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Abstract

The exponential rise in size and complexity of deep learning models and datasets have re-
sulted in a considerable demand for computational resources. Coreset selection is one of the
methods to alleviate this rising demand. The goal is to select a subset from a large dataset
to train a model that performs almost at par with the one trained on the large dataset
while reducing computational time and resource requirements. Existing approaches either
attempt to identify remarkable samples (e.g., Forgetting, Adversarial Deepfool, EL2N, etc.)
that stand out from the rest or solve complex optimization (e.g., submodular maximization,
OMP) problems to compose the coresets. This paper proposes a novel and intuitive approach
to efficiently select a coreset based on the similarity of loss gradients. Our method works
on the hypothesis that gradients of samples belonging to a given class will point in similar
directions during the early training phase. Samples with most neighbours that produce
similar gradient directions, in other words, that produce noise-free gradients, will represent
that class. Through extensive experimentation, we have demonstrated the effectiveness of
our approach in out-performing state-of-the-art coreset selection algorithms on a range of
benchmark datasets from CIFAR-10 to ImageNet with architectures of varied complexity
(ResNet-18, ResNet-50, VGG-16, ViT). We have also demonstrated the effectiveness of our
approach in Generative Modelling by implementing coreset selection to reduce execution
time for various GAN models (DCGAN, MSGAN, SAGAN, SNGAN) for different datasets
(CIFAR-10, CIFAR-100, Tiny ImageNet) while not impacting the performance metrics sig-
nificantly. Anonymized codes1 for implementing the proposed method are provided.

1 Introduction

Large-scale datasets have become essential for training state-of-the-art deep learning models. All the ap-
plication fronts of Artificial Intelligence, such as Computer Vision, Natural Language, and Speech Process-
ing, have accumulated massive datasets. Concurrently, the complexity of deep learning models has grown
steadily. Modern deep learning tasks (especially supervised ones) require extensive hyperparameter tuning
during training to achieve the best accuracy. These have resulted in an exponential rise in computational
requirement (Schwartz et al., 2019) and carbon footprint(Heikkilä; Killamsetty et al., 2021a).

Coreset Selection aims to mitigate the above issues by finding the most representative data samples. Mainly,
they attempt to approximate the learning characteristics of the complete data (e.g., the loss function)
(Feldman, 2020). By obtaining a representative coreset with a cardinality of a fraction of the entire dataset,
training duration and computational requirement for end-to-end training can be reduced significantly while
delivering the desired generalization performance.

Multiple lines of thought based on loss gradients have emerged to compose coresets. For instance, Forget-
ting(Toneva et al., 2019) attempts to identify data points that are difficult to learn as the coreset. The
idea presented is that a model trained on “hard to classify” samples naturally generalizes onto the simpler
samples. Similarly, training loss based methods attempt to select samples that contribute more to the train-
ing of deep neural networks. Gradient Norm (GraNd) and the Error L2-Norm (EL2N) scores introduced

1https://anonymous.4open.science/r/Noise_free_gradient-A318
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by Paul et al. (2023) prune significant fractions of training data without sacrificing much of the classifier’s
generalization performance. Section 2 comprehensively summarizes the existing works.

On the other hand, gradient matching based methods aim to compose a coreset whose gradients (weighted
combination) closely approximate the gradients produced by the entire training dataset. For instance,
CRAIG (Mirzasoleiman et al., 2020) suggests finding the optimal coreset by converting the gradient matching
problem to a submodular function maximization and using a greedy approach to optimize it. Because of the
individual weights (or learning rates) on the samples in CRAIG, it may not be straightforward to train the
models on the coresets in the mini-batch gradient descent framework. Hence, the training speed gains are
not maximal on such coresets.

Similarly, Gradmatch(Killamsetty et al., 2021a) constructs an objective for matching the gradients computed
over the coreset with that calculated over the complete dataset. They propose minimizing the matching error
by casting the objective as a weakly submodular maximization problem and solving it using an orthogonal
matching pursuit (OMP) based greedy algorithm. As it identifies the coreset by selecting different subsets
during model training to perform gradient matching, training must be carried out each time to obtain coresets
at various fractions of the entire dataset.

In this paper, we propose a novel methodology for selecting a coreset based on the hypothesis that most
samples from the same class produce gradients in similar directions (particularly in the early stages of the
model training, elaborated further in Section 3 and Figures 1 and 2). Our method proposes that samples
with a substantial gradient similarity to many others belonging to the same class would be ideal candidates
for constituting the representative coreset. This approach differs from the existing coreset ideas driven by
‘distinctness’ or ‘difficulty’, which prefer samples that give rise to noisy (or minority) loss gradients. Hence,
we refer to the proposed method as ‘Noise-free Gradients’ for coreset selection. In the case of a multi-label
classification task, we identify representative samples class-wise and combine them into a coreset.

Our approach uses cosine similarity between gradient vectors to rank data samples according to their ability
to represent other samples. Based on the desired coreset size, the top-ranked samples from each class
are picked to represent the whole dataset. This makes the proposed approach computationally attractive
compared to the optimization-driven coreset ideas (we refer the reader to Section 2 for a detailed review of
such works). Moreover, while the existing approaches, such as CRAIG, use a per-sample learning rate while
training from the coreset, our method uses single learning rate for all the samples. We also introduce various
steps to reduce the computational time. We have applied this coreset selection methodology to two popular
and diverse application areas, namely, 1) Image classification and 2) Generative Modelling. The details are
discussed in Section 4.

In summary, the major contributions of our work can be summarized as:

• Contrary to the existing ‘difficulty/distinctness’ notions, this paper introduces a novel, intuitive
coreset selection method for identifying class-wise representative samples driven by noise-free loss
gradients.

• Also, compared to the existing gradient-based coreset selection methods that are computationally
demanding (e.g., submodular function optimization), our method is computationally efficient.

• Thoroughly evaluates the proposed method over multiple object recognition datasets of varying
complexity. Different deep neural network classifiers (CNN and Vision Transformer) and cross-
architecture generalization studies demonstrate that our method achieves higher accuracy than state-
of-the-art coreset selection methods.

• Evaluates the proposed method for GAN training and demonstrates consistent performance im-
provement over existing methods.

2 Related Works

Multiple coreset selection methods have been proposed recently. Here, we briefly present the most prominent
works.
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Toneva et al. (2019) proposed coreset selection through catastrophic forgetting. They defined a ‘forgetting
event’ as a fluctuation in the classification of a training example between correct and incorrect. Removing
unforgettable examples results in minimal performance drop while speeding up the training and hyperpa-
rameter tuning.

K-Center Greedy approximation (Sener & Savarese, 2018) attempts to solve the minimax facility location
problem to select coresets from a large dataset such that the maximum distance between points in the
non-coreset and its closest point in the coreset is minimized.

Uncertainty-based methods work on the idea that samples having lower confidence may have a higher impact
during training than those with higher confidence. Thus, these methods suggest constituting the coresets
with the samples with lower confidence. Commonly used metrics to calculate sample uncertainty are least
confidence (Shen et al., 2018), entropy (Settles, 2012), and margin (Coleman et al., 2020).

Adversarial Deepfool (Ducoffe & Precioso, 2018) and Contrastive Active Learning (Margatina et al., 2021)
work to find data points distributed near the decision boundary. Samples that lie close to the classification
boundary are treated as difficult samples to learn. Error-based methods try to select samples that contribute
more to the training of the neural networks. Two metrics called the Gradient Normed (GraNd) and the Error
L2-Norm (EL2N) scores are introduced by Paul et al. (2023) that help in pruning significant fractions of
training data without sacrificing test accuracy. GraNd measures the importance of each sample to the
training loss at early epochs. EL2N approximates the GraNd score, which measures the norm of the error
vector, with a higher score indicating higher potential influence. The authors conclude that the images with
higher scores tend to be harder to learn (forgettable examples). Their method chooses these forgettable
samples as the coreset.

RETRIEVE (Killamsetty et al., 2021d) formulates coreset selection for Semi-Supervised Learning (SSL) as
a bi-level optimization problem. This method considers labelled and unlabeled sets to develop the bi-level
optimization problem. It uses a greedy algorithm to select the coreset that minimizes the labelled set loss.
GLISTER (Killamsetty et al., 2021b), Generalization-based Data Subset Selection for Efficient and Robust
Learning, applies bi-level optimization for supervised and active learning. It formulates coreset selection as
a bi-level optimization problem that maximizes the log-likelihood on a held-out validation dataset.

Gradient matching-based methods work on the expectation that the optimal coreset can approximate the
gradients produced by the entire training dataset. CRAIG (Mirzasoleiman et al., 2020) selects representative
subsets that closely approximate the entire gradient. They achieve this by converting the gradient matching
problem to optimizing a submodular function using a greedy approach. Gradmatch (Killamsetty et al.,
2021a) method follows a similar approach. It introduces a squared L2 regularization term over the weight
vectors and uses a greedy Orthogonal Matching Pursuit (OMP) algorithm to select the coreset iteratively.
After training on the resulting coreset for a pre-determined number of epochs, the algorithm repeats the
coreset construction using the latest iterate. Balles et al. (2021) explores the application of gradient matching
for a continual learning setting.

Several methods have utilized submodular functions (Liu, 2020) to leverage their ability to measure diversity
and information and use greedy algorithms to maximize a submodular function for coreset selection. Iyer
et al. (2021) have studied various submodular functions such as Graph Cut, entropy, and facility location
and utilize greedy optimization algorithms for data summarization.

Xia et al. (2023) have proposed a universal method termed ‘Moderate Coreset’ to tackle the task-specific
nature of dataset selection. They calculate the distance between the hidden representation of samples and
the representational class centres. Based on these Euclidean distances, they rank the data points in an
ascending order and select the data points closest to the distance median as a coreset.

Yang et al. (2023) proposed a parameter influence-based optimization for dataset selection. They argue that
not all training data contributes uniformly to the model’s parameter learning. So, an influence function-
based iterative method can be designed to linearly estimate the impact of omitting a specific subset on the
model parameters. However, they have not considered lower coreset sizes than 50% of the original dataset
size.
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Sinha et al. (2019) introduced the application of coreset selection to sub-sample a larger batch to produce a
smaller batch to speed up GAN training significantly while not sacrificing performance to a significant level.
DeVries et al. (2020) introduced instance selection based upon the high-density region of the data manifold
to speed up GAN training.

Guo et al. (2022) has developed an excellent and comprehensive code library named DeepCore that im-
plements current popular and state-of-the-art coreset selection methods in a unified framework based on
PyTorch (Paszke et al., 2019). DeepCore framework has provided a unified comparative analysis among
15 algorithms for CIFAR-10 and 14 algorithms for ImageNet-1K. The algorithms compared are: Contex-
tual Diversity (Agarwal et al., 2020), Herding (Welling, 2012), k-Center Greedy (Sener & Savarese, 2018),
Least Confidence, Entropy, Margin (Coleman et al., 2020), Forgetting (Toneva et al., 2019), GraNd (Paul
et al., 2023), Cal (Margatina et al., 2021), DeepFool (Ducoffe & Precioso, 2018), Craig (Mirzasoleiman et al.,
2020), GradMatch (Killamsetty et al., 2021b), Glister (Killamsetty et al., 2021b), Facility Location and
GraphCut (Iyer et al., 2021). Due to its large running time, the DeepFool algorithm is not considered for
the ImageNet-1K dataset. We have also utilized publicly available implementation of Moderate Coreset (Xia
et al., 2023) for CIFAR-10, CIFAR-100 and Tiny ImageNet datasets and presented the comparative analysis
in Section 5.

3 Methodology

This section provides a detailed description of the proposed Noise-free Gradients approach. We first focus
on the supervised classification task of object recognition using Deep Neural Network classifiers (CNNs and
Vision Transformers) because of their proven effectiveness. We have also utilized our proposed method to
speed up GAN training without sacrificing the performance of the model significantly. Table 1 provides the
notations used throughout the paper.

Table 1: Notations

Symbol Description
V = {(xi, yi)} Large Training Dataset
S ⊂ V Coreset of V (target)
θ Parameters of the classifier
Φ Threshold on the gradient similarity for neighborhood identification
Vc Training data belonging to class c
gθ

xi
Loss gradients computed for data sample (xi, yi) at the last fully connected layer

∥x∥ l2 norm of x
∥x∥1 l1 norm of x
|A| Cardinality of set A
1 Indicator function

Our objective is to select a representative subset S of the complete dataset V such that model θS trained on S
has a generalization performance close to that of the model θV trained on V. Training deep neural networks
is reduced to an empirical risk minimization problem often optimized in the gradient descent framework. In
practice, the incremental Gradient (IG) methods, such as Stochastic Gradient Descent (SGD), iteratively
estimate the gradient on mini-batches of training data that construct the parameter updates.

Existing gradient-based coreset selection methods such as CRAIG(Mirzasoleiman et al., 2020) and Grad-
match(Killamsetty et al., 2021a) try to find an optimal coreset such that the weighted sum of the gradients
of the coreset elements remains within an error margin of the gradients of the entire dataset. The objective
function can be written as:

arg min
w,S

F ( 1
|V|

∑
(xi,yi)∈ V

(gθ
xi

), 1
∥w∥ 1

∑
(xi,yi)∈ S

(wxi
gθ

xi
)) (1)
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Where w is the weights associated with the elements of the coreset, and F is a distance metric.

It can be re-written as:

Eθ

[
1
|V|

∑
(xi,yi)∈ V

gθ
xi

]
= Eθ

[
1
∥w∥ 1

∑
(xi,yi)∈ S

wxi
gθ

xi

]
+ ϵ (2)

Where ϵ is the error term having the same dimension as the gradient vector, note that equation 2 considers
the expected value of the approximation error in the parameter space.

Our method identifies the representative samples based on their gradients. Intuitively, data samples whose
gradients are similar to most other samples best approximate the complete dataset. In other words, these
representative samples result in local minima close to the minima achieved by the entire dataset.

Our method thus selects a subset S of a desired cardinality that closely approximates the whole dataset V.
We define the normalized gradient similarity between two samples as

ρ(xi, yi, xj , yj , θ) =
< gθ

xi
, gθ

xj
>

∥gθ
xi
∥∥gθ

xj
∥

(3)

For each sample xi in the dataset V, we can measure its ability to represent V as

f(xi) = Eθ

[ ∑
xj∈V, j ̸=i

ρ(xi, yi, xj , yj , θ)
]

(4)

Using this measure, we compute the suitability of every sample in V to become an element of the coreset
S. Essentially, this translates to sorting the dataset samples in the decreasing order of this measure and
composing the coreset of a desired cardinality. The exact steps involved in this process are described in the
next paragraph.

We start with a randomly initialized model and update its parameters on the complete dataset for a few
epochs. In our experiments, we observe that generally, 5 to 10 epochs (during which the loss value doesn’t
plateau) are sufficient. We save the checkpoints of the model parameters after each epoch. For each of these
checkpoints, we calculate the gradients of the loss function with respect to the model parameters computed
at each data sample. We score the dataset samples based on their ability to represent other samples as
denoted in equation 4. We aggregate these scores across the saved checkpoints as an approximation to the
expectation over the parameter space.

Figure 1 shows the histogram of pairwise cosine similarity of gradients of images belonging to airplane class
for CIFAR-10 dataset on ResNet-18 architecture for initial four epochs. As we can see, during initial training,
the most images have gradients with high cosine similarity values, indicating moving in similar directions.
Figure 2 shows the histogram of pairwise cosine similarity of gradients of images belonging to (i) airplane
class (top panel), (ii) airplane and bird class (middle panel), and (iii) airplane and truck class (bottom panel).
All the computations are done for the model saved after the first epoch. It indicates that images belonging
to the same class will have gradients in similar directions, while images belonging to different classes will
have gradients in different directions. This behaviour forms the basis of our method for computation of the
coreset.

To improve the time efficiency of our approach, we slightly modify it to utilize a nearest-neighbor search
algorithm. We utilize radius-based neighbour learning to obtain the local density of data points. The per-
sample scores denoted by equation 4 are measured in terms of the number of dataset samples present nearby
in the gradient space. A nearest neighbour search algorithm finds the number of samples within a given
radius from each sample (or, with similarity more than a threshold Φ) and assigns it as its score. We then
rank the samples according to their aggregated scores across multiple checkpoints. The top-ranked images
are selected as the representative coreset.
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Figure 1: Histogram of pairwise cosine similarity of gradients during the training of ResNet-18 for the initial
four epochs. Samples belong to the ’airplane’ class of CIFAR-10 dataset. A strong similarity (or alignment)
of the gradients can be observed.

Figure 2: histogram of pairwise cosine similarity of gradients of images belonging to (i) airplane class (top
panel), (ii) airplane and bird class (middle panel), and (iii) airplane and truck class (bottom panel). While
intra-class samples display strong similarity, inter-class samples have gradients in different directions.

The formulation of Noise-free Gradients can be represented as shown in equation 5. For a given class c, the
top-ranked samples xj are selected based on their scores.

xj = arg max
(xi,yi)∈ Vc

∑
θ

∑
j ̸=i

1(ρ(xi, yi, xj , yj , θ) > Φ) (5)

Algorithm 1 presents our approach more formally.

6



Under review as submission to TMLR

Algorithm 1 Noise-free Gradients algorithm
Require: Train set: V; Total epochs: T ; number of classes: C; number of coreset images per class: N ;

Model checkpoint at initial T epochs : θ
Ensure: Coreset S

1: for class c in 1,..., C do
2: for (xi, yi) ∈ Vc do
3: for epochs t in 1,..., T do
4: compute gθt

xi

5: end for
6: f(xi) =

∑
θt

∑
(xj ,yj)∈Vc,j ̸=i

1(ρ(xi, yi, xj , yj , θt) > Φ)

7: Store f(xi)
8: end for
9: end for

10: S = ∅
11: for class c in 1,..., C do
12: S← S ∪ argsort(xi,yi)∈Vc

f(xi)[: N ] ▷ Descending order
13: end for

4 Implementation of Noise-free Gradients

We have implemented the proposed method Noise-free Gradients using the PyTorch framework.

4.1 Gradients with respect to the Classification layer

Deep learning models such as ResNet (He et al., 2015; 2016), VGG (Simonyan & Zisserman, 2015), and
ViT Small (Lee et al., 2021) have millions of parameters, and it is impractical to consider the gradient of
loss function with respect to each of the parameters. It is observed that the gradient mostly captures the
variation of gradient norm with respect to the parameters of the last (classification) layer of the neural
network (Katharopoulos & Fleuret, 2019). Similar to the earlier works (Ash et al., 2020; Killamsetty et al.,
2021a), we avoid computation of the gradient of the loss function with respect to all the model parameters,
restricting to only the final fully connected layer while calculating the score of data samples (equation 4).

4.2 Nearest Neighbor algorithm

The complexity of similarity score computation (equation 4) among the samples of a particular class of size
K is O(K2). The complexity and computation time are linear in the number of classes in the dataset C.
Instead of computing N similarity scores for each sample in a given class, our approach finds the number of
these N samples within its neighborhood. This vital modification saves us nontrivial complexity. We have
utilized the radius-based nearest neighbor algorithm implementation from scikit-learn (Pedregosa et al.,
2011) library with the proposed distance (or similarity) measure mentioned in equation 3 as the metric for
identification of neighbors within a given radius. Pairwise cosine similarity function of torchmetrics library2

is used. This results in a ≈ 30X speed up of the computation time compared to the naive method. We
have used a threshold value of 0.2 in all our experiments. For the ablation experiments on the effect of this
threshold, readers can refer to the supplementary document (section 2).

5 Experiments and Results

5.1 Experimental Setup

Applications. We have evaluated our coreset selection methodology on image classification and GAN
training.

2https://lightning.ai/docs/torchmetrics/stable/pairwise/cosine_similarity.html
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Datasets. For image classification application, we evaluate the effectiveness of our method on four popularly
used benchmark object recognition datasets, i.e. CIFAR-10(Krizhevsky, 2009), CIFAR-100(Krizhevsky,
2009), Tiny ImageNet (Le & Yang, 2015) and ImageNet-1K (Russakovsky et al., 2015). CIFAR-10 dataset
consists of 50, 000 colour images of dimension 32× 32× 3 from 10 different classes, each class having 5, 000
images. CIFAR-100 dataset consists of 50, 000 training images from 100 classes with 500 training images per
class. Tiny ImageNet dataset consists of 100, 000 training images from 200 classes with 500 training images
per class. ImageNet-1K is a subset of the larger dataset ImageNet, an image dataset organized according to
the WordNet hierarchy. ImageNet-1K consists of 1000 classes, with 1, 281, 167 training images and 50, 000
validation images. In Summary, to test the robustness of our method, we have considered four popular
classification datasets with the number of classes varying from 10 to 1000.

Classifier. We have used randomly initialized ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2015), VGG-
16 (Simonyan & Zisserman, 2015) and ViT Small (Lee et al., 2021) architectures to carry out comparative
performance analysis of existing SOTA algorithms against our method. The first three are CNN architectures
that vary in complexity and number of parameters, and the fourth is a vision transformer. We have also
carried out cross-architecture generalization to demonstrate the effectiveness of our method.

GAN models. For GAN training application, we evaluate the effectiveness of our method on four different
GAN architectures i.e. DCGAN (Goodfellow et al., 2014), MSGAN (Mao et al., 2019), SNGAN Miyato
et al. (2018) and SAGAN Zhang et al. (2019).

GAN Metrics. We have considered the Inception Score (IS) (Salimans et al., 2016) and Fretchet Inception
Distance (FID) (Heusel et al., 2018) for comparing the performance of our method against existing coreset
selection for GAN methodologies.

Baselines We have considered the results reported by DeepCore wherever available and utilized DeepCore
implementation to carry out experimentations wherever results are not available.3 We have utilized publicly
available implementation of Moderate-DS.4 and instance selection for GAN5. Abbreviations used in results for
different methods which are part of DeepCore are: GC(GraphCut), F(Forgetting), R(Random), FL(Facility
Location), GN(GraNd), CR(CRAIG), H(Herding).

Implementation Experiments for CIFAR-10 and CIFAR-100 are carried out for ten individual runs with
different random seeds. Experiments for tiny ImageNet were carried out for five separate runs, and Ima-
geNet1K was carried out for two individual runs due to substantial computational requirements. In each
iteration, number of training epochs were set at 200, and an SGD optimizer with a momentum of 0.9 was
used with a batch size of 128 and a learning rate of 0.1. For ImageNet-1K, batch size of 256 was used.

For GAN training, we have used default settings for all the GAN models recommended by their respective
authors. For instance selection, a 50% retention ratio is used. For our method, a 50% coreset selection
percentage is used. FID scores are lower the better, and Inception scores are higher the better. The number
of steps used for full dataset training is 200k, and the number used for coreset-based training is 100k.

5.2 Results for Image Classification

5.2.1 Results for CIFAR-10

A comparison of accuracy values obtained from DeepCore, Moderate-DS, and Noise-free Gradients on the
CIFAR-10 dataset for various fractions of the original dataset is presented in Table 2, Table 3, Table 4 and
Table 5 for ResNet-18, ResNet-50, VGG-16 and ViT Small architecture respectively. The algorithm with
the best accuracy at each percentage level reported by DeepCore is mentioned within brackets against the
accuracy value. The average rank of a method is calculated as the mean of its rank across different fractions
of the dataset considered. As can be observed from the values, our method outperforms all the existing
SOTA algorithms across architectures of diverse complexity and depth.

3https://github.com/PatrickZH/DeepCore
4https://github.com/tmllab/2023_ICLR_Moderate-DS
5https://github.com/uoguelph-mlrg/instance_selection_for_gans
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Table 2: Comparison of results for CIFAR-10 on ResNet-18

Size DeepCore Moderate-DS Our Method

0.5% 34.90 ± 2.30 (GC) 33.93 ± 1.10 43.64 ± 0.87
1.0% 42.80 ± 1.30 (GC) 39.83 ± 0.56 54.06 ± 0.92
5.0% 65.70 ± 1.20 (GC) 69.20 ± 1.30 72.96 ± 0.28
10.0% 76.60 ± 1.50 (GC) 79.10 ± 0.12 79.12 ± 0.40
20.0% 87.10 ± 0.50 (R) 86.49 ± 0.29 87.18 ± 0.45
30.0% 91.70 ± 0.3 (F) 89.39 ± 0.12 89.62 ± 0.50
Rank 2.17 2.67 1.17

Table 3: Comparison of results for CIFAR-10 on ResNet-50

Size DeepCore Moderate-DS Our Method

0.5% 32.85 ± 1.20 (GC) 13.73 ± 4.82 47.32 ± 0.69
1.0% 36.58 ± 1.50 (GC) 18.86 ± 1.55 56.06 ± 0.10
5.0% 63.31 ± 1.53 (GC) 53.89 ± 1.03 73.04 ± 0.32
10.0% 70.64 ± 1.10 (F) 65.47 ± 1.83 78.06 ± 0.41
20.0% 85.06 ± 1.48 (FL) 84.00 ±0.79 86.11 ± 0.48
30.0% 89.83 ± 0.30 (F) 88.74 ± 0.27 89.22 ± 0.20
Rank 1.83 3.00 1.17

Table 4: Comparison of results for CIFAR-10 on VGG-16

Size DeepCore Moderate-DS Our method

0.5% 32.85 ± 1.2 (GC) 13.73 ±4.82 47.32 ± 0.69
1.0% 36.58 ± 1.5 (GC) 18.86 ±1.55 56.06 ± 0.10
5.0% 63.31 ± 1.53 (GC) 53.89 ±1.03 73.04 ± 0.32
10.0% 70.64 ± 1.1 (F) 65.47 ±1.83 78.06 ± 0.41
20.0% 85.06 ± 1.48 (FL) 84.00 ±0.79 86.11 ± 0.48
30.0% 89.83 ±0.3 (F) 88.74 ±0.27 89.22 ±0.2
Rank 1.67 3 1.33

Table 5: Comparison of results for CIFAR-10 on ViT small

Size DeepCore Moderate-DS Our Method

0.5% 30.05 ± 1.21 (GC) 23.10 ± 1.41 35.22 ± 0.31
1.0% 37.31 ± 0.52 (GC) 27.00 ± 4.80 38.50 ± 0.27
5.0% 53.96 ± 0.45 (GC) 51.30 ± 2.30 56.82 ± 0.20
10.0% 57.43 ± 0.69 (GC) 54.40 ± 2.35 58.32 ± 0.16
20.0% 64.98 ± 0.90 (GC) 66.10 ± 1.66 67.16 ± 0.52
30.0% 67.38 ± 1.01 (GC) 70.40 ± 0.28 71.43 ± 0.49
40.0% 71.24 ± 0.20 (GC) 72.60 ± 1.40 75.45 ± 0.70
50.0% 72.98 ± 2.10 (F) 73.10 ± 4.09 78.07 ± 0.68
60.0% 77.68 ± 0.20 (GC) 76.95 ± 1.85 77.11 ± 0.10
Rank 2.33 2.55 1.11

5.2.2 Results for CIFAR-100

A comparison of accuracy values obtained from DeepCore, Moderate-DS, and Noise-free Gradients on the
CIFAR-100 dataset for various fractions of the original dataset is presented in Table 6, Table 7, Table 8 and
Table 9 for ResNet-18, ResNet-50, VGG-16 and ViT Small architectures respectively. The algorithm with
the best accuracy at each percentage level reported by DeepCore is mentioned within brackets against the
accuracy value. The average rank of a method is calculated as the mean of its rank across different fractions
of the dataset considered. We are able to outperform all the other methods for training on ResNet-50,
VGG-16 and ViT Small architecture while performing better for lower selection percentages (up to 20%) for
training on ResNet-18 architecture.

Table 6: Comparison of results for CIFAR-100 on ResNet-18

Size DeepCore Moderate-DS Our Method

0.5% 8.49 ± 0.68 (GC) 5.36 ±0.12 12.0 ± 0.11
1.0% 13.04 ± 0.22 (GC) 7.78 ± 0.20 18.95 ± 0.08
5.0% 31.18 ± 0.37 (GC) 18.62 ± 0.33 37.67 ± 0.10
10.0% 41.98 ± 0.88 (GC) 32.57 ± 1.40 46.48 ± 0.28
20.0% 56.68 ± 0.98 (GC) 54.4 ± 0.19 58.06 ± 0.34
30.0% 64.05 ± 0.28 (GC) 62.97 ± 0.41 62.58 ± 0.24
40.0% 69.37 ± 0.30 (GC) 67.33 ± 0.22 66.31 ± 0.16
60.0% 73.80 ± 0.31 (GN) 72.02 ± 0.30 70.74 ± 0.20
Rank 1.63 2.63 1.75

Table 7: Comparison of results for CIFAR-100 on ResNet-50

Size DeepCore Moderate-DS Our Method

0.5% 7.34 ± 0.62 (GC) 3.64 ±0.62 10.61 ± 0.22
1.0% 12.69 ± 0.28 (GC) 5.48 ±0.42 15.85 ± 0.16
5.0% 25.7 ± 0.55 (GC) 14.70 ±0.24 31.64 ± 0.19
10.0% 36.91 ± 0.18 (GC) 22.74 ±1.67 41.32 ± 0.48
20.0% 48.14 ± 0.23 (GC) 51.83 ±0.52 54.18 ± 0.51
30.0% 56.1 ± 0.32 (GC) 57.79 ±1.61 60.82 ± 0.08
40.0% 62.52 ± 0.23 (GC) 64.92 ±0.93 65.01 ± 0.24
50.0% 68.62 ± 1.20 (GC) 69.11 ±0.62 68.67 ± 0.17
60.0% 73.34 ± 0.39 (F) 71.87 ±0.91 71.10 ± 0.38
Rank 2.33 2.33 1.33

5.2.3 Results for Tiny ImageNet and ImageNet-1K

We believe the effectiveness of coreset selection algorithms must be tested in the face of complex datasets.
Hence, we evaluate our algorithm with the Tiny ImageNet and ImageNet-1K datasets. Similar to other
experiments, we train multiple models on the resulting coreset. Each model is trained for 200 epochs with
a random PyTorch seed. The comparative analysis is tabulated in Table 10, 11, 12 and 13. The algorithms
with the best accuracy at each percentage level reported by DeepCore are mentioned within brackets against
the accuracy value. The average rank of a method is calculated as the mean of its rank across different
fractions of the dataset considered.
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Table 8: Comparison of results for CIFAR-100 on VGG-16

Size DeepCore Moderate-DS Our Method

0.5% 2.45 ± 0.57 (GC) 2.00 ± 0.10 8.92 ± 0.45
1.0% 4.47 ± 1.28 (GC) 2.10 ± 0.23 15.2 ± 0.46
5.0% 27.23 ± 0.70 (GC) 13.70 ± 0.91 32.12 ± 0.58
10.0% 38.17 ± 1.32 (GC) 28.10 ± 1.60 44.67 ± 0.05
20.0% 52.23 ± 0.47 (GC) 49.90 ± 0.30 53.95 ± 0.30
30.0% 58.87 ± 0.45 (GC) 59.50 ± 0.30 61.23 ± 0.17
40.0% 62.52 ± 0.23 (GC) 64.92 ± 0.93 66.17 ± 0.23
50.0% 68.62 ± 1.21 (GC) 69.11 ± 0.62 69.47 ± 0.19
60.0% 73.34 ± 0.39 (F) 71.87 ± 0.91 71.82 ± 0.20
Rank 2.22 2.55 1.22

Table 9: Comparison of results for CIFAR-100 on ViT Small

Size DeepCore Moderate-DS Our Method

0.5% 7.45 ± 0.17 (GC) 5.20 ± 0.06 11.03 ± 0.23
1.0% 14.57 ± 0.47 (GC) 7.82 ± 0.20 14.35 ± 0.18
5.0% 24.50 ± 0.71 (GC) 21.12 ± 0.30 24.85 ± 0.30
10.0% 32.00 ± 0.34 (GC) 27.00 ± 0.50 32.60 ± 0.30
20.0% 40.73 ± 1.19 (GC) 38.51 ± 0.47 41.30 ± 0.80
30.0% 45.50 ± 1.01 (GC) 44.90 ± 0.31 48.12 ± 0.48
40.0% 46.72 ± 1.02 (GC) 46.20 ± 0.60 51.75 ± 2.23
50.0% 47.11 ± 2.00 (GC) 52.83 ± 0.32 57.62 ± 0.64
60.0% 49.66 ± 0.64 (GC) 55.00 ± 0.40 60.81 ± 0.53
Rank 2.11 2.77 1.11

Table 10: Comparison of results for Tiny ImageNet on ResNet-18

Size DeepCore Moderate-DS Our Method

0.5% 3.29 ± 0.23 (FL) 3.34 ± 0.33 6.91 ± 0.24
1.0% 5.34 ± 0.45 (GC) 4.11 ± 0.24 11.09 ± 0.45
5.0% 13.73 ± 0.71 (GC) 14.03 ± 1.01 22.83 ± 0.98
10.0% 21.23 ± 0.16 (GC) 21.40 ± 0.41 28.05 ± 0.82
20.0% 29.97 ± 0.72 (GC) 30.99 ± 0.93 34.91 ± 0.43
30.0% 33.73 ± 0.37 (GC) 37.18 ± 0.87 40.36 ± 0.43
40.0% 35.74 ± 0.57 (F) 40.21 ± 0.24 40.41 ± 0.17
60.0% 39.74 ± 0.73 (F) 46.19 ± 0.64 44.74 ±0.44
Rank 2.75 2.12 1.12

Table 11: Comparison of results for Tiny ImageNet on ResNet-50

Size DeepCore Moderate-DS Our Method

0.5% 2.26 ± 0.32 (GC) 1.71 ± 0.27 5.24 ± 0.03
1.0% 5.36 ± 0.37 (F) 3.38 ± 0.13 10.55 ± 0.41
5.0% 20.56 ± 0.33 (GC) 12.39 ± 0.02 26.07 ± 0.19
10.0% 29.83 ± 0.49 (GC) 23.21 ± 0.23 34.08 ± 0.21
20.0% 39.60 ± 1.32 (GC) 34.71 ± 0.36 43.95 ± 1.03
30.0% 45.80 ± 0.23 (F) 41.65 ± 0.20 50.82 ± 0.03
40.0% 50.00 ± 1.72 (GC) 48.72 ± 0.61 55.23 ± 0.08
60.0% 56.97 ± 0.12 (F) 56.10 ± 0.13 61.38 ±0.11
Rank 2.00 3.00 1.00

Table 12: Comparison of results for Tiny ImageNet on ViT small

Size DeepCore Moderate-DS Our Method

0.5% 2.88 ± 0.04 (FL) 3.35 ± 0.20 5.92 ± 0.12
1.0% 4.23 ± 0.25 (F) 4.34 ± 0.13 9.18 ± 0.25
5.0% 8.41 ± 0.15 (GC) 13.56 ± 0.23 18.10 ± 0.15
10.0% 11.53 ± 1.23 (GC) 15.84 ± 0.22 22.58 ± 0.06
20.0% 12.54 ± 0.06 (GC) 22.03 ± 0.32 28.26± 0.31
30.0% 14.09 ± 0.11 (GC) 25.35 ± 0.31 33.66 ± 0.21
40.0% 15.69 ± 0.45 (GC) 28.40 ± 0.22 37.29 ± 0.32
50.0% 17.34 ± 1.05 (GC) 30.68 ± 0.14 40.92 ± 0.36
60.0% 19.23 ± 0.32 (GC) 32.74 ± 0.27 43.80 ±0.38
Rank 3.00 2.00 1.00

Table 13: Comparison of results for ImageNet-1K on ResNet-18

Size DeepCore Noise-free Gradients

0.1% 1.29 ± 0.09 (CAL) 1.88 ± 0.10
0.5% 7.66 ± 0.43 (GraphCut) 11.58 ± 0.15
1.0% 18.10 ± 0.22 (GraNd) 22.82 ± 0.07
5.0% 47.64 ± 0.03 (Forgetting) 43.50 ± 0.41
10.0% 55.12 ± 0.13 (Forgetting) 49.51 ± 0.26
Rank 1.6 1.4

We visualize the top and bottom-ranked samples in this subsection according to our coreset selection al-
gorithm. We chose the “Zebra” class from the 1000 ImageNet classes. Figure 3 presents the top-ranked
and bottom-ranked 12 images of the “Zebra” class. The selected samples clearly emphasize the fact that
the images with top ranks are representative of the class. In contrast, images at the bottom positions are
ambiguously labelled (have parts of objects from other classes) or difficult to label as “Zebra”. As our ob-
jective is to select the most representative images from each class, the visualization provides evidence for
the intuition over which the proposed method is founded. We have provided additional examples in the
supplementary material.

5.2.4 Robustness against image noise

In realistic scenarios, training data may be polluted by corrupted images(Xia et al., 2023). We have randomly
added five different types of noise to the training subset of the original dataset, namely Gaussian Noise,
random occlusion, resolution change, fog and motion blur. We have conducted coreset selection on the
corrupted train set and observed its generalization performance on the uncorrupted test set.

We have adapted the implementation provided by Moderate-DS(Xia et al., 2023) available in public github
repository.6 Table 14 compares accuracy obtained by all the methods available in DeepCore library and
Moderate with our Noise-free Gradients method for a 30% of the training dataset impacted by noise. ResNet-

6https://github.com/tmllab/2023_ICLR_Moderate-DS
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Figure 3: Top-ranked and bottom-ranked 12 images from the “zebra” class from ImageNet-1K dataset by
the proposed “Noise-free Gradients” approach. Images are ranked as per the number of neighbors within a
threshold gradient similarity value. Top-ranked images are unambiguous representative of the class, while
bottom-ranked images are either mislabeled or ambiguously labeled.

18 architecture is used for evaluation. As can be seen, for this significant amount of noise added to the original
dataset, our method outperforms all the other methods for most of the coreset selection. As our proposed
method composes the coreset with images having gradient similarity with a higher number of images from
the same class, the coreset is able to perform better than existing methods even when the training dataset
is corrupted by significant image noise.

Table 14: Comparison of results for CIFAR-100 with 30%
corruption on ResNet-18

Size DeepCore Moderate-DS Our Method

0.5% 6.16 ± 0.23 (CR) 5.07 ±0.57 11.1 ± 0.18
1.0% 8.74 ± 0.32 (CR) 17.56 ±0.61 33.56 ± 0.65
5.0% 17.58 ± 0.36 (GC) 19.03 ±0.8 23.65 ± 0.15
10.0% 20.7 ± 0.89 (GC) 29.20 ±0.23 31.24 ± 0.11
20.0% 24.40 ±0.98 (GC) 41.27 ±0.56 41.89 ± 0.40
30.0% 28.14 ±0.76 (GC) 57.58 ±0.16 51.93 ±0.25
Rank 2.83 2 1.17

Table 15: Comparison of results for CIFAR-100 with 5%
corruption on ResNet-50

Size DeepCore Moderate-DS Our Method

10.0% 22.2 ± 0.13 (H) 35.1 ±0.34 42.0 ± 0.24
20.0% 42.50 ±1.27 (H) 46.78 ±1.9 53.48 ± 0.22
30.0% 53.88 ±0.37 (H) 57.36 ±1.22 59.9 ±0.13
40.0% 60.54 ± 0.94 (H) 65.4 ±0.39 64.96 ±0.2
60.0% 70.22 ± 0.22 (F) 71.46 ±0.19 70.27 ± 0.16
Rank 3.00 1.60 1.40

Table 16: Comparison of results for CIFAR-100 with 20%
corruption on ResNet-50

Size DeepCore Moderate-DS Our Method

10.0% 24.78 ± 0.45 (F) 27.05 ±0.8 42.32 ± 0.23
20.0% 44.42 ±0.46 (H) 42.98 ±0.87 54.63 ± 0.26
30.0% 53.57 ±0.31 (H) 55.80 ±0.96 60.58 ±0.20
40.0% 60.72 ± 1.78 (H) 61.84 ±1.96 64.83 ±0.35
60.0% 69.10 ± 1.73 (H) 70.05 ±1.29 70.51 ± 1.31
Rank 2.80 2.20 1.00

Table 17: Comparison of results for CIFAR-100 with 20%
corruption on ViT Small

Size DeepCore Moderate-DS Our Method

1.0% 10.02 ± 0.29 (CR) 7.20 ±0.31 10.44 ± 0.10
5.0% 17.58 ± 0.36 (GC) 19.03 ±0.8 23.65 ± 0.15
10.0% 20.7 ± 0.89 (GC) 29.20 ±0.23 31.24 ± 0.11
20.0% 24.40 ±0.98 (GC) 41.27 ±0.56 41.89 ± 0.40
30.0% 28.14 ±0.76 (GC) 57.58 ±0.16 51.93 ±0.25
Rank 2.80 2.00 1.20

Table 15 and Table 16 show accuracy comparison for 5% and 20% of images from CIFAR-100 dataset
impacted by noises, trained on ResNet-50 architecture. Table 17 compares accuracies obtained for 20% noise
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ratio in the CIFAR-100 dataset, trained on transformer architecture(ViT Small is used). In all four studies,
we can see that our method significantly outperforms all the SOTA methods.

5.2.5 Robustness against label noise

Practical datasets may also involve label noise, where some images are mislabeled. We have adapted the
implementation provided by Moderate-DS(Xia et al., 2023) available in public GitHub repository7 to generate
mislabeled data. Table 18 and Table 19 compare accuracy obtained by all the methods available in the
DeepCore library and Moderate with our Noise-free Gradients method for a 20% of the training dataset
impacted by label noise on ResNet-50 architecture and ViT Small architecture respectively. As can be seen,
for this significant amount of noise added to the original dataset labels, our method outperforms all the
other methods. As our proposed method composes the coreset with images having gradient similarity with
a higher number of images from the same class, the coreset is able to perform better than existing methods
even when the training dataset is corrupted by significant label noise.

Table 18: Comparison of results on CIFAR-100 Dataset with 20%
label noise on ResNet-50 architecture

Size DeepCore Moderate-DS Our Method

10.0% 38.59 ±1.29 (GC) 25.02 ±0.27 40.71 ± 0.34
20.0% 47.15 ±1.66 (GC) 42.75 ±1.20 52.99 ± 0.51
30.0% 57.04 ±0.88 (GC) 56.28 ±1.11 60.77 ±1.17
Rank 2.00 3.00 1.00

Table 19: Comparison of results on CIFAR-100 Dataset with 20%
label noise on ViT Small architecture

Size DeepCore Moderate-DS Our Method

10.0% 28.66 ±0.52 (GC) 23.02 ±0.32 31.39 ± 0.36
20.0% 38.79 ±0.55 (GC) 34.92 ±0.10 36.90 ± 0.21
30.0% 40.22 ±0.92 (GC) 43.91 ±0.28 44.71 ±0.07
Rank 2.00 3.00 1.00

5.2.6 Impact on class-wise accuracy

We visualize the class-wise accuracy of training a ResNet-18 model on the CIFAR-100 dataset, comparing
the performance of the full dataset and coreset selection with 20% of the dataset in Figure 4. We observe a
Spearman rank-order correlation coefficient of 0.87, indicating a high correlation between class-wise accura-
cies obtained with the full dataset and 20% of the full dataset as coreset. It can be seen that our method
does not adversely impact any particular class during coreset selection. The coreset composed by our method
results in class-wise accuracies strongly correlated to that of the full dataset.

Figure 4: Class-wise accuracy comparison between full dataset and coreset with 20% selection percentage.
A high correlation is observed indicating coreset composed by our proposed method not impacting any
particular class adversely.

7https://github.com/tmllab/2023_ICLR_Moderate-DS
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5.2.7 Cross-architecture generalization

To study the robustness of our coreset selection method, we have carried out cross-architecture generalization
performance comparison at 1% and 10% fractions of CIFAR-10 and Tiny ImageNet for two CNN architectures
ResNet-18 (He et al., 2016), VGG-16 (Simonyan & Zisserman, 2015) and one transformer based architecture
ViT-Small. The comparative analysis is tabulated in Table 20 and Table 21. The “Source” column denotes
the architecture on which the coreset is selected, and the “Target” row indicates the architecture on which its
performance is evaluated. As can be observed, our proposed method is able to perform consistently better
than existing methods in a cross-architecture setting. Cross-architecture analysis on the Tiny-ImageNet
dataset is provided in the supplementary material.

Table 20: Cross-architecture comparison for 1% coreset of
CIFAR-10

Target → ResNet-18
Source ↓ DeepCore Moderate-DS Our Method

ResNet-18 42.78 ± 1.30 (GC) 41.44 ±0.34 48.00 ± 2.10
VGG-16 43.02 ± 1.30 (GC) 42.12 ±0.27 46.27 ± 0.33
ViT Small 26.01 ± 2.00 (GC) 41.76 ±0.35 45.05 ± 0.51
Target → VGG-16
Source ↓ DeepCore Moderate-DS Our Method

ResNet-18 29.01 ± 3.63 (GC) 44.84 ±0.33 47.21 ± 0.95
VGG-16 27.47 ± 4.00 (GC) 44.35 ±0.45 47.64 ± 0.71
ViT Small 35.29 ± 2.82 (GC) 34.44 ±0.30 38.43 ± 0.40
Target → ViT Small
Source ↓ DeepCore Moderate-DS Our Method

ResNet-18 29.06 ± 0.75 (GC) 34.71 ±0.23 40.35 ± 0.90
VGG-16 42.06 ± 0.90 (GC) 31.25 ±0.73 44.89 ± 0.55
ViT Small 22.89 ± 1.45 (GC) 34.44 ±0.30 38.43 ± 0.40

Table 21: Cross-architecture comparison for 10% coreset of the
CIFAR-10

Target → ResNet-18
Source ↓ DeepCore Moderate-DS Our Method

ResNet-18 76.65 ± 1.48 (GC) 75.68 ±0.62 78.62 ± 1.05
VGG-16 78.66 ± 0.55 (GC) 74.27 ±0.72 78.75 ± 0.16
ViT Small 70.21 ±1.16 (GC) 73.66 ±0.29 75.15 ± 0.42
Target → VGG-16
Source ↓ DeepCore Moderate-DS Our Method

ResNet-18 75.29 ± 1.05 (GC) 75.60 ±0.86 78.22 ± 0.29
VGG-16 77.91 ± 0.71 (GC) 76.62 ±0.52 78.84 ± 0.33
ViT Small 70.38 ± 0.87 (GC) 73.81 ±0.68 75.47 ± 0.35
Target → ViT Small
Source ↓ DeepCore Moderate-DS Our Method

ResNet-18 62.99 ± 0.12 (GC) 61.69 ±0.23 63.66 ± 0.35
VGG-16 63.14 ± 0.18 (GC) 61.49 ±0.33 66.88 ± 0.41
ViT Small 49.30 ± 1.30 (GC) 54.40 ±2.35 58.32 ± 0.16

5.3 GAN Analysis

So far, we have presented the effectiveness of our proposed method in the context of training a discriminative
model (classifier); however, in this subsection, we investigate the effectiveness of the proposed method in a
different context, which is training a generative model. Similar to our approach for the classification task, we
train the generative model for the initial few epochs with the full dataset and then select the class-wise coreset
with a 50% selection percentage. We utilize the discriminator as a classifier for the purpose of computation
of gradient similarity and ranking of images. Thereon, the generative model is trained with the coreset.

5.3.1 Results on CIFAR-10

We have trained four different GAN architectures, namely DCGAN, MSGAN, SAGAN, and SNGAN, on
the CIFAR-10 dataset. Table 22 compared the FID and IS scores obtained by training with a full dataset
and coreset composed by small GAN, instance selection, and our method. As can be observed, our method
consistently performs better than the other two methods in the FID score, which is a key metric for measuring
the quality of generated images.

Table 22: Comparison of results on CIFAR-10 Dataset. ↓ means lower is better, ↑ means higher is better

Method DCGAN MSGAN SAGAN SNGAN

FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
Full Dataset 28.80 5.84 33.16 5.81 33.73 5.56 22.44 7.36
Small GAN 35.53 5.59 45.76 5.28 44.97 4.92 35.89 6.34
Instance Selection 31.26 5.62 39.05 5.71 36.96 5.48 27.81 6.98
Our Method 31.14 5.70 35.65 5.51 34.60 5.42 24.46 7.22
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5.3.2 Results on CIFAR-100

We have trained four different GAN architectures, namely DCGAN, MSGAN, SAGAN and SNGAN, on
the CIFAR-100 dataset. Table 23 compared the FID and IS scores obtained by training with full dataset
and coreset composed by small GAN, instance selection and our method. As can be observed, our method
consistently performs better than the other two methods in FID score, which is a key metric for measuring
the quality of generated images.

Table 23: Comparison of results on CIFAR-100 Dataset. ↓ means lower is better, ↑ means higher is better

Method DCGAN MSGAN SAGAN SNGAN

FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
Full Dataset 27.98 6.13 37.59 7.26 33.37 5.79 26.97 6.26
Small GAN 32.81 6.11 71.13 6.75 41.53 5.76 39.71 5.51
Instance Selection 30.48 6.07 53.88 7.10 39.17 5.60 28.88 6.13
Our Method 30.08 6.08 50.22 6.64 36.15 5.61 27.71 6.14

5.3.3 Results on Tiny ImageNet

We have trained SAGAN architecture on the Tiny ImageNet dataset. Table 24 compared the FID and IS
scores obtained by training with full dataset and coreset composed by small GAN, instance selection and
our method.

Table 24: Comparison of results on Tiny ImageNet Dataset. ↓ means lower is better, ↑ means higher is better

Method SAGAN

FID ↓ IS ↑
Full Dataset 55.67 7.12
Small GAN 75.12 6.65
Instance Selection 69.16 6.46
Our Method 56.81 6.97

5.4 Computation time analysis

5.4.1 Image Classification

Our method does not consider all images in a given dataset in a single coreset selection step. Instead, it
processes the dataset class-wise, implements multiprocessing and optimizes the nearest neighbour algorithm
to parallelize the ranking process. Hence, the methodology can be easily scaled to a large-scale dataset
beyond ImageNet-1K. Also, the computation of gradients and nearest neighbours is a one-time process for
a given dataset and architecture (per selection epoch). After that, aggregating the individual image ranks
across the training epochs takes only 225 seconds (steps 11-13 in Algorithm 1).. As we directly utilize
the gradients of the loss function with respect to the weights of the last fully connected layer, there is no
requirement for storage of the gradient values. Table 25 provides timing analysis for the ImageNet dataset
on ResNet-18 architecture on a 48 GB RTX A6000 GPU.

Table 25: Execution time comparison

Process Execution Time

Single epoch full dataset training 4.46 hours
Gradient Calculation (per epoch) 3.19 hours
Ranking for the coreset 225 seconds

5.4.2 GAN training

By using 50% of the total dataset, we train the GAN model with coreset selection for half the number of
update steps compared to training with the entire dataset. As shown in section 5.3, our method can achieve
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a comparable FID score to training with a whole dataset while utilizing half of the available dataset. Table
26 provides the total training time required for various methodologies, and we can see that our method can
reduce the total time taken significantly. At the same time, degradation in performance is not significant.

Table 26: Execution time comparison for GAN training on CIFAR-100 Dataset (in hours)

Method DCGAN MSGAN SAGAN SNGAN

Full Dataset 2.47 5.14 2.90 9.48
Small GAN 9.82 15.10 16.22 19.35
Instance Selection 1.32 3.00 1.56 3.95
Our Method 1.34 3.53 1.80 3.98

5.5 Accuracy vs training speed tradeoff

Figure 5 shows classification accuracy vs computational time trade-off for full dataset training vs coreset
training using 10%, 20% and 30% of the entire dataset. As it can be seen, with a small reduction in accuracy,
we can improve the training speed, and it shows the effectiveness of the proposed coreset method during
hyper-parameter tuning, which may require evaluating different values for them over multiple runs.

Figure 5: Accuracy vs training speed trade-off. It can be observed that using 30% of coreset results in similar
accuracy while the training time is reduced more than 3 times.

Figure 6: Accuracy vs training speed trade-off. For a complex dataset like Tiny ImageNet, the reduction
in training time is not insignificant for applications like hyperparameter tuning where model needs to be
trained multiple times.
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6 Conclusions

In this paper, we introduced Noise-free Gradients, an intuition-driven, gradient similarity-based coreset
selection method for identifying representative instances from large training datasets. We studied its effec-
tiveness through our extensive experiments on popular object recognition datasets (CIFAR-10, CIFAR-100,
Tiny ImageNet, ImageNet-1K) and sophisticated model architectures (CNNs and Vision Transformer) at
various coreset sizes. We demonstrated superior generalization performance of classifiers trained on the re-
sulting coresets. We have also demonstrated that our model achieves consistently higher performance in the
case of cross-architecture generalization. Thus, we strongly propose our method as an essential baseline to
benchmark the forthcoming coreset selection methods.

A branch of existing methods, such as Forgetting (Toneva et al., 2019), utilizes noisy gradients to compose
coresets. The argument put forward by these methods is the samples that are hard to learn will be able to
provide better generalization on the test set. However, our approach explores a slightly opposing notion.
Samples that derive loss gradients similar to many other samples can effectively represent the whole dataset
and thus form a coreset. This hypothesis naturally exploits the redundancy in large datasets to compose
extremely small coresets. Our method outperforms other coreset selection methods even in the presence
of noise in the original dataset. We have also applied our coreset method to improve computational time
significantly for GAN training without sacrificing performance.

6.1 Future Directions

While one can appreciate the simplicity and intuition behind the proposed coreset selection method, it must
be studied further, particularly concerning the approximation error between the gradients computed by the
coreset and the entire dataset. Inducing diversity in the selected samples along with individual importance
weights (or per-sample step size) would further improve the effectiveness of the proposed approach. We
consider these aspects for future study.

There have been a few reported applications of coreset selection, namely Active Learning (Sener & Savarese,
2018) and semi-supervised learning (Killamsetty et al., 2021c). We would study the effectiveness of our
Noise-free Gradients approach concerning these application areas.
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