
Strength Through Diversity:
Robust Behavior Learning via Mixture Policies

Tim Seyde∗
MIT CSAIL

Wilko Schwarting
MIT CSAIL

Igor Gilitschenski
University of Toronto

Markus Wulfmeier†
DeepMind

Daniela Rus†
MIT CSAIL

Abstract

Efficiency in robot learning is highly dependent on hyperparameters. Robot mor-
phology and task structure differ widely and finding the optimal setting typically
requires sequential or parallel repetition of experiments, strongly increasing the
interaction count. We propose a training method that only relies on a single trial by
enabling agents to select and combine controller designs conditioned on the task.
Our Hyperparameter Mixture Policies (HMPs) feature diverse sub-policies that vary
in distribution types and parameterization, reducing the impact of design choices
and unlocking synergies between low-level components. We demonstrate strong
performance on the DeepMind Control Suite, Meta-World tasks and a simulated
ANYmal robot, showing that HMPs yield robust, data-efficient learning. 2

1 Introduction

Figure 1: Hyperparameter Mixture Policy
(HMP) with diverse low-level distributions.
The agent can seamlessly adapt its policy
structure to the presented tasks by modulat-
ing component activations in a single trial.

Real-world autonomous robots require versatile con-
trollers that continuously adapt behavior to changing
environmental conditions and task specifications. Re-
inforcement learning (RL) has driven success in mod-
eling complex control strategies in games [53, 42],
simulated robotics [2] and real-world systems [27, 29].
However, efficient learning is often conditioned on
good parameter selection and may require tuning for
each task or domain [19]. Common approaches to
hyperparameter optimization leverage parallel or se-
quential evaluation strategies. While parallel strategies
are computationally costly and need not improve on
random search [4], sequential strategies [8, 50] are
time-intensive with hybrid approaches trading-off one
for the other [25]. Gradient-based methods enable on-
line adaptation at the cost of requiring differentiable
objectives. Selecting parameters efficiently is essential
to learning capable robot controllers.

The nature of motion planning problems further dictates suitable controller designs for learning.
Continuous control can represent intricate transitions in state-action space to yield highly-optimized
behaviors through local exploration or generate smooth references for a low-level tracking controller.

∗Correspondence to tseyde@mit.edu. †Equal advising.
2Please find additional details at https://sites.google.com/view/diversity2021

Deep Reinforcement Learning Workshop, NeurIPS 2021.

https://sites.google.com/view/diversity2021

Discrete control can leverage reduced resolution for coarse exploration and readily encodes bang-bang
responses to switching dynamics. Optimal controller selection does not have to be unimodal and can
vary with different phases of a task and stages of the learning process. It may then be advantageous
to provide agents with a diverse set of controllers that differ in their parameterization. This enables
agents to select designs suitable for the presented task and unlock compositional synergies. In order
to support this type of compositionality, we extend the perspective of previous work on hierarchical
reinforcement learning [51].

In this paper, we propose a hierarchical policy over a diverse mixture of low-level controllers to
improve robustness and reduce the necessity for parameter tuning and related data requirements. The
low-level controllers are diverse in architecture, hyperparameters, and distribution characteristics to
provide the robot with a rich set of controller designs. Our approach then enables learning robots:

• to optimize a set of diverse controller designs concurrently for increased data-efficiency,
• to self-select suitable controllers conditioned on the task for reduced human parameter tuning,
• to compose behaviors from multiple controller designs for exploitation of emergent synergies.

We evaluate performance on a variety of torque-control tasks from the DeepMind Control Suite [52].
Additionally, we investigate learning of PD-control targets for the ANYmal robot in RaiSim [23],
which was the foundation for Sim2Real transfer in Lee et al. [27]. Throughout, we demonstrate that
enabling agents to operate over a diverse set of controllers guards against individual failure modes
and unlocks synergies between different controller designs. While the high-level selector introduces
its own hyperparameters, we demonstrate its robustness to loss of state information by modelling
unconditional component selection and subjecting the selector to adversarial distractor components.

2 Related Work

The performance of deep RL algorithms is strongly tied to hyperparameter choices [19, 20, 60].
Commonly, hyperparameter optimization is performed in multiple experiments via sets of agents
or tasks [5]. Simple parallel strategies include expert selection or grid-search [34, 11], and can
be less efficient than random search [4]. Bayesian Optimization provides more structure at the
cost of sequential evaluations [50, 48, 49]. Evolutionary strategies [8, 31, 58] enable discontinuous
optimization and can evolve parameters at different rates, but typically use sequential evaluation.
Population-Based Training (PBT) [25] alternatively evolves parameter variations online in parallel.
This requires populations of agents each with their own environment, leading to significant data and
computational requirements. Our work is also related to neural architecture search [14]. In particular,
similarities can be found to methods that render architecture search differential [40, 32], enabling
direct optimization of the effectively-used architecture during a single experiment.

Optimizing hyperparameters during the lifetime of a single agent reduces these requirements.
Gradient-based optimization ([3, 57]) yields online adaptation when the objective is differentiable
in the parameters. HOOF [39] extends towards non-differential aspects and enables gradient-free
off-policy training with hyperparameter schedules. However, the optimized parameters need to
directly affect the policy update, precluding e.g. application to architecture search. Related methods
have been used to learn architecture schedules [9]. With HMPs, we consider a single agent lifetime
to reduce data and computational requirements. We consider policies that vary in their parameters,
architecture, and distributional characteristic. Formulating a mixture over these diverse components
allows us to evolve multiple controllers in parallel while the agent modulates activation based on
expected performance. The approach further enables combining controllers with different parameters.

The problem of hyperparameter choice can further be framed as a contextual bandit problem [41].
In comparison to mixture agents, this formulation does not natively share data across policies with
different parameters. Mixtures of specialized motion controllers naturally arise in form of motor
primitives [16, 18]. The application of dynamical movement primitives [24] to robot control via a
mixture library has been shown in [36]. Mixture distributions have a long-standing history to model
diverse and multi-modal data [6]. In RL, they have been applied as a mixture of linear Gaussians
in which component specialization is achieved by introducing entropy bounds [10] and provide an
inference perspective to the options framework which models an agent via the separation into high-
level controller and low-level behaviours [51, 47, 56]. Similarly, quality diversity algorithms evolve
diverse skill repertoires which a high-level selector acts on [35, 12, 38]. We build on the training of

2

mixture policies via weighted maximum likelihood optimization, which has been used in connection
with information asymmetry to generate diverse, compositional skills [55]. Diversity in mixture
policies has been explored to strengthen skill discovery by explicitly optimizing for diversity-related
objectives [15, 17, 44, 45] with fixed architectures and a single set of hyperparameters.

3 Preliminaries

We formulate controller optimization as a Markov Decision Process (MDP) defined by the tuple
{S,A, T ,R, γ}, where S and A denote the state and action space, respectively, T : S × A → S
represents the transition distribution, R : S × A → R the reward mapping, and γ ∈ [0, 1) the
discount factor. We define st and at to be the state and action at time t, respectively. Let πθ(a|s)
denote a policy distribution with parameters θ and define the discounted infinite horizon return
Gt =

∑∞
t′=t γ

t′−tR(st′ , at′), where st+1 ∼ T (st+1|st, at) and at ∼ πθ(at|st). Our goal is to learn
the optimal policy maximizing Gt under unknown dynamics and reward mappings. This is typically
done by modeling πθ(at|st) as a Gaussian distribution with a neural network predicting the mean
and variance from st. In this work, we consider a more diverse class of policy distributions.

4 Hyperparameter Mixture Policies

Algorithm 1: Hyperparameter Mixture Policies
Initialize :Nstep/target: (target) update steps, Ns: action

samples per state, ε: KL bounds
while k ≤ Nstep do

for k ← 1 to Ntarget do
Sample batch of trajectories τ from memory B,
Ns actions from πθk to estimate expectations
Compute gradients over batch for πθ , η, λp, Qφ

δπ ← −∇θ
∑
s∼D

∑Ns
j=1

[
exp

(
Q(s,aj)

η

)
· log πθ(aj | s)

]
+
∑
p λp

(
εp−Es∼D

[
KL(πθ||πθk)

])
(8)

δη ← ∇ηg(η) = ∇ηηε+ η
∑
s∼D log 1

Ns∑Ns
j=1

[
exp
(
Q(s,aj)

η

)]
(5)

δλp ← ∇λpλp
(
εp − Es∼D

[
KL(πθ||πθk)

])
(8)

δQ ← ∇φ
∑

(s,a)∼D(Qφ(s, a)−Q
ret)2 (10)

Apply gradients to update πθk+1 , η, λp, Qφ
Update target networks π′θ = πθ, Q

′
φ = Qφ

We propose Hyperparameter Mixture Poli-
cies (HMP) to train a hierarchical policy over
diverse low-level controllers with distinct hy-
perparameters and distribution characteris-
tics. The resulting mixture is given by

πθ(a|s) =

M∑
i=1

πHθ (i|s)πLθ (a|s, i), (1)

with πH(i|s) and πL(a|s, i) as the weight
and probability density of component i. Thus,
πH is a high-level selector and πL a sub-
policy from a diverse set of controller de-
signs. The agent then self-selects the most
suitable controller for individual phases of a
task or stages of the learning process. This
enables robust adaptation to a broad range
of motion planning problems while reducing
the necessity of manual parameter tuning and
sequential experiment design.

4.1 Policy Improvement

We use an actor-critic algorithm where policy improvement relies on two stages as in [1]. First,
a non-parametric policy q(a|s) is optimized on samples from the state-action value function Qπ
under the constraint of remaining close in expectation to the current parametric policy πθ. The
parametric policy is then updated to better approximate the non-parametric target. By performing the
actual policy improvement with a non-parametric policy, we bypass the need for gradient estimation
via likelihood ratio [54] or reparametrization trick [26]. In addition, this perspective enables the
optimisation of mixture distributions in reinforcement learning without continuous relaxation [28].

Step 1 - Fitting the Non-parametric Policy

As we do not have access to the ground-truth state-action value function Q we employ a learned
approximation Qφ, parameterized by φ, and formulate the objective at iteration k as

max
q
J(q) = Eq,s∼D [Qφ(s, a)] , (2)

s.t. Es∼D [KL(q(a|s)||πθk(a|s))] ≤ ε, (3)

3

where ε defines a trust-region around the current parametric policy, πθk . This can be solved to provide
a closed-form relation in terms of the current parametric policy

qk(a|s) ∝ πθk(a|s) exp
(
Qφ(s,a)

η

)
, (4)

where η is computed by minimizing the dual function

g(η) = ηε+ ηEs∼D
[
log

∫
πθk(a|s) exp

(
Qφ(s,a)

η

)
da
]
. (5)

Step 2 - Updating the Parametric Policy

The parametric policy πθ is optimized to approximate the non-parametric policy q by minimizing
their KL divergence as

min
θ
L(θ) = Es∼D [KL(qk(a|s)||πθ(a|s))] . (6)

Plugging in (4) and introducing an additional KL constraint to enable generalization beyond the
sample distribution yields

max
θ
J(θ) = Es∼D

[
Eπθk

[
exp
(
Qφ(s,a)

η

)
log πθ(a|s)

]]
,

s.t. Es∼D [KL(πθk(a|s)||πθ(a|s))]
(7)

The update proceeds via a Lagrangian relaxation of the KL constraint enabling the application
of gradient-based optimization. We further decouple the KL constraint and define independent
constraints for each distributional parameter p in both the high-level selector and low-level control
policies [1, 55]. We define these separately per diverse component to accommodate differences in the
distributional parameter dynamics between low-level controllers (in comparison to e.g. Wulfmeier
et al. [55]). To enable training of diverse distributions with different constraints, we enforce the
KL constraints per component. Additional changes to enable training of mixed continuous discrete
policies are described in Section 4.3. We obtain updated parameters θk+1 as a solution of

max
θ

min
λp>0

L(θ, λp) = Es∼D,πθk
[
exp
(
Qφ(s,a)

η

)
· log πθ(a|s)

]
+
∑
p

λp

(
εp − Es∼D

[
KL(πθ(a|s)||πθk(a|s))

]) (8)

where we sum over decoupled components, each only varying along its respective parameter p. We
also introduce component specific Lagrangian multipliers λp and KL bounds εp. A two component
mixture of e.g. a Categorical (α1) and a Gaussian (µ2,Σ2) would then yield p = {αHL, α1, µ2,Σ2}.

4.2 Policy Evaluation

In order to stabilize off-policy learning of the state-action value function Qφ we leverage the Retrace
algorithm [37]. Here, we truncate the infinite series after 10 steps and bootstrap from the target
state-action value network, with details provided in Appendix D. To increase efficiency, we further
consider two-step transitions by squashing consecutive timesteps before adding them to memory.

4.3 Combining Continuous and Discrete Distributions

Continuous and discrete policies do not share the same support. Furthermore, actions are subject to
numerical cut-off errors. In practice this can result in the action-likelihood of discrete policies being
0 most of the time. To facilitate training with diverse mixtures, we approximate discrete components
by piece-wise constant pseudo-densities for backpropagation. Thus, out-of-distribution samples are
mapped into the support for probability computation. For query action a and a discrete mixture
component i with finite support Ci we obtain the corresponding piece-wise constant pseudo-density

πLθ (a|s, i) =
∑
ã∈Ci

pi(ã|s) · 1Bδ(ã)(a) , (9)

where pi(ã|s) is the probability of ã in the original discrete distribution, 1 is the indicator function,
and Bδ(ã) is a ball of radius δ around ã (we use δ = 0.1 here). This improves sharing of gradient
information between continuous and discrete policies and enables discrete components to train on
samples generated by continuous components to accelerate learning.

4

Figure 2: Component specialization within an HMP consisting of a narrow Gaussian (σini = 0.3)
and a coarse Categorical (nbin = 2). On Cartpole, bang-bang control enables fast swing-up and
fine-grained control stabilizes the upright. On Cheetah, fine-grained control coordinates the contact
phase and bang-bang control retracts the limbs during flight phase. Providing an agent with diverse
low-level controllers can unlock synergistic specialization that is consistent across states (t-SNE).

5 Experiments

We benchmark the performance of HMPs on continuous control in the DeepMind Control Suite [52],
learning PD-control for ANYmal in RaiSim [22, 23], and manipulation tasks in Metaworld [59]. We
further compare to the gradient-free hyperparameter optimizer HOOF [39] in OpenAI Gym [7]. To
better isolate the effects of diversity, we consider a standard Gaussian policy and evaluate single
parameter variations together with their composition into diverse HMPs. We furthermore investigate
HMPs consisting of randomly sampled components and show that strong performance can be
recovered. Overall, we find diversity to enable robust learning across tasks and to guard against
failure modes of individual components. Our figures visualize performance mean and standard
deviation.

5.1 Qualitative Example

We provide an illustrative example of component specialization within a diverse policy in Figure 2.
The agent combines a localized Gaussian (σini = 0.3) with a coarse Categorical (nbin = 2) policy.
On a Cartpole swing-up task, the agent leverages bang-bang control for swing-up and continuous
control for stabilization. On a Cheetah locomotion task, continuous control coordinates the intricate
contact phase and bang-bang control quickly retracts the limbs during the flight phase. Applying
t-SNE dimensionality reduction yields consistent clustering across trajectories, indicating consistent
component specialization. This aligns with human intuition and highlights the promise of composition,
further motivating HMPs and analysis of synergies in heterogeneous mixture policies.

5.2 Heterogeneous Distributions

Compositional Solutions We further evaluate synergies arising from heterogeneous mixtures by
combining a narrow Gaussian policy (σini = 0.3) with a Categorical policy (with nbin ∈ {2, 9}).
Figure 3 indicates that performance of the Gaussian significantly improves in combination with a
bang-bang policy (nbin = 2) for torque-control (panels 1-5, see also [43]). Conversely, the Gaussian
guards against the failure mode induced by bang-bang control on ANYmal (panel 6). We can
further replace the Gaussian with a more fine-grained Categorical (nbin = 9) to reach comparable
performance on the Control Suite tasks. However, the resulting mixture cannot compensate for
signals from the bang-bang controller on ANYmal as discrete control is not well-suited for position
reference generation.

Diverse Distributions We broaden our analysis of diverse distributions and consider a Gaussian
(σini = 1.0), Kumaraswamy (cini = 1.0), Categorical (nbin = 5) and Discrete Gaussian (nbin = 5),
as well as their combination into an HMP which we refer to as NKCD. Figure 4 highlights that the
HMP is able to solve all tasks, guarding against individual component failure (e.g. K on Quadruped)
or premature convergence (e.g. D on Reacher). On ANYmal, the HMP leverages the Kumaraswamy
policy to outperform the Gaussian policy, while the Kumaraswamy is suppressed on the Humanoid

5

Figure 3: Combining continuous and discrete distributions to unlock synergies. Pairing a narrow
Gaussian with a bang-bang controller yields strong performance, guarding against component failure
(bang-bang on ANYmal, Gaussian on Finger) and improving on individual performance (HMP on
Cartpole). Coarse control can drive exploration, fine-grained control can enable accurate tracking.

Figure 4: Top - HMP consisting of a Gaussian (N), Kumaraswamy (K), Categorical (C) and Discrete
Gaussian (D) heads with individual components for reference. Bottom - HMP instance compared
to baselines RHPO and DDPG. Our HMP is robust to sub-policy failure (e.g. K on Humanoid) and
yields strong performance especially on the real-world inspired ANYmal and manipulation domains.

to reach strong performance. This underlines the robust performance that diverse HMPs provide by
evaluating multiple controller designs jointly, reducing environment-specific tuning and guarding
from component failure. We compare the NKCD HMP to the RHPO [55] and DDPG [30] agents.
RHPO leverages a homogeneous mixture policy consisting of 4 MPO-type Gaussians (σini = 1.0).
Figure 4 shows that the HMP and RHPO outperform DDPG on all tasks. The HMP performs
competitively with RHPO throughout and outperforms RHPO on the real-world inspired ANYmal
and manipulation domains. This underlines HMP’s ability to enable data-efficient learning by training
multiple policy designs in parallel and transferring problem-specific controller selection to the agent.

Figure 5: Random sub-policy parameterizations.

Random components We consider sampling
sub-policies with random hyperparameters. This
includes randomizing distribution type, initial-
ization, architecture and activations of each com-
ponent. Figure 5 provides performance statis-
tics across 10 random instances of an HMP
with 10 random components. We observe that
random selection yields performance compet-
itive with the optimized RHPO agent. Be-
yond random selection, the engineer may re-
strict the space of available sub-policies to in-
ject structural priors into the learning process.

6

Figure 7: Performance of a diverse mixture (solid red), a homogeneous mixture (solid green), and
individual components. The homogeneous mixture uses MPO parameters, while the diverse mixture
combines potentially sub-optimal parameter variations. Generally, the diverse mixture performs
competitively while guarding against sub-policy failure modes (e.g. σini = 3.0 on ANYmal, top).

Figure 6: HMP vs. HOOF [39] on OpenAI Gym.

Gradient-free optimization We compare the
NKCD HMP to HOOF [39], which introduced
a method for gradient-free hyperparameter op-
timization and evaluated on OpenAI Gym [7].
Their results are provided in Figure 6 for refer-
ence. We note that our diverse mixture displays
competitve performance on these benchmarks
without any fine-tuning for Gym domains.

5.3 Hyperparameter Variations

In the following, we evaluate performance of different hyperparameter combinations on continuous
control tasks from the DeepMind Control Suite and locomotion on the ANYmal robot in RaiSim.
We consider a standard MPO parameterization as the baseline and analyze the impact of combining
potentially sub-optimal parameter variations. To account for increased model capacity in mixture
policies, we compare to a RHPO-type homogeneous mixture with standard MPO parameters.

Initialization We vary the initial standard deviation of Gaussian policy heads as this can signifi-
cantly impact the rate of convergence. The bounded action space of the agent is a ∈ [−1.0,+1.0]|A|.
We consider the initial values σini = {0.3, 1.0, 3.0} with the standard literature value σs

ini = 1.0.
Figure 7 (row 1) indicates that the Control Suite tasks favor large variance to drive exploration, while
generating position targets on ANYmal requires low variance to avoid instability of the PD controller
and subsequent falling. Generally, we find that a diverse policy improves performance over the
weaker component, yielding a robust controller that can prevent individual failure modes. This is
evident for ANYmal Run, where the high variance policy fails but the diverse mixture succeeds.

Architecture We vary the layer structure with πl ∈ {[20], [200], [200, 200]} and standard value
πs

l = [200]. Figure 7 (row 2) indicates that performance is robust to architecture variations with

7

Figure 8: Robustness of HMPs. Left - loss of state-information for a mixture of diverse distributions.
Right - pairing a standard Gaussian (σini = 1.0) with 9 adversarial Gaussians (σini = 10−3) with
learnable or fixed means. The agent still performs well when forced to select a single component for
the entirety of an episode, and is able to phase out the poorly-performing adversarial distributions.

increased capacity slightly improving performance. The heterogeneous mixture performs slightly
better on the Control Suite tasks while the homogeneous mixture is slightly better on ANYmal Run.

Activations We vary the policy activations with πa = {ELU, Leaky ReLU, Tanh} and πs
a =

ELU . Figure 7 (row 3) shows that the heterogeneous mixture improves performance over both
the homogeneous mixture and the individual components on the Control Suite tasks. On ANYmal,
combining Leaky ReLU and Tanh activations initially causes quick episode termination and delayed
learning. Based on individual performance this is surprising and could indicate that ELU activations
are better suited for composition on this task. This is the only instance where we observe reduced
performance.

Learning Rate We vary the policy learning rates such that αLR ∈ 2 × {10−5, 10−4, 10−3} and
αs

LR = 2× 10−4. Figure 7 (row 4) indicates that smaller learning rates reduce efficiency. However,
pairing a fast with a slow head yields competitive performance, significantly improving over the
individual slow component, and outperforms a nominal mixture on the Finger and Quadruped tasks.

5.4 Robustness of the High-level Controller

We evaluate robustness of the high-level module to loss of state information and adversarial compo-
nents. First, we remove conditioning of the high-level policy on the state and evaluate HMP perfor-
mance when forced to select a single component for the entirety of an episode. Then, we consider
adversarial low-level components by pairing an MPO-type Gaussian head with 9 extremely narrow
Gaussian heads that either have variable or fixed means. The narrow Gaussians limit exploration and a
constant mean disables active component placement. Figure 8 indicates that the high-level controller
is able to adapt its component selection accordingly to yield robust converged performance. This
underlines HMP’s ability to efficiently select and focus on low-level controllers that are well-suited
for a given task, while guarding against potential failure modes of individual components.

6 Conclusion

Finding the right hyperparameters has a considerable impact on performance when enabling robots to
learn complex behaviors through interaction and recent progress in machine learning can often be
traced back to better hyperparameter settings [46]. A sub-optimal algorithm with thoughtfully tuned
hyperparameters easily outperforms a state-of-the-art approach that has not been tuned sufficiently.
Tuning requires both domain knowledge and experience with the underlying algorithm. Even then,
it still incurs a considerable computational cost that is particularly limiting when relying on real-
world data. Our work proposes the use of diverse mixture policies to effectively mitigate this
challenge. Moreover, we demonstrate the benefits of combining different distribution types and policy
parameterizations from a perspective of compositionality in skill learning. Our Hyperparameter
Mixture Policies (HMPs) induce diversity that can help in component specialization during different
phases of a task, e.g. where certain movements require either coarse or fine-grained control. It
has also the potential to accelerate the learning process, e.g. where more extreme actions enable
faster exploration. The approach is easy to use and yields competitive performance across a range
of common torque-control benchmark tasks, as well as for generating PD-control targets within
a high-fidelity simulation of the ANYmal quadruped, without extensive parameter tuning. While

8

learning algorithms can always benefit from additional tuning, our approach increases robustness
and helps to accelerate research in reinforcement learning for complex dynamic robots, in particular
when there is no access to extensive computational resources.

Acknowledgments and Disclosure of Funding

Tim Seyde, Wilko Schwarting, Igor Gilitschenski, and Daniela Rus were supported in part by the
Office of Naval Research (ONR) Grant N00014-18-1-2830, Qualcomm, and Toyota Research Institute
(TRI). This article solely reflects the opinions and conclusions of its authors and not TRI, Toyota,
or any other entity. We thank them for their support. The authors further would like to thank Lucas
Liebenwein for assistance with cluster deployment, and acknowledge the MIT SuperCloud and
Lincoln Laboratory Supercomputing Center for providing HPC resources. We would also like to
thank the reviewers and program chairs for their helpful feedback and suggestions for improvement.

References
[1] A. Abdolmaleki, J. T. Springenberg, J. Degrave, S. Bohez, Y. Tassa, D. Belov, N. Heess, and

M. Riedmiller. Relative entropy regularized policy iteration. arXiv preprint arXiv:1812.02256,
2018.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. The Interna-
tional Journal of Robotics Research, 39(1):3–20, 2020.

[3] Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

[4] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of machine
learning research, 13(2), 2012.

[5] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.
In 25th annual conference on neural information processing systems (NIPS 2011), volume 24.
Neural Information Processing Systems Foundation, 2011.

[6] C. M. Bishop. Mixture density networks. 1994.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] P. A. Castillo, J. Merelo, A. Prieto, V. Rivas, and G. Romero. G-prop: Global optimization of
multilayer perceptrons using gas. Neurocomputing, 35(1-4):149–163, 2000.

[9] W. Czarnecki, S. Jayakumar, M. Jaderberg, L. Hasenclever, Y. W. Teh, N. Heess, S. Osindero,
and R. Pascanu. Mix & match agent curricula for reinforcement learning. In International
Conference on Machine Learning, pages 1087–1095. PMLR, 2018.

[10] C. Daniel, G. Neumann, and J. Peters. Hierarchical relative entropy policy search. In Artificial
Intelligence and Statistics, pages 273–281. PMLR, 2012.

[11] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International conference on machine learning, pages 1329–
1338. PMLR, 2016.

[12] M. Duarte, J. Gomes, S. M. Oliveira, and A. L. Christensen. Evolution of repertoire-based
control for robots with complex locomotor systems. IEEE Transactions on Evolutionary
Computation, 22(2):314–328, 2017.

[13] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An
empirical investigation of the challenges of real-world reinforcement learning. arXiv preprint
arXiv:2003.11881, 2020.

[14] T. Elsken, J. H. Metzen, F. Hutter, et al. Neural architecture search: A survey. J. Mach. Learn.
Res., 20(55):1–21, 2019.

[15] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. arXiv preprint arXiv:1802.06070, 2018.

9

[16] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force fields organized in the frog’s
spinal cord. Journal of neuroscience, 13(2):467–491, 1993.

[17] A. Goyal, S. Sodhani, J. Binas, X. B. Peng, S. Levine, and Y. Bengio. Reinforcement
learning with competitive ensembles of information-constrained primitives. arXiv preprint
arXiv:1906.10667, 2019.

[18] C. B. Hart and S. F. Giszter. A neural basis for motor primitives in the spinal cord. Journal of
Neuroscience, 30(4):1322–1336, 2010.

[19] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforce-
ment learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[20] P. Henderson, J. Romoff, and J. Pineau. Where did my optimum go?: An empirical analysis of
gradient descent optimization in policy gradient methods. arXiv preprint arXiv:1810.02525,
2018.

[21] M. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, F. Behbahani, T. Norman, A. Ab-
dolmaleki, A. Cassirer, F. Yang, K. Baumli, S. Henderson, A. Novikov, S. G. Colmenarejo,
S. Cabi, C. Gulcehre, T. L. Paine, A. Cowie, Z. Wang, B. Piot, and N. de Freitas. Acme: A
research framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979,
2020. URL https://arxiv.org/abs/2006.00979.

[22] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie,
P. Fankhauser, M. Bloesch, et al. Anymal-a highly mobile and dynamic quadrupedal robot.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
38–44. IEEE, 2016.

[23] J. Hwangbo, J. Lee, and M. Hutter. Per-contact iteration method for solving contact dynamics.
IEEE Robotics and Automation Letters, 3(2):895–902, 2018. URL www.raisim.com.

[24] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No. 02CH37292), volume 2, pages 1398–1403. IEEE, 2002.

[25] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, et al. Population based training of neural networks. arXiv
preprint arXiv:1711.09846, 2017.

[26] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[27] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomotion
over challenging terrain. Science robotics, 5(47), 2020.

[28] A. C. Li, C. Florensa, I. Clavera, and P. Abbeel. Sub-policy adaptation for hierarchical
reinforcement learning. arXiv preprint arXiv:1906.05862, 2019.

[29] T. Li, R. Calandra, D. Pathak, Y. Tian, F. Meier, and A. Rai. Planning in learned latent action
spaces for generalizable legged locomotion. IEEE Robotics and Automation Letters, 6(2):
2682–2689, 2021.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[31] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. Hierarchical representa-
tions for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

[32] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[33] P. A. Mitnik. New properties of the kumaraswamy distribution. Communications in Statistics-
Theory and Methods, 42(5):741–755, 2013.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International conference on machine
learning, pages 1928–1937. PMLR, 2016.

[35] J.-B. Mouret and J. Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

10

https://arxiv.org/abs/2006.00979
www.raisim.com

[36] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking
movements in robot table tennis. The International Journal of Robotics Research, 32(3):
263–279, 2013.

[37] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare. Safe and efficient off-policy
reinforcement learning. arXiv preprint arXiv:1606.02647, 2016.

[38] O. Nilsson and A. Cully. Policy gradient assisted map-elites. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 866–875, 2021.

[39] S. Paul, V. Kurin, and S. Whiteson. Fast efficient hyperparameter tuning for policy gradient
methods. 2019.

[40] S. Saxena and J. Verbeek. Convolutional neural fabrics. arXiv preprint arXiv:1606.02492, 2016.

[41] T. Schaul, D. Borsa, D. Ding, D. Szepesvari, G. Ostrovski, W. Dabney, and S. Osindero.
Adapting behaviour for learning progress. arXiv preprint arXiv:1912.06910, 2019.

[42] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[43] T. Seyde, I. Gilitschenski, W. Schwarting, B. Stellato, M. Riedmiller, M. Wulfmeier, and
D. Rus. Is bang-bang control all you need?: Solving continuous control with bernoulli policies.
Advances in Neural Information Processing Systems, 35, 2021.

[44] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

[45] A. Sharma, M. Ahn, S. Levine, V. Kumar, K. Hausman, and S. Gu. Emergent real-world robotic
skills via unsupervised off-policy reinforcement learning. arXiv preprint arXiv:2004.12974,
2020.

[46] P. T. Sivaprasad, F. Mai, T. Vogels, M. Jaggi, and F. Fleuret. Optimizer benchmarking needs to
account for hyperparameter tuning. In International Conference on Machine Learning, pages
9036–9045. PMLR, 2020.

[47] M. Smith, H. Hoof, and J. Pineau. An inference-based policy gradient method for learning
options. In International Conference on Machine Learning, pages 4703–4712. PMLR, 2018.

[48] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning
algorithms. arXiv preprint arXiv:1206.2944, 2012.

[49] J. T. Springenberg, A. Klein, S. Falkner, and F. Hutter. Bayesian optimization with robust
bayesian neural networks. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 4141–4149, 2016.

[50] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.

[51] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[52] Y. Tassa, S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez,
T. Lillicrap, and N. Heess. dm_control: Software and tasks for continuous control. arXiv
preprint arXiv:2006.12983, 2020.

[53] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[54] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

[55] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Springenberg, M. Neunert, T. Hertweck,
T. Lampe, N. Siegel, N. Heess, and M. Riedmiller. Compositional transfer in hierarchical
reinforcement learning. arXiv preprint arXiv:1906.11228, 2019.

[56] M. Wulfmeier, D. Rao, R. Hafner, T. Lampe, A. Abdolmaleki, T. Hertweck, M. Neunert,
D. Tirumala, N. Siegel, N. Heess, et al. Data-efficient hindsight off-policy option learning.
arXiv preprint arXiv:2007.15588, 2020.

11

[57] Z. Xu, H. van Hasselt, and D. Silver. Meta-gradient reinforcement learning. arXiv preprint
arXiv:1805.09801, 2018.

[58] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton. Optimizing deep
learning hyper-parameters through an evolutionary algorithm. In Proceedings of the Workshop
on Machine Learning in High-Performance Computing Environments, pages 1–5, 2015.

[59] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pages 1094–1100. PMLR, 2020.

[60] B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, F. Hutter, and R. Calandra.
On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learn-
ing. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2021.

12

Figure 9: Probability functions of the diverse distribution types considered here. Left to right:
Gaussian, Kumaraswamy, Categorical, and discrete Gaussian. We visualize a 5-bin Categorical and a
7-bin discrete Gaussian with their pseudo-probabilities. Our HMPs can combine diverse low-level
controllers with different distribution types to yield compositional synergies as in Sections 5.1& 5.2.

Figure 10: Our approach yields robust performance when tasked to solve continuous control with
discrete actions. For instance, the coarse Categorical (C, nbin = 2) performs competitively to the wide
Gaussian (N, σini = 3.0) on the torque controlled DeepMind Control Suite tasks, while improving
on the narrow Gaussian (N, σini = 0.3). This trend is reversed for generating stable PD-targets on
ANYmal, underlining the promise of deferring task-specific controller choice to the agent.

A Distributions

The probability functions of each distribution type considered here are provided in Figure 9. The
discrete distributions leverage the pseudo-densities as defined in (9) for improved backpropagation.
Applications of RL to continuous control typically employ continuous distributions and the Gaussian
distribution is a standard choice. Additionally, we consider the Kumaraswamy distribution as an
alternative to the Beta distribution, as it is also capable of exhibiting skewness while being significantly
easier to reparameterize than the Beta distribution [33].

We further investigate synergies with discrete distributions and consider the Categorical distribution
as well as a discrete Gaussian. The support of both discrete distributions is a regular 1d grid with a
predefined number of elements n. For the categorical, we learn the probability weights wi for each
element in its support individually. The discrete Gaussian allows for enforcing unimodality in a
discrete setting. Thus, for the discrete Gaussian, we define the probability wi for each of its support’s
elements xi by

wi :=
f(xi)∑n
j=1 f(xj)

,

where f(·) is the density of a Gaussian distributionN (µ, σ2) with the mean µ and standard deviation
σ being predicted by the neural network.

B Discrete Actions in Continuous Control

HMPs work well with distribution heads that differ from the standard Gaussian assumption. Inter-
estingly, we find that our approach performs robustly even when forced to solve continuous control
tasks with discrete policy distributions. Figure 10 compares a coarse Categorical (nbin = 2) to two
Gaussian policies (σini ∈ {0.3, 3.0}). We observe that the Categorical yields peak performance on the
Walker and Quadruped tasks, while achieving high performance on the Humanoid task significantly
faster than the Gaussian distributions. As expected, coarse discrete control is ill-suited for generating
position targets on ANYmal. This provides another perspective on the importance of hyperparameter
choices, diversity, and enabling the robot to self-select suitable controllers.

13

Disturbance Control Freq. Obs. Stuck Obs. Drop Obs. Delay Obs. Noise
Parameters Scale Prob. ; Steps Prob. ; Steps Steps Std. Dev.
Value ×0.25,×0.5 (0.05; 5), (0.01; 1) (0.05; 5), (0.01; 1) 6, 3 0.3, 0.1

Table 1: Disturbances used to evaluate transfer robustness, provided as Quadruped, Humanoid.

C Disturbance Parameters

The experiments on transfer robustness of a converged policy use the disturbance parameters in
Table 1. The control frequency disturbance down-samples the control by the value indicated for
the Quadruped and Humanoid domains. For the observation disturbances, we selected the medium
and easy disturbances from the Real-World RL Challenge framework [13] for the Quadruped and
Humanoid, respectively. The Stuck sensor disturbance does not update a sensor reading for several
timesteps, while the Dropped sensor disturbance zeros a sensor reading for several timesteps. Both
disturbances are probabilistic, taking effect with a fixed probability and lasting for a fixed number
of timesteps. The observation delay shifts all observation by a fixed number of timesteps, while the
observation noise applies additive white Gaussian noise with the specified standard deviation.

D Policy Evaluation via Retrace

In order to stabilize off-policy learning of the state-action value function Qφ we leverage the Retrace
algorithm [37]. The optimization objective is therefore

min
φ
L(φ) = Eτ∼D

[(
Qrett −Qφ(st, at)

)2]
. (10)

The Retrace targets are computed as

Qrett = Qφ′(st, at) +

∞∑
j=t

γj−t

(
j∏

k=t+1

ck

)
[r(sj , aj)+

Eπ(a|sj+1)[Qφ′(sj+1, a)]−Qφ′(sj , aj)
]
,

(11)

where Qφ′ refers to a target network for the state action value function, ck = min
(

1, π(ak|sk)b(ak|sk)

)
to

the trace coefficients, and b(a|s) denotes the probabilities under the behavior policy. The infinite
sequence is truncated after 10 steps and we bootstrap from the target network. To increase efficiency,
we consider two-step transitions by squashing consecutive timesteps before adding them to memory.

E Implementation Details

Our implementation builds on MPO as provided by the Acme library [21] and extends it to the hierar-
chical setting, enables application with diverse sub-policy heads (distribution type, parameterization)
and implements Retrace [37] for data-efficient off-policy learning. Throughout, we follow the MPO
parameters described in [1] and introduce the decoupled KL bounds for non-Gaussian distributions
as εK = [10−1, 10−1], εC = [10−1], εD = [10−1, 10−1]. Furthermore, the high-level selector shares
its torso with the low-level controllers and employs a Categorical head with logits predicted from a
single fully-connected layer of width 100. Our experimental results are reported with mean and one
standard deviation over 8 random seeds for the NKCD HMP comparison to RHPO and 4 random
seeds for the remaining experiments. Experiments were run on 4 CPU cores in combination with a
single GPU (Nvidia V100).

F Realworld disturbances

Figure 11: HMP under real-world disturbances.
Our diverse mixtures can improve robustness over
homogeneous baselines and aid in generalization.

We also evaluate robustness to disturbances in
the Real-World RL Challenge framework [13].
We consider down-sampling of the controls and
sensor degradation as specified in Appendix C.
Figure 11 indicates that diversity can improve
robustness in these real-world inspired domains.

14

	Introduction
	Related Work
	Preliminaries
	Hyperparameter Mixture Policies
	Policy Improvement
	Policy Evaluation
	Combining Continuous and Discrete Distributions

	Experiments
	Qualitative Example
	Heterogeneous Distributions
	Hyperparameter Variations
	Robustness of the High-level Controller

	Conclusion
	Distributions
	Discrete Actions in Continuous Control
	Disturbance Parameters
	Policy Evaluation via Retrace
	Implementation Details
	Realworld disturbances

