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Abstract

Estimating the causal effects of an intervention on outcomes is crucial to policy and1

decision-making. But often, information about outcomes can be missing or subject2

to non-standard measurement error. It may be possible to reveal ground-truth3

outcome information at a cost, for example via data annotation or follow-up; but4

budget constraints entail that only a fraction of the dataset can be labeled. In this5

setting, we optimize which data points should be sampled for outcome information6

and therefore efficient average treatment effect estimation with missing data. We do7

so by allocating data annotation in batches. We extend to settings where outcomes8

may be recorded in unstructured data that can be annotated at a cost, such as text or9

images, for example, in healthcare or social services. Our motivating application is10

a collaboration with a street outreach provider with millions of case notes, where11

it is possible to expertly label some, but not all, ground-truth outcomes. We12

demonstrate how expert labels and noisy imputed labels can be combined into a13

doubly robust causal estimator. We run experiments on simulated data and two14

real-world datasets, including one on street outreach interventions in homelessness15

services, to show the versatility of our proposed method.16

1 Introduction17

Evaluating causal effects of a treatment or policy intervention is a challenging problem in its own18

right, but an added layer of complexity comes when there is missing data. In this paper, we consider19

a setting of observational causal inference with missing outcomes, where it is possible to obtain20

information about ground-truth outcomes at a cost, via expert annotation or follow-up. Recent tools21

in machine learning can label outcomes, but for inferential goals, this can lead to error-prone and22

biased outputs. With a small budget, one can obtain valid causal effects on a small subsample without23

using additional contextual information or imputation, but this can be high-variance. We build on24

doubly-robust causal inference with missing outcomes to determine where to sample additional25

outcome annotations to minimize the asymptotic variance of treatment effect estimation.26

Our methodology is motivated by a collaboration with a nonprofit to evaluate the impact of street27

outreach on housing outcomes, where rich information about outcomes of outreach are embedded28

in case notes written by outreach workers. Street outreach is an intensive intervention; caseworkers29

canvass for and build relationships with homeless clients and write case notes after each interaction.30

These notes are a noisy view on the ground-truth of what happens during the open-ended process of31

outreach. Was a client progressing on their housing application or their goals, or were they facing32

other barriers? In our experience, outreach workers can extract structured information, from the33

unstructured text of case notes. They can provide context and recognize important milestones. But34

it is simply impossible for under-resourced expert outreach workers to label millions of case notes.35

While modern natural language processing tools can facilitate annotation at scale, they are often36
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inaccurate. Given an annotation budget constraint, how can we strategically collect ground truth37

data, such as by assigning expert annotation, while leveraging additional data sources or weaker38

annotation to optimize causal effect estimation? In this paper, we develop general methodology for39

optimizing data annotation and we validate our methodological innovations using outcomes with40

plausible ground-truth information on housing placement.41

This problem is not unique to the social work domain and can generally apply to cases of measurement42

error with misaligned modalities (such as text or images), where it is possible to query the ground43

truth directly for some portion of the data at a cost. In some settings, we can query other data44

sources for ground-truth labels directly, while in other settings, outcomes may be recorded in complex45

information such as text or images. However, due to dimensionality issues, these cannot be directly46

substituted for ground-truth outcomes Y . Weaker imputation of auxiliary information is feasible at47

scale, but second-best due to inaccuracies. For example, when an outcome variable, wages, is only48

observed from self-reported working individuals, surveyors could conduct follow-up interviews with49

participants to obtain wage data, but this can be expensive. Noisy measures from the same dataset50

(such as last year’s wages) or transporting prediction models from national wage databases can be51

predictive. Such trade-offs between expert annotation and scalable, weaker imputation are pervasive52

in data-intensive machine learning, for example as in the recent “LLM-as-a-judge" framework [56].53

This study makes the following contributions: we propose a two-stage batch-adaptive algorithm for54

efficient ATE estimation from complex embedded outcomes. We derive the expert labeling probability55

that minimizes the asymptotic variance of an orthogonal estimator [4]. We design a two-stage adaptive56

annotation procedure. The first stage estimates nuisance functions for the asymptotic variance on the57

fully observed data. We use the estimates and functions from the first stage to estimate the optimal58

labeling probabilities in the second stage. The final proposed estimator combines the model-annotated59

labels and the expert labels in a doubly robust estimator for the ATE. We show that this two-stage60

design achieves the optimal asymptotic variance with weaker double-machine learning requirements61

on nuisance function estimates. We leverage our closed-form characterizations to provide insights on62

how to improve downstream treatment-effect estimation. We validate and show improvements upon63

random sampling on semi-synthetic and real-world datasets from retail and street outreach.64

2 Related work65

Our model is closest to optimizing a validation set for causal inference with missing outcomes,66

which can be broadly useful for causal inference with non-standard measurement error. Typical67

distributional conditions for non-standard measurement error [38] are generally inapplicable to text68

or images, our motivating application. The most related work is that of [20, 58], which leverages the69

fact that sampling probabilities for data annotation are known to obtain doubly-robust estimation via70

causal inference. These works generally address non-causal estimands such as mean estimation and71

M-estimation (therefore without discussion of treatment effect estimation). Our work follows a key72

approach in adaptive experimental design of optimizing the semiparametric efficiency lower bound,73

whether via batch or full adaptivity. Hahn et al. [24] studied a two-stage procedure for estimating74

the ATE with a proportional asymptotic, and show asymptotic equivalence of their batched adaptive75

estimator to the optimal asymptotic variance. [36] and [46] also considers a double machine learning76

version of [24], though our estimator is different and we further characterize the closed-form optimal77

sampling probabilities, yielding additional analysis. Other variants in the same framework include78

Uehara et al. [46] which optimizes treatment choice or Cook et al. [15] which provides anytime-valid79

inference for full adaptivity. Armstrong [1] proves the semiparametric efficiency lower bound cannot80

be beat in general by adaptive designs; so this algorithmic paradigm is the right fit for our goals of81

efficient statistical inference. Crucially, all these other papers focus on allocating treatments, while82

we allocate the probability of revealing the outcome for a datapoint (i.e, via expert annotation); this83

gives us a different optimization problem and different estimation challenges.84

Regarding the use of auxiliary information in causal inference, many recent works have studied85

the use of surrogate or proxy information. Although our context Ỹ aligns with colloquial notions86

of surrogates or proxies, recent advances in surrogate and proxy methods refer to specific models87

that differ from our direct measurement/costly observation setting [3, 32, 20]. Surrogates often88

estimate an outcome that is impossible to measure at the time of analysis [3], such as long-term89

effects; while we can obtain ground truth outcomes from expert data annotators feasibly but under90

a binding budget constraint. We do leverage that we can design the sampling probabilities of91
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outcome observations (ground-truth annotation) or missingness for doubly-robust estimation, like92

some methods in the surrogate literature or data combination [53, 32]. But we treat the underlying93

setting as a single unconfounded dataset with missingness. The different setting of proximal causal94

inference [44, 16] seeks proxy outcomes/treatments that are informative of unobserved confounders;95

we assume unconfoundedness holds. Recently, [9] study the “design-based supervised learning"96

perspective of [20] specifically for proxies for unobserved confounding.97

Many exciting recent works study adaptive experimentation under different desiderata, such as full98

adaptivity, in-sample decision regret or finite-sample, non-asymptotic guarantees [21, 54, 15]. Such99

designs are closely related to covariate-adaptive-randomization; the recent work of [41] studies100

delayed outcomes. These desiderata are less relevant to our specific setting of data annotation: it’s101

easier to leverage human annotators with batch annotation rather than full adaptivity, and in-sample102

regret is less meaningful for data annotation than for treatment allocation. Technical tools from these103

other works could be applied to our setting as well.104

3 Problem setup105

Our problem setting is causal inference with missing outcomes. We discuss extensions to a setting106

where outcomes are measured in a high-dimensional contextual variable Ỹ , such as images or text.107

In both cases, we assume the ground-truth data-generating process follows that of standard causal108

inference. A data instance (X,Z, Y (Z)), includes covariates X ∈ X , a binary treatment Z ∈ {0, 1},109

and potential outcomes Y (Z) in the Neyman-Rubin potential outcome framework. We only observe110

Y (Z) for the realized treatment assignment Z and assume the usual stable unit value treatment111

assumption (SUTVA). If the ground-truth data were observed, we would have a standard causal112

inference task at hand, so the key challenge is its missingness. We let R ∈ {0, 1} denote the presence113

(R = 1) or absence (R = 0) of the outcome Y . Therefore, our observational dataset for estimation is114

(X,Z,R,RY ), i.e. with missing outcomes. For causal identification, we generally proceed under the115

following assumptions:116

Assumption 1 (Treatment ignorability [25, 27, 35]). Y (Z) ⊥⊥ Z | X.117

Assumption 2 (R-ignorability [37, 4]). R ⊥⊥ Y (Z) | Z,X118

Assumption 1, or unconfoundedness, posits that the observed covariates are fully informative of119

treatment. It is generally untestable but robust estimation is possible in its absence, e.g. via sensitivity120

analysis and partial identification [55, 34]. On the other hand, Assumption 2 is true by design as long121

as the full corpus of datapoints needing annotation is available from the outset, since we choose what122

datapoints are annotated for ground-truth labels based on (Z,X) alone.123

Although one approach is completely random sampling, we are particularly concerned with how can124

we select datapoints for expert annotation for optimal estimation? We assume the budget is limited125

for data annotation, but we have control over the missingness mechanism, i.e. assigning data for126

expert annotation. Define the propensity score and annotation (outcome observation) probability:127

ez(X) := P (Z = z|X) (propensity score), and π(Z,X) := P (R = 1|Z,X) (annotation probability).

We assume positivity/overlap; that we observe treatment and outcome with nonzero probability.128

Assumption 3 (Treatment and annotation positivity [25, 27, 35]). ϵ < π(z,X) ≤ 1, z ∈ {0, 1} and129

1/ν < e1(X) < 1− 1/ν, ν > 0130

We define the outcome model, which is identified on the R = 1 data by Assumption 2, and the131

conditional variance:132

µz(X) := E[Y | Z = z,X] =
asn.2

E[Y | Z = z,R = 1, X]

σ2
z(X) := E[(Y − µz(X))2 | Z = z,X = x].

Batch allocation setup. We consider a two-batch adaptive protocol, where n iid observations are133

randomly split into two batches. We consider a proportional asymptotic regime where the budget and134

size of first batch n1 are fixed proportions κ ∈ (0, 1) of the dataset size.135

Assumption 4 (Proportional asymptotic [24, 36]). limn→∞
n1

n = κ.136
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In the first batch, we randomly assign annotations according to a small but asymptotically nontrivial137

fraction of the budgets. In the first batch, outcomes are realized and observed, and the nuisance138

models (µ̂z(x), êz(x), σ̂
2
z(x)) are trained on the observed data. We solve for optimal annotation139

probabilities π∗ and sample data in the second batch so that the mixture distribution over outcome140

observations achieves π∗. We combine the results from both batches and use the data for ATE141

estimation, which we describe in the next section.142

Extension to Missing Outcomes with Context. We extend our missing outcome framework to143

cases where we have additional contextual measurements of outcomes. In this setting, our observed144

data includes Ỹ , a widely available “complex-embedded outcome", i.e. a ground-truth outcome145

embedded in more complex information, such as images, text, etc. Though Ỹ is observable for every146

datapoint, it is not usable for direct estimation. We assume causal effects operate through a latent147

true outcome Y , of which Ỹ is a complex observation (but not deterministic function) thereof. We148

assume an exclusion restriction that the direct effect of treatment passes through the latent outcomes149

only[25, 49].150

Assumption 5 (Complex embedded outcomes: exclusion restriction[42, 28]).

Ỹ (Z) = g(Y (Z), X) + ϵ, ϵ ̸= 0 a.s.; and Z ⊥ Ỹ | X,Y (Z)

We don’t make distributional assumptions on the measurement error mechanism, appealing instead151

to data annotation/validation measurement which we assume reveals the ground-truth outcome Y ,152

although ultimately predicting Y from Ỹ just needs to be consistently estimable, discussed later on.153

This assumption asserts that treatment assignment does not affect Ỹ beyond affecting latent outcomes154

Y . For example, in a medical setting, it holds if treatment affects underlying biological phenomena,155

e.g. makes a tumor smaller, these phenomena are recorded via clinical notes or raw pixel images, and156

treatment doesn’t change textual or visual expression. It assures that predicting latent outcomes Y157

from Ỹ does not introduce collider bias, and is testable, i.e. after the first batch of data.158

In this setting, we allow the outcome model to depend on the complex embedded Ỹ , and denote159

µZ(X, Ỹ ) := E[Y |Z,X, Ỹ ]. There are a few variants of estimating this from data. We denote an160

ML-prediction based on Ỹ (with X covariates and treatment information) as fz(X, Ỹ ); for example161

zero-shot prediction using an LLM or pretrained model. Variants include calibrating zero-shot162

predictions to ground-truth E[Y | Z,R = 1, fz(X, Ỹ )], predicting Y and including ML predictions163

as a covariate alongside X , or various ensembling combinations thereof. This last approach is164

suggested in Egami et al. [20]. Later on, we find that in practice, choosing the outcome model that165

reduces the mean squared error leads to better numerical results.166

4 Method167

This section outlines our proposed methodology. We first recap the AIPW estimator for the missing168

outcomes case and provide the lower bound for the asymptotic variance. Then we consider a global169

budget optimization problem and solve for the optimal π∗(z, x). (In Appendix F we discuss a very170

similar case of treatment-specific budget). We describe feasible estimation of the ATE by the AIPW171

estimator (with missing outcomes).172

Recap: Optimal asymptotic variance for the ATE with missing outcomes. Our target parameter173

of interest is the ATE of a binary treatment vector Z on an outcome Y .174

τ = E[Y (1)− Y (0)].

Bia et al. [4] derives a double-machine learning estimator for ATE estimation with missing outcomes:175

E[Y (z)] = E[ψz],where ψz =
I[Z = z]R(Y − µz(X))

ez(X)π(z,X)
+ µz(X), and τAIPW = E[ψ1 − ψ0].

The outcome model µz(X) is estimated on data with observed outcomes, since SUTVA and assump-176

tion 2 give that E[Y (z)|X] = E[Y |Z = z,X] = E[Y |Z = z,R = 1, X].177

The focus of our work is to optimize the semiparametric efficient asymptotic variance (proven in [4]),178

which is closely related to the ATE of [23].179
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Proposition 1. The asymptotic variance (AVar) is:180

AVar = Var[µ1(X)− µ0(X)] +
∑

z∈{0,1} E[
σ2
z(X)

ez(X)π(z,X) ]

The first term is independent of π; we focus on optimizing the second term with respect to π.181

Remark 1. We state the results for the base model, though they extend directly for the case with con-182

texts. With contexts, by marginalizing over Ỹ , the analogous expressions use the estimators µ̂z(X, Ỹ )183

instead of µ̂z(X) whereas σ̂2
z(X) stays the same (sampling probabilities depend only on (Z,X)184

and just correspondingly marginalizes over Ỹ , σ̂2
z(X) = E[(Y − µ̂z(X, Ỹ ))2 | Z = z,X = x]. In185

the setting with noisy measurements Ỹ , under the exclusion restriction Assumption 5, the mean186

potential outcome is identified by regression adjustment: E[Y (z)] = E[E[Y |Z = z,R = 1, X, Ỹ ]] =187

E[E[Y |Z = z,R = 1, X]].188

Characterizing the optimal π∗(z, x). We first characterize the population optimal sampling189

probabilities π∗(z, x), assuming the nuisance functions are known. We optimize the asymptotic190

variance over π under a sampling budget. We consider a global budget constraint B ∈ [0, 1] over191

all annotations. The setting is meaningful when the budget binds, B ≪ 1, which is still practically192

relevant.193

min
0<π(z,x)≤1,∀z,x

∑
z∈{0,1}

E
[

σ2
z(X)

ez(X)π(z,X)

]
s.t. E[π(Z,X)] ≤ B (OPT (global budget))

Note that in the global budget constraint, E[π(Z,X)] = E[π(1, X)I[Z = 1] + π(0, X)I[Z = 0]].194

We can characterize the solution as follows.195

Theorem 1. The solution to the global budget problem is:196

π∗(z,X) =

√
σ2
z(X)

ez(X) B
(
E
[√

σ2
1(X) +

√
σ2
0(X)

])−1

Note that sampling probabilities increase in the conditional variance/uncertainty of the model, σ2(X),197

and the inverse propensity score. Characterizing the closed-form solution is useful for our analysis198

later on, in establishing convergence of estimation to the limiting optimal data annotation probabilities.199

For the proof, see Appendix G200

Feasible two-batch adaptive design and estimator. Our characterizations above assume knowl-201

edge of the true σ2
z(x) and the propensity scores ez(x). Since these need to be estimated, we leverage202

the double machine learning (DML) framework and conduct a feasible two-batch adaptive design203

[10, 4]. Cross-fitting with iid data [10] splits the data, estimates nuisance functions on one fold, and204

evaluates the estimator on a datapoint leveraging nuisance functions from another fold of data.205

We leverage a variant [36] that introduces folds within each batch of data. Figure 3 summarizes the206

cross-fitting approach; we leave details to the appendix. First, we split the observations in each batch207

t = 1, 2 into K folds (e.g. K = 5). Let Ik denote the set of batch and observation indices (t, i)208

assigned to fold k and batch t. Then within each fold, we estimate nuisance models on observations in209

batch 1. We use cross-fitting to optimize the sampling probabilities, i.e. π∗,(−k) optimizes asymptotic210

variance with out-of-fold nuisances e(−k). Finally we adaptively assign annotation probabilities in211

batch 2. This ensures independence, that is the nuisance models only depend on observations in the212

previous batch from the same fold. The adaptive procedure with CSBAE cross-fitting procedure to213

estimate τAIPW is summarized in Algorithm 1. See Algorithm 2 for a full description.214

Therefore the cross-fitted feasible estimator takes the form τ̂AIPW =215
1
n

∑2
t=1

∑K
k=1

∑
(t,i)∈Ik

ψ̂1,i − ψ̂0,i where216

ψ̂z,i =
I[Zi = z]Ri(Yi − µ̂

(−k)
z (Xi))

ê
(−k)
z (Xi)π̂(−k)(z,Xi)

+ µ̂(−k)
z (Xi). (1)

5 Analysis217

In this section, we provide a central limit theorem (CLT) for the setting where annotation probabilities218

are assigned adaptively and nuisance parameters must be estimated. We provide some insights to219

improve estimation as well as an extension to settings with continuous treatments.220
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Algorithm 1 Batch Adaptive Causal Estimation With Complex Embedded Outcomes

Input: Data D = {(Xi, Zi)}ni=1, sampling budget B ∈ [0, 1]

Step 1: Partition D into 2 batches and K folds D(k)
1 ,D(k)

2 for k = 1, . . . ,K

Step 2: On Batch 1, sample R1 ∼ Bern(B). Estimate nuisances within each k-fold µ̂(k)
z (X, Ỹ ),

σ̂
2(k)
z (X), and ê(k)z .

Step 3: On Batch 2, folds k = 1, . . . ,K, obtain π∗ by optimizing eq. (OPT (global budget)),
plugging in nuisance estimates. Solve for π̂(k)

2 (Xi) =
1

1−κ (π
∗(Xi)− κπ1)

Step 4: On Batch 2, sample R2 ∼ Bern(π̂
(k)
2 (Xi)) and obtain outcomes.

Step 5: Pool data across batches and estimate ATE with AIPW estimator in eq. (1) (or eq. (RZ-
plug-in.), or balancing weights) and out of fold nuisances.

Denote ∥·∥2 = (E[(·)2])1/2. The following assumptions can also be found in [36, 10, 49, 46, 4].221

Assumption 6 (Consistent estimation and boundedness). Assume bounded second moments of out-222

comes and errors, ∥Y (z)∥2 ≤ C1, ∥µz(X)∥2 ≤ C2, ∥(Y − µz(X))∥22 ≤ 4Bσ2 , ∀z; and consistent223

estimation E[(µz(X)− µ̂z(X))2] ≤ Kµn
−rµ for some constants C1, C2, Bσ2 ,Kµ, rµ ≥ 0.224

Assumption 7 (Product error rates [4]). For nuisance functions, assume the products of225

their mean-square convergence rates vanish faster than n−1/2: (i)
√
n ∥µ̂z(X)− µz(X)∥2 ×226

∥π̂(z,X)− π(z,X)∥2
p→ 0; (ii)

√
n ∥µ̂z(X)− µz(X)∥2 × ∥êz(X)− ez(X)∥2

p→ 0.227

Assumption 8 (VC dimension for nuisance estimation[2]). The nuisance estimation of ez , and σ2
z228

occurs over function classes with finite VC-dimension.229

Assumption 9 (Sufficiently weak dependence across batches).√√√√ 1

nt,k

∑
i:(t,i)∈Ik

∥∥∥E [ψ̂i(R; ê(−k), π̂(−k), µ̂(−k))− ψi(R; e(−k), π(−k), µ(−k)) | I(−k), Xi

]∥∥∥2 = op(n
− 1

4 )

Theorem 2. Given Assumptions 1 to 3, suppose that we construct the feasible estimator τ̂AIPW230

(Equation (1)) using the CSBAE crossfitting procedure in Figure 3 with estimators satisfying Assump-231

tions 6 and 7 (consistency and product error rates). Then232

√
n(τ̂AIPW − τ) ⇒ N (0, VAIPW ),

where VAIPW =
∑

z∈0,1 E
[

σ2
z(X)

ez(X)π∗(z,X)

]
+Var [µ1(X)− µ0(X)] . Here τ is the ATE.233

For the proof, see Appendix G. The main result from Theorem 2 shows that the batch adaptive design234

and feasible estimator has an asymptotic variance equal to the variance of the true ATE under missing235

outcomes and the optimal π∗. This implies that our procedure successfully minimizes the asymptotic236

variance bound. With this, we can also quantify the uncertainty of our treatment effect estimates by237

producing level-α confidence intervals for τ that achieve coverage with 1− α probability.238

Insights and improvements239

When is our method much better than uniform sampling? Prior works of [20, 59], though they240

do not study treatment effect estimation, obtain valid inference with uniform sampling (i.e. with241

the budget probability). When do optimized data annotation probabilities improve upon uniform242

sampling? To answer this, we analyze the relative efficiency.243

Corollary 1 (Relative efficiency). The relative efficiency of estimation with optimized sampling
probabilities π vs. uniform sampling, for the same budget, is

RelEff =
AVar of estimation with π∗

AVar of estimation with uniform prob. B
=

1
B

(
E
[√

σ2
1(X) +

√
σ2
0(X)

])2
+Var[τ(X)]

1
BE

[
σ2
1(X)

e1(X) +
σ2
0(X)

e0(X)

]
+Var[τ(X)]

By construction, RelEff ≤ 1; the smaller it is, the larger the improvement from our method. The244

above expression reveals our method improves further as the budget grows smaller (B ↓) or if there245
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are imbalanced propensities where e1(X) close to 0 or 1. On the other hand, improvements from our246

method are limited for large budgets, B → 1, or when variances in treated/control group are similar.247

Direct estimation of (eπ∗)−1 mitigates estimation stability. It is well known that estimating248

propensities and then inverting estimates can be unstable in practice. This problem is doubly-so249

for causal inference with missing outcomes. We find many papers on adaptive treatment allocation250

note this challenge and mix their optimized allocation probabilities with uniform in the experimental251

sections [18, 59, 15]; just as many papers in causal inference clip the weights in practice [50].252

Our near closed-form solution reveals that it’s not necessary to estimate propensity scores for the253

final ATE estimation on the full dataset (though it is needed to estimate π∗). At π∗, observe that1254

(ez(x)π
∗(z, x))−1 ∝

√
σ2
z(x)

−1 and is independent of the propensity score ez(x), so estimating it255

directly can directly exploit its lower statistical complexity. In causal inference and covariate shift,256

many methods (such as balancing weights) avoid the plug-in approach for inverse propensity methods257

in favor of direct estimation of the inverse propensity score [45, 60, 26, 30, 31, 13, 5]. We recommend258

estimation on the final dataset with such approaches or other types of direct estimation. For example,259

even estimation of P (Z = z,R = 1 | X) directly helps:260

ψz(e, π
∗) = I[Z=z,R=1]

P (Z=z,R=1|X) (Y − µz(X)) + µz(X). (RZ-plug-in.)

Extension to continuous treatments. Our analysis applies readily to other static causal inference
estimands, such as those for continuous treatments. We introduce the analogous estimator and the
optimal sampling probabilities. Let e(z,X) = P (Z = z | X) be the generalized propensity score
and µ(Z,X) = E[Y | Z,X]. The estimator for continuous treatments replaces the indicator function
I[Z = z] with a local kernel function smoother localizing around z, Kh(Z − z).2The following
estimator for continuous treatments with missing outcomes is a direct extension of [33, 14]:

ψ(e, µ) = µ (z,Xi) +
Kh(Zi−z)I[R=1]
e(z,Xi)π(z,Xi)

(Yi − µ (z,Xi)) ; E[Y (z)] = E[ψ(e, µ)]

We consider the same assumptions required as in [14], standard in kernel density estimation analysis.
The optimal sampling probabilities minimize the part of the asymptotic variance of E[Y (z)] depending
on π, subject to a budget constraint:

π∗(z, x) ∈ argminπ(z,x)

{
E
[

σ2(z,X)
e(z,X)π(z,X)

]
: E[π(z,X)Kh(Z − z)] ≤ B

}
,

Theorem 3. Define the kernel localization of the generalized propensity score e(z, x) around z under
the kernel function Kh(z

′ − z): ẽh(z, x) =
∫
Kh(z

′ − z)e(z′, x)dz′. Then

π∗(z, x) ∝
√

σ2(z,x)

e(z,x)

√
e(z,x)
ẽh(z,x)

The optimal sampling probabilities are quite similar, with the appropriate analogous conditional261

variance and generalized propensity score, up to a factor (e(z, x)/ẽh(z, x))1/2 from the implications262

of kernel-smoothing treatment for sampling budget. Consider a box kernel for simplicity, then263

ẽh(z, x) is the average of e(z, x) over the interval e(z − h, x), e(z + h, x).264

6 Experiments265

We evaluate our batch adaptive allocation protocol on synthetic and ground-truthed real-world datasets.266

We compare our method to a baseline (uniform random sampling in the same doubly-robust estimator)267

and a skyline (running the estimator on the complete dataset, which is generally infeasible). The268

baseline does not use our adaptively learned π̂(z, x), but instead uses uniform random sampling at269

different budget values. The skyline that we compare against is the standard AIPW estimator with270

fully observed outcomes, that is when the budget equals 1 or R = 1 for all data points.271

A note on active learning. We also run pool-based active learning baselines. However, there are key272

differences that lead to poor performance of these baselines. In our setting, random sampling is the273

1This depends on some joint properties of κ, p1, whether it is feasible to find second-stage batch sampling
probabilities π2 so that κp1 + (1− κ)π2(x) = π∗(x)

2The kernel function Kh(u), used in kernel density estimation, satisfies
∫∞
−∞ K(u)du = 1 (normalizes to

a probability density) and K(−u) = K(u), for all u (symmetry), such as the Gaussian kernel with K(u) =

(2π)−
1
2 e−u2/2, or uniform K(u) = 1/2I [|u| ≤ 1] . We generally consider Kh(u) = h−dK(u/h).
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Figure 1: Synthetic and Semi-Synthetic (Retail Hero) Data. Mean squared error (top) and 95%
confidence interval width on the log scale (bottom) averaged over 20 and 100 (for simulated data)
trials across budget percentages of the data. Left and Center: Random forest prediction on tabular
data. Right: including LLM predictions on text and serialized features.

strong baseline, because the sampling probabilities are much simpler. Any other sampling strategy in274

our 2-stage framework with AIPW performs suboptimally (since we’ve proved that ours is optimal).275

Additionally, the baselines used in related papers are either random sampling or the exclusion of276

model-based predictions (i.e. µ̂ or Ỹ ). However, because our task is inherently causal, our AIPW277

estimator relies on µ. We provide more details about active learning and baseline experiment results278

that we run in Appendix I.7279

Retail Hero Data. We study a semi-synthetic dataset, RetailHero [52], augmented by Dhawan et al.280

[17] to include outcomes recorded in text. The dataset contains background customer information281

X , treatment Z as a text message ad sent to the customer, and outcomes Y of whether the customer282

made a purchase or not. Dhawan et al. [17] sampled datapoints according to an artificial propensity283

score and generated text from the binary outcomes prompting LLMs to generate social media posts284

following personas (given covariates) (details in Appendix I). These text posts are Ỹ . The goal is to285

estimate the causal effect of SMS communication on purchase. This is an example of our contextual286

setting, where plentiful social media posts can offer insights into customer behaviors but companies287

may only be able to allocate a fixed amount of resources for ground-truth validation.288

We implement our proposed methods using 1) random forest models to estimate the outcome model289

µ̂ = E[Y |X] on tabular data only or 2) sampling from a set of five LLM predictions of purchase from290

social media posts Ỹ and then using them as predictors in a random forest to estimate f(X, Ỹ ) (We291

run the LLM predictions offline in batch to save cost and time). Then we estimate the outcome model292

µ̂ by ensembling, taking a weighted average between E[Y |X] (random forest) and E[Y |X, f(X, Ỹ )]293

(support vector machine), choosing the best models and weights to minimize the MSE of predicting294

Y on 20% of the full data. We average the results over 20 random data splits. We compute the AIPW295

estimator on all available data as a stand-in for ground-truth. (The dataset was too small for a separate296

held-out validation set). We have further experiments with simulated data to validate these results297

(more details on the data-generating process are given in Appendix I.)298

Figure 1 shows the performance of our adaptive estimator either with 1) a direct estimation of299

(eπ∗)−1 using logistic regression that we plug-in (following Equation (RZ-plug-in.)) or 2) a random300

forest-based estimator of (eπ∗)−1 extracted from ForestRiesz [11], a random forest-based method to301

learn balancing weights, compared to a uniform baseline. Across different values of the budget, B,302

our batch adaptive procedure reduces the MSE by almost double and reduces the confidence interval303

width by almost one-unit in the interval width on the log scale. In Figure 10, we see the impact of304

our approach most clearly when we compute the percentage of the budget saved to reach the same305

interval width. We observe a minimum budget saved of 10% with the adaptive plug-in estimator306

and 45% with the adaptive balance estimator on tabular data. The LLM prediction we generate is307

based on simple zero-shot learning and direct serialization of the tabular data; further fine-tuning308
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could improve performance. Nonetheless, our method can provide robust valid guardrails around309

these black-box predictions.310

Street Outreach Data. Next, we demonstrate our method on street outreach casenote data collected311

by a partnering nonprofit providing homelessness services. This analysis, which uses proprietary312

sensitive data, was approved by the Institutional Review Boards at [blinded for review].313

The covariate data X consists of baseline characteristics on each client as tabular data (left, Figure 2),314

such as the number of previous outreach engagements, and (right, Figure 2) LLM generated summaries315

of case notes recorded before treatment. We construct the cohort in our dataset to include clients who316

are seen consistently at least once per month from 2019-2021. The binary treatment Z was based on317

the number of outreach engagements within the first 6 months of 2019. Clients with 1-2 engagements318

were assigned Z = 0 (131 clients), and those with 3-15 where assigned Z = 1 (355 clients). The319

outcome Y is the highest housing placement reached by 2021. Our final data set contained 471320

clients. More information on the data can be found in Appendix I. We seek to estimate the causal321

effect of street outreach on housing placement. We use housing placement as an illustrative example322

because it is well-recorded ground truth data in our dataset. However, it could also be plausibly323

missing, in which case nonprofits have to decide how to expend their limited resources to obtain more324

information (i.e., caseworker follow-up calls or analyzing more recent casenotes Ỹ ).325

Similar to Retail Hero, we demonstrate the utility of our approach by using a random forest model to326

estimate the outcome model on tabular data alone, µ̂ = E [Y |X], and we incorporate LLM predictions327

f(X) by including them as predictors in a random forest model to get µ̂ = E [Y |X, f(X)].328

In Figure 2 we see that overall our adaptive approach shows improvements over uniform random329

sampling. The MSE is doubled when going from both adaptive estimators to random sampling in330

the tabular data setting and tripled with LLM predictions from the adaptive estimator with balancing331

weights to random sampling. In Figure 11, we see that we can save between 43 − 75% of the332

budget using the plugin-in estimator on tabular data alone and by incorporating LLM predictions,333

and between 53− 91% using the balance estimator over the random sampling baseline.334
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Figure 2: Street Outreach Data. Mean squared error and 95% confidence interval width averaged
over 20 trials across budget percentages of the data. This plot makes use of tabular data and the
best-performing random forest outcome model (left) and text-encoded outcomes using LLMs (right).

Conclusion, limitations, and future work. We have introduced a batch-adaptive annotation335

procedure and estimators that provides a framework for efficient data labeling and incorporating336

complex embedded outcomes into causal estimation. This work is not without limitations. We assume337

that annotations reveal ground truth, but there could be disagreement between expert annotators.338

Additionally, LLMs are still a black box and our theory requires them to be consistent to satisfy339

product error rate assumptions. In future work, we plan to explore other causal estimators.340
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paper’s contributions and scope?499

Answer: [Yes]500

Justification: Yes, we provide our main results in Sections 4 and 5, along with any necessary501

assumptions. We include the proofs for all of our theorem statements in Appendix E. We502

also substantiate our claims by providing empirical evidence using synthetic and real world503

data.504

2. Limitations505

Question: Does the paper discuss the limitations of the work performed by the authors?506

Answer: [Yes]507

Justification: Yes, we discuss some limitations of our work in the last subsection of Section508

6. We also state the assumptions made by our framework in Sections 3, 4 and 5.509

3. Theory assumptions and proofs510

Question: For each theoretical result, does the paper provide the full set of assumptions and511

a complete (and correct) proof?512

Answer: [Yes]513

Justification: Yes, we state all main theorems and the full set of assumptions that accompany514

them in Sections 3, 4, and 5. We include any additional results, that are not essential to the515

main argument, but still interesting in Appendix X. We provide the full proof derivations516

and any additional lemmas used in proofs in Appendix F and G.517

4. Experimental result reproducibility518

Question: Does the paper fully disclose all the information needed to reproduce the main ex-519

perimental results of the paper to the extent that it affects the main claims and/or conclusions520

of the paper (regardless of whether the code and data are provided or not)?521

Answer: [Yes]522

Justification: We include the experimental details needed to reproduce the synthetic datasets.523

We provide the empirical results in Section 6, and include further details such as a description524

of the data generating process for the simulated data, description of the datasets, prompts525

used to query language models, and computer specifications to run experiments on in526

Appendix H. The data set provided by nonprofit collaborators cannot be released for privacy527

reasons, so instead we describe the features of the data and detailed instructions on how each528

variable was constructed, but we cannot release this dataset publicly. To compensate for529

this, we run experiments on simulated data and a second real-world dataset that is publicly530

available.531

5. Open access to data and code532

Question: Does the paper provide open access to the data and code, with sufficient instruc-533

tions to faithfully reproduce the main experimental results, as described in supplemental534

material?535

Answer: [Yes]536

Justification: We plan to release the code for reproducing all the experimental results on537

synthetic and semi-synthetic data, along with scripts for reproducing the simulate data and538

running our algorithm. The street outreach data is private data that was released to us under539

a data use agreement, but it cannot be released publicly for privacy reasons. However, we540

will release our other experimental results and code with the final version of the paper.541

6. Experimental setting/details542

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-543

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the544

results?545

Answer: [Yes]546
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Justification: Yes, we describe the data details and construction in the experimental results547

Sections 6 of the main paper. We go into much more detail about the data generation process548

and model tuning details in Appendix H.549

7. Experiment statistical significance550

Question: Does the paper report error bars suitably and correctly defined or other appropriate551

information about the statistical significance of the experiments?552

Answer: [Yes]553

Justification: We include error bands in all of our main results in Figures 2 and 3.554

8. Experiments compute resources555

Question: For each experiment, does the paper provide sufficient information on the com-556

puter resources (type of compute workers, memory, time of execution) needed to reproduce557

the experiments?558

Answer: [Yes]559

Justification: In Section 6, we provide sufficient information on what is needed to reproduce560

the experiments, such as running LLM predictions offline and in batch and reference the561

models used to run each experiment, such as random forest. We specify the type of compute562

resources in more detail in Appendix H.563

9. Code of ethics564

Question: Does the research conducted in the paper conform, in every respect, with the565

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?566

Answer: [Yes]567

Justification: We conform to all aspects of the NeurIPS Code of Ethics. We ensure author568

anonymity by also removing identifying information about our nonprofit collaboration.569

10. Broader impacts570

Question: Does the paper discuss both potential positive societal impacts and negative571

societal impacts of the work performed?572

Answer: [Yes]573

Justification: Throughout the paper, we highlight the potential positive impacts especially574

in the introduction and motivation of this work. We discuss limitations of our method that575

could potentially have negative societal impacts in the limitations section of the paper. We576

go into more detail about the potential negative effects in an Impact Statement and the steps577

that we take to mitigate these impacts in Appendix A.578

11. Safeguards579

Question: Does the paper describe safeguards that have been put in place for responsible580

release of data or models that have a high risk for misuse (e.g., pretrained language models,581

image generators, or scraped datasets)?582

Answer: [Yes]583

Justification: Yes, we mention how the data was released to our research team through a584

collaboration with a nonprofit reviewed by Institutional Review Boards at author universities.585

We discuss more about the steps taken to preserve the data privacy when training models in586

the Impact Statement in Appendix A. We do not release any large models, but we do plan to587

release scripts that reproduce our results on the sythethic data and publicly available data.588

12. Licenses for existing assets589

Question: Are the creators or original owners of assets (e.g., code, data, models), used in590

the paper, properly credited and are the license and terms of use explicitly mentioned and591

properly respected?592

Answer: [Yes]593

Justification: Yes, we cite all the original owners of the code, data, and models in the main594

text and in Appendix H.595

13. New assets596
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Question: Are new assets introduced in the paper well documented and is the documentation597

provided alongside the assets?598

Answer: [Yes]599

Justification: Yes, we include well documented code to run our algorithm and reproduce our600

experimental results in an anonymized zip file included in supplementary material.601

14. Crowdsourcing and research with human subjects602

Question: For crowdsourcing experiments and research with human subjects, does the paper603

include the full text of instructions given to participants and screenshots, if applicable, as604

well as details about compensation (if any)?605

Answer: [NA]606

Justification: While one of our experiments includes real data about a vulnerable community,607

this data was historical data collected by a nonprofit organization. None of this research608

included crowdsourcing or directly involved human subjects.609

15. Institutional review board (IRB) approvals or equivalent for research with human610

subjects611

Question: Does the paper describe potential risks incurred by study participants, whether612

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)613

approvals (or an equivalent approval/review based on the requirements of your country or614

institution) were obtained?615

Answer: [Yes]616

Justification: Yes, we mention that IRB approval was obtained for the use of the street617

outreach data in Section 6.618

16. Declaration of LLM usage619

Question: Does the paper describe the usage of LLMs if it is an important, original, or620

non-standard component of the core methods in this research? Note that if the LLM is used621

only for writing, editing, or formatting purposes and does not impact the core methodology,622

scientific rigorousness, or originality of the research, declaration is not required.623

Answer: [Yes]624

Justification: Yes, we describe our use of LLMs to get predictions from complex embedded625

outcome data, i.e. text data in Section 6. We explain in detail how we run the experiments626

on a secure HIPAA compliant cloud platform in Appendix H.627
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A Impact Statement628

Our work deals with sensitive information about a vulnerable community so care must be taken when629

deploying our methods. The case notes are redacted by the organization, and any sensitive information630

is removed from the notes. Furthermore, we use local LLMs accessed through a HIPAA-compliant631

fire-walled cloud instance to mitigate ensure the privacy of clients. We work in collaboration with a632

nonprofit to ensure that the necessary guardrails are in place and that their data is used responsibly633

and in line with their mission.634

B Notation635

Yi Ground truth outcomes, observed when label is provided by experts
Ỹi Complex embedded outcomes, such as raw text
Xi Covariates included in estimation
Zi Treatment assignment indicator
Ri Missingness indicator, indicates whether i is expertly labeled
ez(Xi) Propensity score, probability of being assigned treatment Z = z

π(Zi, Xi) Annotation probability, probability of sampling unit i for expert annotation
f(Ỹi) Estimated function of complex embedded outcomes, e.g. zero-shot LLM prediction from raw text
µz(Xi, f(Ỹi)) Estimated model predicting Y as function of f(Ỹ ) alone or (X, f(Ỹ ))

C Additional discussion on related work636

Additional discussion on surrogate estimation In much of the surrogate literature, surrogates637

measure an outcome that is impossible to measure at the time of analysis. The canonical example638

in [3] studies the long-term intervention effects of job training on lifetime earnings, by using only639

short-term outcomes (surrogates) such as yearly earnings. In this regime, the ground truth cannot640

be obtained at the time of analysis. In this paper, we focus a different regime where obtaining the641

ground truth from expert data annotators is feasible but budget-binding.642

Additional discussion on more adaptive allocation methods beyond batch. We outline how our643

approach is a good fit for our motivating data annotation setting. Full-adaptivity is less relevant in our644

setting with ground-truth annotation from human experts, due to distributed-computing-type issues645

with random times of annotation completion. But standard tools such as the martingale CLT can be646

applied to extend our theoretical results to full adaptivity. Additionally, many recent works primarily647

focus on the different problem of treatment allocation for ATE estimation. In-sample regret is less648

relevant for our setting of data annotation, which is a pure-exploration problem.649

Optimizing asymptotic variance of the ATE vs. active learning. An extensive literature in650

machine learning studies where to sample data to improve machine learning predictors, in the subfield651

of active learning. The biggest difference is that we target functional estimation, aka improving652

estimation and inference on the average treatment effect, rather than improving estimation of the653

black-box nuisance predictors, so our approach is complementary to other approaches for active654

learning. Approaches for active learning with nonparametric regression include Zhu and Nowak655

[57], Chaudhuri et al. [8]. Active learning generally requires additional structural conditions, such656

as margin or low-noise conditions, in order to show improvements. Our work highlights optimality657

leveraging the structure of our final treatment effect inferential goal.658

Relationship to causal inference and NLP There is a large and rapidly growing literature on659

causal inference with text data [19, 43, 47]. Throughout, we have deliberately used the terminology660

of measurement error to characterize our approach: that text measures outcomes of interest. [17] also661

adopt this stance towards text and note that it differs from prior works on causal inference and NLP,662

which focuses on questions of substantive interest related to the text itself.663

Although we can define a potential outcome Ỹ (Z), we are generally uninterested in causal inference664

in the ambient high-dimensional space of Ỹ (Z) itself - corresponding to, in our examples, the665
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effect of the presence of a tumor on the pixel image, the effect of street outreach on the linguistic666

characteristics of casenotes written for documentation, etc — Ỹ (Z) is relevant to causal estimation667

insofar as it is informative of latent outcomes Y (Z).668

This is consistent with viewing certain types of NLP tasks as “anti-causal learning" [39], wherein669

outcomes cause measurements thereof, in analogy to anti-causal learning in supervised classification670

where a label of “cat" or “dog" causes the classification covariates (e.g. image) [29]. Analogously,671

we view the underlying ground-truth outcomes Y as causing the measurement thereof, Ỹ .672

D Diagram of Cross-fitting Procedure673

Z YX

Batch 1

ψi

Folds

 

Index set


1,…, K

(t, i) ∈ ℐk

̂μ(k)
̂e(k)
̂σ2(k)

⋮

̂π*(−k) ̂μ(k)
̂e(k)
̂σ2(k)

⋮
Batch 2

Figure 3: Illustration of cross-fitting (K folds within batches)
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E Algorithm674

Algorithm 2 (Full Algorithm) Batch Adaptive Causal Estimation With Complex Embedded Outcomes

Input: Data D = {(Xi, Zi, Yi, Ỹi)}ni=1, sampling budget Bz for z ∈ {0, 1}
Output: ATE estimator τ̂AIPW

Partition D into 2 batches and K folds D(k)
1 ,D(k)

2 for k = 1, . . . ,K
Batch 1:
for k = 1, . . . ,K do

On D(k)
1 : Sample R1 ∼ Bern(π1(Z,X)), where π1(z, x) = Bz .

Estimate nuisance models: Where R = 1, estimate µ̂(k)
z by regressing Y on X, Ỹ , and σ̂2(k)

z by
regressing (Y − µ̂z)

2 on X . Estimate ê(k)z by regressing Z on X .
end for
Batch 2:
for k = 1, . . . ,K do

On D(k)
2 : Obtain π∗ by optimizing eq. (OPT (global budget)), plugging in µ̂(−k)

z , σ̂2(−k)
z , and

ê
(−k)
z .

Solve for π̂(k)
2 (Xi) =

1
1−κ (π

∗(Xi)− κπ1)

Sample R2 ∼ Bern(π̂
(k)
2 (Xi)

end for
Obtain D(k) for k = 1, . . . ,K by pooling across batches D(k)

1 and D(k)
2

On D(k), re-estimate µ̂(k)
z , σ̂2(k)

z ,and ê(k)z on observed outcomes RY for k = 1, . . . ,K

On D(k), run optimization procedure to get π∗(−k) with out of fold nuisances µ̂(−k)
z , σ̂2(−k)

z , and
ê
(−k)
z .

On full data D, estimate ATE by using AIPW estimator in eq. (1) and out of fold nuisances π∗(−k),
µ̂
(−k)
z , σ̂2(−k)

z , and ê(−k)
z

F Additional Results675

F.1 Treatment−z-specific budgets Bz676

We also consider a setting with different a priori fixed budgets within each treatment group, where

sampling budget proportion Bz ∈ [0, 1]

is the max percentage of the treated group Z = z that can be annotated. Given that we are trying to677

choose the π that minimizes this variance bound, we only need to focus on the terms that depend678

on π and can drop the rest. Supposing oracle knowledge of propensities and outcome models, the679

optimization problem, for each z ∈ {0, 1} is:680

min
0<π(z,x)≤1,∀z,x

{
E
[

σ2
z(X)

ez(X)π(z,X)

]
: E [π(z,X) | Z = z] ≤ Bz, z ∈ {0, 1}

}
(z-budget)

Theorem 4. The solution to the within-z-budget problem is:

π∗(z,X) =

√
σ2
z(X)/e2z(X)

E
[√

σ2
z(X)/e2z(X) | Z = z

] ·Bz

.681
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G Proofs682

Proof of Proposition 1 . We simplify the expression for the asymptotic variance of the ATE with683

missing outcomes to isolate the components affected by the data annotation probability.684

First the variance of the ATE defined in terms of the efficient influence function ψz is685

Var[ψz − ψz′ ] = Var

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)
+ µz(X)− Z ′ ·R · [Y − µz′(X)]

ez′(X) · π(z′, X)
+ µz′(X)

]
= Var

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)
+ µz(X)

]
︸ ︷︷ ︸

V1

+Var

[
Z ′ ·R · [Y − µz′(X)]

ez′(X) · π(z′, X)
+ µz′(X)

]
︸ ︷︷ ︸

V2

− 2Cov

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)
+ µz(X),

Z ′ ·R · [Y − µz′(X)]

ez′(X) · π(z′, X)
+ µz′(X)

]
︸ ︷︷ ︸

V3

For V3:686

2Cov

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)
+ µz(X),

Z ′ ·R · [Y − µz′(X)]

ez′(X) · π(z′, X)
+ µz′(X)

]

=2

[
E

 Z ·R
ez(X) · π(z,X)

[E [Y |Z,R = 1, X]− µz(X)︸ ︷︷ ︸
=0

]

]

+

[
E

µz(X) · Z ′ ·R
ez′(X) · π(z′, X)

[E [Y |Z ′, R = 1, X]− µz′(X)︸ ︷︷ ︸
=0

] + µz′(X)

]

− E

 Z ·R
ez(X) · π(z,X)

[E [Y |Z,R = 1, X]− µz(X)︸ ︷︷ ︸
=0

] + µz(X)


× E

 Z ′ ·R
ez′(X) · π(z′, X)

[E [Y |Z ′, R = 1, X]− µz′(X)︸ ︷︷ ︸
=0

] + µz′(X)

]

=2

[
E [µz(X) · µz′(X)]− E [µz(X)µz′(X)]

]
For V1:687

Var

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)
+ µz(X)

]
= Var

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)

]
+Var[µz(X)] + 2Cov

[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)
, µz(X)

]
︸ ︷︷ ︸

=0

= E

[[
Z ·R · [Y − µz(X)]

ez(X) · π(z,X)

]2]
−
[

Z ·R·
ez(X) · π(z,X)

[E [Y |Z,R = 1, X]− µz(X)︸ ︷︷ ︸
=0

]

]2
+ E

[
µz(X)2

]
− E [µz(X)]

2

= E
[[

Z2 ·R2

e2z(X) · π2(z,X)
· [Y − µz(X)]2

]]
+ E

[
µz(X)2

]
− E [µz(X)]

2

= E
[

Z ·R
e2z(X) · π2(z,X)

· [Y − µz(X)]2
]
+ E

[
µ(z, 1, X)2

]
− E [µz(X)]

2

= E
[

1

ez(X) · π(z,X)
· [Y − µz(X)]2

]
+ E

[
µz(X)2

]
− E [µz(X)]

2

20



Lastly, V1 = V2. So the full variance term is688

Var[ψz − ψz′ ] = E
[

1

ez(X) · π(z,X)
· [Y − µz(X)]2

]
+ E

[
1

ez′(X) · π(z′, X)
· [Y − µz′(X)]2

]
+ E

[
(µz(X)− µz′(X))2

]
− E [µz(X)− µz′(X)]

2

= E
[

1

ez(X) · π(z,X)
· [Y − µz(X)]2

]
+ E

[
1

ez′(X) · π(z′, X)
· [Y − µz′(X)]2

]
+Var

[
µz(X)− µz′(X)

]
Rewriting the bound from Hahn (1998), we get689

V ≥ E
[

1

ez(X) · π(z,X)
· [Y − µz(X)]2

]
+ E

[
1

ez′(X) · π(z′, X)
· [Y − µz′(X)]2

]
+Var

[
µz(X)− µz′(X)

]
690

Proof of Theorem 4 . Finding the optimal π can be separated into sub-problems for each treatment691

z ∈ {0, 1}, since the objective and dual variables are separable across z. We first look at a solution692

for π(z,X) for a given z:693

min
π(z,x)

E
[

σ2
z(X)

ez(X)π(z,X)

]
(z-budget)

s.t. E [π(z,X) | Z = z] ≤ Bz,

0 < π(z, x) ≤ 1, ∀x

We define the Lagrangian of the optimization problem and introduce dual variables λ for the budget
constraint and η and ν for the the constraint that 0 < π(z,X) ≤ 1:

L = E
[
(Y − µz(X))2

ez(X)π(z,X)

]
+ λz(E [π(z,X) | Z = z]−Bz) +

∑
x∈X

(νzx(π(z, x)− 1)− ηzxπ(z, x))

Define the conditional outcome variance σ2(X) = E
[
(Y − µ(z, 1, X))2|X

]
. Note that by iterated

expectations,

L = E
[

σ2
z(X)

ez(X)π(z,X)

]
+ λz(E [π(z,X) | Z = z]−Bz) +

∑
x∈X

(νzx(π(z, x)− 1)− ηzxπ(z, x))

We can find the optimal solution by setting the derivative equal to 0. Since p(X = x | Z = z) =694
ez(x)p(x)
p(Z=z)695

∂L
∂π(z,X)

= − σ2(X)

ez(X)(π2(z,X))
p(x) + λz

ez(x)p(x)

p(Z = z)
+ νx − ηx = 0, where p(x) > 0

= − σ2(X)

e2z(X)π2(z,X)
+

λz
p(Z = z)

+
(νzx − ηzx)

p(x)ez(x)
= 0

Therefore

π(z, x) =

√√√√ σ2(x)

e2z(x)(
λz

p(Z=z) +
(νz

x−ηz
x)

p(x)ez(x)
)

21



Next we give a choice of λ that results in an interior solution with 0 ≤ π(z, x) ≤ 1, so that νzx, η
z
x696

can be set to 0 without loss of generality to satisfy complementary slackness.697

We posit a closed form solution

π∗(z,X) =

√
σ2
z(X)/e2z(X)

E
[√

σ2
z(X)/e2z(X) | Z = z

] ·Bz

.698

Note that this solution is self-normalized to satisfy the budget constraint such that699

E [π∗(z,X)I[Z = z]] = E

 √
σ2(X)/e2z(X)

E
[√

σ2
z(X)/e2z(X) | Z = z

]Bz | Z = z

 = Bz

This solution corresponds to a choice of λ∗z = p(Z=z)E
[√

I[Z=z]σ2(X)/e2z(X)

]2
/B2

z in the prior700

parametrized expression.701

πλ(z,X) = π∗(z,X)√
σ2
z(X)

e2z(X) λ
p(Z=z)

=

√
σ2
z(X)/e2z(X)

E
[√

σ2
z(X)/e2z(X) | Z = z

] ·Bz

We can check that the KKT conditions are satisfied at π∗(z,X) and λ∗. We note that since π∗(z,X)702

is an interior solution then w.l.o.g we can fix νx, ηx = 0 to satisfy complementary slackness.703

It remains to check that ∂L
∂π∗(z,X) = 0, we have that:704

∂L
∂π(z,X)

= −σ
2
z(X)

ez(X)
·
e2z(X)E

[√
σ2
z(X)/ez(X) | Z = z

]2
σ2
z(X) ·B2

z

+
E
[√

σ2(X)/ez(X) | Z = z
]2
σ2
z(X)ez(X)

σ2
z(X) ·B2

z

+0 = 0.

Thus we have shown that π∗(z,X) is optimal.705

706

Proof of Theorem 1 . Proceed as in the proof of Theorem 4.707

The Lagrangian of the optimization problem (with a single global budget constraint) is:708

L =
∑

z∈{0,1}

E
[
(Y − µz(X))2

ez(X)π(z,X)

]
+
∑
x∈X

(νzx(π(z, x)− 1)− ηzxπ(z, x))

+ λ(E [π(1, X)I[Z = 1] + π(0, X)I[Z = 0]]−B)

Again by iterated expectations,

L = E
[

σ2
z(X)

ez(X)π(z,X)

]
+λ(E [π(1, X)e1(X) + π(0, X)e0(X)]−Bz)+

∑
x∈X

(νzx(π(z, x)−1)−ηzxπ(z, x))

We can find the optimal solution by setting the derivative equal to 0.709

∂L
∂π(z,X)

= − σ2(X)

ez(X)(π2(z,X))
p(x) + λp(x)ez(x) + νzx − ηzx = 0, where p(x) > 0

= − σ2(X)

e2z(X)π2(z,X)
+ λ+

(νzx − ηzx)

p(x)ez(x)
= 0
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Therefore we obtain a similar expression parametrized in λ, but this parameter is the same across
both groups under a global budget.

π(z, x) =

√√√√ σ2(x)

e2z(x)(λ+
(νz

x−ηz
x)

p(x)ez(x)
)

We can similarly give a closed-form expression for a different choice of λ yielding an interior solution,
so that we can set νzx, η

z
x = 0 without loss of generality.

λ =
E
[
I[Z = 1]

√
σ2
1(X)/e21(X) + I[Z = 0]

√
σ2
0(X)/e20(X)

]2
B2

Notice that this satisfies the normalization requirement that E[πλ(1, X)I[Z = 1] + πλ(0, X)I[Z =710

0]] ≤ B, and similarly note that the partial derivatives with respect to π(z, x) are 0.711

Proof of Theorem 3 . The objective function arises from the asymptotic variance expression in [14,712

Thm. 3]; it follows readily from following their proof of Thm. 3 with our analysis of the asymptotic713

variance as in Proposition 1. The proof of the optimal solution follows our analysis in Theorem 1714

with a few slightly different expressions, discussed as follows.715

Then the Lagrangian is∫
σ2(z | x)

e(z, x)π(z, x)
f(x)dx+ λ

(∫ ∫
π(z, x)Kh(z

′ − z)e(z′, x)dz′f(x)dx

)
Define the kernel localization of e(z, x) around z under the kernel function Kh(z

′ − z):

ẽh(z, x) =

∫
Kh(z

′ − z)e(z′, x)dz′

Taking derivatives with respect to π(z, x), we obtain the FOC

∇π(t|x)L =
−σ2(z, x)

e(z, x)π(z, x)2
f(x) + λẽh(z, x)f(x) = 0

Solving the FOC, we obtain

−σ2(z, x)

e(z, x)π(z, x)2
+ λẽh(z, x) = 0 =⇒ π∗(z, x) =

1

λ

√
σ2(z, x)

e(z, x)

√
e(z, x)

ẽh(z, x)

We conclude that

π∗(z, x) ∝
√
σ2(z, x)

e(z, x)

√
e(z, x)

ẽh(z, x)

716

Proof of Theorem 2 . Proof sketch.717

The proof proceeds in two steps. The first establishes that the feasible AIPW estimator converges to718

the AIPW estimator with oracle nuisances. It follows from standard analysis with cross-fitting, in719

particular the variant used across batches.720

Preliminaries In the analysis, we write the score function as a function of R in addition to other
nuisance functions:

ψz,i(Ri, e, π, µ) =
I[Zi = z]Ri(Yi − µz(Xi))

ez(Xi)π(z,Xi)
+ µz(Xi)
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The AIPW estimator can be rewritten as a sum over estimators within batch-t, fold-k, τ̂ (t,k)AIPW , as
follows:

τ̂AIPW =

2∑
t=1

K∑
k=1

nt,k
n

∑
(t,i)∈Ik

1

nt,k
{ψ̂1,i(R, ê, π̂, µ̂)− ψ̂0,i(R, ê, π̂, µ̂)} =

2∑
t=1

K∑
k=1

nt,k
n
τ̂
(t,k)
AIPW

We introduce an intermediate quantity. The realized treatments are sampled with probability π̂(Xi),
Ri ∼ Bern(π̂(Zi, Xi)). In the asymptotic framework, we study treatments sampled from a mixture
distribution over the two batches, R̃i ∼ Bern(π∗(Zi, Xi)).

τ̃AIPW =

2∑
t=1

K∑
k=1

nt,k
n

∑
(t,i)∈Ik

1

nt,k
{ψ̂1,i(R̃, ê, π̂, µ̂)− ψ̂0,i(R, ê, π̂, µ̂)}

We also denote the AIPW estimator with oracle nuisances, τ̂∗AIPW , as721

τ̂∗AIPW =

2∑
t=1

K∑
k=1

nt,k
n

∑
(t,i)∈Ik

1

nt,k
{ψ1,i(R̃i, e, π, µ)− ψ0,i(R̃i, e, π, µ)}

We study convergence within a batch−t, fold−k subset; the decompositions above give that conver-722

gence also holds for the original estimators.723

The first step studies the limiting mixture distribution propensity arising from the two-batch process
and shows that the use of the double-machine learning estimator (AIPW), under the weaker product
error assumptions, gives that the oracle estimator is asymptotically equivalent to the oracle estimator
where missingness follows the limiting mixture missingness probability. The latter of these is a
sample average of iid terms and follows a standard central limit theorem. Recalling that R̃i = I[Ui ≥
π∗(Xi)], we wish to show:∑

z

En[ψz,i(R, ê, π̂, µ̂)]− En[ψz,i(R̃, e, π, µ)] = op(n
− 1

2 ).

Next we show that the estimator with feasible nuisance estimators converges to the estimator with
oracle knowledge of the nuisance functions

√
n(τ̃

(t,k)
AIPW − τ̂

∗,(t,k)
AIPW ) →p 0.

The result follows by the standard limit theorem applied to the estimator with oracle nuisance724

functions.725

Step 1726

Let R̃i = I[Ui ≥ π∗(Zi, Xi)]. Restricting attention to a single treatment value z ∈ {0, 1}, we want727

to show that:728

2∑
t=1

K∑
k=1

nt,k
n

∑
(t,i)∈Ik

1

nt,k

{
ψ̂1,i(R̃, ê, π̂, µ̂)− ψ̂1,i(R, ê, π̂, µ̂)

}

=

2∑
t=1

K∑
k=1

nt,k
n

∑
(t,i)∈Ik

1

nt,k

{
I[Zi = z]R̃i(Yi − µ̂z(Xi))

êz(Xi)π̂(z,Xi)
− I[Zi = z]Ri(Yi − µ̂z(Xi))

êz(Xi)π̂(z,Xi)

}
= op(n

−1/2).

Without loss of generality we further consider one summand on batch-t, fold-k data, the same729

argument will apply to the other summands and the final estimator.730

Note that by consistency of potential outcomes, for any data point we have that

I[Zi = z]R̃i(Yi − µ̂z(Xi))

êz(Xi)π̂(z,Xi)
− I[Zi = z]Ri(Yi − µ̂z(Xi))

êz(Xi)π̂(z,Xi)
=

I[Zi = z](R̃i −Ri)(Yi(z)− µ̂z(Xi))

êz(Xi)π̂(z,Xi)

For each batch t = 1, . . . , T and fold k = 1, . . . ,K, according to the CSBAE crossfitting procedure,731

we observe that conditional on I(−k) for a given batch and the observed covariates, the summands732
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(namely Ri = I[Ui ≤ π̂(−k)(Xi)]) are independent mean-zero. The final estimator will consist of733

the sum over batches and folds. We start by looking at the estimator over one batch t and one fold k734

and the rest follows for the other batches and folds.735

1

nt,k

∑
(t,i)∈Ik

I[Zi = z](R̃i −Ri)(Yi(z)− µ̂z(Xi))

êz(Xi)π̂(z,Xi)

=
1

nt,k

∑
(t,i)∈Ik

I[Zi = z]
(
(R̃i − π∗(z,Xi)) + (π∗(z,Xi)− π̂(z,Xi)) + (π̂(z,Xi)−Ri)

)
(Yi(z)− µ̂z(Xi))

êz(Xi)π̂(z,Xi)

≤νeγσ2

1

nt,k

∑
(t,i)∈Ik

I[Zi = z]
(
(R̃i − π∗(z,Xi)) + (π∗(Xi)− π̂(z,Xi)) + (π̂(z,Xi)−Ri)

)
(Yi(z)− µ̂z(Xi))

Applying Cauchy-Schwarz to each of these terms, we obtain product error rate terms. For the second736

term, we obtain that737

νeγσ2

1

nt,k

∑
(t,i)∈Iz

k

(π∗(Xi)− π̂(Xi))(Yi(z)− µ̂z(Xi))

≤ νeγσ2

√√√√ 1

nt,k

∑
(t,i)∈Iz

k

(π∗(Xi)− π̂(Xi))2

√√√√ 1

nt,k

∑
(t,i)∈Iz

k

(Yi(z)− µ̂z(Xi))2

= νeγσ2 ∥π∗(Xi)− π̂(Xi)∥2,n ∥Yi(z)− µ̂z(Xi)∥2,n
= op(n

− 1
2 ) ( Assumption 7)

Analogously, we conclude that the first and third terms are op(n−
1
2 ), applying Cauchy-Schwarz to738

each of them in turn.739

Step 2 (feasible estimator converges to oracle)740

If we look at one term for one treatment and datapoint in the above (the rest follows for the others),741

we obtain the following decomposition into error and product-error terms:742

ZiR̃i(Yi − µ̂1(Xi))

ê1(Xi)π̂(1, Xi)
− ZiR̃i(Yi − µ1(Xi))

e1(Xi)π(1, Xi)
+ (µ̂1(Xi)− µ1(Xi))

= (µ1(Xi)− µ̂1(Xi))

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

)
+ ZiR̃i(Yi − µ̂1(Xi))(

1

ê1(Xi)π̂(1, Xi)
− 1

e1(Xi)π(1, Xi)
)

(by ±ZiR̃i(Yi−µ̂1(Xi))
e1(Xi)π(1,Xi)

)

= (µ1(Xi)− µ̂1(Xi))

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

)
+ ZiR̃i(Yi − µ1(Xi))(

1

ê1(Xi)π̂(1, Xi)
− 1

e1(Xi)π(1, Xi)
)

+ ZiR̃i(µ1(Xi)− µ̂1(Xi))(
1

ê1(Xi)π̂(1, Xi)
− 1

e1(Xi)π(1, Xi)
)

(by ±ZiR̃iµ1(Xi)(
1

ê1(Xi)π̂(1,Xi)
− 1

e1(Xi)π(1,Xi)
))

= (µ1(Xi)− µ̂1(Xi))

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

)
+ ZiR̃i(Yi − µ1(Xi))

(
π̂(1, Xi)

−1(ê1(Xi)
−1 − e1(Xi)

−1) + e1(Xi)
−1

(π̂(1, Xi)
−1 − π(1, Xi)

−1
)
)

+ ZiR̃i(µ1(Xi)− µ̂1(Xi))
(
π̂(1, Xi)

−1(ê1(Xi)
−1 − e1(Xi)

−1) + e1(Xi)
−1

(π̂(1, Xi)
−1 − π(1, Xi)

−1
)
)

(by ± 1
eπ̂ )

We want to show that √
nt,k(τ̂

(t,k)
AIPW − τ̂

∗,(t,k)
AIPW ) →p 0
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Now that we have written out this expansion for one datapoints, we can write out this expansion743

within a batch-t, fold-k subset, and write out the cross-fitting terms for reference:744

√
nt,k

(
τ̂
(t,k)
AIPW − τ̂

∗,(t,k)
AIPW

)
=

1
√
nt,k

∑
i:(t,i)∈Ik

(µ1(Xi)− µ̂
(−k)
1 (1, Xi))

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

)

+
1

√
nt,k

∑
i:(t,i)∈Ik

ZiR̃i(Yi − µ1(Xi))×

(
π̂(−k)(1, Xi)

−1(ê
(−k)
1 (Xi)

−1
− e1(Xi)

−1) + e1(Xi)
−1

(π̂(−k)(1, Xi)
−1

− π(1, Xi)
−1

)
)

+
1

√
nt,k

∑
i:(t,i)∈Ik

ZiR̃i(µ1(Xi)− µ̂
(−k)
1 (1, Xi))×

(
π̂(−k)(1, Xi)

−1(ê
(−k)
1 (Xi)

−1
− e1(Xi)

−1) + e1(Xi)
−1

(π̂(−k)(1, Xi)
−1

− π(1, Xi)
−1

)
)

Bound for third term:745

1
√
nt,k

∑
i:(t,i)∈Ik

ZiR̃i(µ1(Xi)− µ̂
(−k)
1 (Xi))(π̂

(−k)(1, Xi)
−1(ê

(−k)
1 (Xi)

−1 − e1(Xi)
−1)

+ e1(Xi)
−1

(π̂(−k)(1, Xi)
−1 − π(1, Xi)

−1)

=
1

√
nt,k

∑
i:(t,i)∈Ik

ZiR̃iπ̂
(−k)(1, Xi)

−1(µ1(Xi)− µ̂
(−k)
1 (Xi))(ê

(−k)
1 (Xi)

−1
− e1(Xi)

−1)

+ ZiR̃ie1(Xi)
−1(µ1(Xi)− µ̂

(−k)
1 (Xi))(π̂

(−k)(1, Xi)
−1 − π(1, Xi)

−1)

≤ (λπ + νe)
1

√
nt,k

∑
i:(t,i)∈Ik

(µ1(Xi)− µ̂
(−k)
1 (Xi))(ê

(−k)
1 (Xi)

−1
− e1(Xi)

−1)

+ (µ1(Xi)− µ̂
(−k)
1 (Xi))(π̂

(−k)(1, Xi)
−1 − π(1, Xi)

−1)

≤ (λπ + νe)δnn
−1/2

where the last inequality makes use of product error rate assumptions 5-6 and nuisance function746

convergence rates from Lemma 4. Thus, we find that this term is op(1/
√
n)747

Bound for the first term:748

The key to bounding the first term is that cross-fitting allows us to treat this term as the average749

of independent mean-zero random variables. We will bound it with Chebyshev’s inequality, which750

requires a bound on the second moment on the summands in the first term.751
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E
[

1
√
nt,k

∑
i:(t,i)∈Ik

(
(µ1(Xi)− µ̂

(−k)
1 (Xi))

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

))2

| I(−k), {Xi}
]

= Var

[
1

√
nt,k

∑
i:(t,i)∈Ik

(µ1(Xi)− µ̂
(−k)
1 (Xi))

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

)
| I(−k), {Xi}

]

=
1

nt,k

∑
i:(t,i)∈Ik

E
[
(µ1(Xi)− µ̂

(−k)
1 (Xi))

2

(
ZiR̃i

e1(Xi)π(1, Xi)
− 1

)2

| I(−k), {Xi}
]

(expectation of ( ZiR̃i

e1(Xi)π(1,Xi)
− 1)2)

=
1

nt,k

∑
i:(t,i)∈Ik

1− e1(Xi)π(z,Xi)

e1(Xi)π(1, Xi)
(µ1(Xi)− µ̂

(−k)
1 (Xi))

2

≤ 1− νeλπ
νeλπ

1

nt,k

∑
i:(t,i)∈Ik

((µ1(Xi)− µ̂
(−k)
1 (Xi))

2 = op(
1

n1+2rµ
)

where for the third equality, we use the fact that752

E[(
ZiR̃i

e1(Xi)π(1, Xi)
− 1)2 | I(−k), {Xi}] = E[(

Z2
i R

2
i

e21(Xi)π2(1, Xi)
− 2

ZiR̃i

e1(Xi)π(1, Xi)
+ 1 | I(−k), {Xi}] =

1

e1(Xi)π(1, Xi)
− 1753

Since rµ ≥ 0, we can conclude by Chebyshev’s inequality that the first term is op(n−1/2).754

Bound for the second term: We bound the second term following a similar argument as above.755

E
[

1
√
nt,k

∑
i:(t,i)∈Ik

(
ZiR̃i(Yi − µ1(Xi))

(
π̂(−k)(1, Xi)

−1(ê
(−k)
1 (Xi)

−1
− e1(Xi)

−1)
)2

| I(−k), {Xi}
]

+ E
[

1
√
nt,k

∑
i:(t,i)∈Ik

(
ZiR̃i(Yi − µ1(Xi))

(
e1(Xi)

−1
(π̂(−k)(1, Xi)

−1
− π(1, Xi)

−1
)
))2

| I(−k), {Xi}
]

= Var

[
1

√
nt,k

∑
i:(t,i)∈Ik

(
ZiR̃i(Yi − µ1(Xi))

(
π̂(−k)(1, Xi)

−1(ê
(−k)
1 (Xi)

−1
− e1(Xi)

−1)
)
| I(−k), {Xi}

]

+Var

[
1

√
nt,k

∑
i:(t,i)∈Ik

(
ZiR̃i(Yi − µ1(Xi))

(
e1(Xi)

−1
(π̂(−k)(1, Xi)

−1
− π(1, Xi)

−1
)
)
| I(−k), {Xi}

]

=
1

nt,k

∑
i:(t,i)∈Ik

E
[(
π̂(−k)(1, Xi)

−1(ê
(−k)
1 (Xi)

−1
− e1(Xi)

−1)
)2 Z2

i R
2
i

(π̂(−k)(1, Xi))2
(Yi − µ1(Xi))

2 | I(−k), {Xi}
]

+
1

nt,k

∑
i:(t,i)∈Ik

E
[(
e1(Xi)

−1
(π̂(−k)(1, Xi)

−1
− π(1, Xi)

−1
)
)2 Z2

i R
2
i

(π̂(−k)(1, Xi))2
(Yi − µ1(Xi))

2 | I(−k), {Xi}
]

=
1

nt,k

∑
i:(t,i)∈Ik

e21(Xi)π
2(z,Xi)

(π̂(−k)(1, Xi))2
E[σ2(Xi) | I(−k), {Xi}]ê(−k)

1 (Xi)
−1

− e1(Xi)
−1))2

+
e21(Xi)(π

(−k)(z,Xi))
2

e1(Xi)
E[σ2(Xi) | I(−k), {Xi}](π̂(−k)(1, Xi)

−1
− π(1, Xi)

−1
)2

756

≤ 1

nt,k

∑
i:(t,i)∈Ik

ν2eλ
2
π

(π̂(−k)(1, Xi))2
Bσ2(ê

(−k)
1 (Xi)

−1
− e1(Xi)

−1))2 +
ν2eλ

2
π

ν2e
Bσ2(π̂(−k)(1, Xi)

−1
− π(1, Xi)

−1
)2

= op(
1

n1+2re+2rπ
)

where the last inequality is because σ2(X) is bounded above, σ2(X) ≤ Bσ2 , by Lemma 4. Thus, by757

similar argument to the first term, since this term is a sum of zero-mean random variables and since758
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rπ, re ≥ 0, we can apply Chebyshev’s inequality and get that this term is also op(1/
√
n). This holds759

for both treatments. Therefore,760

√
nt,k(τ̂

(t,k)
AIPW − τ̂

∗,(t,k)
AIPW ) →p 0.

Putting these results from Step 1 and Step 2 together, along with the fact that nt,k

n → 1
K , gives the761

theorem.762

H Additional Lemmas763

H.1 Results appearing in other works, stated for completeness.764

Lemma 1 (Conditional convergence implies unconditional convergence, from [10]). Lemma 6.1.765

(Conditional Convergence implies unconditional) Let {Xm} and {Ym} be sequences of random766

vectors. (a) If, for ϵm → 0,Pr (∥Xm∥ > ϵm | Ym) →Pr 0, then Pr (∥Xm∥ > ϵm) → 0. In767

particular, this occurs if E [∥Xm∥q /ϵqm | Ym] →Pr 0 for some q ≥ 1, by Markov’s inequality. (b)768

Let {Am} be a sequence of positive constants. If ∥Xm∥ = OP (Am) conditional on Ym, namely,769

that for any ℓm → ∞, Pr (∥Xm∥ > ℓmAm | Ym) →Pr 0, then ∥Xm∥ = OP (Am) unconditionally,770

namely, that for any ℓm → ∞, Pr (∥Xm∥ > ℓmAm) → 0.771

Lemma 2 (Chebyshev’s inequality). Let X be a random variable with mean µ and variance σ2.772

Then, for any t > 0, we have773

P (|X − µ| ≥ t) ≤ σ2

t2

Lemma 3 (Theorem 8.3.23 (Empirical processes via VC dimension), [48]). Let F be a class of774

Boolean functions on a probability space (Ω,Σ, µ) with finite V C dimension vc(F) ≥ 1. Let775

X,X1, X2, . . . , Xn be independent random points in Ω distributed according to the law µ. Then776

E sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f (Xi)− Ef(X)

∣∣∣∣∣ ≤ C

√
vc(F)

n

H.2 Lemmas777

Lemma 4 (Convergence of π̂). Assume that with high probability, for some large constant K,778

∥ê(X)− e(X)∥2 ≤ Kn−re ,
∥∥σ̂2(X)− σ2(X)

∥∥
2
≤ Kn−rσ . Assume Assumption 8. Assume that779

σ2(X) > 0 so that its inverse is bounded 1/σ2(X) ≤ γσ. Recall that Theorem 1 gives that780

π∗(z,X) =

√
σ2
z(X)

e2z(X)
B

(
E

[
I[Z = 1]

√
σ2
1(X)

e21(X)
+ I[Z = 0]

√
σ2
0(X)

e20(X)

])−1

Define π̂∗(z, x) to be a plug-in version of the above (with σ̂2, ê, and En [·]). Then

∥π̂∗(z,X)− π∗(z,X)∥2 = op(n
−min(re,rσ,1/2)).

Proof. Let a =
σ2
z(X)

e2z(X) , b = E
[
I[Z = 1]

√
σ2
1(X)

e21(X)
+ I[Z = 0]

√
σ2
0(X)

e20(X)

]
.781

Let c = σ̂2
z(X)

ê2z(X) , d = En

[
I[Z = 1]

√
σ̂2
1(X)

ê21(X)
+ I[Z = 0]

√
σ̂2
0(X)

ê20(X)

]
.782

Then ∥π∗(z,X)− π̂∗(z,X)∥2 = ∥a/b− c/d∥2 .783

Positivity of σ2
z(X) gives the elementary equality that a

b − c
d =

(
a−b
b

)
+
(
d−c
d

)
.784
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Therefore, by triangle inequality and boundedness,785

∥π∗(z,X)− π̂∗(z,X)∥2 ≤ γσ

∥∥∥√σ2(X)/e2(X)−
√
σ̂2(X)/ê2(X)

∥∥∥
2

+ γσ

∣∣∣∣∣En

[
I[Z = 1]

√
σ̂2
1(X)

ê21(X)
+ I[Z = 0]

√
σ̂2
0(X)

ê20(X)

]
− E

[
I[Z = 1]

√
σ2
1(X)

e21(X)
+ I[Z = 0]

√
σ2
0(X)

e20(X)

]∣∣∣∣∣
(2)

Next we show that for z ∈ {0, 1},786 ∥∥∥√σ̂2
z(X)/ê2z(X)−

√
σ2
z(X)/e2z(X)

∥∥∥
2
≤ νeBσ2(

∥∥∥√σ̂2
z(X)−

√
σ2
z(X)

∥∥∥
2
+∥ez(X)− êz(X)∥2)

(3)
In the below, we drop the z argument.787

By the triangle inequality, boundedness of 1/ê(X) ≤ νe, and of σ2(X) ≤ Bσ2 :788 ∥∥∥√σ̂2(X)/ê2(X)−
√
σ2(X)/e2(X)

∥∥∥
2

=
∥∥∥√σ̂2(X)/ê2(X)±

√
σ2(X)/ê2(X)−

√
σ2(X)/e2(X)

∥∥∥
2

≤ νe

∥∥∥√σ̂2(X)−
√
σ2(X)

∥∥∥
2
+Bσ2

∥∥∥∥ 1

e(X)
− 1

ê(X)

∥∥∥∥
2

For the second term:789

Bσ2

∥∥∥∥ 1

e(X)
− 1

ê(X)

∥∥∥∥
2

≤ Bσ2

∥∥∥∥ 1

e(X)
− 1

ê(X)

∥∥∥∥
2

≤ Bσ2νe ∥e(X)− ê(X)∥2

since 1/e(X) is Lipschitz on the assumed bounded domain (overlap assumption).790

For the first term:

ν
∥∥∥√σ̂2(X)−

√
σ2(X)

∥∥∥
2
≤ νeBσ2

∥∥σ̂2(X)− σ2(X)
∥∥
2

since σ2(X) is bounded away from 0, then
√
σ2(X) is Lipschitz.791

This proves Equation (3), which bounds the first term of Equation (2). For the second term, denote
for brevity

β̂(σ, e) = En

[
I[Z = 1]

√
σ2
1(X)

e21(X)
+ I[Z = 0]

√
σ2
0(X)

e20(X)

]
,

and β(σ, e) to be the above with E [·] instead of En [·] . Then the second term of Equation (2) is792

β̂(σ̂, ê)− β(σ, e), and decomposing further, that793

β̂(σ̂, ê)− β(σ, e) = β̂(σ̂, ê)− β̂(σ, e) + β̂(σ, e)− β(σ, e).

Note that by Cauchy-Schwarz inequality, and Lemma 3 (chaining with VC-dimension),

β̂(σ̂, ê)− β̂(σ, e) ≤ 2νeBσ2

(∥∥∥√σ̂2
z(X)−

√
σ2
z(X)

∥∥∥
2
+ ∥ez(X)− êz(X)∥2

)
+2C

√
vc(F√

σ2

e

)

n

And another application of Lemma 3 gives that794

β̂(σ, e)− β(σ, e) = (En − E)
[
I[Z = 1]

√
σ2
1(X)

e21(X)
+ I[Z = 0]

√
σ2
0(X)

e20(X)

]
≤ 2C

√
vc(F√

σ2
e

)

n .

Combining the above bounds with Equation (2), we conclude that ∥π∗(z,X)− π̂∗(z,X)∥2 =795

op(n
−min(re,rσ,1/2)).796
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I Additional Experiment, Details and Discussion797

I.1 Additional details798

All experiments using our full algorithm 2 were conducted on a 2021 13-inch MacBook Pro equipped799

with a 2.3 GHz Quad-Core Intel Core i7 processor and 32 GB of memory. This setup was used to800

train standard nuisance models using machine learning, evaluated our algorithm, and conduct the801

analysis tasks reported in this paper. The average compute time for the experiments on real world802

data with 20 trials was less than 30 minutes, while the simulated data with 100 trials took less than 60803

minutes. Additionally, for all experiments, we allocate 55% of the data to batch 1 and 45% to batch 2.804

We run the ML nuisance models, logistic regression, random forest and support vectors machines,805

using popular Python packages (i.e. sklearn and scipy). We use logistic regression to estimate the806

propensity scores. For the outcome and variance models, we use random forest with the following807

hyperparameters:808

• max_depth: None809

• min_samples_leaf: 4810

• min_samples_split: 10811

• n_estimators: 100812

• random_state: 42813

We also use SVM model for the outcome models incorporating LLM predictions, and we use the814

following hyperparameters:815

• kernel: ’rbf’816

• C: 1817

We chose these hyperparameters by doing a grid search over hyperparameters and chose the ones that818

performed the best.819

We run LLM calls on Together.AI since they provide enterprise-secure deployments of local models,820

which is required for sensitive data. Because we need to use local LLMs for the real-world street821

outreach data, we also use the same local LLMs for the other experiments. We use “Llama-3.3-822

70B-Instruct-Turbo" for all experiments using LLMs. (Larger models provide effectively similar823

performance).824

To solve our optimization problem, we used the python package CVXPY and we specifically used825

the Splitting Conic Solver (SCS) solver.826

Once the experiments are run, we display the means and 95% confidence interval bands, obtained827

through bootstrapping, in each of our figures.828

I.2 Synthetic Data829

Before running our batch adaptive algorithm, we split the data into a validation set (35% of data) in830

which we estimate the ATE on. Then we use the remainder of the data to run our algorithm, which831

splits that data into the two batches in the way we described previously.832

Data Generating Process. We generate a dataset D = {X,Z, Y, Y (1), Y (0)}, of size 1000 and833

where the true ATE τ = E[Y (1)] − E[Y (0)] = 3. We sample each covariate X ∈ R5 from834

a standard normal distribution, X ∼ N (0, I5). Treatment Z is drawn with logistic probability835

γz(X) = (1 + eX2+X3+0.5). We define σ2
z(X) as follows:836

σ2
1(X) := max[1.3 + 0.4sin(X1), 0]

σ2
0(X) := max[3.5 + 0.3cos(X3), 0].

Finally, the outcome models are defined as:837

Y (0) = 5 +X1 − 2X2 + ϵ0
Y (1) = Y (0) + θ0 + ϵ1,
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where ϵ0 ∼ N (0, σ0(X)) and ϵ1 ∼ N (0, σ1(X)). The observed outcomes are Y = Z · Y (1)+ (1−838

Z) · Y (0).839
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Figure 4: Mean squared error between estimated ATE and true ATE averaged over 100 trials across
varying budgets.
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Figure 5: Average confidence interval width averaged over 100 trials across varying budgets.

Results. We see the greatest advantage with our adaptive estimation for budgets between 0.1 and840

0.4. While for larger budgets, even as the MSE for both estimators converge, the interval width for841

the adaptive estimator is still relatively small. Adaptive annotation with a larger budget introduces842

additional variation in inverse annotation probabilities, as compared to uniform sampling, which is843

equivalent to full-information estimation at a marginally smaller budget. This regime of improvement844

for small budgets is nonetheless practically relevant and consistent with other works.845

To stabilize the estimation of the inverse annotation probabilities, we use the plug-in estimator846

following eq. (RZ-plug-in.) and the ForestReisz method to estimate the balancing weights [11].This847

approach provides an automatic machine learning debiasing procedure to learn the Reisz representer,848

or unique weights that automatically balances functions between treated and control groups using a849

random forest model.850
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Figure 6: Boxplots of ATE estimates compared to skyline τ̂AIPW when the labeling budget is the
entire dataset in red and the grey dotted line is τ .

I.3 Real-world Dataset Details851

We provide further details about the treatment, covariates and outcomes for each dataset. Table 1852

and table 2 describe the variables in the retail hero and outreach datasets, respectively. We refer the853

reader to [17] for further details about the dataset. For the outreach data, we constructed the binary854

treatment variable by binning the frequency of outreach engagements for each client within the first855

6 months of the treatment period. We checked for overlap in propensity scores and decided to use856

treatments in the middle of the distribution as they had the most overlap. Additionally, by corollary 1,857

our method does well even when the propensity scores do not have good overlap.858

Variable Description Discrete Category
Outcome
Purchase whether a customer purchased a product [Yes,No]

Treatment
SMS communication whether a text was sent to encourage customer to con-

tinue shopping
[Yes, No]

Covariates
avg. purchase avg. purchase value per transaction [1-263, 264-396, 397-611, >

612]
avg. product quantity avg. number of products bought [≤ 7, > 7]
avg. points received avg. number of points received [≤ 5, > 5]
num transactions total number of transactions so far [≤ 8, 9 - 15, 16 - 27, > 28]
age age of user [≤ 45, > 45]

Table 1: Covariate, treatment, and outcome descriptions and discrete category definitions for Retail-
Hero dataset.

I.4 Additional Context on Street Outreach859

In New York City alone, approximately $80, 000, 000 per year is invested in homeless street outreach860

to an unclear effect. It is a time-consuming process, and it is unclear how the impacts of such intensive861
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Variable Description Discrete Category
Outcome
Placement The greatest housing placement attained by the client

between 2019–2021
[3:permanent housing, 2: shel-
ter/transitional housing, 1: other (e.g.,
hospital), 0: streets]

Treatment
Street outreach Binned frequency of outreach within the first three

months of 2019
[More outreach (3–15), Less out-
reach (1–2)]

Covariates
DateFirstSeen Ordinal date when the client was first seen by the out-

reach team
NA

Program Outreach or service program the client belonged to [Brooklyn Library, Grand Central
Partnership, Hospital to Home, K-
Mart Alley, Macy’s, MetLife, Penn
Post Office, Pyramid Park, S2H
Bronx, S2H Brooklyn, S2H Man-
hattan, S2H Queens, Starbucks, Su-
perblock, Vornado, Williamsburg Sta-
bilization Bed]

BelievedChronic Perceived by outreach workers as chronically homeless
individual

[Yes, No]

Gender Perceived or disclosed gender of client [Female, Male, Transgender]

Race Perceived or disclosed race of client [American Indian/Alaskan Native,
Asian, Black/African American,
Native Hawaiian/Pacific Islander,
White/Caucasian]

Ethnicity Perceived or disclosed ethnicity of client [Hispanic/Latino, Non-
hispanic/latino]

Age Perceived or disclosed age range of client [< 30 years old, 30–50 years old, >
50 years old]

Was311Call Whether outreach workers were responding to a 311 city
call

[Yes, No]

Was911Call Whether 911 was called to the scene [Yes, No]

Removal958 Whether outreach workers were responding to removal
hotline call

[Yes, No]

Housing applica-
tion

Whether any mention of the housing application was
found in casenotes

[Yes, No]

Service refusal Whether outreach worker documented that a client re-
fused their services in casenotes

[Yes, No]

Important docu-
ments

Whether there was mention of any important docu-
ments (i.e. social security card, drivers license, etc,)
in casenotes

[Yes, No]

Benefits Whether there was any mention of social service benefits
in the casenotes (i.e. foodstamps, SSI)

[Yes, No]

num contacts number of engagements with an outreach worker prior
to 2019

NA

max Placement maximum housing placement reached before 2019 [3:permanent housing, 2: shel-
ter/transitional housing, 1: other (e.g.,
hospital), 0: streets]

Table 2: Covariates, treatment, and outcome descriptions and discrete category definitions for the
Street Outreach dataset.

individualized outreach might compare to other proposed approaches, such as those focusing on862

placing entire networks of individuals together. While the nonprofit reports key metrics such as863

number of completed placements in housing services, these can be somewhat rare due to length864
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Figure 7: Distribution of street outreach engagements for client population.

of outreach, delays in waiting for housing, matching issues, etc; moreover, much of a successful865

placement is out of the control of outreach due to highly limited housing capacities. Measuring866

the impacts of street outreach on intermediate outcomes such as accessing benefits and services,867

completing required appointments and interviews, can better reflect the immediate impacts of street868

outreach.869

I.5 Robustness Check on Street Outreach Data870

To further demonstrate the utility of our approach, we run experiments on the Street Outreach data871

with Ỹ . To recap, our setup consists of covariates X , which includes client characteristics at baseline872

and LLM-generated summaries of case notes recorded before the treatment period. In the main text,873

we used LLMs to summarize casenotes prior to outreach during the interventional period, and used874

them in zero-shot prediction of later placement outcomes. Here we also incorporate LLM-generated875

summaries of case notes recorded post-treatment. These represent Ỹ in our framework.876

Figure 8: Street outreach data with post-treatment summaries only. Mean squared error and
95% confidence interval width averaged over 20 trials across budget percentages of the data. This
plot makes use of tabular data and the best-performing random forest outcome model (left) and
text-encoded outcomes using LLMs (right).
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Figure 9: Street outreach data with pre- and post-treatment summaries. Mean squared error
and 95% confidence interval width averaged over 20 trials across budget percentages of the data.
This plot makes use of tabular data and the best-performing random forest outcome model (left) and
text-encoded outcomes using LLMs (right).

In Figure 8 and Figure 9, we see that our results and analysis are preserved, and qualitatively similar.877

Our adaptive approach still shows improvements over uniform random sampling. The MSE is tripled878

when going from our adaptive estimators to random sampling in the tabular data. The MSE is five879

times higher when going from adaptive to random sampling in the setting where we have added LLM880

predictions using post-treatment summaries Ỹ only and it is nearly doubled when using both pre- and881

post-treatment summaries.882

In this experimental setup, we find that tabular estimation with ground-truth validated codes overall883

performs comparably as using more advanced LLM estimation. In this setup, we use placement884

outcomes as the measure of interest, in part because it is (nearly) fully recorded in our dataset, and885

hence we can consider it as having access to the “ground-truth" outcome in our methodological setup.886

On the other hand, we also expect that casenotes are weakly informative of placement, as compared887

with other outcomes we might seek to extract from casenotes (but do not have the ground-truth for).888

Nonetheless, this validates the usefulness of the method, and we leave further empirical developments889

for future work.890

I.6 Budget Saved Plots891

We compute the amount of budget saved due to our batch adaptive sampling approach. We find the892

sample size required to achieve the same confidence interval width with batch adaptive annotations893

using balancing weights (green) and RZ-plug-in (orange) compared to uniform random sampling.894

I.7 Active Learning Baselines895

Active learning is not a strong baseline and we argue this on theoretical and empirical fronts. Active896

learning for regression can’t improve statistical rates of convergence, while the doubly-robust AIPW897

estimator in causal inference can, so using AIPW is optimal. Additionally, using pool-based active898

learning algorithms in AIPW blows up variance due to near-deterministic annotation probabilities.899

Active learning models only target µz , but the outcome model contributes σ2
z(x)

ez(x)π(z,x)
to the causal900

Avar, and our optimal annotation correctly balances the effect of all factors, but active learning only901

considers the first.902
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Figure 10: RetailHero Data. Budget saved due to batch adaptive annotation. The reduction in
annotation sample size needed to achieve the same confidence interval width with batch adaptive
annotation on tabular data (left) and on tabular data + complex embedded outcomes (right) compared
to random sampling.

Figure 11: Street Outreach Data. Budget saved due to batch adaptive annotation. The reduction
in annotation sample size needed to achieve the same confidence interval width with batch adaptive
annotation on tabular data (left) and on tabular data + complex embedded outcomes (right) compared
to random sampling.

In summary, active learning does something completely different for prediction error, suboptimal for903

causal inference.904

Empirically, we run active learning algorithms to learn µ in AIPW and find that it totally fails for905

these reasons; if these objectives line up, it can do well, but in general, the prediction and causal error906

objectives are different.907

Theoretical comparison to active learning. As a reminder, we optimize:908

AV arATE = V ar[CATE(X)] +
∑

z∈{0,1}

E[
σ2
z(X)

ez(X)π(z,X)
]

(The first term is the variance of CATE = E[Y (1)− Y (0)|X]; it is never observed.)909

To go more in detail on our experiments 1) we compare to theoretical results in batch pool-based910

active learning, Chaudhuri et al. [7] and Gentile et al. [22] (henceforth GWZ), which show that active911

learning doesn’t improve convergence rates for regression, only multiplicative constants. Instead,912

the AIPW estimator is optimal for causal estimation: if the outcome and propensity scores can only913

achieve n−1/4 convergence, the AIPW estimator is O(n−1/2)-rate convergent, so AIPW can speed914

up outcome model convergence rates. Therefore using the AIPW estimator is best, and random915

sampling + AIPW is a stronger baseline than active learning.916

To emphasize the different objectives, consider a simple example with two regions:917
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• Region 1 (Poor Overlap), X > 0: Propensity score e(X) = 0.01; outcome noise918

σ1(X), σ0(X)=1.919

• Region 2 (High Prediction Uncertainty), X < 0: Propensity score e(X) = 0.5; outcome920

noise σ1(X), σ0(X) = 10 and the outcome model is complex.921

Our method compares the ATE variance contribution in either region:922

• Region 1:
√
1

0.01 = 100923

• Region 2:
√
100
0.5 = 10924

and samples in Region 1, where the causal variance is five times higher. Uncertainty-based active925

learning samples in Region 2, to the detriment of causal variance.926

Active Learning Empirical Evaluations. We evaluate our method against 2-3 active learning base-927

lines for each experiment from two popular and well-established python packages (scikit-activeML928

and modAL). Different active learning algorithms are appropriate for different outcome models, so929

we choose the sampling strategy based on our modeling task, and we use pool-based active learning930

matching our two-batch approach. (Note our approach is model-agnostic, while active learning931

methods are not). For the classification tasks on our two real-world datasets (RetailHero/Street932

Outreach), we use UncertaintySampling with margin sampling and least confident sampling as query933

strategies, which both choose x with highest uncertainty measure based on classification probabilities934

P (Ŷ = 1 | x) [40]. For the regression tasks, we use Expected Model Variance Reduction [12],935

Expected Model Change Maximization [6], and Improved Greedy Sampling [51]; these choose x936

that maximizes greatest future variance reduction, maximally change the current model via the loss937

gradient, and diversity in feature and output space, respectively.938

We run each approach over 50 trials and take the average MSE. Across the board, we see that our939

approach does better than the popular active learning strategies that are not optimized for causal940

estimation.941

Result Tables942

Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
active-evar 0.313 17.3 85.1 579 1.31e+03 3.87e+03 1.27e+04 5.03e+04 8.93e+05
active-greedy 6.13 79.9 369 852 1.99e+03 5.06e+03 1.33e+04 5.09e+04 2.95e+05
active-mvar 10.6 94.3 314 883 2.17e+03 5.70e+03 1.21e+04 3.87e+04 2.99e+05
adaptive-balance 0.471 0.227 0.276 0.236 0.265 0.246 0.198 0.176 0.203
adaptive-plugin 1.7 1.17 0.831 0.196 0.83 0.449 0.507 0.93 0.481
random 8.99 4.56 2.19 1.54 1.7 1.61 1.46 0.956 0.987

Table 3: Averaged MSEs for Synthetic Data.

Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
active-margin 3.53e+03 0.047 0.087 12.5 8.38e+03 2.25e+06 1.49e+06 6.53e+05 1.43e+07
active-uncertain 16.1 38.9 70.4 75.9 115 112 168 250 402
adaptive-balance 0.004 0.002 0.002 0.001 0.001 0.001 0 0 0
adaptive-plugin 0.004 0.001 0.001 0.001 0.001 0 0 0 0
random 0.027 0.012 0.009 0.006 0.005 0.003 0.001 0.001 0

Table 4: Averaged MSEs for RetailHero Data.
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Estimator 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
active-margin 0.009 28.5 4.47 0.501 0.449 0.044 0.099 0.412 0.209
active-uncertain 0.017 0.009 0.018 0.008 0.017 0.018 0.025 0.023 0.024
adaptive-balance 0.046 0.031 0.013 0.006 0.005 0.003 0.004 0.003 0.002
adaptive-plugin 0.045 0.025 0.027 0.012 0.006 0.004 0.004 0.006 0.001
random 0.113 0.061 0.037 0.045 0.014 0.012 0.011 0.003 0.001

Table 5: Averaged MSEs for Street Outreach Data.

Gentile et al. [22] chooses a point x maximizing a diversity measure, D(x,S) that quantifies model943

uncertainty and is directly influenced by the observation noise, σ2
z(X). For general function ap-944

proximation, they introduce a maximal disagreement measure over the regression function class F945

supf,g∈F
(f(x)−g(x))2∑

z∈S(f(z)−g(z))2+1 , where S is the set of already sampled points. If σ2(x) is large for946

some x, their disagreement measure is also large. Their diversity measure finds points where it is947

possible for two functions, f, g, to have similar predictions on the already-labeled data S (a small948

denominator) but different predictions for a new point x (a large numerator). When observation noise949

σ2(x) is larger, many different functions can be considered "plausible" fits and can agree on S but950

disagree elsewhere, leading to a high diversity score. In contrast, low noise tightly constrains all951

plausible functions, resulting in low disagreement.952

I.8 LLM Prompts953

Prompt 1 (Retail Hero):954

You are a user who used a website for online purchases in the past one year and want to
share your background and experience with the purchases on social media.
Attributes:
The following are attributes that you have, along with their descriptions.
{features}
# Personality Traits The following dictionary describes your personality with levels (High
or Low) of the Big Five personality traits.
{traits}
Your Instructions:
Write a social media post in first-person, accurately describing the information provided.
Write this post in the tone and style of someone with the given personality traits, without
simply listing them.
Only return the post that you can broadcast on social media and nothing more.
—
{post}
–_

955

Prompt 2 (Street Outreach Casenote Summaries) :956
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Objective: Your task is to summarize a trajectory of case notes of a client in street home-
lessness outreach, focusing on client interactions, the challenges they are facing, goals they
are working towards, and progress towards housing placement. These are all from the same
client. This summary is designed to help caseworkers and organizations assess client history
at a glance, remind of prior personal information and important challenges mentioned (like
veteran status or other information that is relevant for eligibility for housing, medical issues,
and status of their support network), allocate resources effectively, and improve support for
individuals experiencing chronic homelessness.
Context: {task_context}
The summary should be a concise overview of the client’s situation, highlighting key points
from the case notes. It should not include any personal opinions or assumptions about
the client’s future or potential outcomes. The goal is to provide a clear and informative
summary that can be used by caseworkers and organizations to better understand the client’s
history and current status.
Here are the case notes for batch {batch_num} of {total_batches}:
— START NOTES —
{notes}
— END NOTES —
Based *only* on the notes provided above for this batch, generate a comprehensive
summary focusing on key events, decisions, and progress during this specific period.
The target length is approximately {target_length} words. Ensure the summary strictly
reflects the content of these notes.

957
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Prompt 2 (Street Outreach Classification) :958

You are an expert analyst specializing in predicting long-term housing stability for individ-
uals experiencing homelessness. Your task is to analyze client data, including demographic
information, historical interactions, and case note summaries, to predict the **most stable
housing placement level** the client is likely to achieve and maintain over the **next two
years**.
**Input Data:**
You will be provided with the following information for each client:
**Prediction Task:**
Based *only* on the provided attributes and the case notes summary, predict the single
most stable housing placement level the client is likely to maintain over the next two years.
**Housing Placement Levels (Prediction Output):**
Your prediction must be an integer between 0 and 3:

• **0**: No stable placement (remains on the street or in emergency shelters).
• **1**: Transitional Housing (temporary placement with support, aiming for

longer-term housing).
• **2**: Rapid Re-housing (time-limited rental assistance and services).
• **3**: Permanent Supportive Housing (long-term housing with ongoing support

services).
**Reasoning Guidance (Internal Thought Process - Do Not Output This):**

• Consider factors that promote stability: housing application progress, possession
of documents, benefit acquisition, engagement with services (unless contacts
are excessive without progress), prior successful placements (even if temporary),
positive recent developments in the case notes.

• Consider factors that hinder stability: chronic homelessness indicators, frequent
service refusals, mental health crises (Removal958), lack of documents/income,
lack of prior placements, patterns of instability noted in the summary.

• Weigh the structured data against the nuances presented in the case note summary.
The summary provides vital context.

**Client Information:**
**Prediction:**
Provide *only* the predicted number (0, 1, 2, or 3) as the output. Do not include any other
text, explanation, or formatting.
**Examples:** {examples}

959
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