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Abstract

Estimating the causal effects of an intervention on outcomes is crucial to policy and
decision-making. But often, information about outcomes can be missing or subject
to non-standard measurement error. It may be possible to reveal ground-truth
outcome information at a cost, for example via data annotation or follow-up; but
budget constraints entail that only a fraction of the dataset can be labeled. In this
setting, we optimize which data points should be sampled for outcome information
and therefore efficient average treatment effect estimation with missing data. We do
so by allocating data annotation in batches. We extend to settings where outcomes
may be recorded in unstructured data that can be annotated at a cost, such as text or
images, for example, in healthcare or social services. Our motivating application is
a collaboration with a street outreach provider with millions of case notes, where
it is possible to expertly label some, but not all, ground-truth outcomes. We
demonstrate how expert labels and noisy imputed labels can be combined into a
doubly robust causal estimator. We run experiments on simulated data and two
real-world datasets, including one on street outreach interventions in homelessness
services, to show the versatility of our proposed method.

1 Introduction

Evaluating causal effects of a treatment or policy intervention is a challenging problem in its own
right, but an added layer of complexity comes when there is missing data. In this paper, we consider
a setting of observational causal inference with missing outcomes, where it is possible to obtain
information about ground-truth outcomes at a cost, via expert annotation or follow-up. Recent tools
in machine learning can label outcomes, but for inferential goals, this can lead to error-prone and
biased outputs. With a small budget, one can obtain valid causal effects on a small subsample without
using additional contextual information or imputation, but this can be high-variance. We build on
doubly-robust causal inference with missing outcomes to determine where to sample additional
outcome annotations to minimize the asymptotic variance of treatment effect estimation.

Our methodology is motivated by a collaboration with a nonprofit to evaluate the impact of street
outreach on housing outcomes, where rich information about outcomes of outreach are embedded
in case notes written by outreach workers. Street outreach is an intensive intervention; caseworkers
canvass for and build relationships with homeless clients and write case notes after each interaction.
These notes are a noisy view on the ground-truth of what happens during the open-ended process of
outreach. Was a client progressing on their housing application or their goals, or were they facing
other barriers? In our experience, outreach workers can extract structured information, from the
unstructured text of case notes. They can provide context and recognize important milestones. But
it is simply impossible for under-resourced expert outreach workers to label millions of case notes.
While modern natural language processing tools can facilitate annotation at scale, they are often

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91

inaccurate. Given an annotation budget constraint, how can we strategically collect ground truth
data, such as by assigning expert annotation, while leveraging additional data sources or weaker
annotation to optimize causal effect estimation? In this paper, we develop general methodology for
optimizing data annotation and we validate our methodological innovations using outcomes with
plausible ground-truth information on housing placement.

This problem is not unique to the social work domain and can generally apply to cases of measurement
error with misaligned modalities (such as text or images), where it is possible to query the ground
truth directly for some portion of the data at a cost. In some settings, we can query other data
sources for ground-truth labels directly, while in other settings, outcomes may be recorded in complex
information such as text or images. However, due to dimensionality issues, these cannot be directly
substituted for ground-truth outcomes Y. Weaker imputation of auxiliary information is feasible at
scale, but second-best due to inaccuracies. For example, when an outcome variable, wages, is only
observed from self-reported working individuals, surveyors could conduct follow-up interviews with
participants to obtain wage data, but this can be expensive. Noisy measures from the same dataset
(such as last year’s wages) or transporting prediction models from national wage databases can be
predictive. Such trade-offs between expert annotation and scalable, weaker imputation are pervasive
in data-intensive machine learning, for example as in the recent “LLM-as-a-judge" framework [56].

This study makes the following contributions: we propose a two-stage batch-adaptive algorithm for
efficient ATE estimation from complex embedded outcomes. We derive the expert labeling probability
that minimizes the asymptotic variance of an orthogonal estimator [4]. We design a two-stage adaptive
annotation procedure. The first stage estimates nuisance functions for the asymptotic variance on the
fully observed data. We use the estimates and functions from the first stage to estimate the optimal
labeling probabilities in the second stage. The final proposed estimator combines the model-annotated
labels and the expert labels in a doubly robust estimator for the ATE. We show that this two-stage
design achieves the optimal asymptotic variance with weaker double-machine learning requirements
on nuisance function estimates. We leverage our closed-form characterizations to provide insights on
how to improve downstream treatment-effect estimation. We validate and show improvements upon
random sampling on semi-synthetic and real-world datasets from retail and street outreach.

2 Related work

Our model is closest to optimizing a validation set for causal inference with missing outcomes,
which can be broadly useful for causal inference with non-standard measurement error. Typical
distributional conditions for non-standard measurement error [38]] are generally inapplicable to text
or images, our motivating application. The most related work is that of [20, 58], which leverages the
fact that sampling probabilities for data annotation are known to obtain doubly-robust estimation via
causal inference. These works generally address non-causal estimands such as mean estimation and
M-estimation (therefore without discussion of treatment effect estimation). Our work follows a key
approach in adaptive experimental design of optimizing the semiparametric efficiency lower bound,
whether via batch or full adaptivity. Hahn et al. [24]] studied a two-stage procedure for estimating
the ATE with a proportional asymptotic, and show asymptotic equivalence of their batched adaptive
estimator to the optimal asymptotic variance. [36] and [46] also considers a double machine learning
version of [24]], though our estimator is different and we further characterize the closed-form optimal
sampling probabilities, yielding additional analysis. Other variants in the same framework include
Uehara et al. [46] which optimizes treatment choice or Cook et al. [[15] which provides anytime-valid
inference for full adaptivity. Armstrong [[1] proves the semiparametric efficiency lower bound cannot
be beat in general by adaptive designs; so this algorithmic paradigm is the right fit for our goals of
efficient statistical inference. Crucially, all these other papers focus on allocating treatments, while
we allocate the probability of revealing the outcome for a datapoint (i.e, via expert annotation); this
gives us a different optimization problem and different estimation challenges.

Regarding the use of auxiliary information in causal inference, many recent works have studied
the use of surrogate or proxy information. Although our context Y aligns with colloquial notions
of surrogates or proxies, recent advances in surrogate and proxy methods refer to specific models
that differ from our direct measurement/costly observation setting [3 132, 20]. Surrogates often
estimate an outcome that is impossible to measure at the time of analysis [3]], such as long-term
effects; while we can obtain ground truth outcomes from expert data annotators feasibly but under
a binding budget constraint. We do leverage that we can design the sampling probabilities of



92 outcome observations (ground-truth annotation) or missingness for doubly-robust estimation, like
93 some methods in the surrogate literature or data combination [53}32]. But we treat the underlying
94 setting as a single unconfounded dataset with missingness. The different setting of proximal causal
95 inference [44 [16]] seeks proxy outcomes/treatments that are informative of unobserved confounders;
96 we assume unconfoundedness holds. Recently, [9] study the “design-based supervised learning"
97 perspective of [20] specifically for proxies for unobserved confounding.

98 Many exciting recent works study adaptive experimentation under different desiderata, such as full
99 adaptivity, in-sample decision regret or finite-sample, non-asymptotic guarantees [21} 154, [15]. Such
100 designs are closely related to covariate-adaptive-randomization; the recent work of [41] studies
101 delayed outcomes. These desiderata are less relevant to our specific setting of data annotation: it’s
102 easier to leverage human annotators with batch annotation rather than full adaptivity, and in-sample
103 regret is less meaningful for data annotation than for treatment allocation. Technical tools from these
104 other works could be applied to our setting as well.

15 3 Problem setup

106 Our problem setting is causal inference with missing outcomes. We discuss extensions to a setting
107 where outcomes are measured in a high-dimensional contextual variable Y, such as images or text.

108 In both cases, we assume the ground-truth data-generating process follows that of standard causal
10e inference. A data instance (X, Z,Y (7)), includes covariates X € X, a binary treatment Z € {0, 1},
110 and potential outcomes Y (Z) in the Neyman-Rubin potential outcome framework. We only observe
111 Y(Z) for the realized treatment assignment Z and assume the usual stable unit value treatment
112 assumption (SUTVA). If the ground-truth data were observed, we would have a standard causal
113 inference task at hand, so the key challenge is its missingness. We let R € {0, 1} denote the presence
114 (R = 1) or absence (R = 0) of the outcome Y. Therefore, our observational dataset for estimation is
15 (X, Z, R, RY), i.e. with missing outcomes. For causal identification, we generally proceed under the
116 following assumptions:

117 Assumption 1 (Treatment ignorability [25]27.33]). Y (Z) L Z | X.
118 Assumption 2 (R-ignorability [37,4]). R L Y (Z) | Z, X

119 Assumption |1} or unconfoundedness, posits that the observed covariates are fully informative of
120 treatment. It is generally untestable but robust estimation is possible in its absence, e.g. via sensitivity
121 analysis and partial identification [55} [34]. On the other hand, Assumption 2]is true by design as long
122 as the full corpus of datapoints needing annotation is available from the outset, since we choose what
123 datapoints are annotated for ground-truth labels based on (Z, X') alone.

124  Although one approach is completely random sampling, we are particularly concerned with how can
125 we select datapoints for expert annotation for optimal estimation? We assume the budget is limited
126 for data annotation, but we have control over the missingness mechanism, i.e. assigning data for
127 expert annotation. Define the propensity score and annotation (outcome observation) probability:

e,(X) := P(Z = z|X) (propensity score), and 7(Z,X) := P(R = 1|Z, X) (annotation probability).
128 We assume positivity/overlap; that we observe treatment and outcome with nonzero probability.
129 Assumption 3 (Treatment and annotation positivity [25 27, 35]]). € < w(z,X) <1,z € {0,1} and
10 l/v<e(X)<1l—-1/v,v>0

131 We define the outcome model, which is identified on the R = 1 data by Assumption 2] and the
132 conditional variance:
p(X)=EY | Z=2%2X] = EY|Z=2R=1,X]
asn2]
2(X) = E[(Y — j.(X))*| Z = 2, X = a].

z

133 Batch allocation setup. We consider a two-batch adaptive protocol, where n iid observations are
134 randomly split into two batches. We consider a proportional asymptotic regime where the budget and
135 size of first batch n; are fixed proportions s € (0, 1) of the dataset size.

13 Assumption 4 (Proportional asymptotic [24}[36]). lim,, . 7+ = k.
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In the first batch, we randomly assign annotations according to a small but asymptotically nontrivial
fraction of the budgets. In the first batch, outcomes are realized and observed, and the nuisance
models (i1, (z), é.(x),62(x)) are trained on the observed data. We solve for optimal annotation
probabilities 7+ and sample data in the second batch so that the mixture distribution over outcome
observations achieves 7*. We combine the results from both batches and use the data for ATE
estimation, which we describe in the next section.

Extension to Missing Outcomes with Context. We extend our missing outcome framework to
cases where we have additional contextual measurements of outcomes. In this setting, our observed
data includes Y, a widely available “complex-embedded outcome", i.e. a ground-truth outcome
embedded in more complex information, such as images, text, etc. Though Y is observable for every
datapoint, it is not usable for direct estimation. We assume causal effects operate through a latent
true outcome Y, of which Yisa complex observation (but not deterministic function) thereof. We
assume an exclusion restriction that the direct effect of treatment passes through the latent outcomes
only[25]49].

Assumption 5 (Complex embedded outcomes: exclusion restriction[42, 28]]).

Y(Z)=g(Y(Z),X)+¢ e#0as;andZ LY | X,Y(Z)

We don’t make distributional assumptions on the measurement error mechanism, appealing instead
to data annotation/validation measurement which we assume reveals the ground-truth outcome Y,
although ultimately predicting Y from Y just needs to be consistently estimable, discussed later on.

This assumption asserts that treatment assignment does not affect Y beyond affecting latent outcomes
Y. For example, in a medical setting, it holds if treatment affects underlying biological phenomena,
e.g. makes a tumor smaller, these phenomena are recorded via clinical notes or raw pixel images, and
treatment doesn’t change textual or visual expression. It assures that predicting latent outcomes Y
from Y does not introduce collider bias, and is testable, i.e. after the first batch of data.

In this setting, we allow the outcome model to depend on the complex embedded Y, and denote
uz(X,Y) := E[Y|Z, X,Y]. There are a few variants of estimating this from data. We denote an
ML-prediction based on Y (with X covariates and treatment information) as f,(X,Y); for example
zero-shot prediction using an LLM or pretrained model. Variants include calibrating zero-shot
predictions to ground-truth E[Y | Z, R = 1, f,(X,Y)], predicting Y and including ML predictions
as a covariate alongside X, or various ensembling combinations thereof. This last approach is
suggested in Egami et al. [20]. Later on, we find that in practice, choosing the outcome model that
reduces the mean squared error leads to better numerical results.

4 Method

This section outlines our proposed methodology. We first recap the AIPW estimator for the missing
outcomes case and provide the lower bound for the asymptotic variance. Then we consider a global
budget optimization problem and solve for the optimal 7*(z, ). (In Appendixwe discuss a very
similar case of treatment-specific budget). We describe feasible estimation of the ATE by the AIPW
estimator (with missing outcomes).

Recap: Optimal asymptotic variance for the ATE with missing outcomes. Our target parameter
of interest is the ATE of a binary treatment vector Z on an outcome Y .

r=E[Y(1) - Y(0)].

Bia et al. [4] derives a double-machine learning estimator for ATE estimation with missing outcomes:
I1Z = 2R(Y — p.(X))
e.(X)n(z,X)

The outcome model 1, (X) is estimated on data with observed outcomes, since SUTVA and assump-

tion 2] give that E[Y (z)| X] = E[Y|Z = 2, X| = E[Y|Z = 2, R = 1, X].

The focus of our work is to optimize the semiparametric efficient asymptotic variance (proven in [4]),
which is closely related to the ATE of [23]].

E[Y (2)] = E[¢).], where 1), = + p2(X), and Tarpw = E[th1 — o).
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Proposition 1. The asymptotic variance (AVar) is:
AVar = Var[u (X) — 50 (X)] + Y. o1 oo <]

The first term is independent of 7; we focus on optimizing the second term with respect to 7.
Remark 1. We state the results for the base model, though they extend directly for the case with con-
texts. With contexts, by marginalizing over Y, the analogous expressions use the estimators /i, (X, 17)
instead of ji.(X) whereas 62(X) stays the same (sampling probabilities depend only on (Z, X)
and just correspondingly marginalizes over Y, 62(X) = E[(Y — /i.(X,Y))? | Z =2, X = z]. In
the setting with noisy measurements Y, under the exclusion restriction Assumption , the mean
potential outcome is identified by regression adjustment: E[Y (z)] = E[E[Y|Z = 2, R=1,X,Y]] =
EE[Y|Z =2 R=1,X]].

Characterizing the optimal 7*(z,x). We first characterize the population optimal sampling
probabilities 7*(z, ), assuming the nuisance functions are known. We optimize the asymptotic
variance over 7 under a sampling budget. We consider a global budget constraint B € [0, 1] over
all annotations. The setting is meaningful when the budget binds, B < 1, which is still practically
relevant.

o2 (X)

i E i LE®Z X) <B OPT (global budget

0<r(o0)< 1,920 2 { X)m(z X)] Bl (2, Y] < (OPT (global budeen)

2€{0,1}

Note that in the global budget constraint, E[x(Z, X)] = E[x(1, X)I[Z = 1] + (0, X)I[Z = 0]].
We can characterize the solution as follows.

Theorem 1. The solution to the global budget problem is:
-1
7 (2, X) = LB (B | VoI(X) + VaR(X)] )

Note that sampling probabilities increase in the conditional variance/uncertainty of the model, o (X),
and the inverse propensity score. Characterizing the closed-form solution is useful for our analysis
later on, in establishing convergence of estimation to the limiting optimal data annotation probabilities.
For the proof, see Appendix |G|

Feasible two-batch adaptive design and estimator. Our characterizations above assume knowl-
edge of the true o2 () and the propensity scores e, (). Since these need to be estimated, we leverage
the double machine learning (DML) framework and conduct a feasible two-batch adaptive design
[10} 4]. Cross-fitting with iid data [[10] splits the data, estimates nuisance functions on one fold, and
evaluates the estimator on a datapoint leveraging nuisance functions from another fold of data.

We leverage a variant [36]] that introduces folds within each batch of data. Figure |3[summarizes the
cross-fitting approach; we leave details to the appendix. First, we split the observations in each batch
t = 1,2 into K folds (e.g. K = 5). Let Z;, denote the set of batch and observation indices (¢, )
assigned to fold % and batch ¢. Then within each fold, we estimate nuisance models on observations in
batch 1. We use cross-fitting to optimize the sampling probabilities, i.e. 7 (=) optimizes asymptotic
variance with out-of-fold nuisances e(~*). Finally we adaptively assign annotation probabilities in
batch 2. This ensures independence, that is the nuisance models only depend on observations in the
previous batch from the same fold. The adaptive procedure with CSBAE cross-fitting procedure to
estimate 747 pyw is summarized in Algorithm|I] See Algorithm 2]for a full description.

Therefore the cross-fitted feasible estimator takes the form 7Ta7pw =
2 K ; ;
% PP r Z(t,i)eIk Y1,i — tho,s Where
- IZi=ARYi - iV (G)
o= A= ARG VX)) ) 0
ex (X)7R) (2, X5)

S Analysis

In this section, we provide a central limit theorem (CLT) for the setting where annotation probabilities
are assigned adaptively and nuisance parameters must be estimated. We provide some insights to
improve estimation as well as an extension to settings with continuous treatments.



Algorithm 1 Batch Adaptive Causal Estimation With Complex Embedded Outcomes
Input: Data D = {(X;, Z;)}?_,, sampling budget B € [0, 1]
Step 1: Partition D into 2 batches and K folds D\*) D for k = 1,..., K
Step 2: On Batch 1, sample R; ~ Bern(B). Estimate nuisances within each k-fold ﬂgk) (X,Y),
~2(k) (k)
6z (X),and é;".
Step 3: On Batch 2, folds £ = 1,..., K, obtain 7* by optimizing eq. (OPT (global budget)),
plugging in nuisance estimates. Solve for ﬁék) (Xi) = 2= (7*(X;) — k1)
Step 4: On Batch 2, sample Ry ~ Bern(ﬁgk) (X)) and obtain outcomes.

Step 5: Pool data across batches and estimate ATE with AIPW estimator in eq. (I)) (or eq. (RZ]
[pIug-inJ)), or balancing weights) and out of fold nuisances.

221 Denote ||-||, = (E[(-)%])'/2. The following assumptions can also be found in [36, 10, 49 46, 4.

222 Assumption 6 (Consistent estimation and boundedness). Assume bounded second moments of out-
223 comes and errors, | Y (2)|ly, < C1, [|u=(X)|ly < Co, (Y — ,uZ(X))H; < 4B,2, Vz; and consistent
224 estimation E[(y, (X) — 1.(X))?] < K,n~"+ for some constants Cy, Ca, By2, K, 1, > 0.

225 Assumption 7 (Product error rates [4]). For nuisance functions, assume the products of
226 their mean-square convergence rates vanish faster than n=1/2: (i) v/ |12 (X) — po (X)), %
227 Hﬁ(Z’X) - 7T(Z,X)||2 5 0; (i1) \/ﬁ"/}z(X) - NZ(X)”Q X ”éz(X) - ez(X)H2 0.

228  Assumption 8 (VC dimension for nuisance estimation[2]). The nuisance estimation of e, and ag
229 occurs over function classes with finite VC-dimension.

Assumption 9 (Sufficiently weak dependence across batches).

LY R [R50, g9 — gy (R el9, 7B, p0) | TR, X

n
bk i) eTy

2 1
‘ = 0p(n~7)

230 Theorem 2. Given Assumptions|l|to |3} suppose that we construct the feasible estimator Tarpw
231 (Equation (1)) using the CSBAE crossfitting procedure in Figure [3|with estimators satisfying Assump-
232 tions[6|and[/|(consistency and product error rates). Then

Vn(farpw — 1) = N(0, Varpw),

2
23 where Varpw =3 o1 E [%} + Var [u1(X) — po(X)] . Here 7 is the ATE.

234 For the proof, see Appendix[G] The main result from Theorem [ shows that the batch adaptive design
235 and feasible estimator has an asymptotic variance equal to the variance of the true ATE under missing
236 outcomes and the optimal 7*. This implies that our procedure successfully minimizes the asymptotic
237 variance bound. With this, we can also quantify the uncertainty of our treatment effect estimates by
238 producing level-a confidence intervals for 7 that achieve coverage with 1 — « probability.

239 Insights and improvements

240  When is our method much better than uniform sampling? Prior works of [20} 59], though they
241 do not study treatment effect estimation, obtain valid inference with uniform sampling (i.e. with
242 the budget probability). When do optimized data annotation probabilities improve upon uniform
243 sampling? To answer this, we analyze the relative efficiency.

Corollary 1 (Relative efficiency). The relative efficiency of estimation with optimized sampling
probabilities m vs. uniform sampling, for the same budget, is

2
RelEff — AVar of estimation with * _ 5 (E [\/Uf(x) + \/Ug(X)D + Var[r(X))]
- . . . . - 0_2 X 0.2 X
AVar of estimation with uniform prob. B 1E |:ei((X)) n eg((x))} + Var[r(X)]

244 By construction, RelEff < 1; the smaller it is, the larger the improvement from our method. The
245 above expression reveals our method improves further as the budget grows smaller (B |) or if there
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are imbalanced propensities where e (X)) close to 0 or 1. On the other hand, improvements from our
method are limited for large budgets, B — 1, or when variances in treated/control group are similar.

Direct estimation of (e7*)~! mitigates estimation stability. It is well known that estimating
propensities and then inverting estimates can be unstable in practice. This problem is doubly-so
for causal inference with missing outcomes. We find many papers on adaptive treatment allocation
note this challenge and mix their optimized allocation probabilities with uniform in the experimental
sections [[18} 159, 15]; just as many papers in causal inference clip the weights in practice [50].
Our near closed-form solution reveals that it’s not necessary to estimate propensity scores for the
final ATE estimation on the full dataset (though it is needed to estimate 7*). At 7, observe thaﬂ
(ex(z)m*(2,2)) ™" ox /o2(x)~! and is independent of the propensity score e, (), so estimating it
directly can directly exploit its lower statistical complexity. In causal inference and covariate shift,
many methods (such as balancing weights) avoid the plug-in approach for inverse propensity methods
in favor of direct estimation of the inverse propensity score [45} 160, 26} (30,131, 13}15]. We recommend
estimation on the final dataset with such approaches or other types of direct estimation. For example,
even estimation of P(Z = z, R = 1 | X) directly helps:

bele ") = prim ety (V= 1e(X0) + (X)), (RZ-plug-in.)

Extension to continuous treatments. Our analysis applies readily to other static causal inference
estimands, such as those for continuous treatments. We introduce the analogous estimator and the
optimal sampling probabilities. Let e(z, X) = P(Z = z | X) be the generalized propensity score
and u(Z, X) = E[Y | Z, X]. The estimator for continuous treatments replaces the indicator function
I[Z = z] with a local kernel function smoother localizing around z, K, (Z — z)E]T he following
estimator for continuous treatments with missing outcomes is a direct extension of [33} [14]:

wle, ) = p (2, X;) + SEES (v, — i (2, X3)) 3 B[Y (2)] = E[Y(e, p)]

We consider the same assumptions required as in [14]], standard in kernel density estimation analysis.
The optimal sampling probabilities minimize the part of the asymptotic variance of E[Y (z)] depending
on 7, subject to a budget constraint:

7*(z,x) € argming (. ) {E [%] CE[n(z, X)Kn(Z — 2)] < B} ,

Theorem 3. Define the kernel localization of the generalized propensity score e(z, x) around z under
the kernel function Ky (2" — z): én(z,2) = [ Kj(2' — 2)e(2’, x)dz". Then

x vV o2(z,xz) e(z,x)

e(z,x) én(z,z)

(2, x)

The optimal sampling probabilities are quite similar, with the appropriate analogous conditional
variance and generalized propensity score, up to a factor (e(z, x)/ép,(z, z))*/? from the implications
of kernel-smoothing treatment for sampling budget. Consider a box kernel for simplicity, then
én(z, ) is the average of e(z, x) over the interval e(z — h, x), e(z + h, x).

6 Experiments

We evaluate our batch adaptive allocation protocol on synthetic and ground-truthed real-world datasets.
We compare our method to a baseline (uniform random sampling in the same doubly-robust estimator)
and a skyline (running the estimator on the complete dataset, which is generally infeasible). The
baseline does not use our adaptively learned 7 (z, x), but instead uses uniform random sampling at
different budget values. The skyline that we compare against is the standard AIPW estimator with
fully observed outcomes, that is when the budget equals 1 or R = 1 for all data points.

A note on active learning. We also run pool-based active learning baselines. However, there are key
differences that lead to poor performance of these baselines. In our setting, random sampling is the

'This depends on some joint properties of &, p1, whether it is feasible to find second-stage batch sampling
probabilities 72 so that kp1 + (1 — k)m2(z) = 7" (x)

*The kernel function K (u), used in kernel density estimation, satisfies [°°_ K (u)du = 1 (normalizes to
a probability density) and K (—u) = K (u), for all u (symmetry), such as the Gaussian kernel with K (u) =

(27r)_%e_“2/27 or uniform K (u) = /21 [|u| < 1] . We generally consider K, (u) = h~ K (u/h).
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Figure 1: Synthetic and Semi-Synthetic (Retail Hero) Data. Mean squared error (top) and 95%
confidence interval width on the log scale (bottom) averaged over 20 and 100 (for simulated data)
trials across budget percentages of the data. Left and Center: Random forest prediction on tabular
data. Right: including LLM predictions on text and serialized features.

strong baseline, because the sampling probabilities are much simpler. Any other sampling strategy in
our 2-stage framework with AIPW performs suboptimally (since we’ve proved that ours is optimal).
Additionally, the baselines used in related papers are either random sampling or the exclusion of
model-based predictions (i.e. {t or Y). However, because our task is inherently causal, our AIPW
estimator relies on p. We provide more details about active learning and baseline experiment results
that we run in Appendix [[.7]

Retail Hero Data. We study a semi-synthetic dataset, RetailHero [52]], augmented by Dhawan et al.
[L7] to include outcomes recorded in text. The dataset contains background customer information
X, treatment Z as a text message ad sent to the customer, and outcomes Y of whether the customer
made a purchase or not. Dhawan et al. [17] sampled datapoints according to an artificial propensity
score and generated text from the binary outcomes prompting LLMs to generate social media posts
following personas (given covariates) (details in Appendix . These text posts are Y. The goal is to
estimate the causal effect of SM'S communication on purchase. This is an example of our contextual
setting, where plentiful social media posts can offer insights into customer behaviors but companies
may only be able to allocate a fixed amount of resources for ground-truth validation.

We implement our proposed methods using 1) random forest models to estimate the outcome model
i = E[Y'| X] on tabular data only or 2) sampling from a set of five LLM predictions of purchase from

social media posts Y and then using them as predictors in a random forest to estimate f(X,Y") (We
run the LLM predictions offline in batch to save cost and time). Then we estimate the outcome model
[i by ensembling, taking a weighted average between E[Y| X ] (random forest) and E[Y'| X, f(X,Y)]
(support vector machine), choosing the best models and weights to minimize the MSE of predicting
Y on 20% of the full data. We average the results over 20 random data splits. We compute the AIPW
estimator on all available data as a stand-in for ground-truth. (The dataset was too small for a separate
held-out validation set). We have further experiments with simulated data to validate these results
(more details on the data-generating process are given in Appendix [I})

Figure lI] shows the performance of our adaptive estimator either with 1) a direct estimation of
(em*) ™" using logistic regression that we plug-in (following Equation ) or 2) arandom
forest-based estimator of (er*) ™! extracted from ForestRiesz [I1]], a random forest-based method to
learn balancing weights, compared to a uniform baseline. Across different values of the budget, B,
our batch adaptive procedure reduces the MSE by almost double and reduces the confidence interval
width by almost one-unit in the interval width on the log scale. In Figure we see the impact of
our approach most clearly when we compute the percentage of the budget saved to reach the same
interval width. We observe a minimum budget saved of 10% with the adaptive plug-in estimator
and 45% with the adaptive balance estimator on tabular data. The LLM prediction we generate is
based on simple zero-shot learning and direct serialization of the tabular data; further fine-tuning
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could improve performance. Nonetheless, our method can provide robust valid guardrails around
these black-box predictions.

Street Outreach Data. Next, we demonstrate our method on street outreach casenote data collected
by a partnering nonprofit providing homelessness services. This analysis, which uses proprietary
sensitive data, was approved by the Institutional Review Boards at [blinded for review].

The covariate data X consists of baseline characteristics on each client as tabular data (left, Figure E]),
such as the number of previous outreach engagements, and (right, Figure[2) LLM generated summaries
of case notes recorded before treatment. We construct the cohort in our dataset to include clients who
are seen consistently at least once per month from 2019-2021. The binary treatment Z was based on
the number of outreach engagements within the first 6 months of 2019. Clients with 1-2 engagements
were assigned Z = 0 (131 clients), and those with 3-15 where assigned Z = 1 (355 clients). The
outcome Y is the highest housing placement reached by 2021. Our final data set contained 471
clients. More information on the data can be found in Appendix[[} We seek to estimate the causal
effect of street outreach on housing placement. We use housing placement as an illustrative example
because it is well-recorded ground truth data in our dataset. However, it could also be plausibly
missing, in which case nonprofits have to decide how to expend their limited resources to obtain more

information (i.e., caseworker follow-up calls or analyzing more recent casenotes Y).

Similar to Retail Hero, we demonstrate the utility of our approach by using a random forest model to
estimate the outcome model on tabular data alone, /i = E [Y'| X], and we incorporate LLM predictions
f(X) by including them as predictors in a random forest model to get i = E [Y| X, f(X)].

In Figure 2] we see that overall our adaptive approach shows improvements over uniform random
sampling. The MSE is doubled when going from both adaptive estimators to random sampling in
the tabular data setting and tripled with LLM predictions from the adaptive estimator with balancing
weights to random sampling. In Figure we see that we can save between 43 — 75% of the
budget using the plugin-in estimator on tabular data alone and by incorporating LLM predictions,
and between 53 — 91% using the balance estimator over the random sampling baseline.

Tabular Data Tabular Data + LLM Predictions

0.2 0.2
0

< 0.1 0.1

0 0.0

0.1 0.2 0.3 04 05 0.6 0.1 0.2 0.3 04 05 0.6

= 0 0
>

o _

2
0.1 02 0.3 04 05 0.6 0.1 0.2 03 04 05 06
B (budget constraint or fraction of labeled data)

Estimator
adaptive-plugin adaptive-balance random

Figure 2: Street Outreach Data. Mean squared error and 95% confidence interval width averaged
over 20 trials across budget percentages of the data. This plot makes use of tabular data and the
best-performing random forest outcome model (left) and text-encoded outcomes using LLMs (right).

Conclusion, limitations, and future work. =~ We have introduced a batch-adaptive annotation
procedure and estimators that provides a framework for efficient data labeling and incorporating
complex embedded outcomes into causal estimation. This work is not without limitations. We assume
that annotations reveal ground truth, but there could be disagreement between expert annotators.
Additionally, LLMs are still a black box and our theory requires them to be consistent to satisfy
product error rate assumptions. In future work, we plan to explore other causal estimators.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we provide our main results in Sections 4 and 5, along with any necessary
assumptions. We include the proofs for all of our theorem statements in Appendix E. We
also substantiate our claims by providing empirical evidence using synthetic and real world
data.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we discuss some limitations of our work in the last subsection of Section
6. We also state the assumptions made by our framework in Sections 3, 4 and 5.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we state all main theorems and the full set of assumptions that accompany
them in Sections 3, 4, and 5. We include any additional results, that are not essential to the
main argument, but still interesting in Appendix X. We provide the full proof derivations
and any additional lemmas used in proofs in Appendix F and G.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the experimental details needed to reproduce the synthetic datasets.
We provide the empirical results in Section 6, and include further details such as a description
of the data generating process for the simulated data, description of the datasets, prompts
used to query language models, and computer specifications to run experiments on in
Appendix H. The data set provided by nonprofit collaborators cannot be released for privacy
reasons, so instead we describe the features of the data and detailed instructions on how each
variable was constructed, but we cannot release this dataset publicly. To compensate for
this, we run experiments on simulated data and a second real-world dataset that is publicly
available.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release the code for reproducing all the experimental results on
synthetic and semi-synthetic data, along with scripts for reproducing the simulate data and
running our algorithm. The street outreach data is private data that was released to us under
a data use agreement, but it cannot be released publicly for privacy reasons. However, we
will release our other experimental results and code with the final version of the paper.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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12.

13.

Justification: Yes, we describe the data details and construction in the experimental results
Sections 6 of the main paper. We go into much more detail about the data generation process
and model tuning details in Appendix H.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bands in all of our main results in Figures 2 and 3.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 6, we provide sufficient information on what is needed to reproduce
the experiments, such as running LLM predictions offline and in batch and reference the
models used to run each experiment, such as random forest. We specify the type of compute
resources in more detail in Appendix H.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We conform to all aspects of the NeurIPS Code of Ethics. We ensure author
anonymity by also removing identifying information about our nonprofit collaboration.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Throughout the paper, we highlight the potential positive impacts especially
in the introduction and motivation of this work. We discuss limitations of our method that
could potentially have negative societal impacts in the limitations section of the paper. We
go into more detail about the potential negative effects in an Impact Statement and the steps
that we take to mitigate these impacts in Appendix A.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Yes, we mention how the data was released to our research team through a
collaboration with a nonprofit reviewed by Institutional Review Boards at author universities.
We discuss more about the steps taken to preserve the data privacy when training models in
the Impact Statement in Appendix A. We do not release any large models, but we do plan to
release scripts that reproduce our results on the sythethic data and publicly available data.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite all the original owners of the code, data, and models in the main
text and in Appendix H.

New assets

15


https://neurips.cc/public/EthicsGuidelines

597
598

599

600
601

602

603
604
605

606

607
608
609

610
611

612
613
614
615

616

617
618

619

620
621
622
623

624

625

627

14.

15.

16.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we include well documented code to run our algorithm and reproduce our
experimental results in an anonymized zip file included in supplementary material.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: While one of our experiments includes real data about a vulnerable community,
this data was historical data collected by a nonprofit organization. None of this research
included crowdsourcing or directly involved human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Yes, we mention that IRB approval was obtained for the use of the street
outreach data in Section 6.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Yes, we describe our use of LLMs to get predictions from complex embedded
outcome data, i.e. text data in Section 6. We explain in detail how we run the experiments
on a secure HIPAA compliant cloud platform in Appendix H.
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A Impact Statement

Our work deals with sensitive information about a vulnerable community so care must be taken when
deploying our methods. The case notes are redacted by the organization, and any sensitive information
is removed from the notes. Furthermore, we use local LLMs accessed through a HIPAA-compliant
fire-walled cloud instance to mitigate ensure the privacy of clients. We work in collaboration with a
nonprofit to ensure that the necessary guardrails are in place and that their data is used responsibly
and in line with their mission.

B Notation

Y Ground truth outcomes, observed when label is provided by experts

)7, Complex embedded outcomes, such as raw text

X; Covariates included in estimation

Z; Treatment assignment indicator

R; Missingness indicator, indicates whether ¢ is expertly labeled

e.(X;) Propensity score, probability of being assigned treatment Z = z

m(Zi, X;) Annotation probability, probability of sampling unit ¢ for expert annotation

f (f’l) Estimated function of complex embedded outcomes, e.g. zero-shot LLM prediction from raw text
12(Xs, f(Y;))  Estimated model predicting Y as function of f(¥") alone or (X, f(Y))

C Additional discussion on related work

Additional discussion on surrogate estimation In much of the surrogate literature, surrogates
measure an outcome that is impossible to measure at the time of analysis. The canonical example
in [3] studies the long-term intervention effects of job training on lifetime earnings, by using only
short-term outcomes (surrogates) such as yearly earnings. In this regime, the ground truth cannot
be obtained at the time of analysis. In this paper, we focus a different regime where obtaining the
ground truth from expert data annotators is feasible but budget-binding.

Additional discussion on more adaptive allocation methods beyond batch. We outline how our
approach is a good fit for our motivating data annotation setting. Full-adaptivity is less relevant in our
setting with ground-truth annotation from human experts, due to distributed-computing-type issues
with random times of annotation completion. But standard tools such as the martingale CLT can be
applied to extend our theoretical results to full adaptivity. Additionally, many recent works primarily
focus on the different problem of treatment allocation for ATE estimation. In-sample regret is less
relevant for our setting of data annotation, which is a pure-exploration problem.

Optimizing asymptotic variance of the ATE vs. active learning. An extensive literature in
machine learning studies where to sample data to improve machine learning predictors, in the subfield
of active learning. The biggest difference is that we target functional estimation, aka improving
estimation and inference on the average treatment effect, rather than improving estimation of the
black-box nuisance predictors, so our approach is complementary to other approaches for active
learning. Approaches for active learning with nonparametric regression include Zhu and Nowak
[S7], Chaudhuri et al. [8]]. Active learning generally requires additional structural conditions, such
as margin or low-noise conditions, in order to show improvements. Our work highlights optimality
leveraging the structure of our final treatment effect inferential goal.

Relationship to causal inference and NLP There is a large and rapidly growing literature on
causal inference with text data [19, 43| 47]]. Throughout, we have deliberately used the terminology
of measurement error to characterize our approach: that text measures outcomes of interest. [[17]] also
adopt this stance towards text and note that it differs from prior works on causal inference and NLP,
which focuses on questions of substantive interest related to the text itself.

Although we can define a potential outcome Y(Z ), we are generally uninterested in causal inference
in the ambient high-dimensional space of Y (Z) itself - corresponding to, in our examples, the
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effect of the presence of a tumor on the pixel image, the effect of street outreach on the linguistic

characteristics of casenotes written for documentation, etc — Y (Z) is relevant to causal estimation
insofar as it is informative of latent outcomes Y (7).

This is consistent with viewing certain types of NLP tasks as “anti-causal learning" [39]], wherein
outcomes cause measurements thereof, in analogy to anti-causal learning in supervised classification
where a label of “cat" or “dog" causes the classification covariates (e.g. image) [29]. Analogously,
we view the underlying ground-truth outcomes Y as causing the measurement thereof, Y.

D Diagram of Cross-fitting Procedure

X ZvY I

AV peen av
Folds 2® Q)
b K 5 5 W;
Index set
(t,1) € S
Batch 1 Batch 2

Figure 3: Illustration of cross-fitting (/X folds within batches)
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Algorithm 2 (Full Algorithm) Batch Adaptive Causal Estimation With Complex Embedded Outcomes

Input: Data D = {(X;, Z;,Y;,Y;)},, sampling budget B, for z € {0,1}
Output: ATE estimator 747 pw

Partition D into 2 batches and K folds D§k), Dék) fork=1,...,K

Batch 1:

fork=1,...,Kdo

On ng): Sample Ry ~ Bern(m(Z, X)), where m1(z,z) = B,.

Estimate nuisance models: Where R = 1, estimate [Lgk) by regressing Y on X, Y, and 63“ by

regressing (Y — fi,)? on X. Estimate éi’“’ by regressing Z on X.

end for
Batch 2:
fork=1,...,K do

On ng): Obtain 7* by optimizing eq. (]OPT (global budget)[), plugging in ,12*’”, &3“’”, and

(—k)
€z .
Solve for 75" (X;) = 12 (7*(X,) — km1)
Sample Ry ~ Bern(#5" (X;)

end for

Obtain D) for k = 1,..., K by pooling across batches D:(Lk) and Dék)

(k) ~2(k) (k)

On D®), re-estimate iz ’,0%  ,and €z’ on observed outcomes RY fork=1,... K

On D™, run optimization procedure to get 7*(—*) with out of fold nuisances ﬂg_k), 2% and
5(=F)

ez .

On full data D, estimate ATE by using AIPW estimator in eq. (1) and out of fold nuisances 7*(—*),

pcH 6200 and M

F Additional Results

F.1 Treatment—z-specific budgets B,

We also consider a setting with different a priori fixed budgets within each treatment group, where
sampling budget proportion B, € [0, 1]

is the max percentage of the treated group Z = z that can be annotated. Given that we are trying to
choose the 7 that minimizes this variance bound, we only need to focus on the terms that depend
on 7 and can drop the rest. Supposing oracle knowledge of propensities and outcome models, the
optimization problem, for each z € {0, 1} is:

' El— ) 1. pnGx)z—s<B 0,1 budget
0<7T(z,na:1)11§11,V2,:r e, (X)m(z, X) |~ m(2,X) [ Z = 2] < B, 2 €{0,1} (z-budget)

Theorem 4. The solution to the within-z-budget problem is:

Uf(X) e?
(2, X) = V7= 0/e2 () B,
E [\/Ui(x)/eﬁ(X) | Z = z}
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2 G Proofs

683 Proof of Proposition[l]. We simplify the expression for the asymptotic variance of the ATE with
684 missing outcomes to isolate the components affected by the data annotation probability.

685 First the variance of the ATE defined in terms of the efficient influence function v, is
Z-R-[Y — ()] Z'-R-[Y - pu(X)]

z - 2! X

) xR ey e @)

Z-R-[Y — p.(X)] Z' - R-[Y — p(X)]
ez(X)'ﬂ-(ZaX> 62/(X)'7T(Z/,X)

V1 V2

Z-R-[Y — p.(X)] Z' - R-[Y — par(X)]
e-(X) 7m(z,X) e (X) 7z, X)

Varfy, — ¢, = Var[

= Var { + uz(X)} + Var { + o (X)}

— 2Cov [ + 112 (X), + (X)}

Vs
es6  For V3:
Z-R-[Y = p(X)] Z'-R-[Y = i (X)]
e (X) -7z, X)

|

E[Y|Z', R = 1,X] — 1/ (X)] + s (X)

=0

+/’LZ(X)7 +,uz'(X>:|

Z-R
_ l]E [M[E [Y|Z,R::1(,)X] — (X))

|

e (X)-w(z', X)

- T

Z-R
—E W[E [Y|Z,R = l,X] — ,ILZ(X)] +UZ(X)]

=0

Z' R )
i W[E[YZ’R:1’X}‘Mz'<X>]+sz(X)]]

+ MZ(X)]

=0

:E-ZRwyﬂMXW]_LMZ?Rmme:Lm—maﬂ

=0




688 Lastly, V; = V5. So the full variance term is

Va‘r[wz - ¢z’] =E {W : [Y - /J/Z(X)]2:| +E Lz/(X) '177(2/ X) [Y - MZ’(X)]2:|
+ B [(12(X) = 2 (X))*] = E [p2(X) = por (X))
N I S 2 1 (X2
_E LZ(X) e ) } {E Lz/(X) o ) }
- Var s (X) = ()|
689 Rewriting the bound from Hahn (1998), we get
VEE| e I O] 4B | e - 0P
o lex(X) - m(z, X) ? e (X) 7z, X) z
# Var () = ()
690 L]

691 Proof of TheoremM|. Finding the optimal 7 can be separated into sub-problems for each treatment
sz z € {0, 1}, since the objective and dual variables are separable across z. We first look at a solution
ees  for 7(z, X) for a given z:

. a2(X)
ﬂIg)r;)IE LZ(X)W(%X)} (z-budget)

st. E[n(2,X)| Z =2 <B,,
0<m(z,2) <1, V&

We define the Lagrangian of the optimization problem and introduce dual variables A for the budget
constraint and 7 and v for the the constraint that 0 < 7(z, X) < 1:

(Y — p=(X))?

‘:E{ez(mm

}4—)\2( [m(2,X) | Z=2]-B.)+ Y (v —1) —in(z,2))

zeX

Define the conditional outcome variance 02(X) = E [(Y — u(z, 1, X))?|X|. Note that by iterated

expectations,
aZ(X) }
L= E[ +M(En(z,X)| Z=2]—-B,)+ —1)—nin(z,x))
e.(X)m(z, X) ;{
e94 We can find the optimal solution by setting the derivative equal to 0. Since p(X =z | Z = 2) =
e-(z)p(x)
695 p(Z:z)
oL o*(X) ex(z)p(z)
S A P — 0, wh 0
675 X) e X)) Az =) T e = 0 e p() 2
2 X )\z _ Mz
:_20(2) n Ikl 2
e2(X)m?(2,X)  p(Z=2) plz)e.(x)
Therefore

o?(x)

m(z,x) = () (e 4 G
z p(Z=z) * p(z)e-(w)
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e96  Next we give a choice of A that results in an interior solution with 0 < 7 (z,z) < 1, so that vZ,nZ
697 can be set to 0 without loss of generality to satisfy complementary slackness.

We posit a closed form solution

7T*(Z X) _ V ai(X)/ei(X) . B
’ E [«/Uﬁ(X)/eﬁ(X) | Z = z} ’

698

699 Note that this solution is self-normalized to satisfy the budget constraint such that

Vi (X)/e2(x)
E B.|Z==z| =B,
E [Jaf(X)/eg(X) | Z = z}

2
700 This solution corresponds to a choice of A} = P(Z:Z)]E[VH[Z:Z]"Q“‘)/eZ(X)} /B2 in the prior
701 parametrized expression.

E[7*(z, X)I[Z = z]]

mA(z, X) = 7"(2, X)
o2(X) VoE(X)/e2 (x) B
- z
eg(X)p(zlz) E [\/Uf(X)/eﬁ(X) | Z = z}

702 We can check that the KKT conditions are satisfied at 7*(z, X') and A*. We note that since 7*(z, X)
703 is an interior solution then w.l.o.g we can fix v, 1, = 0 to satisfy complementary slackness.

oL
on*(z,X)

704 It remains to check that = 0, we have that:

or 2(x) E(XE [«/ai(xyez(X) | Z = zr E [\/02<x>/ez(x> | Z = zr o2(X)e, (X)

(e X) e (X) 2(X) - B2 - 2(X) - B2 =0

705 Thus we have shown that 7%(z, X) is optimal.

707 Proof of Theoreml[l]. Proceed as in the proof of Theorem 4]

708 The Lagrangian of the optimization problem (with a single global budget constraint) is:

c= ¥ | U S ) - 1) - ()
z€{0,1} reX
+E (1, X)I[Z = 1] + (0, X)I[Z = 0] — B)

Again by iterated expectations,

o2(X)

z

'CE{W

}%\(E [r(1, X)er (X) + (0, X)eo(X)]=B.)+ Y (vi(w(z,2)~1)~nm(z,2))

zeX

709 We can find the optimal solution by setting the derivative equal to 0.

o2
(‘37r(az£X) = €Z(X)(7§2’ X))p($) + Ap(z)e.(x) + vZ —nZ = 0, where p(x) > 0
R )
T TemeE R N e
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Therefore we obtain a similar expression parametrized in A, but this parameter is the same across
both groups under a global budget.

o?(x)

e2(z)(\ + )

7(z,z) =

We can similarly give a closed-form expression for a different choice of A yielding an interior solution,
so that we can set v, 2 = 0 without loss of generality.

2
E [H[Z = 1)/ X e x) +1[Z = 0]\/o§(X>/eg<x>}
BQ

Notice that this satisfies the normalization requirement that E[7* (1, X)I[Z = 1] + 7 (0, X)I[Z =
0]] < B, and similarly note that the partial derivatives with respect to 7(z, =) are 0. O

A:

Proof of Theorem[3]. The objective function arises from the asymptotic variance expression in [14]
Thm. 3]; it follows readily from following their proof of Thm. 3 with our analysis of the asymptotic
variance as in Proposition[I] The proof of the optimal solution follows our analysis in Theorem ]
with a few slightly different expressions, discussed as follows.

Then the Lagrangian is

/ Wf(x)dx e\ (//ﬂ'(z,m)Kh(z’ _ z)e(z’,x)dz’f(x)da:)

z,x)m(z,x)
Define the kernel localization of e(z, x) around z under the kernel function K} (2" — 2):

én(z,x) = /Kh(z’ — 2)e(2',x)dz’

Taking derivatives with respect to 7(z, ), we obtain the FOC

o2
Ve £ = T (0 4 ez, 0 f0) = 0

(z,2)m (2, 2)?
Solving the FOC, we obtain

_02 i, o2(z. ¢ elz,r
1) | n(za) =0 = W"(Z’m):% e(z(a;) | éh(@’ “7))

e(z,x)m(z,x)?

‘We conclude that

) Vo2(z,x) [ e(z, 1)

*
e én(z,x)

Proof of Theorem[]. Proof sketch.

The proof proceeds in two steps. The first establishes that the feasible AIPW estimator converges to
the AIPW estimator with oracle nuisances. It follows from standard analysis with cross-fitting, in
particular the variant used across batches.

Preliminaries In the analysis, we write the score function as a function of R in addition to other

nuisance functions:

[[Z; = 2] Ri(Yi — p (X))
e.(Xi)m(z, X;)

qu,i(Rive?ﬂuu‘) = +IU‘Z(XZ)
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. (t,k)

The AIPW estimator can be rewritten as a sum over estimators within batch-¢, fold-k, 7, 5y, as

follows:

2 K K
Farpw =YDk 3 —{«m, i) = doi(R. 6w ) =Dy SR
t=1 k=1

(t,3)ELy, bk t=1 k=1

We introduce an intermediate quantity. The realized treatments are sampled with probability 7 (X;),
R; ~ Bern(w(Z;, X;)). In the asymptotic framework, we study treatments sampled from a mixture
distribution over the two batches, R; ~ Bern(n*(Z;, X;)).

2

~ n = oA A A 2 A A A

TAIPW = E § tk E {7/)11 Rveaﬂ_ ,Uf) QZ)O Z(Rvevﬂ—nu)}
t=1 k=1 (t,3)EZy tk

We also denote the AIPW estimator with oracle nuisances, 7} ; pyy-, as

TAIPW ZZ ntk Z 7{¢1 i Rue ™ ,u') 7/}0,1'(?51'3637(_7#)}

t=1 k=1 (tiyez, bF

We study convergence within a batch—t, fold—k subset; the decompositions above give that conver-
gence also holds for the original estimators.

The first step studies the limiting mixture distribution propensity arising from the two-batch process
and shows that the use of the double-machine learning estimator (AIPW), under the weaker product
error assumptions, gives that the oracle estimator is asymptotically equivalent to the oracle estimator
where missingness follows the limiting mixture missingness probability. The latter of these is a

sample average of iid terms and follows a standard central limit theorem. Recalling that R; = IU; >
m*(X;)], we wish to show:

S Enlthei(R 6,7, 1)) — Enlth i (R, e, m, 1)) = 0p(n" %),

Next we show that the estimator with feasible nuisance estimators converges to the estimator with
oracle knowledge of the nuisance functions

t,k ~k,(t,k
vn( ,E\IP)W AI(PV[)/) —p 0.
The result follows by the standard limit theorem applied to the estimator with oracle nuisance
functions.
Step 1

Let R; = I[U; > 7*(Z;, X;)]. Restricting attention to a single treatment value z € {0, 1}, we want
to show that:

t=1 k=1 (ti)eTy "tk
_ ii Nk 3 1 IZ = ARi(Yi — 42(X,)  U[Zi = 2] Ri(Y; — a(Xa)) — 0, (n"1/?)
=1 1 n (t.4) €T Ntk éZ(XZ>7AT(Z, Xz) éZ(Xz)’]AT(Z, Xz) p

Without loss of generality we further consider one summand on batch-¢, fold-k data, the same
argument will apply to the other summands and the final estimator.

Note that by consistency of potential outcomes, for any data point we have that

11Z; = 2| Ri(Y; — fo(X3)) 1[Zi = 2|Ri(Y; — .(X0)) _ 1[Zi = 2)(Ri — Ri)(Yi(2) — f1.(X0))

Foreachbatcht =1,...,T andfold k =1, ..., K, according to the CSBAE crossfitting procedure,
we observe that conditional on Z_y, for a given batch and the observed covariates, the summands
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738 (namely R; = I[U; < #(=*)(X;)]) are independent mean-zero. The final estimator will consist of
734 the sum over batches and folds. We start by looking at the estimator over one batch ¢ and one fold k
735 and the rest follows for the other batches and folds.

tk (t,3)ETLy,
0 B (R =7 (2, X)) + (77 (2, X) = (2, X)) + (7(2, X3) = Ra) ) (Yi(2) = f1=( X))
nt’k (t,i)eIk éZ(XJﬁ'(Z,Xl)
e 3 MZi= o] ((Re =7 (2 X)) + (07 (X) — (2, X0)) + (72 X) = Ri)) (Yile) — (X))

(t,0)ETy,

736 Applying Cauchy-Schwarz to each of these terms, we obtain product error rate terms. For the second
737 term, we obtain that

1 " . .
Velor—— > (7*(Xi) — #(X0)(Yi(2) — (X))
tk (t,i)ETE
1 . 1 N
v | > (X)) — 7(X))2 S (ilz) - (X))
Ntk < . Ntk  “© .
(t,i)ELE (t,1)ETE
= veYor |7 (Xi) = 7 (Xi) [l 1Yi(2) = 2 (Xi) [,
= 0,(n"7) ( Assumption [7)

738 Analogously, we conclude that the first and third terms are o, (n~ 3 ), applying Cauchy-Schwarz to
739 each of them in turn.

740 Step 2 (feasible estimator converges to oracle)

741 If we look at one term for one treatment and datapoint in the above (the rest follows for the others),
742 we obtain the following decomposition into error and product-error terms:

+ (a (Xi) — 1 (X3))

1 B 1 )
él(Xz)ﬁ'(l,Xz) el(Xi)W(l,Xi)

ZiRi (Yi—p1 (X
(by £ 2 (X))

= (1 (Xi) — 1 (X5y)) (Ww - 1> + ZiRi(Yi — n(X;))(

. Z;R; ~ 1 1
~ . 1 1
+ ZiRi(pa (Xi) — Ml(Xi))(él(Xi)fr(l,Xi) - 61(3Q)7T(1,Xi))
(by iZiRiMl(Xi)(él(Xi);f(LXi) o el(Xi)}r(l’Xi)))

- (,LLl(Xz‘) — /:Ll(Xz)) (el()(ZZ)ir]?l)Q) B 1>

+ ZiRi (11 (X;) — pn(X3)) (ﬁ(1,Xi)—1(é1(X,-)*1 —er (X)) + e (X)) HFA, X)) T = (1, Xi)’l))
(by +1)

+ ZiRi(Y: = (X)) (71, X) @ (X) T — (X)) +ea(X0) T ERL XD T - (1, X))

We want to show that (t,k) (t,k)
A~ 3 ’\*7 b
nek(Tarpw — Tarpw) —» 0
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743 Now that we have written out this expansion for one datapoints, we can write out this expansion
744 within a batch-t, fold-k subset, and write out the cross-fitting terms for reference:

A (t,k) 2, (8, k)
Ve \Tarpw — TAIPW

! (k) ZiR;
= p(X5) — LX) —————— -1
\/mz‘:(tiz)ezk( 1) P ) (el(Xi)W(l,Xi)
1 -
+ S ZiRi(Y: — (X)) x
\/mi:(t,z)EIk
(= (= -1 o .
(7T( k)(l,XZ) 1(@& k)(Xz) —61(Xz) 1)+61(Xi) 1(77( k)(].,Xi)
1 -
Ntk Z’R’(“l(Xi)—Hg k)(laXz))x

745 Bound for third term:

\/7% > ZiRi(pn (X)) — /P () @EER @, x) e () T = e (X))
(1) €Ty

+e (X)) EER LX) T = w(1, X))
= \/r% Z ZiRiw P (1, X)) " (i () — AP @ (X)) - e(Xa) 7Y
" a(t,i) €Ty

+ ZiRiey (X)) (a (X)) — a57M () (ROP (1, X0) 7 - (1, X))

)
<Ot Y () - AP OE VT - k)
t 1:(t,3) €Ly,
(X)) — AP X)) EEP (LX) T - (LX) 7Y
< (A + Ve)(Snn_l/2

746 where the last inequality makes use of product error rate assumptions 5-6 and nuisance function
747 convergence rates from LemmaE} Thus, we find that this term is 0,(1/+/n)

748 Bound for the first term:

749 The key to bounding the first term is that cross-fitting allows us to treat this term as the average
750 of independent mean-zero random variables. We will bound it with Chebyshev’s inequality, which
751 requires a bound on the second moment on the summands in the first term.
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E| = (0~ 0000 (1)) 17 060

~var| ! TN /1 |
-V {mﬁ(t%:ezk(mm 00 (e 1) 2o 0

— L B[ - V00 (ZR) - 1)2 T (X))

i:(t,i) €Tk

(expectation of (m -1)?

=Ly LAl ) - V)

Ntk () ETh 61(Xi)71'(1,Xi)
1—veA 1 .~ (—k) 2 1
TUN men Z (1 (Xi) — i3 7 (X3)) :Op(m)
" a(t,i)ETy
752 where for the third equality, we use the fact that
Z;R; _ Z} R} ZiR; _ 1
8 Bl ey~ Y e B =El Gy ety 2amanaxy T e Y = Sy !

754 Since 1, > 0, we can conclude by Chebyshev’s inequality that the first term is op(n’l/ 2).

755 Bound for the second term: We bound the second term following a similar argument as above.

1 BV ) (#(K) A1 (x0T — ey (X)) 2 _
E[\/Wi;@%:ezk (ZZRZ(Y; ,ul(Xz))( (1, X)) (&7 7 (Xy) (X;) )) |I(_k),{Xl}}
! Ri(Y; — ) (er(X) " FR X, X)) T — (1, X)) i .
+E|:\/mi:(t§62k (Zsz(Y; Ml(X’L)) ( (Xz) ( (1>Xz) (17X'L) ))) |I(—k)7{Xl}:|
_Var[ > (ziRim —m (%) (FOPW X)) —e(x) ) |I<_k>,{xi}}
(i) ELE
+Val“[ — Z (ZiRi(Yi — 1 (X)) (61(Xi)_1(ﬁ(_k)(1vxi)7l _7T<17Xi)_1)) |I(k)7{Xi}:|
t i:(t,3)ELE
- 2 22
- v;w:gezf[(ﬁ”’(l,xi)1<é§"“><XZ-> =0 ™) G g T ()
1 —1,~(— -1 _1.\2 ZEF{Z2 9
+ K’k i'(t%:ez E|: (el(Xi) (7‘('( k)(l,Xi) - 7T(1,Xi) )) (ﬁ(_k)(1>Xi))2 (Y; - /.ll(Xi)) |I(7k)7 {Xz}:|
_ 1 €3 (Xa)m* (2, Xi) , AR T .
_tm:u%:ezk WEW(X’) | Zwys {XaHler V(X)) —en(X)™h)?
(X)) (TR (2, X)) L - “1.\2
SO o206 | 2, LXHED 1, = 01,07
<1 3 v g AP (X) T —en(X) D)2 + veda g 2R, X)) T — (1, X)) )2
Mk e (FRER(L, X)) l ' vz 7 o T
1

- OP( nlt+2re+2r. )

757 where the last inequality is because o%(X) is bounded above, 02(X) < B,:z, by Lemma Thus, by
758  similar argument to the first term, since this term is a sum of zero-mean random variables and since
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rx,Te > 0, we can apply Chebyshev’s inequality and get that this term is also 0,(1/+/n). This holds
for both treatments. Therefore,

~(t,k ~x,(t,k
v"t’k(Tﬁugw - TAI(PI/I)/) —p 0.
Putting these results from Step 1 and Step 2 together, along with the fact that ";L—’“ — %, gives the
theorem. O

H Additional Lemmas

H.1 Results appearing in other works, stated for completeness.

Lemma 1 (Conditional convergence implies unconditional convergence, from [10]). Lemma 6.1.
(Conditional Convergence implies unconditional) Let { X, } and {Y,,} be sequences of random
vectors. (a) If, for €y, — 0,Pr (|| Xm|l > €m | Yim) —pr 0, then Pr (|| X > €n) — 0. In
particular, this occurs if E [|| X ||? /€2, | Y] — pr 0 for some ¢ > 1, by Markov’s inequality. (b)
Let {A,,} be a sequence of positive constants. If || X,,|| = Op (A, conditional on Yy, namely,
that for any £, — o0, Pr (|| Xonl| > bmAm | Yim) = pr O, then | X, || = Op (Ay,) unconditionally,
namely, that for any £,, — 0o, Pr (|| X, || > €mAm) — 0.

Lemma 2 (Chebyshev’s inequality). Let X be a random variable with mean . and variance o>.

Then, for any t > 0, we have

o2

P(|X*,u|2t)§t—
Lemma 3 (Theorem 8.3.23 (Empirical processes via VC dimension), [48]]). Let F be a class of
Boolean functions on a probability space (Q, %, u) with finite VC dimension vc(F) > 1. Let
X, X1, Xs,..., X, be independent random points in 2 distributed according to the law p. Then

ve(F)

n

S3 (X) —ES(X)

E sup <C

fer

H.2 Lemmas

Lemma 4 (Convergence of 7). Assume that with high probability, for some large constant K,
le(X) —e(X)|l, < Kn~", ||6%(X) — (IQ(X)H2 < Kn~"e. Assume Assumption (8| Assume that

02(X) > 0 so that its inverse is bounded 1/0?(X) < ~,. Recall that Theoremgives that

. _ [o2(X)
(2, X) = eQ(X)B<E

z

-1
O’2 02
1[Z = 1] e%(())g +1[Z = 0] egg;b

17 (2, X) = 7 (2, X) |y = op(n~ e t/2),

o2(X o2(X ol (X
Proof. Leta = %,b: E {H[Z =1] e%((X)) +1[Z = 0] eg((X))}

Letc =

F2(X) 5 _ _ . /X _ . /B
%50, d=E, []I[Zf 1,/ 38 + 11z = 0],/ 25].
Then ||7*(z, X) — 7*(2, X)|l, = [la/b - c/d||, .

Positivity of 02(X) gives the elementary equality that ¢ — & = (“71’) + (d’c).
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785

Therefore, by triangle inequality and boundedness
- VEX)EX)|,
a%(X)H

I (2, X) = 7" (2, X) Iy < 70 ||V/0?(X)/e2(X
o [Bn (112 = 17/ 229D iz =0, |2 g iz = 17, | DD L yiz =)
1 e1(X) é3(X) et (X) e3(X)
@
786 Next we show that for z € {0, 1}
|VaEE/EX) - Vo /e < v X) = Vo2X)|| +lew(X) = (X))
3)
787 In the below, we drop the z argument
788 By the triangle inequality, boundedness of 1/é(X) < v, and of 0?(X) < B,
H Vo2(X)/e2(X) — \/o2(X)/e2(X H
_ H\/Uz )/E2(X) £ /o2 (X)/E2(X) — /o2 (X) /(X H
1 1
V| + B | - L
V)|, + Box e(X) e,
780 For the second term:
1 1 1 1
By ||— — || <Bo2|l— — == < Boeve|e(X) —é(X)|
e(X) e(X)ll, e(X)  e(X) |l ’
790 since 1/e(X) is Lipschitz on the assumed bounded domain (overlap assumption)
For the first term:
v [ Ve (X) - Vo) < veBas [|63(X) = o)),
791 since 02(X) is bounded away from 0, then (X) is Lipschitz.
This proves Equation (3), which bounds the first term of Equation (Z). For the second term, denote
2 2
oi(X) o3(X)
+1[Z = 0] ,
e3(X)

for brevity
Blo,e) =K, |1[Z = 1]
e (X)
and (o, e) to be the above with E [-] instead of E,, [-]. Then the second term of Equation (2)) is

792
), and decomposing further, that
B(o,e) + B(o,e) — B(o, e).

B(6,¢) = Blove
B(6,6) = Blore) = B(5,€) -
Note that by Cauchy-Schwarz inequality, and Lemma 3] (chaining with VC-dimension)
ve(F roz)
Tﬂ

X) = VoI X+ lle=(X) — ex(X),) +2C

B(6.6)=Blo.e) < 2w.B,» (|| /32

And another application of Lemma 3] gives that

ve(F UQ)

2 111z = 0],/ 25D | <20y —L=
1

0

794
B(o.¢) - Blo,e) = (B, —E) [11Z = 1]
Combining the above bounds with Equation (2), we conclude that ||7*(z, X) — #* (2, X)|, =

795

796 op(n~ min(re,ra,l/z)).
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I Additional Experiment, Details and Discussion

I.1 Additional details

All experiments using our full algorithm 2] were conducted on a 2021 13-inch MacBook Pro equipped
with a 2.3 GHz Quad-Core Intel Core i7 processor and 32 GB of memory. This setup was used to
train standard nuisance models using machine learning, evaluated our algorithm, and conduct the
analysis tasks reported in this paper. The average compute time for the experiments on real world
data with 20 trials was less than 30 minutes, while the simulated data with 100 trials took less than 60
minutes. Additionally, for all experiments, we allocate 55% of the data to batch 1 and 45% to batch 2.

‘We run the ML nuisance models, logistic regression, random forest and support vectors machines,
using popular Python packages (i.e. sklearn and scipy). We use logistic regression to estimate the
propensity scores. For the outcome and variance models, we use random forest with the following
hyperparameters:

* max_depth: None

* min_samples_leaf: 4
* min_samples_split: 10
* n_estimators: 100

e random_state: 42

We also use SVM model for the outcome models incorporating LLM predictions, and we use the
following hyperparameters:

e kernel: 'rbf’
« C:1

We chose these hyperparameters by doing a grid search over hyperparameters and chose the ones that
performed the best.

We run LLM calls on Together.Al since they provide enterprise-secure deployments of local models,
which is required for sensitive data. Because we need to use local LLMs for the real-world street
outreach data, we also use the same local LLMs for the other experiments. We use “Llama-3.3-
70B-Instruct-Turbo" for all experiments using LLMs. (Larger models provide effectively similar
performance).

To solve our optimization problem, we used the python package CVXPY and we specifically used
the Splitting Conic Solver (SCS) solver.

Once the experiments are run, we display the means and 95% confidence interval bands, obtained
through bootstrapping, in each of our figures.

1.2 Synthetic Data

Before running our batch adaptive algorithm, we split the data into a validation set (35% of data) in
which we estimate the ATE on. Then we use the remainder of the data to run our algorithm, which
splits that data into the two batches in the way we described previously.

Data Generating Process. We generate a dataset D = {X, Z,Y,Y(1),Y(0)}, of size 1000 and
where the true ATE 7 = E[Y(1)] — E[Y(0)] = 3. We sample each covariate X € R from
a standard normal distribution, X ~ A(0, I5). Treatment Z is drawn with logistic probability
7.(X) = (1 + eX2+X+0:5) "We define 02(X) as follows:

1.3 4 0.4sin(X1), 0]

3.5 + 0.3cos(X3), 0].

0?(X) := max

X
02(X) := max
Finally, the outcome models are defined as:
Y(0)=54+X; —2Xs+ ¢
Y(1) =Y(0) + 6y + €1,

[
[
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where ey ~ N(0,00(X)) and €; ~ N(0,01(X)). The observed outcomes are Y = Z - Y (1) + (1 —
7)-Y(0).

DIHTIUIULCTU vAawa

16 .
estimator

adaptive-plugin
14 adaptive-balance
random

12

10

MSE
o

0.1 02 03 04 05 06 07 08 0.9

Figure 4: Mean squared error between estimated ATE and true ATE averaged over 100 trials across
varying budgets.

log(IW)

01 02 03 04 05 06 07 08 09
B (budget contraint or fraction of labeled data)

Figure 5: Average confidence interval width averaged over 100 trials across varying budgets.

Results. We see the greatest advantage with our adaptive estimation for budgets between 0.1 and
0.4. While for larger budgets, even as the MSE for both estimators converge, the interval width for
the adaptive estimator is still relatively small. Adaptive annotation with a larger budget introduces
additional variation in inverse annotation probabilities, as compared to uniform sampling, which is
equivalent to full-information estimation at a marginally smaller budget. This regime of improvement
for small budgets is nonetheless practically relevant and consistent with other works.

To stabilize the estimation of the inverse annotation probabilities, we use the plug-in estimator
following eq. and the ForestReisz method to estimate the balancing weights [11]]. This
approach provides an automatic machine learning debiasing procedure to learn the Reisz representer,
or unique weights that automatically balances functions between treated and control groups using a
random forest model.
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Figure 6: Boxplots of ATE estimates compared to skyline 747 py When the labeling budget is the
entire dataset in red and the grey dotted line is 7.

1.3 Real-world Dataset Details

We provide further details about the treatment, covariates and outcomes for each dataset. Table |I|
and table 2] describe the variables in the retail hero and outreach datasets, respectively. We refer the
reader to [[17]] for further details about the dataset. For the outreach data, we constructed the binary
treatment variable by binning the frequency of outreach engagements for each client within the first
6 months of the treatment period. We checked for overlap in propensity scores and decided to use
treatments in the middle of the distribution as they had the most overlap. Additionally, by corollary [T}
our method does well even when the propensity scores do not have good overlap.

Variable Description Discrete Category
Outcome

Purchase whether a customer purchased a product [Yes,No]
Treatment

SMS communication whether a text was sent to encourage customer to con- [Yes, No]
tinue shopping

Covariates

avg. purchase avg. purchase value per transaction [1-263, 264-396, 397-611, >
612]

avg. product quantity  avg. number of products bought [<7,>7]

avg. points received avg. number of points received [<5,>5]

num transactions total number of transactions so far [<8,9-15,16-27, > 28]

age age of user [<45, > 45]

Table 1: Covariate, treatment, and outcome descriptions and discrete category definitions for Retail-
Hero dataset.

1.4 Additional Context on Street Outreach

In New York City alone, approximately $80, 000, 000 per year is invested in homeless street outreach
to an unclear effect. It is a time-consuming process, and it is unclear how the impacts of such intensive

32



863
864

Variable

Description

Discrete Category

Outcome

Placement

Treatment

Street outreach

Covariates
DateFirstSeen

Program

BelievedChronic

Gender

Race

Ethnicity
Age
Was311Call

Was911Call
Removal958
Housing applica-
tion

Service refusal

Important docu-
ments

Benefits
num contacts

max Placement

The greatest housing placement attained by the client
between 2019-2021

Binned frequency of outreach within the first three
months of 2019

Ordinal date when the client was first seen by the out-
reach team

Outreach or service program the client belonged to

Perceived by outreach workers as chronically homeless
individual
Perceived or disclosed gender of client

Perceived or disclosed race of client

Perceived or disclosed ethnicity of client
Perceived or disclosed age range of client

Whether outreach workers were responding to a 311 city
call

Whether 911 was called to the scene

Whether outreach workers were responding to removal
hotline call

Whether any mention of the housing application was
found in casenotes

Whether outreach worker documented that a client re-
fused their services in casenotes

Whether there was mention of any important docu-
ments (i.e. social security card, drivers license, etc,)
in casenotes

Whether there was any mention of social service benefits
in the casenotes (i.e. foodstamps, SSI)

number of engagements with an outreach worker prior
to 2019

maximum housing placement reached before 2019

[3:permanent housing, 2: shel-
ter/transitional housing, 1: other (e.g.,
hospital), O: streets]

[More outreach (3-15), Less out-
reach (1-2)]

NA

[Brooklyn Library, Grand Central
Partnership, Hospital to Home, K-
Mart Alley, Macy’s, MetLife, Penn
Post Office, Pyramid Park, S2H
Bronx, S2H Brooklyn, S2H Man-
hattan, S2H Queens, Starbucks, Su-
perblock, Vornado, Williamsburg Sta-
bilization Bed]

[Yes, No]

[Female, Male, Transgender]

[American Indian/Alaskan Native,
Asian, Black/African American,
Native Hawaiian/Pacific Islander,
White/Caucasian]

[Hispanic/Latino, Non-

hispanic/latino]

[< 30 years old, 30-50 years old, >
50 years old]

[Yes, No]

[Yes, No]
[Yes, No]

[Yes, No]
[Yes, No]

[Yes, No]

[Yes, No]
NA

[3:permanent housing, 2: shel-
ter/transitional housing, 1: other (e.g.,
hospital), O: streets]

Table 2: Covariates, treatment, and outcome descriptions and discrete category definitions for the
Street Outreach dataset.

individualized outreach might compare to other proposed approaches, such as those focusing on
placing entire networks of individuals together. While the nonprofit reports key metrics such as
number of completed placements in housing services, these can be somewhat rare due to length
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Figure 7: Distribution of street outreach engagements for client population.

of outreach, delays in waiting for housing, matching issues, etc; moreover, much of a successful
placement is out of the control of outreach due to highly limited housing capacities. Measuring
the impacts of street outreach on intermediate outcomes such as accessing benefits and services,
completing required appointments and interviews, can better reflect the immediate impacts of street
outreach.

I.5 Robustness Check on Street Outreach Data

To further demonstrate the utility of our approach, we run experiments on the Street Outreach data
with Y. To recap, our setup consists of covariates X, which includes client characteristics at baseline
and LLM-generated summaries of case notes recorded before the treatment period. In the main text,
we used LLMs to summarize casenotes prior to outreach during the interventional period, and used
them in zero-shot prediction of later placement outcomes. Here we also incorporate LLM-generated
summaries of case notes recorded post-treatment. These represent Y in our framework.

. -
030 Tabular Data 030 Tabular Data + LLM Predictions
0.25 0.25
0.20 0.20
% 0.15 015
=
010 010
0.05 0.05
0.00 0.00
01 02 03 04 05 06 01 02 03 04 05 06
£ 1 1
=
e 0
[2]
<
g -1
=
g2 -2
0.1 0.2 0.3 04 0.5 0.6 0.1 0.2 0.3 04 0.5 0.6
B (budget constraint or fraction of labeled data)
Estimator
adaptive-plugin adaptive-balance random

Figure 8: Street outreach data with post-treatment summaries only. Mean squared error and
95% confidence interval width averaged over 20 trials across budget percentages of the data. This
plot makes use of tabular data and the best-performing random forest outcome model (left) and
text-encoded outcomes using LLMs (right).
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Figure 9: Street outreach data with pre- and post-treatment summaries. Mean squared error
and 95% confidence interval width averaged over 20 trials across budget percentages of the data.
This plot makes use of tabular data and the best-performing random forest outcome model (left) and
text-encoded outcomes using LLMs (right).

In Figure[§|and Figure[9] we see that our results and analysis are preserved, and qualitatively similar.
Our adaptive approach still shows improvements over uniform random sampling. The MSE is tripled
when going from our adaptive estimators to random sampling in the tabular data. The MSE is five
times higher when going from adaptive to random sampling in the setting where we have added LLM
predictions using post-treatment summaries Y only and it is nearly doubled when using both pre- and
post-treatment summaries.

In this experimental setup, we find that tabular estimation with ground-truth validated codes overall
performs comparably as using more advanced LLM estimation. In this setup, we use placement
outcomes as the measure of interest, in part because it is (nearly) fully recorded in our dataset, and
hence we can consider it as having access to the “ground-truth" outcome in our methodological setup.
On the other hand, we also expect that casenotes are weakly informative of placement, as compared
with other outcomes we might seek to extract from casenotes (but do not have the ground-truth for).
Nonetheless, this validates the usefulness of the method, and we leave further empirical developments
for future work.

1.6 Budget Saved Plots

We compute the amount of budget saved due to our batch adaptive sampling approach. We find the
sample size required to achieve the same confidence interval width with batch adaptive annotations
using balancing weights (green) and RZ-plug-in (orange) compared to uniform random sampling.

I.7 Active Learning Baselines

Active learning is not a strong baseline and we argue this on theoretical and empirical fronts. Active
learning for regression can’t improve statistical rates of convergence, while the doubly-robust AIPW
estimator in causal inference can, so using AIPW is optimal. Additionally, using pool-based active
learning algorithms in AIPW blows up variance due to near-deterministic annotation probabilities.

Active learning models only target y,, but the outcome model contributes %

Avar, and our optimal annotation correctly balances the effect of all factors, but active learning only
considers the first.

to the causal
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Figure 10: RetailHero Data. Budget saved due to batch adaptive annotation. The reduction in
annotation sample size needed to achieve the same confidence interval width with batch adaptive

annotation on tabular data (left) and on tabular data + complex embedded outcomes (right) compared
to random sampling.
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Figure 11: Street Outreach Data. Budget saved due to batch adaptive annotation. The reduction
in annotation sample size needed to achieve the same confidence interval width with batch adaptive
annotation on tabular data (left) and on tabular data + complex embedded outcomes (right) compared
to random sampling.

In summary, active learning does something completely different for prediction error, suboptimal for
causal inference.

Empirically, we run active learning algorithms to learn p in AIPW and find that it fotally fails for
these reasons; if these objectives line up, it can do well, but in general, the prediction and causal error
objectives are different.

Theoretical comparison to active learning. As a reminder, we optimize:

AVararp = Var[CATE(X)|+ Y Bl oz (X) — =2 ]
z€{0,1} ) (Z X)

(The first term is the variance of CATE = E[Y (1) — Y (0)|X]; it is never observed.)

To go more in detail on our experiments 1) we compare to theoretical results in batch pool-based
active learning, Chaudhuri et al. [[7]] and Gentile et al. [22] (henceforth GWZ), which show that active
learning doesn’t improve convergence rates for regression, only multiplicative constants. Instead,
the AIPW estimator is optimal for causal estimation: if the outcome and propensity scores can only
achieve n~1/# convergence, the AIPW estimator is O(nil/ 2)-rate convergent, so AIPW can speed
up outcome model convergence rates. Therefore using the AIPW estimator is best, and random
sampling + AIPW is a stronger baseline than active learning.

To emphasize the different objectives, consider a simple example with two regions:
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* Region 1 (Poor Overlap), X > 0: Propensity score e(X) = 0.01; outcome noise
(71(X),0’0(X)=1.

* Region 2 (High Prediction Uncertainty), X < 0: Propensity score (X ) = 0.5; outcome
noise 01(X), 09(X) = 10 and the outcome model is complex.

Our method compares the ATE variance contribution in either region:

* Region 1: % =100

. : . V100 _
Region 2: %= =10

and samples in Region 1, where the causal variance is five times higher. Uncertainty-based active
learning samples in Region 2, to the detriment of causal variance.

Active Learning Empirical Evaluations. We evaluate our method against 2-3 active learning base-
lines for each experiment from two popular and well-established python packages (scikit-activeML
and modAL). Different active learning algorithms are appropriate for different outcome models, so
we choose the sampling strategy based on our modeling task, and we use pool-based active learning
matching our two-batch approach. (Note our approach is model-agnostic, while active learning
methods are not). For the classification tasks on our two real-world datasets (RetailHero/Street
Outreach), we use UncertaintySampling with margin sampling and least confident sampling as query
strategies, which both choose x with highest uncertainty measure based on classification probabilities

P(Y =1 | «) [40]. For the regression tasks, we use Expected Model Variance Reduction [12]],
Expected Model Change Maximization [6]], and Improved Greedy Sampling [51]]; these choose z
that maximizes greatest future variance reduction, maximally change the current model via the loss
gradient, and diversity in feature and output space, respectively.

We run each approach over 50 trials and take the average MSE. Across the board, we see that our
approach does better than the popular active learning strategies that are not optimized for causal
estimation.

Result Tables
Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
active-evar 0313 173  85.1 579  131e+03 3.87e+03 1.27e+04 5.03e+04 8.93e+05
active-greedy 6.13 799 369 852  1.99e+03 5.06e+03 1.33e+04 5.09e+04 2.95e+05
active-mvar 106 943 314 883  2.17e+03 5.70e+03 1.21e+04 3.87e+04 2.99e+05
adaptive-balance | 0.471 0.227 0.276 0.236 0.265 0.246 0.198 0.176 0.203
adaptive-plugin 1.7 1.17  0.831 0.196 0.83 0.449 0.507 0.93 0.481
random 899 456 219 154 1.7 1.61 1.46 0.956 0.987

Table 3: Averaged MSEs for Synthetic Data.

Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
active-margin 3.53e+03 0.047 0.087 125 8.38e+03 2.25e+06 1.49e+06 6.53e+05 1.43e+07
active-uncertain 16.1 389 704 759 115 112 168 250 402
adaptive-balance 0.004 0.002 0.002 0.001 0.001 0.001 0 0 0
adaptive-plugin 0.004 0.001 0.001 0.001 0.001 0 0 0 0
random 0.027 0.012  0.009 0.006 0.005 0.003 0.001 0.001 0

Table 4: Averaged MSEs for RetailHero Data.
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Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

active-margin 0.009 285 447 0.501 0449 0.044 0.099 0412 0.209
active-uncertain | 0.017 0.009 0.018 0.008 0.017 0.018 0.025 0.023 0.024
adaptive-balance | 0.046 0.031 0.013 0.006 0.005 0.003 0.004 0.003 0.002
adaptive-plugin | 0.045 0.025 0.027 0.012 0.006 0.004 0.004 0.006 0.001

random 0.113 0.061 0.037 0.045 0.014 0.012 0.011 0.003 0.001
Table 5: Averaged MSEs for Street Outreach Data.

Gentile et al. [22] chooses a point x maximizing a diversity measure, D(x,S) that quantifies model
uncertainty and is directly influenced by the observation noise, 0%(X). For general function ap-
proximation, they introduce a maximal disagreement measure over the regression function class F

SUp; e F Zze(s"f ((;()Z_)f (;()Z);)z —» where S is the set of already sampled points. If o%(z) is large for

some z, their disagreement measure is also large. Their diversity measure finds points where it is
possible for two functions, f, g, to have similar predictions on the already-labeled data S (a small
denominator) but different predictions for a new point x (a large numerator). When observation noise
o (x) is larger, many different functions can be considered "plausible" fits and can agree on S but
disagree elsewhere, leading to a high diversity score. In contrast, low noise tightly constrains all
plausible functions, resulting in low disagreement.

1.8 LLM Prompts

Prompt 1 (Retail Hero):

You are a user who used a website for online purchases in the past one year and want to
share your background and experience with the purchases on social media.

Attributes:

The following are attributes that you have, along with their descriptions.

{features}

# Personality Traits The following dictionary describes your personality with levels (High
or Low) of the Big Five personality traits.

{traits}

Your Instructions:

Write a social media post in first-person, accurately describing the information provided.
Write this post in the tone and style of someone with the given personality traits, without
simply listing them.

Only return the post that you can broadcast on social media and nothing more.

{post}

Prompt 2 (Street Outreach Casenote Summaries) :
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Objective: Your task is to summarize a trajectory of case notes of a client in street home-
lessness outreach, focusing on client interactions, the challenges they are facing, goals they
are working towards, and progress towards housing placement. These are all from the same
client. This summary is designed to help caseworkers and organizations assess client history
at a glance, remind of prior personal information and important challenges mentioned (like
veteran status or other information that is relevant for eligibility for housing, medical issues,
and status of their support network), allocate resources effectively, and improve support for
individuals experiencing chronic homelessness.

Context: {task_context}

The summary should be a concise overview of the client’s situation, highlighting key points
from the case notes. It should not include any personal opinions or assumptions about
the client’s future or potential outcomes. The goal is to provide a clear and informative
summary that can be used by caseworkers and organizations to better understand the client’s
history and current status.

Here are the case notes for batch {batch_num} of {total_batches}:

— START NOTES —

{notes}

— END NOTES —

Based *only* on the notes provided above for this batch, generate a comprehensive
summary focusing on key events, decisions, and progress during this specific period.
The target length is approximately {target_length} words. Ensure the summary strictly
reflects the content of these notes.
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Prompt 2 (Street Outreach Classification) :

You are an expert analyst specializing in predicting long-term housing stability for individ-
uals experiencing homelessness. Your task is to analyze client data, including demographic
information, historical interactions, and case note summaries, to predict the **most stable
housing placement level** the client is likely to achieve and maintain over the **next two
years**.

**nput Data:**

You will be provided with the following information for each client:

**Prediction Task:**

Based *only* on the provided attributes and the case notes summary, predict the single
most stable housing placement level the client is likely to maintain over the next two years.
**Housing Placement Levels (Prediction Output):**

Your prediction must be an integer between 0 and 3:

e **(**: No stable placement (remains on the street or in emergency shelters).

o **]*%: Transitional Housing (temporary placement with support, aiming for
longer-term housing).

o *#¥2%*: Rapid Re-housing (time-limited rental assistance and services).

o #¥3%*: Permanent Supportive Housing (long-term housing with ongoing support
services).

**Reasoning Guidance (Internal Thought Process - Do Not Output This): **

» Consider factors that promote stability: housing application progress, possession
of documents, benefit acquisition, engagement with services (unless contacts
are excessive without progress), prior successful placements (even if temporary),
positive recent developments in the case notes.

 Consider factors that hinder stability: chronic homelessness indicators, frequent
service refusals, mental health crises (Removal958), lack of documents/income,
lack of prior placements, patterns of instability noted in the summary.

» Weigh the structured data against the nuances presented in the case note summary.
The summary provides vital context.

**Client Information:**

**Prediction:**

Provide *only* the predicted number (0, 1, 2, or 3) as the output. Do not include any other
text, explanation, or formatting.

**Examples:** {examples}
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