
existence of a PTAS for (k, z)-clustering because it cannot guarantee to terminate in polynomial
rounds. An intuitive approach might involve only swapping centers if the result improves signifi-
cantly, such as an improvement in the multiplier 1 + ε′, to ensure the polynomial iteration times.
However, this method misses smaller improvements, and a series of such small improvements can
accumulate, failing to maintain the desired approximation. For example, successive m swaps, each
improving by a factor of 1 + ε

2 , may result in
(
1 + ε

2

)m
, which deviates significantly from 1 + ε.

Through a comprehensive analysis, we demonstrate that by opting for a more precise choice of
the parameter, specifically ε′ = O( ε

k2 ), it is possible to ensure a (1 + ε)-approximation within
polynomial iteration times.

Algorithm 4 FASTLOCALSEARCH(S, T, ε,A, k, s)
Require: Dataset S, potential center set T , precision parameter ε, setA ⊂ T with |A| = s, number

of clusters k, skewness parameter s
Ensure: A center set P with |P| = k

1: γ ← some large enough constant, t← γ
ε

2: B ← Arbitrary subset of T with |B| = k − s
3: Γ← constant approximation of total cost
4: while ∃B′ ⊂ T such that |B − B′| ≤ 2t and Cost(S,A ∪ B′) < (1 − ε

Γk2 )Cost(S,A ∪ B) and
do

5: B ← B′
6: P ← A∪ B
7: return P

We claim that FASTLOCALSEARCH terminates within polynomial rounds and returns a (1 + 2ε)-
approximation for the optimal solution of clustering (S, T ).
Lemma 5.1. Let S be a dataset of n points, T be the potential center set, and A = CE , which is
the set of centers of the s most high-cost clusters in optimal solution. There exists a constant γ > 1,
such that for any ε ∈ (0, 1

2 ], FASTLOCALSEARCH terminates within O(k
2

ε ) swaps, and returns a
(1 + 2ε)-approximation P , as long as S is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, S only
needs to be (s, 1− ε)-skewed.

Finally, we give DISCRETEHEAVYSKEW and CONTINUOUSHEAVYSKEW as PTASs to approxi-
mate (k, z)-clustering within a (1 + ε) approximation. We construct DISCRETEHEAVYSKEW, the
algorithm deals with the discrete (k, z)-clustering problem first. Assume that we have an input set X
and a potential center set T with |X| = n and |T | = poly(n). We perform a brute-force search over
all possible locations of the centers of the s most expensive clusters and apply FASTLOCALSEARCH
on each guess. Since there are |T |s = poly(n) possible choices for the s centers, we only need to
apply FASTLOCALSEARCH polynomial number of times. The run time of a single application of
FASTLOCALSEARCH is poly(n, k) because it terminates in poly(n, k) swaps. As a result, we can
complete all the computations in poly(n, k) time.

We claim that DISCRETEHEAVYSKEW guarantee a (1 + ε) approximation for (k, z)-clustering on
X and T within poly(n, k) run time if X is (s, 1− εz+1)-skewed.
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Algorithm 5 DISCRETEHEAVYSKEW(X,T, ε, k, s)

Require: Dataset S, center set T , precision ε, number of clusters k, skewness parameter s
Ensure: A center set P with |P| = k

1: if |X| ≤ k and X ⊂ T then
2: P ← X
3: else
4: P ← Arbitrary subset of T with |P| = k
5: for A ∈ T s do
6: P ′ ← FASTLOCALSEARCH(S, T, ε

2 ,A, k, s)
7: if Cost(S,P ′) < Cost(S,P) then
8: P ← P ′

9: return P

Theorem 5.2. Let X be a set of n data points, and let T be a set of potential centers such that
|T | = poly(n). Given any ε > 0, DISCRETEHEAVYSKEW returns a (1 + ε)-approximation P in
(nkε)O(s+1/ε) time for discrete (k, z)-clustering as long as X is (s, 1−εz+1)-skewed. Furthermore,
for z = 1, X only needs to be (s, 1− ε)-skewed.

We then construct CONTINUOUSHEAVYSKEW, the algorithm deals with the continuous (k, z)-
clustering problem. For a data set X , we can use CORESETCONSTRUCTION and CENTERNET
to construct the coreset S and potential center set T , effectively transforming the continuous (k, z)-
clustering on X into the discrete (k, z)-clustering on (S, T ). As a widely used sampling technique,
sensitivity sampling can be completed in Õ(nk) running time. Our construction of T also has a run
time of poly(k, log n) because the construction of an individual point in T requires a run time of
O(1), and T has a size of poly(k, log n). Then an application of DISCRETEHEAVYSKEW solves the
problem.

Algorithm 6 CONTINUOUSHEAVYSKEW(X, ε, k, s)

Require: Dataset X , precision ε, number of clusters k, skewness parameter s,
Ensure: A center set P with |P| = k

1: if |X| ≤ k then
2: P ← X
3: else
4: S ← CORESETCONSTRUCTION(X, ε, n, k,∆)
5: T ← CENTERNET(S, ε

4 ,∆)
6: P ← DISCRETEHEAVYSKEW(X,T, ε

4 , k, s)

7: return P

We claim that CONTINUOUSHEAVYSKEW guarantee a (1 + ε) approximation for (k, z)-clustering
on X within poly(n, k) run time if X is (s, 1− εz+1)-skewed.

Theorem 5.3. Let X be a set of n data points. Given any ε > 0, CONTINUOUSHEAVYSKEW re-
turns a (1+ε)-approximation P in Õ(nk)+(k log n)Õ(s+1/ε) time for continuous (k, z)-clustering
with probability at least 0.97, as long as X is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, X
only needs to be (s, 1− ε)-skewed.

6 EXPERIMENTAL EVALUATIONS

Despite our primary focus on theoretical contributions, we performed experiments to validate its effi-
cacy. We evaluated the precision of our algorithm against the k-means and k-medoids algorithms of
the scikit-learn and scikit-learn-extra libraries. These algorithms are widely favored
for their quick execution times, but they have weaker theoretical accuracy assurances. We opted to
benchmark our algorithm against these fast yet less precise methods rather than other (1 + ε) ap-
proximation algorithms, which are infeasible for experiment due to their exponential run times. Our
empirical results demonstrate that our algorithm surpasses these commonly used methods in terms

8
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Table 1: Improvement rate for k-means and k-medoids on synthetic data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 28.32 3.78 12.77 16.86 1.11 10.57
5 27.16 5.32 20.07 25.87 14.22 25.49
6 28.83 12.57 26.91 40.41 21.08 39.74
7 47.95 7.44 45.21 21.04 10.95 15.12
8 50.53 40.83 48.82 34.19 8.25 40.36
9 57.89 23.52 28.99 39.29 18.46 22.34
10 37.23 24.42 26.28 42.65 22.85 47.17

of accuracy, thereby substantiating our theoretical claims for the (1 + ε)-accuracy of our algorithm
with practical evidence.

Our experiment is conducted using Python 3.9.6 on a 2020 MacBook Pro equipped with a 1.4
GHz Quad-Core Intel Core i5 processor. We evaluate our algorithm against KMeans from
scikit-learn and KMedoids from scikit-learn-extra. For all algorithms, we gen-
erate initialization centers through uniform sampling. A maximum iteration limit is set such that
each algorithm updates at most 3 · k centers by the time they terminate.

6.1 SYNTHETIC DATA

Synthetic data is produced using the datagen function from the coreset library. This function
creates samples from a Dirichlet Process Mixture Model (DPMM) characterized by Gaussian like-
lihood and fixed cluster covariance, and operates based on the Chinese restaurant process. We set
s = t = 1 and the smallest center net scale as 0.01 for k-means.

Figure 1: Comparison between Lloyd heuris-
tic and our algorithm for k-means

Figure 2: Comparison between KMedoids
and our algorithm for k-medoids

Our experiments illustrate an improvement range for k-means from 3.78% at k = 4 for the minimum
metric to 57.89% at k = 9 for the average metric, and for k-medoids from 1.11% at k = 4 for the
minimum metric to 47.17% at k = 10 for the median metric. This overall enhancement underscores
the superior performance of our algorithm in terms of accuracy when compared to KMeans from
scikit-learn and KMedoids from scikit-learn-extra across average, minimum, and
median metrics. Furthermore, the notable improvement observed in the average and median metric
implies a higher variability in KMeans and KMedoids when evaluated on synthetic data, whereas
our algorithm demonstrates significantly lower variance.

6.2 REAL WORLD DATA

We also conducted the experiment using the Exasens dataset (Exa20) from the UCI Machine Learn-
ing Repository, which comprises 399 instances and 4 features. This data set includes demographic

9
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Table 2: Improvement rate for k-means and k-medoids on real world data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 82.49 83.53 82.39 32.50 17.84 22.68
5 82.58 5.87 85.69 24.98 23.69 24.77
6 86.11 21.90 88.61 31.01 29.30 29.02
7 89.94 39.12 91.79 30.22 11.48 32.48
8 84.56 18.04 36.86 38.04 35.90 37.24
9 86.69 28.79 51.80 41.24 39.89 41.28
10 88.91 41.94 38.71 42.02 40.29 42.67

information on 4 groups of saliva samples (COPD, asthma, infection, HC) collected as part of the
joint research project Exasens. We utilized the StandardScaler from scikit-learn. The
parameters used were identical to those used in the synthetic data experiment, with the exception of
a reduced center net scale of 0.0001, as the range of the real world data after scaling is approximately
100 times smaller than that of the synthetic data.

Figure 3: Comparison between Lloyd heuris-
tic and our algorithm for k-means

Figure 4: Comparison between KMedoids
and our algorithm for k-medoids

Our experimental results demonstrate an enhancement range for k-means from 5.87% at k = 5
for the minimum metric up to 91.79% at k = 7 for the median metric, and for k-medoids from
11.48% at k = 7 for the minimum metric to 42.67% at k = 10 for the median metric. This overall
improvement highlights the superior accuracy performance of our algorithm relative to KMeans
from scikit-learn and KMedoids from scikit-learn-extra, across various metrics
including average, minimum, and median. Additionally, the observed substantial improvement in
the average and median metric suggests greater variability in KMeans and KMedoids when tested
on real world data, while our algorithm displays considerably lower variance. Notably, KMeans
shows even higher variance with real-world data than with synthetic data, likely attributed to the
increased skewness present in real-world datasets.
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A RELATED WORK

Within this section, we present a review of related works. Initially, we discuss results studying
the APX-hardness of (k, z)-clustering. Subsequently, we describe the progression of (1 + ε)-
approximation algorithms. Thereafter, we briefly introduce the theoretical accuracy guarantees for
popular algorithms used in practice. Additionally, we mention specific works on local search, an
algorithmic paradigm integral to our approach. Lastly, we review some literature on Zipfian distri-
butions.

APX-hardness for (k, z)-clustering The foundational work of Guha & Khuller (1999) was the first
to prove that (k, z)-clustering is APX-hard. It established that k-means and k-median are hard to
approximate within factors of 3.94 and 1.73, respectively, in general metric spaces. The natural
question arises: Is (k, z)-clustering still APX-hard in more specific metrics, such as doubling or
Euclidean metrics? Unfortunately, subsequent studies have confirmed that (k, z)-clustering remains
APX-hard even under these specific metrics (Ahmadian et al., 2019; Trevisan, 2000; Guruswami
& Indyk, 2003; Cohen-Addad & Karthik, 2019). According to the most recent research by Cohen-
Addad & Lee (2022), the inapproximability bounds are 1.17 and 1.06 for discrete and continuous
k-means, and 1.07 and 1.015 for discrete and continuous k-median in Euclidean space unless P=NP.

Development of (1 + ε)-approximation algorithms Early attempts at developing (1 + ε)-
approximation algorithms for k-means clustering began with Inaba et al. (1994), who proposed
an algorithm with a run time ofO(ndk+1) for fixed k and ε. Subsequent work improved the runtime
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(Matoušek, 2000; Har-Peled & Mazumdar, 2004), culminating in De La Vega et al. (2003) present-
ing the first algorithm with a linear dependency on n. Kumar et al. (2004; 2005); Chen (2006) further
improved the run time with a new coreset construction. Finally, Feldman et al. (2007) developed
a PTAS with a run time of O(nkd + 2Õ(k/ε)). However, all these PTASs assume fixed k and ε,
resulting in algorithms that are polynomial in n but have exponential dependency on k.

Popular practical algorithms Lloyd (1982) introduced the Lloyd heuristic, the most widely used
algorithm for k-means in practice. This algorithm iteratively computes the centroid of each clus-
ter to search of a local optimum. However, despite its popularity, Inaba et al. (1994) demonstrated
that the Lloyd heuristic does not guarantee a solution close to the optimal k-means clustering in the
worst case. To address this, Arthur & Vassilvitskii (2006) proposed k-means++, an initialization
process that provides an O(log k)-approximation guarantee when combined with the Lloyd heuris-
tic. Together, these algorithms achieve a total runtime of Õ(dnk). For k-medoids, the most popular
algorithm is the PAM (Partitioning Around Medoids) algorithm, proposed by Rdusseeun & Kauf-
man (1987). PAM can be seen as a discrete counterpart to the Lloyd heuristic. However, PAM lacks
a theoretical guarantee and has a runtime of O(T · k(n− k)2), where T is the number of iterations.

Local search technique. The local search technique, introduced by Arya et al. (2001), iteratively
swaps t centers to seek a local optimum solution. Arya et al. (2001) demonstrated that local search
guarantees a

(
3 + 2

t

)
-approximation for k-median, while Kanungo et al. (2002) showed a (9 + ε)-

approximation for k-means. Cohen-Addad et al. (2019) established that local search is a PTAS for
k-means and k-median in constant-dimensional Euclidean space, and Friggstad et al. (2019) demon-
strated that local search is a PTAS in doubling metric spaces. Due to its simplicity, local search is
frequently used as a subroutine for clustering in various computational models, such as distributed
(Bateni et al., 2014), parallel (Blelloch & Tangwongsan, 2010), and streaming environments (Guha
et al., 2003). In addition, numerous studies have also examined local search from a theoretical
perspective (Cohen-Steiner et al., 2004; Dhillon et al., 2002; Friggstad & Zhang, 2016; Hansen &
Mladenović, 2001; Yang et al., 2008). Although traditionally recognized as a constant approxi-
mation algorithm, Cohen-Addad & Schwiegelshohn (2017) explored its performance on data sets
with specific properties, showing that local search can achieve a (1 + ε)-approximation for certain
datasets, such as those with distributional stability.

Zipfian distribution. Zipf’s law, as proposed by Zipf (1949), characterizes an empirical distribution
found in numerous real-world datasets. Mandelbrot et al. (1953) refined this law by adding an
exponent parameter p, leading to the Mandelbrot-Zipf law, which serves as a more generalized model
for linguistic phenomena. In present-day network science, Zipf’s law is relevant to the analysis of
scale-free networks, where the degree distribution (the number of connections a node has) frequently
follows a power law, akin to a Zipfian distribution. Significant advancements in understanding such
networks were made by Barabási & Albert (1999) with their preferential attachment model. Halevy
et al. (2009) discuss how large-scale data processing often unveils Zipfian distributions in real-world
datasets, such as those pertaining to web queries and clickstream data. Additionally, the Mandelbrot-
Zipf law is observed across various domains including economics (Gabaix, 1999), geography (Jiang
et al., 2015), genomics (Furusawa & Kaneko, 2003), language (Ferrer i Cancho, 2005), and security
(Blocki et al., 2018).

B (s, 1− ε)-SKEWED DATASET AND ZIPFIAN DISTRIBUTION

We will prove Lemma 2.3 in this section.
Lemma B.1. Let X = {x1, x2, . . . , xn} ⊆ [∆]d be a Zipfian distribution dataset. There exists a

constant γ > 0 such that for s > γ
(
1
ε

) 1
p−1 , X is (s, 1− ε)-skewed.

Proof. Since 1
xp is continuous and decreasing on R>0,∫ i+1

i

1

xp
dx ≤ 1

ip
≤
∫ i

i−1

1

xp
dx.

Hence
∞∑

i=s+1

1

ip
≤
∫ ∞

s

1

xp
dx =

1

p− 1
· 1

sp−1
.
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For s > γ
(
1
ε

) 1
p−1 , substituting this into the above inequality, it yields

∞∑
i=s+1

1

is
≤ 1

p− 1
· ε

γp−1
.

By the definition of Zipfian distribution dataset, we have

γ1 ·
1

ip
≤ Cost(N(ci), C) ≤ γ2 ·

1

ip
.

Hence
k∑

i=s+1

Cost(N(ci), C) ≤
k∑

i=s+1

γ2 ·
1

ip
≤

∞∑
i=s+1

γ2 ·
1

ip
≤ γ2

p− 1
· ε

γp−1
.

On the other hand, we know that
∞∑
i=1

1

ip
= ζ(p)

for p > 1. Thus

Cost(X, C) =
k∑

i=1

Cost(N(ci), C) ≥
k∑

i=1

γ1 ·
1

ip
≥ γ1 · ζ(p).

There exists a constant γ > 0 such that
γ2

p− 1
· ε

γp−1
≤ γ1 · ζ(p).

Hence for s ≥ γ
(
1
ε

) 1
p−1 , ∑

i>s

Cost(N(ci), C) ≤ ε · Cost(X, C),

which is equivalent to ∑
i≤s

Cost(N(ci), C) ≥ (1− ε)Cost(X, C).

Hence a Zipfian distribution is a (s, 1− ε)-skewed for s = O(
(
1
ε

) 1
p−1 ).

C CORESET AND CENTER NET

In Appendix C.1, we will prove Lemma 3.2. In Appendix C.2, we will also introduce an algorithm
that produces a center net, providing a (1 + ε)-approximation.

C.1 CORESET THAT KEEPS HEAVY SKEWNESS

Before proving Lemma 3.2, we shall first revisit Bernstein’s inequality, as it is essential for the
subsequent proof.
Theorem C.1 (Bernstein’s inequality). Let Z1, Z2, · · · , Zn be independent random variables and
ai ≤ Zi ≤ bi. Let Sn =

∑n
i=1 Zi, En = E [Sn], and R ≥ maxi∈[n] |bi − ai|. Then for any t > 0,

Pr [|Sn − En| > t] < 2 exp

(
− t2/2

Vn +R · t/3

)
.

We first prove that under the condition of Lemma 3.2, CORESETCONSTRUCTION returns an ε-
coreset S of X with probability at least 0.99.
Lemma C.2. Let X = {x1, x2, · · · , xn} ⊂ [∆]d be a (s, 1 − ε)-skewed dataset.
There exists a constant γ > 0, such that for any ε ∈ (0, 1

4 ], the set S returned by
CORESETCONSTRUCTION(X, ε, n, k,∆) is an ε-coreset of X with probability at least 0.99 if
µ = γdk

ε3 log(n∆).
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Proof. We want to use Bernstein’s inequality to bound the probability. For any C ∈
(
Rd
)k

, we
define the random variable to describe the cost of S:

Zi =

{
w(xi) · Cost (xi, C) , with probability px,

0, with probability 1− px.

Let Sn =
∑n

i=1 Zi. Then Cost (S, C) = Sn.

Denote En = E [Sn], then

En =

n∑
i=1

w(xi) · Cost (xi, C) · pi.

According to the algorithm, w(xi) =
1
px

, so

En =

n∑
i=1

1

px
· Cost (xi, C) · pi =

n∑
i=1

Cost (xi, C) = Cost (X, C) .

Next, we analyze the variance of Zi. Let Vn = Var (Sn). Recall that the variance of a random
variable is bounded by its second moment, so

Var (Zi) ≤ E
[
Z2
i

]
=

1

p2x
· Cost (xi, C)2 · pi =

1

px
· Cost (xi, C)2 .

Recall that px = min{µs(x), 1}. For the case µs(x) ≤ 1,

Var (Zi) ≤
1

µs(x)
Cost (xi, C)2 .

Recall the definition of s(x),

s(x) = max
C′∈(Rd)k

Cost(x, C′)
Cost(X, C′)

.

Therefore

Var (Zi) ≤
1

µ

Cost(X, C)
Cost(xi, C)

Cost(xi, C)2 =
1

µ
Cost(X, C)Cost(xi, C).

Hence ∑
µs(xi)≤1

Var (Zi) ≤
∑

µs(xi)≤1

1

µ
Cost(X, C)Cost(xi, C)

≤
n∑

i=1

1

µ
Cost(X, C)Cost(xi, C)

=
1

µ
Cost(X, C)2.

For the case µs(x) > 1, we have px = 1. Hence

Var (Zi) = E
[
Z2
i

]
− (E [Zi])

2
= Cost(xi, C)2 · 1− Cost(xi, C)2 = 0.

Then ∑
µs(xi)>1

Var (Zi) = 0.

Thus
Vn =

∑
µs(xi)≤1

Var (Zi) +
∑

µs(xi)>1

Var (Zi) ≤
1

µ
Cost(X, C)2.

Next we analyze the range bound R. For the lower bound, 0 ≤ Zi for any i ∈ [n]. For the upper
bound, by the definition of Zi, for the case p(xi) = µs(xi),

Zi =
1

µs(xi)
Cost(xi, C) ≤

1

µ

Cost(X, C)
Cost(xi, C)

Cost(xi, C) =
1

µ
Cost(X, C).
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For the case p(xi) = 1,
Zi = Cost(xi, C) ≤ Cost(X, C).

Hence Zi ≤ Cost(X, C) for any i ∈ [n].

Then by Bernstein’s inequality,

Pr [|Sn − En| > εEn] < 2 exp

(
− (εEn)

2/2

Vn +R · εEn/3

)
≤ 2 exp

(
− ε2Cost(X, C)2/8

1
µCost(X, C)2 + εCost(X, C)2/6

)

= 2 exp

(
− ε2/2

1
µ + ε/6

)
.

Since ε ∈ (0, 1
4 ] and µ = γdk

ε3 log(n∆), there exists γ > 0 such that µ ≥ 1 ≥ ε
6 . Hence

Pr [|Sn − En| > εEn] < 2 exp

(
− ε2/2

1
µ + 1

µ

)
≤ 2 exp

(
−µε2

4

)
.

By Cohen-Addad et al. (2023), there exists a collection of center set F that gives a good approx-
imation for any center set, and the guarantee of (1 + ε)-approximation on F implies the (1 + ε)-
approximation for any center set.

Lemma C.3 (Lemma 3.2 in (Cohen-Addad et al., 2023)). Let X ⊂ [∆]d and let z ≥ 1 be a constant.

Then there exists a set F of size |F| =
(
n∆
ε

)O(kd)
, such that (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤

(1 + ε)Cost(X, C) for any C ∈ F , implies (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 + ε)Cost(X, C)
for any set C ⊂ Rd with |C| = k.

Denote E as the event that (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 + ε)Cost(X, C) for any C ∈ F .
Notice that (1 − ε)Cost(S, C) ≤ Cost(X, C) ≤ (1 + ε)Cost(S, C) is equivalent to |Cost(S, C) −
Cost(X, C)| ≤ εCost(X, C). By taking a union bound, we get

Pr [E ] ≥ 1− |F| · 2 exp
(
−µε2

4

)
.

Since |F| =
(
n∆
ε

)O(kd)
and µ = γdk

ε3 log(n∆), we get

Pr [E ] ≥ 1− exp

(
O(dk log n∆

ε
)− γdk

4ε
log (n∆)

)
.

Thus there exists any constant γ > 0 such that Pr [E ] ≥ 0.99.

Then by Lemma C.3, with probability at least 0.99, (1 − ε)Cost(X, C) ≤ Cost(S, C) ≤ (1 +
ε)Cost(X, C) for any set C ⊂ Rd with |C| = k, which is equivalent to that S is an ε-coreset of
X .

Next, we prove that under the condition of Lemma 3.2, S has a size of |S| = O(dk
2

ε3 log(n∆)).

Lemma C.4. Let X = {x1, x2, · · · , xn} ⊂ [∆]d be a (s, 1 − ε)-skewed dataset. There exists a
constant γ > 0, such that for any ε ∈ (0, 1

4 ], S has a size of |S| = O(dk
2

ε3 log(n∆)) with probability
at least 0.99 if µ = γdk

ε3 log(n∆).

Proof. The proof is similar to the proof of Lemma C.2. We use Bernstein’s inequality to bound the
probability.

Define the random variable

Zi =

{
1, with probability px,

0, with probability 1− px.
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Denote Sn =
∑n

i=1 Zi. Since Zi describe whether we sample the point xi or not, |S| = Sn. Let
En = E [Sn] and Vn = Var (Sn).

Since px = min{µs(x), 1}, we get En =
∑n

i=1 E [Zi] ≤
∑n

i=1 µs(xi). Varadarajan & Xiao (2012)
proves that for (k, z)-clustering,

∑n
i=1 s(xi) = O(k). Hence there exists some constant γ′ > 0,

such that
∑n

i=1 s(xi) ≤ γ′k. Then En ≤ γ′µk.

Since Zi is a Bernoulli random variable, Var (Zi) = pxi
(1− pxi

) ≤ pxi
. Hence

Vn =

n∑
i=1

Var (Zi) ≤
n∑

i=1

pxi
≤

n∑
i=1

µs(xi) = γ′µk.

For the range bound, we have 0 ≤ Zi ≤ 1 for any i. Then by Bernstein’s inequality,

Pr [|Sn − En| > γ′µk] < 2 exp

(
− (γ′µk)2/2

Vn +R · En/3

)
≤ 2 exp

(
− γ′2µ2k2/2

γ′µk + γ′µk/3

)
≤ 2 exp

(
−γ′µk

4

)
.

Since µ = γdk
ε3 log(n∆), there exists γ > 0 such that

Pr [|Sn − En| > γ′µk] < 0.01.

Then with probability at least 0.99,

|S| = Sn ≤ En + γ′µk ≤ 2γ′µk = O(dk
2

ε3
log(n∆))

Finally, we demonstrate that under the assumption of Lemma 3.2, S exhibits significant skewness.
Our proof establishes that the coreset S not only provides an accurate approximation of X , but
also effectively approximates the expensive clusters NX(ci). Specifically, we assert that S offers a
(1 + ε)-approximation for clusters whose cost exceeds ε

100kCost(X, COPT), with COPT representing
the optimal solution.

Lemma C.5. Let X = {x1, x2, · · · , xn} ⊂ [∆]d be a (s, 1 − ε)-skewed dataset. Let COPT =
{c1, c2, · · · , ck} be the optimal solution. Let NX(ci) = {x ∈ X : dist(x, ci) ≤ dist(x, cj), j ̸= i}.
Assume NX(ci) is ordered in the way that Cost(NX(ci), COPT) ≥ Cost(NX(cj), COPT) for j > i.
There exists a constant γ > 0, such that for any ε ∈ (0, 1], if µ = γdk

ε3 log(n∆), with proba-
bility at least 0.99, Cost(NS(ci), COPT) ∈ (1 ± ε)Cost(NX(ci), COPT) for Cost(NX(ci), COPT) ≥

ε
100kCost(X, COPT), where NS(ci) is the set of points in S that sampled from NX(ci), and S is the
set returned by CORESETCONSTRUCTION(X, ε, n, k,∆).

Proof. Let NX(ci) = {x1, x2, · · · , xm} be a cluster such that Cost(NX(ci), COPT) ≥
ε

100kCost(X, COPT). For j ∈ [m], we define

Zj =

{
w(xj) · Cost (xj , COPT) , with probability px,

0, with probability 1− px.

Let Si =
∑

xj∈Xi
Zj , Ei = E [Si] and Vi = Var (Si).

By the same proof as the one of Lemma C.2, we claim that for the case pxj = 1, Var (Zj) = 0, and
for the case pxj = µs(xj),

Var (Zj) ≤
1

µ
Cost(X, COPT)Cost(xj , COPT).
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We also have

Ei =

m∑
j=1

E [Zj ] =

m∑
j=1

1

pxj

Cost(xj , COPT)pxj
= Cost(NX(ci), COPT).

Ei is Cost(NX(ci), COPT) here, which is different from the expextation in the proof of Lemma C.2.
It is because we only add the points in NX(ci) here, and we add all points in X in the proof of
Lemma C.2.

Similarly, for Vi, we have∑
xj∈NX(ci):µs(xi)≤1

Var (Zi) ≤
∑

xj∈NX(ci):µs(xi)≤1

1

µ
Cost(X, COPT)Cost(xj , COPT)

≤
∑

xj∈NX(ci)

1

µ
Cost(X, COPT)Cost(xj , COPT)

=
1

µ
Cost(X, COPT)Cost(NX(ci), COPT),

and ∑
xj∈NX(ci):µs(xi)<1

Var (Zi) = 0.

Hence

Vn =
∑

xj∈NX(ci):µs(xi)≤1

Var (Zi) +
∑

xj∈NX(ci):µs(xi)>1

Var (Zi)

≤ 1

µ
Cost(X, COPT)Cost(NX(ci), COPT).

By the same proof of Lemma C.2, for the bound of Zj , we have 0 ≤ Zj ≤ Cost(X, COPT) for any
j ∈ [m].

Now we have En = Cost(NX(ci), COPT), R = Cost(X, COPT), and

Vn ≤
1

µ
Cost(X, COPT)Cost(NX(ci), COPT) =

1

µ
R · En.

Then by Bernstein’s inequality,

Pr [|Sn − En| > εEn] < 2 exp

(
− (εEn)

2/2

Vn +R · εEn/3

)
≤ 2 exp

(
− ε2E2

n/2
1
µR · En + εR · En/6

)

= 2 exp

− ε2En/2(
1
µ + ε

6

)
R

 .

Since ε ∈ (0, 1
4 ], there exists γ > 0 such that µ > 1. Then 1

µ + ε
6 ≤

2
µ . Thus

Pr [|Sn − En| > εEn] < 2 exp

(
−ε2µEn

4R

)
.

Since Cost(NX(ci), COPT) ≥ ε
100kCost(X, COPT), we get En

R ≥ ε
100k . Recall that µ =

γdk
ε3 log (n∆). Then

Pr [|Sn − En| > εEn] < 2 exp

(
− ε3µ

400k

)
= 2 exp

(
− γd

400
log (n∆)

)
.
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Then there exists some constant γ > 0 such that

Pr [|Sn − En| > εEn] ≤ 2 exp

(
− γd

400
log (n∆)

)
≤ 1

100n
.

It means for a cluster NX(ci) that Cost(NX(ci), COPT) ≥ ε
100kCost(X, COPT), with probability at

least 1− 1
100n , we have |Cost(NX(ci), COPT)− Cost(NS(ci), COPT)| ≤ εCost(NX(ci), COPT).

Since we have k clusters in total, the number of the clusters NX(ci) that Cost(Xi, COPT) ≥
ε

100kCost(X, COPT) is at most k. By taking a union bound, we get that |Cost(NX(ci), COPT) −
Cost(NS(ci), COPT)| ≤ εCost(NX(ci), COPT) for any Cost(NX(ci), COPT) ≥ ε

100kCost(X, COPT)

with probability at least 1− k
100n ≥ 0.99.

Finally, we complete the proof of Lemma 3.2.

Lemma C.6. Let X be an (s, 1 − ε)-skewed dataset. There exists a constant γ > 1, such that for
any ε ∈ (0, 1

4 ],CORESETCONSTRUCTION returns an ε-coreset S for X with probability at least
0.97. Furthermore, S is (s, 1− 3ε)-skewed, and has a size of O(dk

2

ε3 log(n∆)).

Proof. By Lemma C.2, Lemma C.4 and Lemma C.5, we get that with probability at least 0.97, S
is an ε-coreset of X , |S| = O(dk

2

ε3 log (n∆)), and |Cost(NX(ci), COPT) − Cost(NS(ci), COPT)| ≤
εCost(NX(ci), COPT) for any cluster NX(ci) that Cost(NX(ci), COPT) ≥ ε

100kCost(X, COPT).

What we remain to prove is that S is a (s, 1− ε)-skewed set.

WLOG, we can order the clusters NX(ci) in the way that Cost(NX(ci), COPT) ≥
Cost(NX(cj), COPT) for i < j. We divide {NX(ci)}ni=1 into two part, the heavy ones H =
{1, · · · ,m} and the light ones L = {m+1, · · · , k}, such that for any i ∈ H, Cost(NX(ci), COPT) ≥

ε
100kCost(X, COPT), and for any i ∈ L, Cost(NX(ci), COPT) <

ε
100kCost(X, COPT).

Notice that the heavy clusters L contribute at most ε
100Cost(X, COPT). In fact, for the sum of NX(ci)

where i ∈ L, ∑
i∈L

Cost(NX(ci), COPT) ≤
∑
i∈L

ε

100k
Cost(X, COPT)

≤
k∑

i=1

ε

100k
Cost(X, COPT)

=
ε

100
Cost(X, COPT).

We divide the sum of the s most heaviest clusters into two part:∑
i∈[s]

Cost(NX(ci), COPT) =
∑

i∈[s]∩H

Cost(NX(ci), COPT) +
∑

i∈[s]∩L

Cost(NX(ci), COPT).

Since X is a (s, 1− ε)-skewed set,∑
i∈[s]∩H

Cost(NX(ci), COPT) =
∑
i∈[s]

Cost(NX(ci), COPT)−
∑

i∈[s]∩L

Cost(NX(ci), COPT)

≥ (1− ε)Cost(X, COPT)−
ε

100
Cost(NX(ci), COPT)

=

(
1− 101

100
ε

)
Cost(NX(ci), COPT).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Since for i ∈ H, |Cost(NX(ci), COPT) − Cost(NS(ci), COPT)| ≤ εCost(NX(ci), COPT) and
|Cost(X, COPT)− Cost(S, COPT)| ≤ εCost(X, COPT), we get∑

i∈[s]∩H

Cost(NS(ci), COPT) ≥ (1− ε)
∑

i∈[i]∩H

Cost(NX(ci), COPT)

≥ (1− ε)

(
1− 101

100
ε

)
Cost(X, COPT)

≥
(
1− 201

100
ε

)
Cost(X, COPT).

We also have
Cost(S, COPT) ≤ (1 + ε)Cost(X, COPT).

Since for ε ∈ (0, 1
4 ], (1 + ε)(1− 4ε) ≤ 1− 201

100ε, we get∑
i∈[s]

Cost(NS(ci), COPT) ≥
∑

i∈[s]∩H

Cost(NS(ci), COPT)

≥ (1− 4ε)(1 + ε)Cost(X, COPT)

≥ (1− 3ε)Cost(S, COPT).

Therefore S is (s, 1− 3ε)-skewed.

C.2 (1 + ε)-APPROXIMATE CENTER NET

We will prove Lemma 3.3 in this section.

First, we prove that there always exists an ε-net in ball B(x, r) with size 2O(d log(r/ε)).

Lemma C.7. There exists an ε-net N in ball B(x, r), such that |N | = 2O(d log(r/ε)).

Proof. Notice that a 2ε√
d

-grid is an ε-net. In fact, let N be a 2ε√
d

-grid in B(x, r). Then for any
y ∈ B(x, r),

dist(y,N ) ≤

√√√√ d∑
i=1

(
ε√
d

)2

= ε.

Hence N has size with

|N | =

(
O(r
√
d

2ε
)

)d

= 2O(d log(r/ε)).

Next, we demonstrate the following inequality to aid in constraining the cost distortion.
Lemma C.8. Let 0 < |a| < b, a can be either positive or negative. Then

| (b+ a)
z − bz| ≤ 2z|a|bz−1.

Proof. For a > 0, since 0 < a < b, we have aibz−i ≤ abz−1. Hence

| (b+ a)
z − bz| = (b+ a)

z − bz =

z∑
i=1

(
z

i

)
aibz−i ≤ 2zabz−1.

For a < 0, we get

| (b+ a)
z − bz| = (b+ a− a)

z − (b+ a)
z ≤ 2z|a|(b+ a)z−1.

Since a < 0, we have b+ a ≤ b. Hence

| (b+ a)
z − bz| ≤ 2z|a|bz−1.
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For a center c ∈ [∆]d, denote dc as the distance dist(S, c). We establish the theorem by categorizing
c into three cases based on dc. The cases are: dc = 0, dc ≥ 2M1 where M1 = log

(
ε

kW

)
− 2z,

and 0 < dc < 2M1 . In the first case, we set c′ = c. We show that Cost(x, c) = Cost(x, c′) in this
scenario, implying zero cost distortion. In the second case, we choose c′ so that dist(c, c′) ≤ εdc

2z . We
show that |Cost(x, c) − Cost(x, c′)| ≤ ε

2Cost(x, c), which results in a minor cost distortion. In the
third case, we set c′ as the closest x ∈ S to c. We prove that |Cost(x, c)−Cost(x, c′)| ≤ ε

2Cost(x, c)
for x ̸= c′, resulting in a small distortion. Furthermore, we establish that for Cost(x, c) where x = c′,
it is relatively small relative to the total cost. Ultimately, we prove that our selection of c′ leads to a
very minor distortion and provides a good approximation of C. We demonstrate the validity of these
three cases sequentially. Initially, for dc = 0, selecting c′ = c does not result in cost distortion.
Lemma C.9. For a center c ∈ [∆]d, let dc be the distance dist(S, c). Suppose dc = 0. Then there
exists c′ ∈ T such that Cost(x, c) = Cost(x, c′) for any x ∈ S.

Proof. In fact, dc = 0 means c ∈ S. Then we can just let c′ = c, which leads Cost(x, c) =
Cost(x, c′) for any x ∈ S.

Second, given dc ∈ [2M1 , 2M2+1), it is possible to select some c′ ∈ T and produce a minor distortion
of the cost in comparison to the initial cost.
Lemma C.10. For a center c ∈ [∆]d, let dc be the distance dist(S, c). Suppose dc ∈ [2M1 , 2M2+1),
where M1 = log

(
ε

kW

)
− 2z − 2 and M2 = log∆. Then there exists c′ ∈ T such that |Cost(x, c)−

Cost(x, c′)| ≤ ε
2Cost(x, c) for any x ∈ S.

Proof. Assume dc ∈ [2i, 2i+1), where i ∈ [M1,M2). Define xc as the point in S closest to c. Given
dc ∈ [2i, 2i+1), it follows that c ∈ B(xc, 2

i+1). Because i ∈ [M1,M2), an ε2i+1

22z+1 -net has been
established in B(xc, 2

i+1), and T includes such a net. Consequently, there exists some c′ ∈ T such
that dist(c, c′) ≤ ε2i

22z .

For any x ∈ S, let D1 = max{dist(x, c), dist(x, c′)|} and let D2 = min{dist(x, c), dist(x, c′)|}.
Then by Lemma C.8, we get

|dist(x, c)z − dist(x, c′)z| = |Dz
1 −Dz

2 | ≤ 2z|D1 −D2|Dz−1
1 .

By triangle inequality, we get

|D1 −D2| = |dist(x, c)− dist(x, c′)| ≤ dist(c, c′) ≤ ε2i

22z
.

If D1 = dist(x, c′), we have

D1 = dist(x, c) + (dist(x, c′)− dist(x, c)) ≤ dist(x, c) +
ε2i

22z
.

Since dc ∈ [2i, 2i+1), for any x ∈ S, dist(x, c) ≥ dc ≥ 2i. Since ε ∈ (0, 1], we get ε2i+1

23z ≤
dist(x, c) for any x ∈ S. Then

D1 ≤ dist(x, c) + dist(x, c) = 2dist(x, c).

Hence

|dist(x, c)z − dist(x, c′)z| ≤ 2z
ε2i

22z
(2 · dist(x, c))z−1

= ε2i−1dist(x, c)z−1.

Since 2i ≤ dist(x, c), we get

|dist(x, c)z − dist(x, c′)z| ≤ ε

2
dist(x, c)z.

Since Cost(x, c) = w(x) · dist(x, c)z , we get
|Cost(x, c)− Cost(x, c′)| = w(x) · |dist(x, c)z − dist(x, c′)z|

≤ w(x) · ε
2

dist(x, c)z

=
ε

2
Cost(x, c).
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Third, for dc < 2M1 , we can select a certain c′ ∈ T and produce minimal distortion in cost relative
to the initial cost for x ̸= c′, and generate minor distortion in cost relative to the overall cost for
x = c′.
Lemma C.11. For a center c ∈ [∆]d, let dc be the distance dist(S, c). Suppose 0 < dc < 2M1 ,
where M1 = log

(
ε

kW

)
−2z−2. Let xc be the point of S nearest to c. Let c′ = xc, then Cost(xc, c) ≤

ε
2k ·

1
2z , and |Cost(x, c) − Cost(x, c′)| ≤ ε

2Cost(x, c) for any x ̸= xc ∈ S. Furthermore, for any
x ∈ S, x ̸= xc is equivalent to dist(x, c) ≥ 2M1 .

Proof. Since W ≥ 1 and ε ∈ (0, 1], log
(

ε
kW

)
≤ 0. Hence M1 ≤ −2. Then dc < 2M1 ≤ 1

4 . Since
any x ∈ S has integer coordinates and dist(xc, c) = dc ≤ 1

4 , for any x ̸= xc ∈ S, dist(x, c) ≥ 1
2 ≥

2M1+1. Also, if dist(x, c) ≥ 2M1 > dist(xc, c), we must have x ̸= xc. Hence for any x ∈ S, x ̸= xc

is equivalent to dist(x, c) ≥ 2M1 .

For x ̸= xc ∈ S, let D1 = max{dist(x, c), dist(x, c′)|} and let D2 = min{dist(x, c), dist(x, c′)|}.
Then by triangle inequality,

|dist(x, c)− dist(x, c′)| ≤ dist(c, c′) = dist(xc, c) = dc < 2M1 .

Then for D1, we have

D1 ≤ dist(x, c) + |dist(x, c)− dist(x, c′)| = dist(x, c) + dc.

Since dist(x, c) ≥ 1
4 ≥ 2M1 > dc, we get

D1 ≤ dist(x, c) + dist(x, c) = 2dist(x, c).

Then similar to the proof of Lemma C.10, by Lemma C.8, we get

|dist(x, c)z − dist(x, c′)z| = |Dz
1 −Dz

2 |
≤ 2z|D1 −D2|Dz−1

1

≤ 2zdc (2dist(x, c))z−1
.

Since 2M1 > dc and M1 = log
(

ε
kW

)
− 2z − 2, we get

|dist(x, c)z − dist(x, c′)z| ≤ 22z−12M1dist(x, c)z−1

= 2−3 ε

kW
dist(x, c)z−1.

Since dist(x, c) ≥ 1
2 , we get

|dist(x, c)z − dist(x, c′)z| ≤ 2−2 ε

kW
dist(x, c)z.

Hence

|Cost(x, c)− Cost(x, c′)| = w(x) · |dist(x, c)z − dist(x, c′)z|

≤ w(x)2−2 ε

kW
dist(x, c)z.

Since k ≥ 1 and W ≥ 1, we get

|Cost(x, c)− Cost(x, c′)| ≤ w(x)
ε

2
dist(x, c)z =

ε

2
Cost(x, c).

For xc = c′, since dist(xc, c) = dc < 2M1 , we get

Cost(xc, c) = w(xc)dist(xc, c)
z ≤ w(xc)

(
2M1

)z
.

Since 2M1 ≤ 1
4 < 1,

(
2M1

)z ≤ 2M1 . Hence

Cost(xc, c) ≤ w(xc)2
M1 = w(xc)2

−2z−2 ε

kW
.

Since W ≥ w(xc), we get

Cost(xc, c) ≤
ε

2k

1

2z
.
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Now we complete the proof of Lemma 3.3.

Lemma C.12. Let S be a weighted set whose maximum weight is at least 1. For ε ∈ (0, 1], the set
T returned by CENTERNET satisfies: for any C ⊂ [∆]d and |C| ≤ k, there exists C′ ⊂ T k such that

(1− ε)Cost(S, C) ≤ Cost(S, C′) ≤ (1 + ε)Cost(S, C).

Furthermore, T has a size of |T | = |S| · 2O(d log 1
ε log log( k∆

ε )).

Proof. We first prove the accuracy claim in the theorem.

For any C = {c1, c2, · · · , ck} ⊂ [∆]d, we will construct C′ ⊂ T such that

(1− ε)Cost(S, C) ≤ Cost(S, C′) ≤ (1 + ε)Cost(S, C).

For any ci ∈ C, we select the corresponding c′i ∈ T the way we used in Lemma C.9, Lemma C.10,
and Lemma C.11. Let C′ = {c′1, c′2, · · · , c′k}.
We partition S into three subsets: S0, S1, and S2. Here, S0 comprises the points that coincide with
C. The set S1 consists of points whose distance from C is less than 2M1 but greater than 0. Lastly,
S2 contains points with a distance from C greater than 2M1 .

Let

S0 = {x ∈ S : dist(x, C) = 0},
S1 = {x ∈ S : 0 < dist(x, C) < 2M1},
S2 = {x ∈ S : dist(x, C) ≥ 2M1}.

We will analyze the distortion of cost of S0, S1, and S2 one by one.

For x ∈ S0, since dist(x, C) = 0, there exists some ci ∈ C such that dxi
= 0. Then by Lemma C.9,

we will select c′i = x. Hence we get

Cost(x, C′) = Cost(x, C) = 0.

Then
|Cost(S0, C′)− Cost(S0, C)| = |

∑
x∈S0

Cost(x, C′)− Cost(x, C)| = 0.

For x ∈ S1, 0 < dist(x, C) < 2M1 means there exists some ci ∈ C such that dist(x, ci) =
dci ∈ (0, 2M1). By Lemma C.11, we will select c′i = x, which means Cost(x, C′) = 0. Also,
by Lemma C.11, we have

Cost(x, C) ≤ ε

2k

1

2z
.

Observe that Cost(S, C) ≥ 1
2z . Given that |S| > k and each point x ∈ S has integer coordinates,

there must be some center ci ∈ C such that at least two distinct points x1 ̸= x2 are assigned to ci.
Since x1 ̸= x2, at least one of them is at least 1

2 distance away from ci, which results in a cost of at
least 1

2z . Therefore

Cost(x, C) ≤ ε

2k
Cost(S, C).

Since x ∈ S has integer coordinators, for any ci ∈ C, there exists at most one x ∈ S such that
dist(x, ci) < 2M1 . Hence |S1| is at most k. Then

|Cost(S1, C′)− Cost(S1, C)| = |
∑
x∈S1

Cost(x, C′)− Cost(x, C)|

≤
∑
x∈S1

ε

2k
Cost(S, C)

≤ ε

2
Cost(S, C).
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For x ∈ S2, since dist(x, C) ≥ 2M1 , we have dist(x, ci) ≥ 2M1 for any ci ∈ C. For ci ∈ C that
dci ≥ 2M1 , by Lemma C.10,

|Cost(x, ci)− Cost(x, c′i)| ≤
ε

2
Cost(x, ci).

For ci ∈ C that dci < 2M1 , since dist(x, ci) ≥ 2M1 , by Lemma C.11, we also have

|Cost(x, ci)− Cost(x, c′i)| ≤
ε

2
Cost(x, ci).

Hence |Cost(x, ci)− Cost(x, c′i)| ≤ ε
2Cost(x, ci) is true for any ci ∈ C. Then we can claim that

|Cost(x, C)− Cost(x, C′)| ≤ ε

2
Cost(x, C)

for any x ∈ S2.

Notice that the above claim is non-trivial because it is possible that x is assigned to ci ∈ C, but is
assigned to c′j ∈ C′ for i ̸= j. We may assume that x is assigned to ci ∈ C, and is assigned to
c′j ∈ C′, where i and j can be either the same, or not the same. Since x is assigned to ci ∈ C, and is
assigned to c′j ∈ C′, we have Cost(x, cj) ≥ Cost(x, ci), and Cost(x, c′i) ≥ Cost(x, c′j). Hence

Cost(x, C′) = Cost(x, c′j) ≥ (1− ε

2
)Cost(x, cj)

≥ (1− ε

2
)Cost(x, ci) = (1− ε

2
)Cost(x, C),

and

Cost(x, C′) = Cost(x, c′j) ≤ Cost(x, c′i)

≤ (1 +
ε

2
)Cost(x, ci) = (1 +

ε

2
)Cost(x, C).

Hence we get
|Cost(x, C′)− Cost(x, C)| ≤ ε

2
Cost(x, C),

for any x ∈ S2. Then

|Cost(S2, C′)− Cost(S2, C)| = |
∑
x∈S2

Cost(x, C′)− Cost(x, C)|

≤
∑
x∈S2

ε

2
Cost(x, C).

Since S2 ⊂ S, we get

|Cost(S2, C′)− Cost(S2, C)| ≤
∑
x∈S

ε

2
Cost(x, C) = ε

2
Cost(S, C).

Then combining the bound of |Cost(Si, C′)− Cost(Si, C)|, we get

|Cost(S, C′)− Cost(S, C)| = |
2∑

i=0

(Cost(Si, C′)− Cost(Si, C)) |

≤ 0 +
ε

2
Cost(S, C) + ε

2
Cost(S, C)

= εCost(S, C).

Hence we complete our proof that C′ ⊂ T gives an (1 + ε)-approximation for C.

Subsequently, we shall demonstrate the assertion regarding the net size within the theorem.

By the CENTERNET(S, ε,∆), we know

T = S
⋃(

M2⋃
i=M1

⋃
x∈S

Ni,x

)
.
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Since Ni,x is an εr
22z+1 -net in B(x, r), by Lemma C.7,

|Ni,x| = 2
O(d log

(
r· 22z+1

εr

)
)
= 2O(d log( 1

ε )).

Hence

|T | ≤ |S|+ (M2 −M1) · |S| · 2O(d log( 1
ε ))

= |S|+ (log∆− log
( ε

kW

)
+ 2z + 2) · |S| · 2O(d log( 1

ε ))

= |S|2O(d log( 1
ε ) log log( kW∆

ε )).

By CORESETCONSTRUCTION(X, ε, n, k,∆), we know that

W = max
x∈X
{ 1

µs(x)
}.

Notice that s(x) ≥ 1
2n for any x ∈ X ⊂ [∆]d. In fact, we can select C = {c1, c2, · · · , ck} such that

∥ci∥ = 100
√
d∆ for any ci ∈ C. By the definition of sensitivity,

s(x) = max
C′∈(Rd)k

Cost(x, C′)
Cost(X, C′)

≥ Cost(x, C)
Cost(X, C)

.

Since x ∈ [∆]d, we have dist(x, ci) ∈ [99
√
d∆, 101

√
d∆]. Hence

s(x) ≥ 99
√
d∆

n · 101
√
d∆
≥ 1

2n
.

Hence we have W ≤ 2n
µ . Then

|T | = |S|2O(d log( 1
ε ) log log( k∆

ε )).

Currently, we have (S, T ) where |S| = Õ(dk
2

ε ) and |T | = 2Õ(d log( dk
ε )). According to Lemma 3.2

and Lemma 3.3, an optimal solution for (S, T ) is a (1+2ε)-approximate solution for X . Therefore,
using a brute force search, we can achieve a (1 + 2ε)-approximation within a running time of
2Õ(dk log( dk

ε )). Nevertheless, this is not a PTAS for k since the running time depends on 2O(k). For
heavily skewed datasets, the running time can be further optimized. In Appendix D and Appendix E,
we will present a PTAS utilizing this heavily skewed property.

D LOCAL SEARCH ADAPTED FOR HEAVILY SKEWED SET

We will prove Lemma 4.1 in Appendix D.1 and Lemma 4.2 in Appendix D.2.

D.1 HEAVY SKEW LOCAL SEARCH FOR k-MEDIAN

For brevity, we will consider S as the data set and T as a finite set of potential centers, with S
being a (s, 1 − ε)-skewed data set. We denote C = {c1, c2, · · · , ck} as the optimal solution within
the net T , and P as the heuristic solution produced by the algorithm. We assume Cost (N(ci)) ≥
Cost (N(cj)) for i ≤ j, where N(ci) = {x ∈ S : Cost(x, ci) ≤ Cost(x, cj), j ̸= i}. We define
CE = {c1, c2, · · · , cs} as the expensive centers and CC = C\CE as the cheap centers. For U ⊂ C,
let N(U) = {x ∈ S : Cost(x,U) ≤ Cost(x, C\U)} denote the points assigned to U in the optimal
solution, and let N∗(U) = {x ∈ S : Cost(x,U) ≤ Cost(x,P\U)} for U ⊂ P , representing
the points allocated to U in the heuristic solution P . We also denote Ox = dist(x, C) and Ax =
dist(x,P).
We will establishLemma 4.1 by demonstrating that HEAVYSKEWLOCALSEARCH successfully ap-
proximates N(CC).
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We will employ the general framework for the analysis of local search algorithms as previously
utilized by Arya et al. (2001); Kanungo et al. (2002); Gupta & Tangwongsan (2008), but with a
more nuanced analysis. Within this framework, we construct a series of swaps between the heuristic
centers and the optimal centers. Given that the set of heuristic centers represents a local optimum,
the cost will increase after each swap. Conversely, by swapping heuristic centers to optimal centers,
we can bound the cost distortion as γ1

∑
Ox − γ2

∑
Ax if the swapping centers are chosen with

precision. Consequently, we can achieve 0 ≤ γ1
∑

Ox−γ2
∑

Ax for certain swaps. Ultimately, by
constructing multiple such swaps and aggregating these inequalities, we derive the desired result.

Before conducting further analysis, we first present some notations and definitions to facilitate the
examination of the local search algorithm. We define an optimal center c ∈ CC as being captured by
a heuristic center b ∈ B if b is the closest center to c within B. Ties are resolved arbitrarily to ensure
that each c ∈ CC is captured by exactly one heuristic center. We say that a heuristic center b has a
degree of m if it captures exactly m optimal centers in CC .

We define bc as the heuristic center in B closest to c ∈ C, bx as the heuristic center in B closest to
x ∈ S, cx as the optimal center in C closest to x, and c′x as the optimal center in CC closest to x.

We will examine the interchange between the center sets F and R. Initially, we establish that the
distance between x and the new centers can be constrained by Ox and Ax, provided that F and R
satisfy the following condition.

Lemma D.1. Suppose F ⊂ CC ,R ⊂ B, and |F| = |R|. If the heuristic centers inR do not capture
any optimal centers in CC\F , for x ∈ (N∗(R)\N(F)) ∩N(CC),

dist(x,P\R ∪ F) ≤ 2Ox +Ax.

Proof. Since x /∈ N(F) and x ∈ N(CC), c′x /∈ F . By the condition, the centers inR do not capture
c′x, so bc′x ∈ B\R ⊂ P\R ∪ F . Hence

dist(x,P\R ∪ F) ≤ dist(x, bc′x).

By triangle inequality,
dist(x, bc′x) ≤ dist(x, c′x) + dist(c′x, bc′x).

Since bc′x is the nearest center to c′x, dist(c′x, bc′x) ≤ dist(c′x, bx), which leads

dist(x, bc′x) ≤ dist(x, c′x) + dist(c′x, bx).

By triangle inequality,

dist(x, bc′x) ≤ dist(x, c′x) + dist(c′x, x) + dist(x, bx)

= 2dist(x, c′x) + dist(x, bx).

Since Ox = dist(x, c′x) and Ax = dist(x, bx), it leads

dist(x,P\R ∪ F) ≤ 2Ox +Ax.

Next, we design a collection of partition pairs {(Fi,Ri)} that satisfy the requirement that the centers
withinRi do not capture any center beyond Fi.

Lemma D.2. Assume B is the heuristic center set and CC is the cheap optimal center set. There
exists partition pair {(Fi,Ri)}li=1 that meets the following condition:

• {Fi} is a partition of CC . In other words, Fi are disjoint from each other, and CC =
∪li=1Fi.

• {Ri} is a partition of B.

• |Fi| = |Ri| for i ∈ [l].

• Centers inRi do not capture any center c /∈ Fi for i ∈ [l].
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Proof. Recall that the degree of a heuristic center b is the number of optimal centers in CC that is
captured by b. Also, every c ∈ CC is captured by exactly one heuristic center.

WOLG, we can denote B>0 = {b1, · · · , bl} as the set of all the centers with positive degree, and
B0 = {bl+1, · · · , bk−s} as the set of centers with degree zero.

For any bi ∈ B>0, we construct Fi as the optimal centers in CC captured by bi. Since every center
in CC is captured by exactly 1 heuristic center by definition, {Fi} is a partition of CC .

We construct Ri as the union of bi and deg bi − 1 centers with degree zero. We put centers of B0
into Ri in such way that every center in B0 belongs to exactly one of {Ri}. Such construction is
valid by the following discussion:

Since |Fi| = deg bi, it leads that |CC | =
∑l

i=1 |Fi| =
∑l

i=1 deg bi. Since |B| = |CC | = k − s and
|B>0| = l, it leads that

∑l
i=1(deg bi − 1) = |B| − l = |B| − |B>0|. It means we need |B| − |B>0|

zero degree centers for such construction. On the other hand, we have exact |B0| = |B| − |B>0|
degree zero centers. Hence we can assign every zero degree center to exact oneRi.

Since such construction of {Ri} is valid, by the construction, {Ri} is a partition of B. Also, by the
construction, |Ri| = deg bi = |Fi|.
We have proven the first three conditions. For the last one, notice that bi only captures the centers in
Fi, and every other centers in Ri has 0 degree, which means they capture no centers. Hence Ri do
not capture any center c /∈ Fi.

We claim that any t-swapping holds the following inequality ifR do not capture F .

Lemma D.3. Let (F ,R) be a pairing that |F| = |R| ≤ t andR don’t capture F , then

0 ≤
∑

x∈N(F)

(Ox −Ax) +
∑

N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox.

Proof. Since |F| ≤ t, the swapping between F and R is a t-swapping. Since P returned by
HEAVYSKEWLOCALSEARCHis a local optimum for t-swapping, the total cost of S can only in-
crease, which means

0 ≤ Cost(S,P\R ∪ F)− Cost(S,P).

Now we analyze the bound of Cost(S,P\R ∪ F) − Cost(S,P). For the sake of brevity, we will
denote ∆U = Cost(U ,P\R ∪ F) − Cost(U ,P) for any U ⊂ S in this proof. We also denote
∆x = ∆{x}.

Notice that ∆x can be positive only if x ∈ N∗(R). Since for x /∈ N∗(R), the center in P nearest to
x still belongs to P\R∪F , which means that the new cost of x can only decrease. It means ∆x ≤ 0
for x /∈ N∗(R). By splitting S into N∗(R) and S\N∗(R), we can express ∆S in the following
method:

0 ≤ ∆S = ∆N∗(R) +∆S\N∗(R).

Since N(F)\N∗(R) ⊂ S\N∗(R) and ∆x ≤ 0 for x /∈ N∗(R),

0 ≤ ∆N∗(R) +∆N(F)\N∗(R).

By splitting N∗(R) into N∗(R) ∩N(F) and N∗(R)\N(F), we get

0 ≤ ∆N∗(R)\N(F) +∆N∗(R)∩N(F) +∆N(F)\N∗(R)

= ∆N∗(R)\N(F) +∆N(F).

For x ∈ N(F), Cost(x,P\R ∪ F) ≤ Ox because cx ∈ F ⊂ P\R ∪ F . Hence ∆x ≤ Ox − Ax.
Adding up all x ∈ N(F), then

∆N(F) ≤
∑

x∈N(F)

(Ox −Ax).
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For x ∈ N∗(R)\N(F), we split N∗(R)\N(F) into (N∗(R)\N(F)) ∩ N(CE) and
(N∗(R)\N(F)) ∩N(CC).
For x ∈ (N∗(R)\N(F)) ∩ N(CE), we claim that Cost(x,P\R ∪ F) ≤ Ox. In fact, cx ∈ CE
because x ∈ N(CE). By the HEAVYSKEWLOCALSEARCH, P = CE ∪B, which means cx ∈ P . On
the other hand, since R ⊂ B = P\CE , R does not contain any center of CE . Since cx ∈ P and we
do not remove it after swapping, cx is still contained in P\R∪F . Hence Cost(x,P\R∪F) ≤ Ox.

Since F ⊂ CC , N(F) is disjoint from N(CE). Hence (N∗(R)\N(F)) ∩ N(CE) = N∗(R) ∩
N(CE). It means

∆(N∗(R)\N(F))∩N(CE) = ∆N∗(R)∩N(CE).

Summing over all x ∈ N∗(R) ∩N(CE), we get

∆N∗(R)∩N(CE) ≤
∑

x∈N∗(R)∩N(CE)

(Ox −Ax).

Hence
∆(N∗(R)\N(F))∩N(CE) ≤

∑
x∈N∗(R)∩N(CE)

(Ox −Ax).

For x ∈ (N∗(R)\N(F))∩N(CC), we can apply Lemma D.1 becauseR do not capture any optimal
centers in CC\F . Hence

∆x = dist(x,P\R ∪ F)−Ax ≤ (2Ox +Ax)−Ax = 2Ox.

Summing over all x ∈ (N∗(R)\N(F)) ∩N(CC), we get

∆(N∗(R)\N(F))∩N(CC) ≤
∑

x∈(N∗(R)\N(F))∩N(CC)

2Ox.

Since Ox ≥ 0, ∑
x∈(N∗(R)\N(F))∩N(CC)

2Ox ≤
∑

x∈N∗(R)∩N(CC)

2Ox.

Hence
∆(N∗(R)\N(F))∩N(CC) ≤

∑
x∈N∗(R)∩N(CC)

2Ox.

Combining all the inequalities above, we get

0 ≤ ∆N(F) +∆N∗(R)\N(F)

= ∆N(F) +∆(N∗(R)\N(F))∩N(CE) +∆(N∗(R)\N(F))∩N(CC)

≤
∑

x∈N(F)

(Ox −Ax) +
∑

N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox.

The previous lemma only holds for t-swapping, in other words, |F| = |R| ≤ t. We also claim the
following inequality for the case |F| = |R| > t.
Lemma D.4. If |F| = |R| > t,R has exactly one positive degree center, andR do not capture any
center outside F , the following inequality holds:

0 ≤
∑

x∈N(F)

(Ox −Ax) +

(
1 +

1

t

) ∑
N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox

 .

Proof. Since R has exactly one positive degree center, we just denote it as b. Consider a swap
(c, b′) ∈ F × (R\{b}). Since b′ ∈ R\{b}, it is a zero degree center, which means it captures
no centers. Also, |{c}| = |{b′}| = 1 ≤ t. It means the swapping pair meets the condition of
Lemma D.3, which leads

0 ≤
∑

x∈N(c)

(Ox −Ax) +
∑

N∗(b′)∩N(CE)

(Ox −Ax) +
∑

N∗(b′)∩N(CC)

2Ox.
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Consider all the possible combination of (c, b′) ∈ F × (R\{b}). Denote |F| = m. There are
m(m − 1) such pairs. Every center c ∈ F appears exactly m − 1 times in these pairs, and every
center b′ ∈ R\{b} appears exactly m times. Every pair corresponds to one such inequality. We add
all these inequalities together, and get

0 ≤(m− 1)
∑

x∈N(F)

(Ox −Ax) +m ·
∑

N∗(R)∩N(CE)

(Ox −Ax)

+m ·
∑

N∗(R)∩N(CC)

2Ox,

which is equivalent to

0 ≤
∑

x∈N(F)

(Ox −Ax) + γ

 ∑
N∗(R)∩N(CE)

(Ox −Ax) +
∑

N∗(R)∩N(CC)

2Ox

 ,

where γ = m
m−1 .

Since |F| = m > t,

t = 1 +
1

m− 1
≥ 1 +

1

t
.

On the other hand, we demonstrated in the proof of Lemma D.3 that the second and third terms
in the above inequality are non-negative. Therefore, substituting γ = m

m−1 with 1 + 1
t does not

diminish the right-hand side, leading to the desired result.

Now we have:

Lemma D.5. ∑
x∈N(CC)

Ax ≤
(
3 +

2

t

) ∑
x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

(Ox −Ax) .

Proof. According to Lemma D.2, there is a partition pair {(Fi,Ri)}li=1 that satisfies the four condi-
tions specified. For any pair (Fi,Ri) within this set, if |Fi| ≤ t, Lemma D.3 can be utilized, which
results

0 ≤
∑

x∈N(Fi)

(Ox −Ax) +
∑

N∗(Ri)∩N(CE)

(Ox −Ax) +
∑

N∗(Ri)∩N(CC)

2Ox.

Since we have shown the second and third term is non-negative,

0 ≤
∑

x∈N(Fi)

(Ox −Ax) + γt

 ∑
N∗(Ri)∩N(CE)

(Ox −Ax) +
∑

N∗(Ri)∩N(CC)

2Ox

 ,

where γt = 1 + 1
t .

For any pair (Fi,Ri) that |Fi| > t, we can apply Lemma D.4 and get

0 ≤
∑

x∈N(Fi)

(Ox −Ax) + γt

 ∑
N∗(Ri)∩N(CE)

(Ox −Ax) +
∑

N∗(Ri)∩N(CC)

2Ox

 .

Each pair corresponds to an analogous inequality. Summing these inequalities from (F1,R1) to
(Fl,Rl), and considering that every optimal center in CC and every heuristic center in B appears
exactly once, we obtain

0 ≤
∑

x∈N(CC)

(Ox −Ax) + γt

 ∑
N∗(B)∩N(CE)

(Ox −Ax) +
∑

N∗(B)∩N(CC)

2Ox

 .
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We have shown that Ox −Ax ≥ 0 for x ∈ N(CE) in the proof of Lemma D.3. Hence∑
N∗(B)∩N(CE)

(Ox −Ax) ≤
∑

N(CE)

(Ox −Ax).

Since Ox is non-negative, ∑
N∗(B)∩N(CC)

2Ox ≤
∑

N(CC)

2Ox

Thus

0 ≤
∑

x∈N(CC)

(Ox −Ax) + γt

 ∑
N(CE)

(Ox −Ax) +
∑

N(CC)

2Ox

 ,

where γt = 1 + 1
t .

Simplifying the above inequality, we get

∑
x∈N(CC)

Ax ≤
∑

x∈N(CC)

Ox + (1 +
1

t
)

 ∑
N(CE)

(Ox −Ax) +
∑

N(CC)

2Ox


=

(
3 +

2

t

) ∑
x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

(Ox −Ax).

In conclusion, we demonstrate Lemma 4.1.

Lemma D.6. Let S be an (s, 1 − ε)-skewed dataset, T be the potential center set, and A = CE ,
which is the set of centers of the s most high-cost clusters in optimal solution. There exists a constant
γ > 1, such that for any ε ∈ (0, 1

2 ], HEAVYSKEWLOCALSEARCH returns a (1 + ε)-approximation
P for the (k, 1)-clustering for S and T .

Proof. By Lemma 2.3, there exists γ > 0 such that for s > γ
(
1
ε

) 1
p−1 , Cost(N(CC), C) ≤

ε
100Cost(S, C).

There also exists γ > 0 such that for t > γ
ϵ , 1

t ≤
ε

100 .

By Lemma D.5,

Cost(S,P) =
∑
x∈S

Ax =
∑

x∈N(CC)

Ax +
∑

x∈N(CE)

Ax

≤
(
3 +

2

t

) ∑
x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

(Ox −Ax) +
∑

x∈N(CE)

Ax

=

(
3 +

2

t

) ∑
x∈N(CC)

Ox +
∑

x∈N(CE)

((
1 +

1

t

)
Ox −

1

t
Ax

)
.

Since Ax ≥ 0,

Cost(S,P) ≤ (3 +
2

t
)
∑

x∈N(CC)

Ox +

(
1 +

1

t

) ∑
x∈N(CE)

Ox.

Since 1
t ≤

ε
100 ≤

1
100 ,

Cost(S,P) ≤ 5
∑

x∈N(CC)

Ox +
(
1 +

ε

100

) ∑
x∈N(CE)

Ox

= 5Cost(N(CC), C) +
(
1 +

ε

100

)
Cost(N(CE), C).
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Since Cost(N(CC), C) ≤ ε
100Cost(S, C) and Cost(N(CE), C) ≤ Cost(S,P),

Cost(S,P) ≤ ε

20
Cost(S, C) +

(
1 +

ε

100

)
Cost(S, C)

≤
(
1 +

ε

10

)
Cost(S, C).

Hence we complete our proof.

D.2 HEAVY SKEW LOCAL SEARCH FOR (k, z)-CLUSTERING

Our guarantee of the 1+ ε-approximation can also generate to general (k, z)-clustering. The frame-
work is the same, but the cost function for the (k, z)-clustering is dist(x, c)z rather than dist(x, c)
for the k-median case. The difference causes the cost function to lose its additivity, which requires
a more subtle analysis for the distortion of cost. Fortunately, despite the loss of additivity, with the
help of a generalized triangle inequality and stricter chosen parameters, an 1 + ε-approximation is
still guaranteed.

For the sake of brevity, let us consider S to be a (s, 1 − εz+1)-skewed data set. The assumptions
and notations for T , P , C, CE , CC , N(ci), N(U), N∗(U), Ox, and Ax remain identical to those in
Appendix D.1.

Observe that for the k-median problem, we require that S be (s, 1− ε)-skewed, whereas for general
(k, z)-clustering, we stipulate that S be (s, 1 − εz+1)-skewed. This implies a greater degree of
skewness is necessary for general (k, z)-clustering to offset the loss of additivity.

We first introduce the generalized triangle inequality by Sohler & Woodruff (2018).

Lemma D.7 (Claim 5 in (Sohler & Woodruff, 2018)). Suppose z ≥ 1, x, y ≥ 0, and ε ∈ (0, 1].
Then

(x+ y)z ≤ (1 + ε) · xz +

(
1 +

2z

ε

)z

· yz.

Recall that Ox = dist(x, C) and Ax = dist(x,P), thus our cost function in the (k, z)-clustering
scenario becomes Cost(x, C) = Oz

x and Cost(x,P) = Az
x.

Notice that Lemma D.1 still holds for (k, z)-clustering, because it only analyzes the distance in its
proof. (k, z)-clustering only has a different cost function from k-median, so it will not affect the
validity of Lemma D.1. Notice that Lemma D.2 also holds because its analysis does not depend on
cost function.

However, Lemma D.3 and Lemma D.4 no longer holds because we use the fact that 0 ≤
Cost(S,P\R ∪ F) − Cost(S,P) for a t-swapping. We will give the adapted version of these two
lemmas in the (k, z)-clustering case.

For the sake of brevity, we denote U = N∗(R) ∩N(CE) and V = N∗(R) ∩N(CC). ∆x is still the
distortion of cost as we used in the previous subsection.

Lemma D.8. Let (F ,R) be a pairing that |F| = |R| ≤ t andR do not capture F . For ε ∈ (0, 1
2 ],

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) +
∑
U

(Oz
x −Az

x) +
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

)
,

where ξ is a constant.

Proof. It is still true in (k, z)-clustering that

0 ≤ Cost(S,P\R ∪ F)− Cost(S,P)

and
Cost(S,P\R ∪ F)− Cost(S,P) ≤ ∆N(F) +∆U\N(F) +∆V\N(F).

However, we need a new bound for ∆N(F), ∆U\N(F) and ∆V\N(F) this time.
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For x ∈ N(F), cx ∈ P\R ∪ F , so Cost(x,P\R ∪ F) ≤ Ox. Hence

∆N(F) =
∑

x∈N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈N(F)

(Oz
x −Az

x).

For x ∈ U\N(F), cx ∈ CE ⊂ P\R ∪ F , so Cost(x,P\R ∪ F) ≤ Ox. Hence

∆U\N(F) =
∑

x∈U\N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈U\N(F)

(Oz
x −Az

x).

Since cx ∈ P , Ax ≤ Ox. Thus we further get

∆U\N(F) ≤
∑
x∈U

(Oz
x −Az

x).

For x ∈ V\N(F), by Lemma D.1,

dist(x,P\R ∪ F) ≤ 2Ox +Ax.

Hence

∆V\N(F) =
∑

x∈V\N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈V\N(F)

((2Ox +Ax)
z −Az

x).

Then

∆V\N(F) =
∑

x∈V\N(F)

(Cost(x,P\R ∪ F)− Cost(x,P))

≤
∑

x∈V\N(F)

((2Ox +Ax)
z −Az

x).

Since ((2Ox +Ax)
z −Az

x) ≥ 0, we get

∆V\N(F) ≤
∑
x∈V

((2Ox +Ax)
z −Az

x).

Since ε ∈ (0, 1
2 ], by Lemma D.7,

(2Ox +Ax)
z ≤

(
1 +

ε

100

)
Az

x +

(
1 +

200z

ε

)z

· (2Ox)
z

≤
(
1 +

ε

100

)
Az

x +
ξ

εz
Oz

x.

Hence

∆V\N(F) ≤
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

)
.

Summing the above result and we get

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) +
∑
U

(Oz
x −Az

x) +
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

)
.
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Lemma D.9. If |F| = |R| > t, R has exactly one positive degree center, and R don’t capture any
center outside F , for ε ∈ (0, 1

2 ], the following inequality holds:

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) + γt

(∑
U

(Oz
x −Az

x) +
∑
V

(
ξ

εz
Oz

x +
ε

100
Az

x

))
,

where γt = 1 + 1
t .

Proof. The proof is just a repetition of the proof of Lemma D.4. The only difference is that we
substitute Lemma D.3 with Lemma D.8.

Lemma D.10. For ε ∈ (0, 1
2 ], there exists ξ′ > 0 such that

∑
x∈N(CC)

Az
x ≤

(
1 +

ε

50

)
·

γtξ
′

εz

∑
x∈N(CC)

Oz
x + γt

∑
x∈N(CE)

(Oz
x −Az

x)

 ,

where γt = 1 + 1
t .

Proof. We repeat the proof of Lemma D.5, but substitute Lemma D.3 and Lemma D.4 with
Lemma D.8 and Lemma D.9. We get

0 ≤
∑

x∈N(F)

(Oz
x −Az

x) + γt

 ∑
N(CE)

(Oz
x −Az

x) +
∑

N(CC)

(
ξ

εz
Oz

x +
ε

100
Az

x

) ,

where γt = 1 + 1
t .

Since ε ∈ (0, 1
2 ] and γt ≥ 1, there exists ξ′ > 0 such that γtξ

′

εz ≥ 1 + γtξ
εz . Simplifying the above

inequality, we get(
1− ε

100

) ∑
x∈N(CC)

Az
x ≤

γtξ
′

εz

∑
x∈N(CC)

Oz
x + γt

∑
x∈N(CE)

(Oz
x −Az

x),

where γt = 1 + 1
t .

Since ε ∈ (0, 1
2 ], (

1− ε

100

)−1

= 1 +
ε

100− ε
≤ 1 +

ε

50
.

Hence we complete the proof.

Finally, we will demonstrate Lemma 4.2.

Proof. By Lemma 2.3, there exists γ > 0 such that for s > γ
(
z
ε

) 1
p−1 , Cost(N(CC), C) ≤

εz+1

100ξ′ Cost(S, C).

There also exists γ > 0 such that for t > γ
ϵ , 1

t ≤
ε

100 .

By Lemma D.10,

Cost(S,P) =
∑

x∈N(CC)

Az
x +

∑
x∈N(CE)

Az
x

≤ γεγtξ
′

εz

∑
x∈N(CC)

Oz
x + γεγt

∑
x∈N(CE)

(Oz
x −Az

x) +
∑

x∈N(CE)

Az
x,

where γε = 1 + ε
50 .
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Since Cost(N(CC), C) ≤ εz+1

100ξ′ Cost(S, C) and 1
t ≤

ε
100 ,

γεγtξ
′

εz

∑
x∈N(CC)

Oz
x =

γεγtξ
′

εz
Cost(N(CC), C)

≤ γεγt
ξ′

εz
εz+1

100ξ′
Cost(S, C)

≤ γεγt
100
· ε · Cost(S, C).

Since γε = 1 + ε
50 , γt = 1 + 1

t , 1
t ≤

ε
100 , and ε ∈ (0, 1

2 ], we get

γεγtξ
′

εz

∑
x∈N(CC)

Oz
x ≤

(
1 +

ε

50

)(
1 +

ε

100

) ε

100
Cost(S, C)

≤ ε

25
Cost(S, C).

Hence
Cost(S,P) ≤ ε

25
Cost(S, C) + γεγt

∑
x∈N(CE)

(Oz
x −Az

x) +
∑

x∈N(CE)

Az
x.

For γεγt, since ε ∈ (0, 1
2 ], it holds that

γεγt =
(
1 +

ε

50

)(
1 +

ε

100

)
= 1 +

ε

50
+

ε

100
+

ε2

5000

≤ 1 +
ε

10
.

Hence (
1 +

ε

10

) ∑
x∈N(CE)

(Oz
x −Az

x) +
∑

x∈N(CE)

Az
x ≤

(
1 +

ε

10

) ∑
x∈N(CE)

Oz
x.

Thus we get

Cost(S,P) ≤ ε

25
Cost(S, C) +

(
1 +

ε

10

) ∑
x∈N(CE)

Oz
x

=
ε

25
Cost(S, C) +

(
1 +

ε

10

)
Cost(N(CE), C).

Since N(CE) ⊂ S, Cost(N(CE), C) ≤ Cost(S, C), which leads

Cost(S,P) ≤ (1 + ε)Cost(S, C).

Hence we complete our proof.

E PTAS FOR HEAVILY SKEWED SET

E.1 FAST LOCAL SEARCH

In this subsection, we will prove Lemma 5.1.

Lemma E.1. Let S be a dataset of n points, T be the potential center set, and A = CE , which is
the set of centers of the s most high-cost clusters in optimal solution. There exists a constant γ > 1,
such that for any ε ∈ (0, 1

2 ], FASTLOCALSEARCH terminates within O(k
2

ε ) swaps, and returns a
(1 + 2ε)-approximation P , as long as S is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, S only
needs to be (s, 1− ε)-skewed.
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At first glance, this theorem may appear trivial because Lemma 4.1 guarantees a locally optimal so-
lution P ′ which is a (1 + ε

2 )-approximation of the optimal solution. We might then assume that our
result P from FASTLOCALSEARCH yields a P such that Cost(S,P) ≤

(
1− ε

Γk2

)−1
Cost(S,P ′) ≤

(1 + ε)Cost(S, C). However, this assumption is incorrect because we can only ensure that for
any P ′′ with no more than t different centers from P , the condition

(
1− ε

k2

)
Cost(S,P) ≤

Cost(S,P ′′) holds. We cannot guarantee that the locally optimal solution P ′ returned by
HEAVYSKEWLOCALSEARCH is obtainable by just a single swap from our result P .

To establish Lemma 5.1, it is necessary to replicate the proof framework used in Lemma 4.1
and Lemma 4.2. Specifically, we will demonstrate a variation of Lemma D.3, Lemma D.9,
and Lemma D.5. The proofs of the corresponding variations for Lemma D.8, Lemma D.9, and
Lemma D.10 will be omitted due to their similarity to the k-median case. The notation introduced
in Appendix D will be maintained throughout.
Lemma E.2. Let (F ,R) be a pairing that |F| = |R| ≤ t andR don’t capture F , then

− ε

k2
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +
∑
U

(Ox −Ax) +
∑
V

2Ox.

Proof. We prove Lemma D.3 by these two fact:

0 ≤ Cost(S,P\R ∪ F)− Cost(S,P)
and

Cost(S,P\R ∪ F)− Cost(S,P) ≤
∑

x∈N(F)

(Ox −Ax) +
∑
U

(Ox −Ax) +
∑
V

2Ox.

The second inequality is still true because we do not use the fact that P is a local optimum to prove
the second inequality.

For the first inequality, it is no longer true because our P may not be the local optimum. However,
we have

Cost(S,P\R ∪ F) ≥ (1− ε

Γk2
)Cost(S,P)

because we only terminate local search if there does not exist P ′ such that Cost(S,P ′) < (1 −
ε

Γk2 )Cost(S,P).
Since Γ ≥ Cost(S,P), we get

Cost(S,P\R ∪ F)− Cost(S,P) ≥ − ε

Γk2
Cost(S,P)

≥ − ε

k2

≥ − ε

k2
Cost(S, C).

Thus
− ε

k2
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +
∑
U

(Ox −Ax) +
∑
V

2Ox.

Lemma E.3. If |F| = |R| > t, R has exactly one positive degree center, and R don’t capture any
center outside F , the following inequality holds:

− ε

k
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +

(
1 +

1

t

)(∑
U

(Ox −Ax) +
∑
V

2Ox

)
.

Proof. We just repeat the proof of Lemma D.4, but substitute Lemma E.2 with Lemma D.3. We use
Lemma E.2 m(m− 1) times and add them together, where m = |F|. Hence we get

γCost(S, C) ≤ m
∑

x∈N(F)

(Ox −Ax) + (m− 1)

(∑
U

(Ox −Ax) +
∑
V

2Ox

)
,
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where γ = − εm(m−1)
k2 .

We divide m on both sides. Since we have proved that m−1
m ≤ 1 + 1

t and
(
∑

U (Ox −Ax) +
∑

V 2Ox) ≥ 0, we get

γ

m
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +

(
1 +

1

t

)(∑
U

(Ox −Ax) +
∑
V

2Ox

)
.

Since m = |F| ≤ k, we have
γ

m
= −ε(m− 1)

k2
≥ − ε

k
.

Hence

− ε

k
Cost(S, C) ≤

∑
x∈N(F)

(Ox −Ax) +

(
1 +

1

t

)(∑
U

(Ox −Ax) +
∑
V

2Ox

)
.

Lemma E.4.
−εCost(S, C) +

∑
x∈N(CC)

Ax ≤ γ1
∑

x∈N(CC)

Ox + γ2
∑

x∈N(CE)

(Ox −Ax) ,

where γ1 = 3 + 2
t , and γ2 = 1 + 1

t .

Proof. We repeat the proof of Lemma D.5, but substitute Lemma E.2 and Lemma E.3 with
Lemma D.3 and Lemma D.4. Since we have the partition pair {(Fi,Ri)}li=1, and we take the
inequality for each pair and add them together, we get

−ε · l
k

Cost(S, C) +
∑

x∈N(CC)

Ax ≤ γ1
∑

x∈N(CC)

Ox + γ2
∑

x∈N(CE)

(Ox −Ax) .

Since {(Fi,Ri)}li=1 is a partition of (CC ,B), we have l ≤ k. Then we get

−εCost(S, C) +
∑

x∈N(CC)

Ax ≤ γ1
∑

x∈N(CC)

Ox + γ2
∑

x∈N(CE)

(Ox −Ax) .

Finally, we demonstrate Lemma 5.1.

Proof. For the portion of the theorem concerned with accuracy, the argument is simply a reitera-
tion of Lemma 4.1. In the case of the k-median, the framework remains the same, but Lemma E.2,
Lemma E.3, and Lemma E.4 are substituted with Lemma D.3, Lemma D.4, and Lemma D.5, re-
spectively.

Then we get
−εCost(S, C) + Cost(S,P) ≤ (1 + ε)(S, C),

which is equivalent to
Cost(S,P) ≤ (1 + 2ε)(S, C).

The proof for the (k, z)-clustering scenario is excluded since it closely resembles that of the k-
median case.

Then, we will prove the portion of the theorem concerned with run time. The case for |S| ≤ k is
just trivial. For |S| > k, we have shown in the proof of Lemma 3.3 that Cost(S, C) ≥ 1

2z . We begin
our local search with Cost(S,A∪B) = Γ. Since we improve the cost of our center set with a factor
at least 1− ε

Γk2 , we can swap for at most r rounds, where

r = log1− ε
Γk2

1

2zΓ
=

log
(

1
2zΓ

)
log
(
1− ε

Γk2

) = O(k
2

ε
).
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E.2 DISCRETE HEAVY SKEW AND CONTINUOUS HEAVY SKEW

Finally, we will prove Theorem 5.2 and Theorem 5.3.
Theorem E.5. Let X be a set of n data points, and let T be a set of potential centers such that
|T | = poly(n). Given any ε > 0, DISCRETEHEAVYSKEW returns a (1 + ε)-approximation P in
(nk/ε)O(s+1/ε) time for discrete (k, z)-clustering as long as X is (s, 1 − εz+1)-skewed. Further-
more, for z = 1, X only needs to be (s, 1− ε)-skewed.

Proof. If |X| = k and X ⊂ T , the problem is trivial since the optimal solution is just X , and the
optimal cost is just 0.

Otherwise, we will run FASTLOCALSEARCH(X,T, ε
2 ,A, k, s) for all possibleA, and return the one

with cheapest cost. By Lemma 5.1, we know that FASTLOCALSEARCH(X,T, ε
2 , CE , k, s) returns a

set P ′ with Cost(S,P ′) ≤ (1 + ε)Cost(S, C), where C is the optimal solution for the clustering on
T . Hence, we prove the accuracy claim of the theorem.

If |X| = k and X ⊂ T , then naturally, the running time is polynomial.

Otherwise, we run FASTLOCALSEARCH(X,T, ε
2 ,A, k, s) for all possible A. Since A ∈ T s and

|T | = poly(n), we will repeat FASTLOCALSEARCH(X,T, ε
2 ,A, k, s) for 2O(s logn) times.

For every time we run FASTLOCALSEARCH(X,T, ε
2 ,A, k, s), by Lemma 5.1, we will terminate

after no more than O(k
2

ε ) swaps.

For every swap, we need to check whether the exists a swap meets our condition. For the worst case,
we may check every possible swapping. Since we swap for t centers, it takes |T |t = 2O( 1

ε logn)

running time.

By multiplying the three terms together, we get the total run time 2O((s+ 1
ε ) logn) · k2

ε =

(nk/ε)O(s+1/ε).

For Zipfian data set with exponent p > 1, by Lemma 2.3, s = O(1/ε(z+1)/(p−1)). Therefore, we
complete our proof.

Next, we establish Theorem 5.3.
Theorem E.6. Let X be a set of n data points. Given any ε > 0, CONTINUOUSHEAVYSKEW re-
turns a (1+ε)-approximation P in Õ(nk)+(k log n)Õ(s+1/ε) time for continuous (k, z)-clustering
with probability at least 0.97, as long as X is (s, 1 − εz+1)-skewed. Furthermore, for z = 1, X
only needs to be (s, 1− ε)-skewed.

Proof. If |X| = k, the problem is trivial, as the optimal solution is just X and the optimal cost is
just 0.

In the case |X| > k, we will execute CORESETCONSTRUCTION(X, ε, n, k,∆) to form a coreset
S. According to Lemma 3.2, when µ > γdk

ε3 log(n∆), there is at least a 0.97 probability that S
is an ε

8 -coreset of X , and S is (s, 1 − ε)-skewed. Subsequently, we run CENTERNET(S, ε
4 ,∆)

to obtain T . By Lemma 3.3, the optimal solution C∗ for discrete (k, z)-clustering on T serves as
a
(
1 + ε

4

)
-approximation of the optimal solution C for continuous (k, z)-clustering on S. Finally,

we carry out DISCRETEHEAVYSKEW(X,T, ε
4 , k, s) to produce a (1 + ε

4 )-approximation for the
discrete (k, z)-clustering on T . Therefore

Cost(X,P) ≤
(
1 +

ε

8

)
Cost(S,P)

≤
(
1 +

ε

8

)
·
(
1 +

ε

4

)
Cost(S, C∗)

≤
(
1 +

ε

8

)
·
(
1 +

ε

4

)2
Cost(S, C)

≤
(
1 +

ε

8

)2
·
(
1 +

ε

4

)2
Cost(X, C)

≤ (1 + ε)Cost(X, C).
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For running time, Bhattacharya et al. (2023) shows that sensitivity sampling can be completed in
Õ(nk) time.

For the construction of T , the run time is just the size of |T |. By Lemma 3.3, |T | = |S| ·
2O(d log 1

ε log log( k∆
ε )) = (k log n)

O(dpolylog(1/ε)).

Then we run FASTLOCALSEARCH(X,T, ε
4 ,A, k, s) for all possible A. Since A ∈ T s,

we repeat FASTLOCALSEARCH(X,T, ε
4 ,A, k, s) for |T |s times. For every time we run

FASTLOCALSEARCH(X,T, ε
4 ,A, k, s), by Lemma 5.1, we will terminate after no more than

k2

ε poly(|S|) swaps. For every swap, we need to check whether the swap meets our condition.
For the worst case, we may check every possible swapping. Since we swap for t centers, it takes
|T |t = |T |O(1/ε) running time. Multiplying these three terms together, we get the running time for
FASTLOCALSEARCH is k2

ε poly(|S|) · |T |O(s+/ε) = (k log n)Õ(d(s+1/ε)).

By adding the running time for every part of the algorithm, the total running time is Õ(nk) +
(k log n)Õ(d(s+1/ε)). If we assume d as a constant, it would be Õ(nk) + (k log n)Õ(s+1/ε). For a
large d, a dimension reduction technique introduced by Makarychev et al. (2019) can be used. It
reduce d to O( log

k
ε

ε2 ), which makes |T | = |S| · 2O(d log 1
ε log log( k∆

ε )) = (k log n)
Õ(1/ε2). Then the

running time for the algorithm will be Õ(nk) + (k log n)Õ(ε−2(s+1/ε)).

F SUPPLEMENTARY FOR SENSITIVITY EVALUATION AND DIMENSION
REDUCTION

As a widely used protocol, several studies propose algorithms to evaluate the sensitivity of a point
in a short run time. For instance, Algorithm 1 proposed by Draganov et al. (2024) computes the sen-
sitivity of all points in the dataset and returns a coreset by sensitivity sampling with Õ(nd log n∆)
run time. Although Draganov et al. (2024) only discuss the case that z = 1 and 2, their method
works for general z.

Algorithm 7 FASTCORESET(X, k, ε,m)

Require: Dataset X , number of cluster k, precision parameter ε, target size m
Ensure: A weighted set S

1: Use a Johnson-Lindenstrauss embedding to embed X̃ of X into d′ = O(log k) dimensions
2: Find approximate solution C̃ = {c̃1, · · · , c̃k} on X̃ and assignment σ̃ : X̃ → C̃ by

FASTKMEANS++
3: Let Ci = σ̃−1(c̃i). Compute the (1, z)-clustering solution ci of each Ci in Rd

4: For each point x ∈ Ci define s(x) = distz(x,ci)
Cost(C,ci) + 1

|Ci| .
5: Compute a set S of m points randomly sampled from X proportionate to s(x).

6: For each Ci, define |Ĉi| the estimated weight of Ci by S, namely |Ĉi| =
∑

x∈Ci∩S

∑
x′∈S s(x′)

s(x)m .

7: return The coreset S, with weight w(x) =
∑

x;∈S s(x′)

s(x)m

(
(1 + ε) |Ci| − |Ĉi|

)
.

FASTKMEANS++ is an algorithm proposed by Cohen-Addad et al. (2020).

Theorem F.1. There exists an algorithm, cf. algorithm 1 in Draganov et al. (2024), which com-
putes the sensitivity of all points in a dataset X and returns a coreset of X for (k, z)-clustering by
sensitivity sampling with Õ(nd log(n∆)) run time.

To avoid the exponential dependency on d, we can apply Johnson–Lindenstrauss to project the
coreset S into π(S) ⊂ Rd′

, where d′ = O( log
k
ε

ε2 ), and apply our algorithm to find a (1 + ε)-
approximation for π(S). The (1 + O(ε))-approximation for π(S) induces a cluster partition
{A1, A2, · · · , Ak} of S, which is a good approximation of the optimal partition. Then we can find
the solution ci for the (1, z)-clustering for each Ai, and C = {c1, c2, · · · , ck}would be a (1+O(ε))-
approximation for the (k, z)-clustering on S. poly(n, d, k) time is needed to generate S, and the size
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of the center net would be |T | = poly(n, k), which means that it takes poly(n, k) time and, finally,
it takes poly(n, k, d) time to solve the (1, z)-clustering for each Ai since it is a convex optimization.
Therefore, the total run time is poly(n, k, d).

Theorem F.2. Let X be a set of n data points. There exists an algorithm that, given any
ε > 0, for continuous (k, z)-clustering, in Õ(dnk) + (dk log n)Õ( 1

ε2
(s+ 1

ε )) time returns a (1 + ε)-
approximation P with probability at least 0.97 as long as X is (s, 1− εz+1)-skewed. Furthermore,
for z = 1, X only needs to be (s, 1− ε)-skewed.

We recall the theorem in Makarychev et al. (2019).

Theorem F.3 (Theorem 1.3 in Makarychev et al. (2019)). There exists a family of random maps
πm,d : Rd → Rd′

that for every m ≥ 1, ε, δ ∈ (0, 1
4 ) and z ≥ 1, the following holds. For any

x ∈ Rd we have
Pr

π∼πm,d

[∥π(x)∥ ≈1+ε ∥x∥] ≥ 1− δ

and for every finite X ⊂ Rd we have

Pr
π∼πm,d

[CostzA ≈1+ε Costzπ(A) for all partitions A = {A1, A2, · · · , Ak} of X] ≥ 1− δ,

where

d′ = O(
z4 · log k

εδ

ε2
)

and

CostzA =

k∑
i=1

min
ui∈Rd

∑
x∈Ai

dist(x− ui)
z.

Now we prove Theorem F.2.

Proof. First, applying CORESETCONSTRUCTION, we can get a coreset S with size
O(dk

2

ε3 log(n∆)). By Theorem F.1, we can generate S in Õ(nd log(n∆)) time.

Second, we use π to project S to Rd′
for d′ = O( z

4·log k
εδ

ε2 ). Then we apply CENTERNET and
DISCRETEHEAVYSKEW to find a (1+ ε)-approximation of the optimal solution on π(S) for (k, z)-
clustering. Assume π(A) = {π(A1), π(A2), · · · , π(Ak)} to be the partition of π(S) corresponding
to this solution. We claim that A gives a (1 +O(ε))-approximation of S.

Assume B = {B1, B2, · · · , Bk} to be the partition of S corresponding to the optimal solution for
(k, z)-clustering on S, and D = {D1, D2, · · · , Dk} to be the partition of π(S) corresponding to
the optimal solution for (k, z)-clustering on π(S). By Theorem F.3, CostzA ≤ (1 + ε)Costzπ(A).
Since Costzπ(A) is a (1 + ε)-approximation of CostzD, and D is the optimal solution of π(S) for
(k, z)-clustering, therefore

CostzA ≤ (1 + ε)Costzπ(A) ≤ (1 + ε)2CostzD ≤ (1 + ε)2Costzπ(B) ≤ (1 + ε)3CostzB.

Let C = {c1, c2, · · · , ck}, where ci = argminc∈Rd Cost(Ai, c). Then Cost(S, C) = CostzA ≤
(1 +O(ε))CostzB = Cost(S, COPT). Since S is a (1 + ε)-coreset of X , C would be a (1 +O(ε))-
approximation for (k, z)-clustering on X .

Fortunately, although (k, z)-clustering is APX-hard, it is possible to find a (1+ ε)-approximation of
ci in polynomial time. In fact, the problem reduces to a (1, z)-clustering when we look for ci. We
can apply Weiszfeld’s algorithm (Weiszfeld, 1937) to find a (1+ε)-approximation of ci when z = 1.
When z > 1, the problem becomes a convex optimization since the cost function is convex. Since
the cost function is also differentiable, we can use gradient descent to find a (1 + ε)-approximation
of ci. Therefore, we can find a (1 + ε)-approximation of ci in O(nd log 1

ε ) time.

Since |S| = O(dk
2

ε3 log(n∆)), thus the size of center net T would be

|T | = |S|+ (log∆− log
( ε

kW

)
+ 2z + 2) · |S| · 2O(d′ log( 1

ε ))
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Table 3: Skewness of dataset in cli (2019)

p = 50% p = 75% p = 90% p = 95%
k = 8 12.5% 12.5% 12.5% 12.5%
k = 16 6.25% 6.25% 6.25% 6.25%
k = 32 6.25% 9.375% 12.5% 12.5%
k = 64 1.563% 1.563% 3.125% 3.125%
k = 128 0.781% 1.563% 1.563% 1.563%

Table 4: Skewness of dataset in cli (2019) when k ∈ [80, 160]

p = 50% p = 75% p = 90% p = 95%
k = 80 1.25% 1.25% 2.5% 3.75%
k = 100 1.0% 2.0% 2.0% 2.0%
k = 120 0.833% 1.667% 1.667% 1.667%
k = 140 0.714% 1.429% 1.429% 1.429%
k = 160 0.625% 0.625% 0.625% 13.125%

according to the proof of Lemma C.12, where W = poly(n) is the maximum weight of S. Since

d′ = O( z
4·log k

εδ

ε2 ), thus

|T | = |S|+O(log(n∆) + log
1

ε
) · |S| · 2O(

z4·log k
εδ

ε2
) = 2O(log d+log k+log log(n∆)+ 1

ε2
polylog( 1

ε )).

Therefore, we can run DISCRETEHEAVYSKEW on T to find a (1 + ε)-approximation A of π(S) in
(dk log n)Õ( 1

ε2
(s+ 1

ε )), and find a (1 + ε)-approximation solution to A in O(ndk log 1
ε ) time. Thus

we can find a (1 +O(ε))-approximation to X in Õ(dnk) + (dk log n)Õ( 1
ε2
(s+ 1

ε )) time.

G SUPPLEMENTARY EXPERIMENTS

G.1 INSTANCE FOR DATASET WITH HEAVY SKEWNESS

The run time of our algorithm depends on the skewness of the dataset. Due to the APX-hardness,
there does not exist any algorithm that is fast for any datasets. Therefore, our algorithm focuses on
performance on specific datasets that have heavy skewness only. We will display some datasets with
heavy skewness in real world.

cli (2019) offers a dataset contains information on the clickstream of an online store that offers
clothing for pregnant women, which has 165474 instances. We show the skewness of this dataset
in Table 3. The table illustrates the contribution of the most expensive clusters to the total cost
in a k-means clustering solution. Each row corresponds to a value of k, the number of clusters.
Each column represents a threshold p, which denotes a percentage of the total cost (e.g., 50%, 70%,
etc.). The value in the cell in the row k and the column p indicates the proportion of clusters (as a
percentage of k) that contributes at least p of the total cost. For instance: A value of 12.5% in the
cell in row k = 8 and column p = 95% means that the 12.5% most expensive clusters (1 clusters
out of 8) contribute at least 95% to the total cost. This table highlights the skewness of the dataset,
demonstrating that a small subset of clusters can dominate the total cost.

The dataset in cli (2019) has an extremely high skewness when k ∈ [80, 160]. We further show its
skewness when k ∈ [80, 160] in Table 4

gen (2020) is another dataset with a heavy skewness. The dataset attributes first names to genders
and has 147270 instances. We disply its skewness in Table 5 by the same way as Table 3 and Table 4.

At last, we display the skewness of Exa20. The dataset comprises 399 instances and 4 features. This
data set includes demographic information on 4 groups of saliva samples (COPD, asthma, infection,
HC) collected as part of the joint research project Exasens. Since this dataset has a relatively small
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Table 5: Skewness of dataset in gen (2020)

p = 50% p = 75% p = 90% p = 95% p = 99%
k = 5000 9.66% 19.2% 28.6% 33.5% 40.28%
k = 6000 8.05% 16.1% 24.2% 28.85% 34.6%
k = 7000 6.4% 13.357% 19.857% 23.671% 29.514%
k = 8000 4.938% 9.913% 16.113% 18.95% 21.25%
k = 9000 3.756% 7.022% 9.356% 10.144% 10.767%
k = 10000 0.28% 0.43% 0.52% 0.55% 0.58%

Table 6: Skewness of dataset in Exa20

p 50% 75% 90% 95% 99%
k = 4 1 2 2 2 3
k = 5 1 2 2 2 3
k = 6 2 2 3 3 4
k = 7 2 3 4 4 5
k = 8 2 3 5 6 6
k = 9 2 4 6 7 7
k = 10 3 5 7 8 8

size, we will use relatively small k. Therefore, we will display the exact number of clusters that
contribute more than specific portion of total cost in Table 5, rather than disply the percentage in
Table 3, Table 4, Table 5.

G.2 COMPARISON WITH LOCAL SEARCH

G.2.1 SYNTHETIC DATA

Figure 5: Comparison between local search
and our algorithm for k-means

Figure 6: Comparison between local search
and our algorithm for k-medoids

Our experiments illustrate an improvement range for k-means from 11.54% at k = 4 for the mini-
mum metric to 54.87% at k = 10 for the median metric, and for k-medoids from 6.06% at k = 5
for the minimum metric to 31.86% at k = 7 for the average metric. This overall enhancement un-
derscores the superior performance of our algorithm in terms of accuracy when compared to local
search across average, minimum, and median metrics. Furthermore, the notable improvement ob-
served in the average and median metric implies a higher variability in local search when evaluated
on synthetic data, whereas our algorithm demonstrates significantly lower variance.
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Table 7: Improvement rate for k-means and k-medoids on synthetic data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 24.85 11.54 25.07 16.40 8.14 16.98
5 31.88 24.59 29.48 25.15 6.06 10.93
6 45.64 37.95 41.42 29.28 17.80 19.76
7 37.10 29.61 35.79 31.86 16.15 26.94
8 39.39 16.65 41.34 30.83 22.13 30.65
9 45.08 22.91 46.45 20.64 17.16 21.5
10 53.07 32.52 54.87 26.64 15.18 26.82

Figure 7: Comparison between Lloyd heuris-
tic and our algorithm for k-means

Figure 8: Comparison between KMedoids
and our algorithm for k-medoids

G.2.2 REAL WORLD DATA

Our experimental results demonstrate an enhancement range for k-means from 87.23% at k =
4 for the minimum metric up to 95.77% at k = 10 for the median metric, and for k-medoids
from 6.63% at k = 7 for the minimum metric to 40.60% at k = 10 for the median metric. This
overall improvement highlights the superior accuracy performance of our algorithm relative to local
search, across various metrics including average, minimum, and median. Additionally, the observed
substantial improvement in the average and median metric suggests greater variability in local search
when tested on real world data, while our algorithm displays considerably lower variance.
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Table 8: Improvement rate for k-means and k-medoids on real world data

k k-means (%) k-medoids (%)
Avg Min Median Avg Min Median

4 92.20 87.23 92.81 39.63 19.01 25.95
5 88.75 88.81 88.73 25.49 12.28 27.00
6 91.02 91.11 91.15 38.30 14.64 31.04
7 92.79 92.94 92.68 29.32 6.63 33.63
8 94.20 94.29 94.25 33.18 6.77 35.20
9 95.30 95.44 95.29 36.05 15.21 40.52
10 95.69 95.72 95.77 31.00 7.19 40.60
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