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“a man, standing”, “a forest, daytime”

“a squirrel”, “a forest, daytime”

Foreground (FG) Background (BG) Blended

Foreground (FG) Background (BG) Blended

“a man”, “a street, comics style” “a dog”, “a grassy hill, Van Gogh style”

Foreground (FG) Background (BG) Blended

“a duck”, “a lake, daytime”

“a swan”, “a lake, daytime”

Foreground (FG) Background (BG) Blended

Figure 1: LayerFusion. We propose a framework for generating a foreground (RGBA), background
(RGB) and blended (RGB) image simultaneously from an input text prompt. By introducing an
optimization-free blending approach that targets the attention layers, we introduce an interaction
mechanism between the image layers (i.e., foreground and background) to achieve harmonization
during blending. Furthermore, as our framework benefits from the layered representations, it enables
performing spatial editing with the generated image layers in a straight-forward manner.

ABSTRACT

Large-scale diffusion models have achieved remarkable success in generating
high-quality images from textual descriptions, gaining popularity across various
applications. However, the generation of layered content, such as transparent im-
ages with foreground and background layers, remains an under-explored area.
Layered content generation is crucial for creative workflows in fields like graphic
design, animation, and digital art, where layer-based approaches are fundamen-
tal for flexible editing and composition. In this paper, we propose a novel im-
age generation pipeline based on Latent Diffusion Models (LDMs) that generates
images with two layers: a foreground layer (RGBA) with transparency informa-
tion and a background layer (RGB). Unlike existing methods that generate these
layers sequentially, our approach introduces a harmonized generation mechanism
that enables dynamic interactions between the layers for more coherent outputs.
We demonstrate the effectiveness of our method through extensive qualitative and
quantitative experiments, showing significant improvements in visual coherence,
image quality, and layer consistency compared to baseline methods.

1 INTRODUCTION

Large-scale diffusion models have recently emerged as powerful tools in the domain of generative
AI, achieving remarkable success in generating high-quality, diverse, and realistic images from tex-
tual prompts. These models, such as DALL-E (Ramesh et al. (2021)), Stable Diffusion (Rombach

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al. (2022)), and Imagen (Saharia et al. (2022)), have gained immense popularity due to their abil-
ity to create complex visual content with impressive fidelity and versatility. As a result, they have
become integral to various applications, from digital art and entertainment to data augmentation and
scientific visualization. However, despite the significant advancements in these models, the problem
of layered content generation has only recently been explored by works such as Zhang et al. (2024);
Quattrini et al. (2024), which exhibits the potential of enabling creative workflows.

Layered content generation, especially the creation of transparent images, plays a vital role in cre-
ative industries such as graphic design, animation, video editing, and digital art. These workflows
are predominantly layer-based, where different visual elements are composed and manipulated on
separate layers to achieve the desired artistic effects. Transparent image generation, where the fore-
ground content is isolated with an alpha channel (RGBA), is essential for blending different visual
elements seamlessly, enhancing flexibility, and ensuring coherence in complex visual compositions.
The lack of research on generating such layered content highlights an important gap considering
the application of diffusion models in practical and creative context, in addition to the usefulness of
layer-based content creation tools such as Adobe Photoshop and Canva.

To address this gap, we propose a novel image generation pipeline based on Latent Diffusion Models
(LDMs) (Rombach et al. (2022)) that focuses on generating layered content. Our method produces
images with two distinct layers: a foreground layer in RGBA format, containing transparency infor-
mation, and a background layer in RGB format. This approach contrasts with traditional methods
that are either based on generating layered content in a sequential manner (Quattrini et al. (2024)), or
empowered by sequentially generated synthetic data in less satisfying quality (Zhang et al. (2024)),
which often leads to inconsistencies and lack of harmony between generated layers. Instead, our
proposed method introduces a harmonized generation mechanism that enables interactions between
these two layers, resulting in more coherent and appealing outputs and supporting flexible spatial
edits for manipulation, as shown in Fig. 1.

In our framework, the harmonization between foreground and background layers is achieved through
the utilization of cross-attention and self-attention masks extracted from the foreground generation
model. These masks play a critical role in guiding the generation process by identifying and focus-
ing on the relevant features needed to create both layers in a unified manner. By leveraging these
attention mechanisms, our approach allows for a fine-grained control over the generation process,
ensuring that the generated foreground and background elements interact naturally, enhancing the
overall visual quality and coherence. Following this, we introduce an innovative attention-level
blending mechanism that utilizes the extracted attention masks to generate the background and fore-
ground pair in a harmonized manner. Unlike previous methods that handle each layer separately and
rely on training data that involves sequentially generated layers (Zhang et al. (2024)), our blending
scheme integrates information from both layers at the attention level, allowing for dynamic inter-
actions and adjustments that reflect the underlying relationships between the elements of the scene.
This not only improves the realism of the generated images but also provides users with enhanced
control over the final composition. In summary, our contributions are threefold:

• We propose a new image generation pipeline that generates images with two lay-
ers—foreground (RGBA) and background (RGB)—in a harmonized manner, allowing for
natural interactions between the layers.

• We develop a novel attention-level blending scheme that uses the extracted masks to per-
form seamless blending between the foreground and background layers. This mechanism
ensures that the two layers interact cohesively, leading to more natural and aesthetically
pleasing compositions.

• We perform extensive qualitative and quantitative experiments that demonstrate the ef-
fectiveness of our method in generating high-quality, harmonized layered images. Our
approach outperforms baseline methods in terms of visual coherence, image quality, and
layer consistency across several evaluation metrics.

2 RELATED WORK

Denoising Probabilistic Diffusion Models. Diffusion models contributed significantly in the field
of image generation, specifically for the task of text-to-image generation. In early efforts, Ho et al.
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(2020); Song et al. (2020a;b) made significant contributions to the area, where significant improve-
ments on generation performance has been experienced with diffusion models on pixel level. In
another paradigm Rombach et al. (2022) proposed operating in a latent space, which enabled the
generation of high-quality images with a lower computation cost compared to models operating on
pixel-level, which built the foundation of the state-of-the-art image generation models Podell et al.
(2023); Esser et al. (2023); Peebles & Xie (2023). Even though such approaches differ in terms
of their architecture designs, they all follow a paradigm that prioritizes building blocks relying on
attention blocks Vaswani (2017).

Transparent Image Layer Processing. In terms of obtaining single foreground layer, the work of
Chen et al. (2022) presents PP-Matting, a trimap-free natural image matting method that achieves
high accuracy without requiring auxiliary inputs like user-supplied trimaps. Meanwhile, Quattrini
et al. (2024) propose Alfie, a method for generating high-quality RGBA images using a pre-trained
Diffusion Transformer model, designed to provide fully-automated, prompt-driven illustrations for
seamless integration into design projects or artistic scenes. It modifies the inference-time behavior
of a diffusion model to ensure that the generated subjects are centered and fully contained without
sharp cropping. It utilizes cross-attention and self-attention maps to estimate the alpha channel,
enhancing the flexibility of integrating generated illustrations into complex scenes. In terms of multi-
layer, Tudosiu et al. (2024) recently introduce MuLAn, a novel dataset comprising over 44,000
multi-layer RGBA decompositions of RGB images, designed to provide a resource for controllable
text-to-image generation. MuLAn is constructed using a training-free pipeline that decomposes a
monocular RGB image into a stack of RGBA layers, including background and isolated instances.
While these methods have made significant progress, precise control over image layers and their
harmonization remain challenging.

The most related effort for layered content synthesis is done by Zhang et al. (2024). This approach is
notable for its capability to generate both single and multiple transparent image layers with minimal
alteration to the original latent space of a pretrained diffusion model. The method utilizes a “latent
transparency” that encodes the alpha channel transparency into the latent manifold of the model. It
offers two main workflows. One is jointly generating foreground and background layers by attention
sharing. The other one is a sequential approach that generates one layer first and then another layer
based on previous layer. Both requires heavy model training relying on synthetic training data in less
satisfying quality (obtained by a pretrained inpainting model). In contrast, our framework provides
a training-free solution that offers generation of layered content in a simultaneous manner, which
both benefits from layer transparency and achieves harmony between layers.

3 METHOD

3.1 THE LAYERDIFFUSE FRAMEWORK

For the foreground generation, we rely on the LayerDiffuse framework proposed by Zhang et al.
(2024). As a preliminary step to achieve foreground transparency, it initially introduces a latent
transparency offset xϵ, which adjusts the latents x decoded by the VAE of the latent diffusion model,
to obtain a latent distribution modelling foreground objects as xa = x+xϵ. Following this step, they
train a transparent VAE D(Î , xa), that predicts the α channel of the RGB image involving a single
foreground image, which is referred to as the pre-multiplied image Î . Note that our framework only
benefits from their foreground generation model, proposing a training-free solution of generating
blended and background images without needing any additional training, without disturbing the
output distribution of neither the foreground or the original pretrained diffusion model. A visual
overview of our framework is provided in Fig. 2.

3.2 ATTENTION MASKS AS GENERATIVE PRIORS

To perform harmonized foreground and background generation, we introduce a blending scheme
that focuses on combining attention outputs with a mask that provides sufficient information about
both the content and the structure of the foreground latent being diffused. To achieve this task, we
utilize self-attention and cross-attention probability maps of the foreground generator as structure
and content priors for the generative process, respectively. Note that each of these probability maps
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Figure 2: LayerFusion Framework. By making use of the generative priors extracted from trans-
parent generation model ϵθ,FG, LayerFusion is able to generate image triplets consisting a fore-
ground (RGBA), a background, and a blended image. Our framework involves three fundamental
components that are connected with each other. First we introduce a prior pass on ϵθ,FG (a) for
extracting the structure prior, and then introduce an attention-level interaction between two denois-
ing networks (ϵθ,FG and ϵθ) (b), with an attention level blending scheme with layer-wise content
confidence prior, combined with the structure prior (c).

are formulated as softmax(Q·KT

√
d

) where Q and K are the query and key features of the respective
attention layer. Below, we explain how such attention masks are getting extracted in detail for both
structure and content related information.

Extracting Structure Prior. During the blending process, we bound the blending region with a
structure prior extracted from the foreground generation model, ϵθ,FG. To extract a boundary for
the foreground generated by ϵθ,FG, we utilize the attention probability map m ∈ RMxM of the
corresponding self-attention layer, averaged over its attention heads. Upon investigating what each
of these values correspond to, we interpret that the last dimension of the probability map implies
a probability distribution of the cross correlation values between a variable and all of the other
variables processed by the self-attention layer, where M is the number of variables processed by
each attention block.

Furthermore, since the foreground model ϵθ,FG is trained specifically for generating a single subject
as the foreground object, we interpret the density of the distribution of the cross-correlation values
of a variable as a vote on whether that variable is a foreground or not. To quantify this observation,
we introduce a per-variable sparsity score si =

1∑M
j=1 m2

i,j

where si is the sparsity score for variable

i, followed by a min-max normalization. Since the estimate si measures how sparse the cross-
correlation value distribution of the variable i, we negate these values to get a density estimate by
s′i = 1− normalize(si), favoring dense probability distributions over sparse ones.

Given the formulation of the sparsity estimates si for variable i, we capture the structure information
the best on the preceding layers of the foreground diffusion model ϵθ,FG. To capture the structure
prior, we utilize the last self attention layer of the diffusion model where we provide additional
analyses in supplementary material.

Retrieving Content Confidence Priors. As the second component of our blending scheme, we
extract content confidence priors as attention maps to be able to blend background and foreground
in a seamless manner. To do so, we utilize cross-attention maps of the transformer layer, where
blending operation occurs. Utilizing the unidirectional nature of CLIP Text Encoder, we extract

4

Yusuf Dalva



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

“a man, standing”

“a glass bottle”

“a horse”

“a car”

Foreground ForegroundHigh

Low

High

Low

Figure 3: Visualization of the masks extracted as generative priors. Throughout the generation
process, we extract a structure prior s and a content confidence prior c. To combine the structure
and content information, we construct masksoft and maskhard during the blending process. As
visible from the provided maps (as priors), We can both capture the overall object structure with
the structure prior s and incorporate the content with c, where their combination provides a precise
mask reflecting both quantities (see the example “the car”). Also note that the masks we construct
also capture transparency information throughout the masking process (see the example “a glass
bottle”). We retrieve the provided masks for the diffusion timestep t = 0.8T .

the content confidence map from <EOS> attention probability map, to accumulate all information
related to the foreground, following the observations presented in Yesiltepe et al. (2024). Similar to
extracting the structure prior, we again use ϵθ,FG for extracting the foreground related information,
benefiting from the fact that the model is conditioned on generating a single object, which is the
foreground object itself.

Among the cross-attention probabilities, we utilize the cross-attention probability values n ∈
RHxMxT of the conditional estimate, conditioned by the foreground prompt where the cross-
attention layer has H heads, and T is the number of text tokens inputted. Using these probability
maps, we extract a soft content confidence map c to quantify how much of an influence does the
input condition (prompt) has on the generated foreground. To do so, we utilize the mean of the
cross-attention probability maps over H attention heads.

3.3 BLENDING SCHEME

Given the formulations for the structure prior and the content confidence maps, extracted from the
foreground generator, ϵθ,FG, we propose a blending scheme on the attention level to achieve full har-
monization. Since the content of the generated image is constructed gradually in every consecutive
attention layer, where self-attention focuses more on the structure details and cross-attention focuses
more on the content of the image, we introduce a blending scheme that targets both, with the help of
generative priors extracted from these targeted layers. For the blending scheme, we first introduce
a mask extraction algorithm where we extract soft and hard blending masks for the given attention
block. Given the structure prior s and content confidence prior c, we initially extract masksoft as
s ∗ c, followed by a min-max normalization to be able to use it as a blending mask. Then, to identify
the regions that are affected by the soft blending, we extract our hard mask maskhard by using the
soft decision boundary σ(d ∗ (masksoft − 0.5)), where σ is the sigmoid operator. During blending,
we select the decision boundary coefficient d as 10, where we provide ablations in Sec. 4.1.4. We
provide visualizations of prior masks s, c and blending masks masksoft and maskhard in Fig. 3.

After extracting the soft and hard blending masks, we perform blending in attention level. Given an
image generation procedure where one aims to generate an image triplet consisting a foreground,
background and blended image, we introduce a blending approach involving the attention outputs of
the blended image, aBlended, and the foreground image, aFG. As the soft mask masksoft encodes
the structure and content information related with the foreground, we initially perform soft attention
blending between the blended and foreground attention outputs, to reflect the foreground content on
the blended image. We formulate the blending equation in Eq. 1.

a′Blended = aFG ∗masksoft + aBlended ∗ (1−masksoft) (1)

Following this initial blending step, we update the attention output for the foreground image with the
blending result with hard mask maskhard, which is formulated as Eq. 2. This way, we both enable
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consistency across the blended image and the foreground image, and enable information transfer
between the RGB image generator ϵθ and foreground image generator ϵθ,FG.

a′FG = a′Blended ∗maskhard + aFG ∗ (1−maskhard) (2)

As the final component of generating the desired triplet, we introduce an attention sharing mecha-
nism between the blended hidden states, hblended, and background hidden states, hBG, to encourage
generating a background consistent with the blended image for both the self-attention and cross-
attention blocks. We formulate the full blending algorithm in the supplementary material. Note that
our approach uses a′Blended, a

′
FG and aBG as the attention outputs.

4 EXPERIMENTS

In all of our experiments, we use SDXL model as the diffusion model. Following the implementation
released by Zhang et al. (2024), we use the model checkpoint RealVisXL V4.01, unless otherwise
stated. While using the non-finetuned SDXL, ϵθ as the background and blended image generators,
we use the weights released by Zhang et al. (2024) for the foreground diffusion model ϵθ,FG

2. We
conduct all of our experiments on a single NVIDIA L40 GPU.

4.1 QUALITATIVE RESULTS

4.1.1 COMPARISONS WITH LAYERED GENERATION METHODS

We compare our proposed method against LayerDiffuse to evaluate the quality of the generated fore-
ground (FG), background (BG), and the blended image (see Fig. 5). As shown in the results, our
model achieves harmonious blending with smooth FG and BG images. In contrast, LayerDiffuse
(Generation) struggles to produce a smooth and consistent background (see the artifacts in Fig. 5
(b) in the background images). This limitation arises from the sequential approach used to curate
the training dataset of LayerDiffuse Zhang et al. (2024), where given a foreground and a blended
image, the background is generated by outpainting the foreground from the blended image with
SDXL-Inpainting Podell et al. (2023). As a result of this strategy on dataset generation, the back-
ground generation model experiences artifacts in the outpainted region, which propagates from the
inpainting model. As it is also highlighted in Fig. 5, such artifacts effect the ability of performing
spatial edits with the generated foreground and background layers.

4.1.2 COMPARISONS WITH FOREGROUND EXTRACTION METHODS

As another baseline, we compare our proposed framework with foreground extraction methods given
the blended image (background and blended for LayerDiffuse(Zhang et al. (2024))) to outline the
advantages of simultaneous generation of the foreground and background images (layers) in Fig. 6.
In addition to background and blended image conditioned foreground extraction pipeline of Zhang
et al. (2024), we also consider PPMatting (Chen et al. (2022)) and MattingAnything (Li et al. (2024))
as competitors as they apply matting to extract the foreground layer from the blended image. As we
demonstrate qualitatively in Fig 6, simultaneous generation results in more precise foreground for
the cases that include interaction between foreground and background layers (e.g. legs of the horse
occluded in the grass) compared to state-of-the art foreground extraction/matting methods.

4.1.3 COMPARISONS ON HARMONIZATION QUALITY

For the evaluation of the blending capabilities of our framework, we compare our generative blend-
ing result with state-of-the-art image harmonization methods. In our comparisons, we investigate
the realism of the harmonized output considering the object (foreground) getting harmonized in the
process. To get the harmonized outputs from the competing methods, we give the alpha blending
result obtained from our pipeline to each of the competitor methods, and qualitatively evaluate the
obtained outputs in Fig. 7. Specifically, we compare our framework with Ke et al. (2022); Chen
et al. (2023); Guerreiro et al. (2023).

1https://huggingface.co/SG161222/RealVisXL V4.0
2https://huggingface.co/lllyasviel/LayerDiffuse Diffusers
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“a dinner table”

“a glass of wine”“a woman”

“a street, Van Gogh style”

“a cow”“a family car”“a man, standing”“a lizard”

“a sun-baked stone” “a street, raining” “a road, snowing” “a summer field”

Figure 4: Qualitative Results. We present qualitative results on multi-layer generation over differ-
ent visual concepts. In each column, we show the high-quality results of foreground layer, back-
ground layer and their generative blending respectively, in terms of text-image alignment, trans-
parency and harmonization. We present more results in the supplementary material.

a) Ours

Foreground Background Blended Spatial Edit

b) LayerDiffuse

Foreground Background Blended Spatial Edit

Figure 5: Qualitative Comparisons on Layered Generation. We compare our proposed frame-
work with Zhang et al. (2024) to evaluate the performance in terms of layered image generation (e.g.
foreground, background, blended). It clearly shows that Zhang et al. (2024) propagates the back-
ground completion issues observed in SDXL-Inpainting, which degrades the spatial editing quality
with the outputted layers. In constrast, our method can provide both harmonized blending results
and isolated foreground and background, which enables spatial editing in a straight-forward manner.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Foreground Background Blending PPMatting-v2MattingAnythingLayerDiffuse Zoomed View

Figure 6: Comparisons with Foreground Extraction Methods To illustrate the advantage of our
method over the task of foreground extraction given a blended image, we qualitatively compare
our approach with LayerDiffuse (Zhang et al. (2024)), Matting Anything (Li et al. (2024)), and
PPMatting (Chen et al. (2022)). As also highlighted by Zhang et al. (2024), simultaneous generation
of the foreground layer is more advantageous compared to extracting from the blended image in
terms of the quality of the foreground image.

HarmonizerForeground Background OursAlpha Blending INR-Harmonization PCT-Net

Figure 7: Comparisons on Image Harmonization. We qualitatively evaluate our methods blending
capabilities by comparing with image harmonization methods Harmonizer (Ke et al. (2022)), INR-
Harmonization (Chen et al. (2023)), and PCT-Net (Guerreiro et al. (2023)). Our proposed generative
blending approach results in adaptation of the foreground object to the background scene (e.g. snow
effect on the campfire), in addition to harmonization methods.

4.1.4 ABLATION STUDIES

Influence of BG on FG. We explore how changes in the background prompt affect the generated
foreground content. As shown in Fig. 8 (a), by varying the background conditions, such as changing
weather scenarios, leads to corresponding adjustments in the foreground details, like the clothing
or accessories of a person, as well as fine-grained details such as adding snow on the boots (see
rightmost image in Fig. 8 (a)). All experiments are conducted using the same seed, allowing for
the preservation of the subject’s identity while adapting other features to match the changing back-
ground context. This demonstrates the dynamic adaptability of our method, where the foreground is
influenced by the background for more contextually appropriate outputs.

Alpha Blending vs. Generative Blending. We compare two blending strategies: Alpha Blending,
which guarantees a complete match between the generated foreground and the blended result, and
Generative Blending, which aims for a more realistic composition by considering shadows, light-
ing, and contextual harmonization. As can be seen from Fig. 8 (b), the Alpha Blending is more
deterministic, ensuring that the foreground remains consistent with the original output without con-
sidering the interactions between foreground and background. Meanwhile, the Generative Blending
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Foreground (FG) Background (BG) Generative Blending Alpha Blending Foreground (FG) Background (BG) Generative Blending Alpha Blending

Foreground (FG) Background (BG) Generative Blending Foreground (FG) Background (BG) Generative Blending Foreground (FG) Background (BG) Generative Blending

Self-Attn + Cross-Attn w/o Self-Attn w/o Cross-Attn

a)

b)

c)

d)

Figure 8: We perform extensive ablation studies on the effect of (a) Background Influence on
Foreground: Background changes (e.g., weather) dynamically adjust the foreground (e.g., outfit)
while preserving identity. (b) Alpha vs. Generative Blending: Alpha Blending ensures a perfect
match, while Generative Blending creates more realistic harmonization by handling shadows and
lighting. (c) Self-Attention vs. Combined Attention Masks: Self-attention alone causes leaks;
cross-attention alone affects the entire image. Combining both achieves sharper boundaries and
better coherence. (d) Soft Decision Boundary Coefficient: Lower coefficients cause leaks; higher
coefficients yield more precise alpha and consistent blending (e.g., the pocket of the man’s clothing).

produces more visually appealing results by better handling subtle elements like shadows and light-
ing, making the generated content appear more natural and harmonized with the background. Note
how the feet of the cow is harmonized with the grassy surface in Generative Blending as opposed to
Alpha Blending.

Self-Attention vs. Cross-Attention. The use of attention masks plays a crucial role in controlling
the interaction between the foreground and background layers. As can be seen from Fig. 8 (c),
when the self-attention map is used alone, there are risks of unwanted leaks from the premultiplied
image (i.e., the output from the foreground generation model with a gray background), resulting in
imprecise boundaries. The cross-attention map, on the other hand, provides more precise informa-
tion, sharpening the bounding map. However, if the cross-attention map is used in isolation, the
regions that are not voted by the structure prior(from the self attention map) may create artefacts.
By combining both attention maps, we are able to balance these effects, where the cross-attention
sharpens the boundary, and the self-attention ensures coherence within the bounded region.

Soft Decision Boundary Coefficient. We investigate the effect of varying the soft decision bound-
ary coefficient, which is used to derive the hard mask in our blending formulation (Eq. 2). Lower
coefficients result in softer decision boundaries, causing leaks into the foreground and leading to
imprecise alpha channel predictions, as seen in the first image of Fig. 8 (d). As the coefficient value
increases, the boundary becomes more defined, allowing for more accurate capture of foreground
details and improving consistency between the foreground and blended image. This is particularly
evident in the pocket area of the man’s clothing in the second and third images, where higher coef-
ficients result in more precise blending and alignment.
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Foreground Background Blending
CLIP KID FID CLIP KID FID User Preference

Zhang et al. (2024) 38.46 0.0014 0.09 38.27 0.0400 1.17 2.960 ± 0.692
Ours 38.97 0.0012 0.09 41.95 0.0058 0.14 3.233 ± 0.566

Table 1: Quantitative Results. We quantitatively evaluate the output distribution for the foreground
and background images with CLIP-score, KID, and FID metrics. Furthermore, we also conduct a
user study to evaluate the blending performance of our framework perceptually.

4.2 QUANTITATIVE RESULTS

We compare our framework with Zhang et al. (2024) as the only approach that succeeds in trans-
parent foreground generation, coupled with an RGB background and blending result. Throughout
our comparisons, we quantitatively assess the background, foreground and blending quality. Over
the presented comparisons, we both demonstrate perceptual evaluations with an user study over the
blending results, and analyses over the quality of the generated background and foreground.

Foreground & Background Quality. To assess the quality of the backgrounds and foregrounds
generated, we first evaluate the prompt alignment capabilities of both approaches over the generated
foregrounds and backgrounds with the CLIP score Radford et al. (2021). We use the CLIP-G vari-
ant as both text and image encoders throughout our experiments. In addition to prompt alignment
properties, we measure how both approaches align with the real imaging distribution for both the
foreground and background images. Using the images generated by the foreground generator of
Zhang et al. (2024) and backgrounds generated by non-finetuned SDXL as the real imaging dis-
tributions, we quantitatively compare our generations in terms of prompt alignment with the CLIP
score (Radford et al. (2021)), and the closeness to the real imaging distribution with KID (Bińkowski
et al. (2018)) and FID (Heusel et al. (2017)) scores. To evaluate the two image distributions, we use
KID score with the final pooling layer features of Inception-V3 (Szegedy et al. (2016)) to evalu-
ate the similarity overall image distribution, and FID score with the features from the first pooling
layer to evaluate texture level details. As our results also demonstrate, while preserving the output
distribution of the foreground diffusion model, ϵθ,FG, our framework offers a background image
distribution that aligns better with the RGB diffusion model, ϵθ (e.g. SDXL).

User Study. To perceptually evaluate the quality of the blending performed by our framework, we
conduct an user study over the Profilic platform3, with 50 participants over a set of 40 image triplets.
We show the participants the blended image along with the foreground and background images,
and ask to rate the blended output over a rate of 1-to-5 (1=not satisfactory, 5=very satisfactory).
We present the results of the user study in Table 1 which shows that our results receive higher
ratings for more satisfying results. Additional details about the user study setup are provided in the
supplementary material.

5 LIMITATION AND CONCLUSION

In this paper, we presented a novel image generation pipeline based on LDMs that addresses the
challenge of generating layered content, specifically focusing on creating harmonized foreground
and background layers. Unlike traditional approaches that rely on consecutive layer generation, our
method introduces a harmonized generation process that enables dynamic interactions between the
layers, leading to more coherent and aesthetically pleasing outputs. This is achieved by leverag-
ing cross-attention and self-attention masks extracted from the foreground generation model, which
guide the generation of both layers in a unified and context-aware manner. It is noted that since our
pipeline is built on top of pre-trained LDMs and LayerDiffuse Zhang et al. (2024) which may carry
inherent biases from their training data, these biases can affect the generated content, potentially
leading to outputs that are not entirely aligned with user expectations or specific requirements. Nev-
ertheless, the findings highlight the potential of our approach to transform creative workflows that
rely on layered generation, providing more intuitive and powerful tools for artists and designers.

3Prolific platform: https://www.prolific.com/
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6 ETHICS STATEMENT

As addressed in Sec. 5, due to the dependency of our proposed method on pretrained LDMs and
the LayerDiffuse Zhang et al. (2024) framework, our method may reflect the biases inherited by the
these methods. While encouraging the responsible use of such methods, we also acknowledge the
potential biases inherited by these methods. However, as our method does not perform any kind of
dataset collection or introduce any new dataset, we leave such issues to the consent of the users. In
addition, regarding the user study conducted as a part of our study, we completely acknowledge the
anonymity of the participants.

7 REPRODUCIBILITY STATEMENT

In order to encourage the reproducibility of the work done in this manuscript, we share the detailed
algorithm of the proposed LayerFusion in detail. The proposed approach is not optimization-based,
where our method does not include any trained parameters. Furthermore, we facilitate the repro-
ducibility of our approach with a detailed pseudo-code of the proposed approach (see supplemen-
tary material for additional details). In addition, for the reproducibility of the provided qualitative
results, we provide the input prompts used in order to generate the examples provided along with
the public links to the model checkpoints used as a part of this work. In addition, we also provide
our experiment setup in detail along with the external networks used for scoring the outputs.
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Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans. In International Conference on Learning Representations, 2018.

Guowei Chen, Yi Liu, Jian Wang, Juncai Peng, Yuying Hao, Lutao Chu, Shiyu Tang, Zewu Wu,
Zeyu Chen, Zhiliang Yu, et al. Pp-matting: High-accuracy natural image matting. arXiv preprint
arXiv:2204.09433, 2022. URL https://arxiv.org/pdf/2204.09433.

Jianqi Chen, Yilan Zhang, Zhengxia Zou, Keyan Chen, and Zhenwei Shi. Dense pixel-to-pixel
harmonization via continuous image representation. IEEE Transactions on Circuits and Systems
for Video Technology, pp. 1–1, 2023. doi: 10.1109/TCSVT.2023.3324591.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2023.

Yarden Frenkel, Yael Vinker, Ariel Shamir, and Daniel Cohen-Or. Implicit style-content separation
using b-lora. arXiv preprint arXiv:2403.14572, 2024.

Julian Jorge Andrade Guerreiro, Mitsuru Nakazawa, and Björn Stenger. Pct-net: Full resolution
image harmonization using pixel-wise color transformations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5917–5926, June 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Zhanghan Ke, Chunyi Sun, Lei Zhu, Ke Xu, and Rynson W.H. Lau. Harmonizer: Learning to
perform white-box image and video harmonization. In European Conference on Computer Vision
(ECCV), 2022.

Jiachen Li, Jitesh Jain, and Humphrey Shi. Matting anything. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1775–1785, 2024.

11

https://arxiv.org/pdf/2204.09433


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2023.

Fabio Quattrini, Vittorio Pippi, Silvia Cascianelli, and Rita Cucchiara. Alfie: Democratising
rgba image generation with no $$$. arXiv preprint arXiv:2408.14826, 2024. URL https:
//arxiv.org/pdf/2408.14826.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020b.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei Chen, Steven McDonagh,
Gerasimos Lampouras, Ignacio Iacobacci, and Sarah Parisot. Mulan: A multi layer
annotated dataset for controllable text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
URL https://openaccess.thecvf.com/content/CVPR2024/papers/
Tudosiu_MULAN_A_Multi_Layer_Annotated_Dataset_for_Controllable_
Text-to-Image_Generation_CVPR_2024_paper.pdf.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Ra-
sul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and
Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

Hidir Yesiltepe, Yusuf Dalva, and Pinar Yanardag. The curious case of end token: A zero-shot
disentangled image editing using clip. arXiv preprint arXiv:2406.00457, 2024.

Lvmin Zhang et al. Transparent image layer diffusion using latent transparency. arXiv preprint
arXiv:2402.17113, 2024. URL https://arxiv.org/abs/2402.17113. Last revised 23
Jun 2024.

12

https://arxiv.org/pdf/2408.14826
https://arxiv.org/pdf/2408.14826
https://openaccess.thecvf.com/content/CVPR2024/papers/Tudosiu_MULAN_A_Multi_Layer_Annotated_Dataset_for_Controllable_Text-to-Image_Generation_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Tudosiu_MULAN_A_Multi_Layer_Annotated_Dataset_for_Controllable_Text-to-Image_Generation_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Tudosiu_MULAN_A_Multi_Layer_Annotated_Dataset_for_Controllable_Text-to-Image_Generation_CVPR_2024_paper.pdf
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://arxiv.org/abs/2402.17113


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY MATERIAL

A.1 DISCLAIMER

In the provided qualitative results throughout this paper, we apply blurring to any trademark logos
visible in the generated samples for copyright issues.

A.2 LIMITATIONS

While our proposed image generation pipeline based on Latent Diffusion Models (LDMs) demon-
strates significant advancements in generating harmonized foreground (RGBA) and background
(RGB) layers, there are several limitations that warrant discussion. Our current approach focuses on
generating images with two distinct layers—a foreground and a background. While this is suitable
for many creative workflows, it does not extend to more complex scenarios involving multiple layers
or hierarchical relationships among multiple visual elements, which we intent to explore for future
work. Moreover, the harmonization between foreground and background layers in our framework
relies heavily on the quality of the cross-attention and self-attention masks extracted from the gener-
ation model. In cases where these masks are suboptimal or noisy, the blending of layers may not be
as effective, leading to artifacts or less coherent outputs. Finally, our method depends on pre-trained
Latent Diffusion Models both for foreground and background generation, which may carry inherent
biases from their training data (such as generating centered foregrounds for the RGBA component).
These biases can affect the generated content, potentially leading to outputs that are not entirely
aligned with user expectations or specific requirements in diverse applications. Nevertheless, our
method provides a structured framework for generating transparent images and layered composi-
tions, which are crucial for many creative tasks.

A.3 ANALYSES ON STRUCTURE PRIORS FROM DIFFERENT LAYERS

In all of the experiments we provide, we utilize the structure prior extracted from the last attention
map of the foreground diffusion model, ϵθ,FG. As a justification of this decision and to clearly
illustrate what different self attention layers focus on throughout the generation process, we provide
structure priors extracted from different layers in Fig. 9. As it can also be observed visually, the
structure prior extracted from the last self attention layer provides a more precise estimate of the
shape of the foreground being generated.

A.4 DETAILED BLENDING ALGORITHM

Supplementary to the definition of the blending algorithm provided in Sec. 3.3, we provide a more
detailed description in this section, for clarity. Our proposed blending approach involves three sub-
procedures, which are the extraction of the structure prior, extraction of the content confidence prior
and the attention blending step. In this section, we provide the pseudo-code for all three procedures
as Alg. 1, 2 and 3.

A.5 USER STUDY DETAILS

We conduct our user study over 50 participants with 40 image triplets generated by LayerFusion
and Zhang et al. (2024). For the generation of the subjected triplets, we generate examples with
animal, vehicle, matte objects, person and objects with transparency properties as the foreground
to get samples representing a diverse distribution of subjects. Following sample generation, we ask
users to rate each image triplet from a scale of 1-to-5, with the following question: “Please rate the
following image triplet from a scale of 1-to-5 (1 - unsatisfactory, 5 - very satisfactory) considering
how realistic each image is and how naturally blended they are”. The users are also supplied the
foreground and background prompts used to generate the image triplet, for each method. We provide
an example question from the conducted user study in Fig. 10.
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“a man, standing”

down.1.attns.1.block.1High

Low

Foreground down.2.attns.0.block.9 down.2.attns.1.block.9 mid.0.attns.0.block.9

up.0.attns.0.block.9 up.0.attns.1.block.9 up.0.attns.2.block.9 up.1.attns.2.block.1

Figure 9: Visualization of the structure priors from different self attention layers. We visualize
the structure priors extracted from different self attention layers of the foreground diffusion model,
where the diffusion timestep is set as t = 0.8T . We visualize the structure priors from the self
attention layer of each model block, follow the block definition of Frenkel et al. (2024). We follow
the naming convention of diffusers (von Platen et al. (2022)). In all of our experiments, we use the
structure prior from self attention layer up.1.attns.2.block.1.

Algorithm 1 Extracting Structure Prior

Require: Foreground diffusion model ϵθ,FG, latent variable zt, foreground conditioning pFG

procedure EXTRACTSTRUCTUREPRIOR(ϵθ,FG, zt, pFG)
# Retrieving the noise prediction(unused) and last self attention map
ϵpred, mlast = ϵθ,FG(zt, pFG)
m = mlast

# Averaging over Attention Heads
m =

∑H
k=0 mk,i,j

H
for i ∈ m.shape(0) do

# Assigning Sparsity Score
si =

1∑M
j=1 m2

i,j

end for
# Converting Sparsity Score into Density Score
s = 1 - NORMALIZE(s)
return s

end procedure

Algorithm 2 Extracting Content Confidence Prior

Require: Foreground diffusion model ϵθ,FG, hidden states h, foreground conditioning pFG

procedure EXTRACTCONTENTPRIOR(ϵθ,FG, h, pFG)
# Retrieving Cross Attention Maps
attn out, attn probs = Attentionθ,FG(h, pFG)
n = attn probs
# Averaging over Attention Heads with <EOS> token
c =

∑H
k=0 nk,i,<EOS>

H
return c

end procedure
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Algorithm 3 Attention Blending

Require: Foreground diffusion model ϵθ,FG, RGB diffusion model ϵθ foreground hidden states
hFG, blended hidden states hBlended, background hidden states hBG, foreground conditioning
pFG, background conditioning pBG, boundary coefficient d, structure prior s
procedure ATTNBLEND(ϵθ,FG, ϵθ, hFG, hBlended, hBG, pFG, pBG, d, s)

# Layer Normalization for the cross attention layer
hnorm,FG, hnorm,Blended, hnorm,BG = LAYERNORMCROSSATTN(hFG, hBlended, hBG)
c = EXTRACTCONTENTPRIOR(ϵθ,FG, hnorm,FG, pFG)
# Retrieving the Blending Masks
masksoft = NORMALIZE(s ∗ c)
maskhard = σ(d ∗ (masksoft − 0.5))
# Computing the Attention
aBG, aBlended = Attentionθ([hBG, hBlended], pBG)
aFG = Attentionθ,FG(hFG, pFG)
# Blending Step
a′Blended = aFG * masksoft + aBlended * (1−masksoft)
a′FG = a′Blended * maskhard + aFG * (1−maskhard)
return a′FG, a′Blended, aBG

end procedure

Figure 10: Example Question from the User Study. To evaluate the effectiveness our method
perceptually, we conduct a user study over 40 generated image triplets. We provide an example
question from this study for clarity. The users are shown an image triplet in the order of foreground,
background and blended image and then asked to rate it from a scale of 1-to-5 (1 - unsatisfactory, 5
- very satisfactory).
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Figure 11: Supplementary Generation Results with animal subjects. Supplementary results with
image resolution 896x1152. The foreground & background prompt pairs from left to right are: “a
lynx”, “a snowy forest”), (“a crab”, “a rocky tide pool”), (“a duck”, “a village pond”), (“a dolphin”,
“a crystal-clear coral reef”)

A.6 SUPPLEMENTARY GENERATION RESULTS

In addition to the results provided in the main paper, we provide supplementary generation results
in this section. Below, we include harmonized generations of a variety of subjects. We provide Fig.
11 to Fig. 20 as supplementary results.
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Figure 12: Supplementary Generation Results with animal subjects. Supplementary results with
image resolution 1024x1024. The foreground & background prompt pairs from left to right are:
(“a monkey”, “a vibrant tropical rainforest”), (“a rabbit”, “a backyard garden”), (“a hedgehog”, “a
forest floor covered in leaves”), (“a turtle”, “a warm sandy beach”)
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Figure 13: Supplementary Generation Results with stylization prompts. We provide additional
examples with stylization prompts to demonstrate the harmonization capabilities of our method.
For each image triplet, we generate the examples with the prompt set (“a man, standing”, “a street,
style name”) where style name is “comics style” for the leftmost column. We provide the
label (style name) for each style under its respective image triplet. All images have the resolution
of 896x1152.
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Figure 14: Supplementary Generation Results for “comics” style. To demonstrate the stylization
capabilities of our layer harmonization approach, we provide additional results with the background
prompt “a street, comics style”. The resolution is 896x1152 for all of the images.
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Figure 15: Supplementary Generation Results with human subjects. We provide additional ex-
amples with human subjects with different background prompts. The background prompts used are
“a rainy jungle”, “a forest in fire”, “a street, winter time”, “a street, daytime”. Note that depending
on the background prompt, the blending involves an interaction between the background and fore-
ground (e.g. wetness in arm for the left-most image triplet). Image resolution is 1024x1024 for all
examples.
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Figure 16: Supplementary Generation Results for the background “a rainy forest”. For each of
the images, the background prompt ”a rainy forest” is used to generate the background image. As
it can also be observed from the provided examples, the background creates an influence over the
foreground (e.g. wetness effect on the human subjects). The image resolution is 896x1152 for all
examples.
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Figure 17: Supplementary Generation Results for subjects with transparency property. To
demonstrate that our framework is able to preserve the transparency properties of layered image
representations, we provide additional results here. With the background prompt ”a table” we use
the following foreground prompts: “a wine glass”, “a glass bottle”, “a cup filled with coke”, “a cup
of tea”. All images have the resolution of 1024x1024.
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Figure 18: Supplementary Generation Results for the subject ”a campfire”. We provide addi-
tional generation results for the foreground prompt “a campfire” and background prompt “a beach,
night time.” The image resolution is 896x1152 for all examples.
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Figure 19: Supplementary Generation Results for the subject “a book”. We provide additional
generation results for the foreground prompt “a book” and background prompt “a table”. The image
resolution is 896x1152 for all examples.
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Figure 20: Supplementary Generation Results for the subject “a candle”. We provide additional
generation results for the foreground prompt “a candle” and background prompt “a dark cave”. The
image resolution is 896x1152 for all examples.
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Foreground Background Alpha Blending Generative Blending

Figure 21: Supplementary Generation Results for Grounding and Shadowing Effects. We pro-
vide additional generation examples to demonstrate the grounding and shadowing capabilities of
our framework. Our approach succeeds in both appropriate lighting compared to alpha blending
(see rows 1, 2, 3), and can successfully ground the foreground on the background (row 4). We per-
form our generations with foreground prompt “a man, standing” and background prompt “a forest,
daytime”. The image resolution is 896x1152 for all examples.
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Figure 22: Supplementary Generation Results Demonstrating Harmonization Capabilities. We
provide additional generation examples to demonstrate the harmonization capabilities of our ap-
proach. In each row, we provide triplets that are generated with the same initial seed, which the
output resolution 1024x1024. As it can be observed from the provided examples, our framework
can harmonize layers in a way that causes adaptations on the object shape, w.r.t. the background.
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