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ABSTRACT

This paper investigates how to leverage data from multiple cameras to learn rep-
resentations beneficial for visual control. To this end, we present the Multi-View
Masked Autoencoder (MV-MAE), a simple and scalable framework for multi-
view representation learning. Our main idea is to mask multiple viewpoints from
video frames at random and train a video autoencoder to reconstruct pixels of both
masked and unmasked viewpoints. This allows the model to learn representations
that capture useful information of the current viewpoint but also the cross-view
information from different viewpoints. We evaluate MV-MAE on challenging
RLBench visual manipulation tasks by training a reinforcement learning agent on
top of frozen representations. Our experiments demonstrate that MV-MAE signifi-
cantly outperforms other multi-view representation learning approaches. Moreover,
we show that the number of cameras can differ between the representation learning
phase and the behavior learning phase. By training a single-view control agent on
top of multi-view representations from MV-MAE, we achieve 62.3% success rate
while the single-view representation learning baseline achieves 42.3%.

1 INTRODUCTION

Recent self-supervised learning approaches have been successful at learning useful representations
from multiple views of the data, including different channels (Zhang et al., 2017) or patches (Oord
et al., 2018) of an image, vision-sound modalities (Owens et al., 2016), vision-language modali-
ties (Radford et al., 2021; Alayrac et al., 2022), and frames of a video (Wang & Gupta, 2015). The
main underlying idea of these approaches is to utilize information about the same data from different
perspectives as supervision for representation learning. Notably, Zhang et al. (2017) trained an au-
toencoder that predicts a subset of the image channels from another subset, and Radford et al. (2021)
trained a vision-language model that matches image-text pairs with contrastive learning. Promising
results from these approaches suggest that data diversity can play a key role in representation learning.

In the context of visual control, the camera is an easily accessible instrument that can increase data
diversity by providing information about the same scene from different viewpoints. For instance,
it has been a widely-used technique for roboticists to utilize multiple cameras for solving complex
manipulation tasks (Akkaya et al., 2019; Akinola et al., 2020; Hsu et al., 2022; James et al., 2022;
Jangir et al., 2022). Yet these works mostly focus on the improved performance from utilizing
multi-view observations as inputs, not investigating the effectiveness of representation learning with
diverse data from multiple cameras. A notable exception is the work from Sermanet et al. (2018),
which learns view-invariant representations via contrastive learning. However, enforcing viewpoint
invariance assumes that all viewpoints share similar information and thus requires careful curation
of positive and negative pairs, similar to other contrastive approaches that often depend on complex
design choices about sampling such pairs (Arora et al., 2019).

We present Multi-View Masked Autoencoders (MV-MAE), a simple and scalable framework for
visual representation learning with diverse data from multiple cameras. Our main idea is to mask
randomly selected viewpoints and train an autoencoder that reconstructs pixels of both masked and
unmasked viewpoints. This allows the model to learn representations of each viewpoint that captures
visual information of the current viewpoint but also cross-view information of other viewpoints. To
further encourage cross-view representation learning, we propose to train a video autoencoder by
masking multiple viewpoints from video frames at random. Because the model can utilize information
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Figure 1: Illustration of our representation learning scheme. We extract features from each viewpoint
with convolutional networks (CNN) and mask all features from randomly selected viewpoints of
video frames. We also mask randomly selected features from remaining viewpoints to encourage the
autoencoder to learn information of unmasked frames. A vision transformer (ViT; Dosovitskiy et al.
2021) encoder processes visible features to fuse information from multiple views and frames. Then a
ViT decoder concatenates mask tokens for each view and processes inputs to reconstruct frames. We
note that the autoencoder reconstructs all frames at the same time.

from the current frame but also information from unmasked frames of the target view, we find our
approach helps the model to focus on predicting important details, e.g., gripper poses. Then we utilize
learned representations for visual control by training a reinforcement learning agent that learns a
world model on top of frozen representations and utilizes it for behavior learning (Seo et al., 2022a).

Contributions. We highlight the contributions of our paper below:

• We present MV-MAE, a simple and scalable framework that can leverage diverse data from
multiple cameras for visual representation learning. The main idea of MV-MAE is training a
video masked autoencoder (Tong et al., 2022; Feichtenhofer et al., 2022) with a view-masking
strategy that encourages the model to learn spatial dependency between viewpoints.

• We provide empirical evaluation of MV-MAE on challenging visual manipulation tasks from
RLBench (James et al., 2020). Unlike other multi-view representation learning baselines that
enforce invariance between multiple viewpoints (Sermanet et al., 2018; Assran et al., 2022), MV-
MAE consistently outperforms a single-view representation learning baseline under a challenging
experimental setup with multiple cameras of diverse types.

• We demonstrate that data diversity from multiple viewpoints can play a crucial role in representa-
tion learning for visual control. In particular, by training a single-view control agent on top of
multi-view representations from MV-MAE, we find that our approach significantly outperforms a
single-view representation learning baseline, e.g., we achieve 62.3% success rate on six visual
manipulation tasks while the baseline achieves 42.3%.

2 RELATED WORK

Unsupervised visual representation learning. Self-supervised learning on large-scale unlabeled
datasets has been actively studied in the domain of computer vision (Noroozi & Favaro, 2016;
Chen et al., 2020; Grill et al., 2020; He et al., 2021). A line of research that has been successful is
contrastive learning, which learns representations by maximizing the mutual information between
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Figure 2: Masked view reconstruction on Take Lid Off Saucepan (left) and Put Rubbish in Bin (right)
tasks from RLBench (James et al., 2020). We visualize ground-truth frames with masked viewpoints
(upper two rows) and ground-truth frames with reconstructed frames (lower two rows). We find that
the model can successfully reconstruct masked viewpoints.

different views of images (Chen et al., 2020; He et al., 2020; Tian et al., 2020a;b). The work closest
to ours is Sermanet et al. (2018), which proposed to learn view-invariant representations with videos
collected with multiple cameras. But contrastive approaches often require complex design choices
with regard to sampling positive-negative pairs (Arora et al., 2019) and can fail when the assumption
for induced invariance does not hold for downstream tasks (Xiao et al., 2021). We instead take a
simple approach that learns representations via masked reconstruction.

Our work is closely related to denoising autoencoding approaches (Vincent et al., 2010; Pathak et al.,
2016) that train an autoencoder to reconstruct masked inputs. Notably, He et al. (2021) proposed a
scalable masked autoencoder architecture that masks a large portion of an image and only uses visible
patches as inputs for solving reconstruction tasks. Our model is built on top of its spatiotemporal
extension that introduces a video autoencoder (Tong et al., 2022; Feichtenhofer et al., 2022). This
work follows this line of research by introducing the autoencoder that reconstructs masked viewpoints.
Recently, Geng et al. (2022) trained a unified autoencoder for vision-language modalities with masked
token prediction and found that data diversity allows for learning transferable representations. We
support this finding with our investigation that shows data diversity from multiple cameras can be
helpful for representation learning in the context of visual control.

Unsupervised representation learning for visual control. Representation learning from visual
observations has also been actively studied for learning to solve control tasks from easily accessible
cameras (Watter et al., 2015; Oord et al., 2018; Gelada et al., 2019; Hafner et al., 2019; Yarats et al.,
2021b; Srinivas et al., 2020; Castro, 2020; Schwarzer et al., 2021a; Yarats et al., 2021a; Seo et al.,
2022b). Recent works have demonstrated that self-supervised learning can enable agents to solve
visual control tasks with frozen representations (Stooke et al., 2021; Schwarzer et al., 2021b; Nair
et al., 2022; Parisi et al., 2022; Xiao et al., 2022; Seo et al., 2022a; Radosavovic et al., 2022). Our
work further demonstrates that frozen representations learned with diverse data from multiple camera
viewpoints can be effective for solving challenging visual manipulation tasks.

Visual control with multiple cameras. Leveraging multiple cameras has long been considered a
practical and feasible technique in robotics, as the camera is usually an affordable and ubiquitous
device (Sola et al., 2008; Carrera et al., 2011; Yang et al., 2021). Based on recent advances in
computer vision and robot learning, there have been several approaches that utilize multi-view data
from multiple cameras for visual control (Sermanet et al., 2018; Akinola et al., 2020; Zhan et al.,
2020; Chen et al., 2021a; Hsu et al., 2022; Jangir et al., 2022; Shridhar et al., 2022; Guhur et al.,
2022). While most approaches utilize multi-view data directly as inputs for robots, recent works
have demonstrated that self-supervised learning that learns view-invariant representations (Sermanet
et al., 2018) or 3D keypoints (Chen et al., 2021a) can be useful for downstream tasks. This work also
demonstrates that multi-view representation learning can be beneficial for visual control.

3 MULTI-VIEW MASKED AUTOENCODERS FOR VISUAL CONTROL

To fully exploit the multi-view data for representation learning, it is important to encourage the repre-
sentations to learn cross-view information between viewpoints. In this section, we first introduce the
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Figure 3: Overall pipeline of our framework. In the representation learning phase, we learn visual
representation from multi-view data sampled from a replay buffer, as we have illustrated in Figure 1.
In the control phase, we train an RL agent upon the frozen representations and store the samples
collected from online interaction to the buffer. Thanks to our architecture design that can take inputs
of varying lengths, MV-MAE can take inputs of either single-view or multi-view. This allows us to
utilize a different number of cameras for the representation learning and behavior learning phases.
We provide a pseudocode of our framework in Appendix B.

Multi-View Masked Autoencoder (MV-MAE) that reconstructs missing pixels of masked viewpoints
for multi-view representation learning (see Section 3.1). We then describe how we utilize the visual
representations for training a reinforcement learning (RL) agent (see Section 3.2).

3.1 MULTI-VIEW REPRESENTATION LEARNING

Our main idea for multi-view representation learning is to learn cross-view information from multiple
viewpoints by reconstructing missing pixels of randomly masked viewpoints. However, such masked
view reconstruction might be too challenging for the autoencoder without any access to information
from missing viewpoints. For instance, reconstructing all details of a front camera observation, which
contains a broader view of a robot workspace, with only having access to a wrist camera could be
extremely challenging (see Figure 4 for examples of front and wrist cameras).

To address this issue, we propose to train a video masked autoencoder (Feichtenhofer et al., 2022;
Tong et al., 2022) with view-masking that reconstructs missing pixels of randomly masked viewpoints
from video frames. Because the autoencoder attends to unmasked neighbor frames from the same
view, the model can focus on modeling important information such as target object positions and the
movement of robot arms, while ignoring redundant information such as background for reconstructing
masked viewpoints. We provide the overview of our representation learning scheme in Figure 1.

Convolutional feature embedding. Unlike prior work that masks random pixel patches (He
et al., 2021; Feichtenhofer et al., 2022; Tong et al., 2022; Geng et al., 2022), we embed camera
observations into convolutional feature maps following the design of Seo et al. (2022a).1 Specifically,
we downsample 96×96×3 input images to convolutional feature maps with the spatial size of 6×6 by
introducing 4 convolutional layers. Note that we separately process observations from each viewpoint
with convolutional layers that share parameters. For each viewpoint, we add fixed 2D sin-cos position
embeddings (Chen et al., 2021b) to the features. Then we add learnable 1D parameters representing

1Seo et al. (2022a) observed that masked image modeling with pixel patch masking (He et al., 2021) can
make it difficult for the model to learn fine-grained details within patches, e.g., object positions and boundaries,
which could be crucial for tasks that require precise control such as visual manipulation tasks.
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each camera and timestep to features of each video frame from different viewpoints. This is based on
the idea of Geng et al. (2022) that introduces learnable parameters for vision and language inputs.
Then we flatten the features and concatenate them into a single sequence.

View masking. We introduce a new view-masking scheme that masks all the features from a
randomly selected camera viewpoint to encourage the model to learn cross-view information. Specifi-
cally, we mask randomly selected viewpoints from video frames by randomly sampling one viewpoint
for each frame. We also mask randomly selected features from remaining viewpoints (see Figure 1)
because we want the autoencoder to learn not only cross-view information but also the information
within each viewpoint by reconstructing raw visual observations with masked features. We empirically
find that the proposed view-masking can be more effective than uniform-masking scheme by explicitly
encouraging multi-view representation learning (see Figure 7(a) for supporting experiments).

Video autoencoding. For autoencoder architecture, we largely follow the design of masked autoen-
coders (MAE; He et al. 2021; Feichtenhofer et al. 2022; Tong et al. 2022) that utilize the encoder and
decoder consisting of vision transformers (ViT; Dosovitskiy et al. 2021). Specifically, the encoder
processes a sequence of unmasked features from all viewpoints and video frames through a series
of ViT layers. Then we concatenate a set of mask tokens with encoded features and add learnable
parameters for each viewpoint and each time to corresponding features and mask tokens. The decoder
processes them through ViT layers and linearly projects them into pixel patch predictions (see Fig-
ure 2 for examples of masked view reconstruction). The training loss for the autoencoder is the mean
squared error between patch predictions and ground-truth pixel patches with a spatial size of 16×16.

3.2 VISUAL CONTROL

Once we learn multi-view representations, we train an RL agent on top of the representations for
visual control. Because MV-MAE consists of ViTs based on a transformer architecture that can
take inputs of variable lengths (Vaswani et al., 2017), the encoder can extract both single-view and
multi-view representations though we utilize multi-view data for representation learning. This can be
beneficial in practical scenarios where we can utilize additional third-person cameras during training,
but the robot should operate on a fewer number of cameras at deployment time for faster inference.

Reinforcement learning. We consider masked world models (MWM; Seo et al. 2022a) as our
base RL algorithm, which learns a world model on top of frozen MAE representations and utilizes
it for behavior learning (Hafner et al., 2021). Because MWM decouples visual representation and
dynamics learning, it naturally aligns with our approach of separately training the autoencoder to
learn visual information from multiple cameras. We provide more details in Appendix C.

Training. Throughout the training, we iterate the processes of (i) updating MV-MAE with multi-
view data, (ii) training the MWM agent with single-view or multi-view data, and (iii) collecting
samples with environment interaction. As inputs to MWM agent, we concatenate the convolutional
features with proprioceptive states and process them through the MV-MAE encoder. Because MWM
is a model-based approach with a recurrent architecture, we extract representations from a single
video frame for behavior learning. This is based on the observation of Feichtenhofer et al. (2022),
where image representations from the video autoencoder are found to be useful for image recognition.

4 EXPERIMENTS

We design our experiments to investigate the following questions:

• Can MV-MAE effectively leverage multi-view data for representation learning?

• Can multi-view representation learning be useful for single-view visual control?

• Can MV-MAE work with more than two cameras?

• What is the effect of each component in MV-MAE?
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(a) Pick Up Cup (b) Pick and Lift (c) Phone On Base

Figure 4: Examples of multi-view data consisting front and wrist camera observations used in our
RLBench (James et al., 2020) experiments. Front camera observations provide a broad look at a robot
workspace, and wrist camera observations provide a closer look at target objects. We provide the
examples of multi-view data from all six tasks in Appendix D.

4.1 SETUP

Environments. We investigate the effectiveness of representation learning with data from multiple
viewpoints on challenging visual manipulation tasks from RLBench (James et al., 2020) — a standard
benchmark for vision-based robotics which has been shown to serve as a proxy for real-robot
experiments (James & Davison, 2022). While RLBench is originally designed to evaluate the
performance in a sparse reward setup, we design dense rewards for six manipulation tasks. Moreover,
to ease the difficulty of exploration in large action space, we enforce a robot gripper to be in an
upright position without rotation. Following James & Davison (2022), we also fill a replay buffer
with 100 expert demonstrations. We find these schemes allow us to focus on investigating the
effect of visual representation learning while avoiding the challenge from sparse rewards and hard
exploration. Unlike prior approaches that utilize path planner with the policy to output next best
gripper pose (James & Davison, 2022; James et al., 2022), our RL agent outputs relative change in
gripper position. We provide further details and source code for the environments in Appendix C.

Implementation. For all experiments, we use only 96×96 RGB observations from each camera.
We downsample images by 16× to obtain convolutional feature maps with a spatial size of 6×6.
Unlike prior approaches that train video masked autoencoders (Feichtenhofer et al., 2022; Tong et al.,
2022), we do not utilize temporal downsampling because the agent operates on each image. For
view-masking, we apply random view-masking independently to each frame in a video consisting
of 4 frames. We compute the masking ratio in our experiments by including the number of features
from masked viewpoints; hence 50% masking ratio means no features are masked from remaining
viewpoints in a two-camera setup. Our autoencoder consists of the 8-layer ViT encoder and the
6-layer ViT decoder, where the embedding dimension is set to 256. We do not utilize a learning
rate schedule as a replay buffer keeps receiving new samples. Following the design of Seo et al.
(2022a), we also introduce a reward prediction objective for the autoencoder to encode task-relevant
information into visual representations. We provide more details and source codes for reproducing
our results in Appendix C.

Baselines and our framework. We consider following baselines for our experiments. For a fair
comparison, we ensure that all methods use the same amount of data for representation learning.
Specifically, for a single-view representation learning baseline, we train a single-view encoder on
camera observations from both viewpoints. We also use the same architecture for all methods. More
details on baselines are available in Appendix A.

• Masked world models (MWM; Seo et al. 2022a): MWM learns visual representations of a
single viewpoint by training an image autoencoder and trains a world model on top of frozen
representations. Because MWM does not encode cross-view information into representations,
comparison with MWM evaluates the benefit of multi-view representation learning.

• MWM + Masked Siamese Network (MSN; Assran et al. 2022): MSN learns visual representations
by matching the representations of masked images and the augmented images. We modify MSN
to learn cross-view information by making it match the representation of the masked viewpoint
with the unmasked viewpoint. We apply MSN to MWM and use it as a baseline. Comparison
with MWM + MSN evaluates the benefit of our approach against representation learning that
enforces view-invariance via positive pair matching (Grill et al., 2020; Assran et al., 2022).

6



Under review as a conference paper at ICLR 2023

Multi-View Control (Front + Wrist) Single-View Control (Front) Single-View Control (Wrist)
0

10

20

30

40

50

60

70

80

Su
cc

es
s 

R
at

e 
(\%

)

MWM + MV-MAE
MWM

MWM + MSN
TCN

Figure 5: Aggregate success rate of multi-view visual control and single-view visual control agents on
six visual manipulation tasks from RLBench (James et al., 2020). We find that MV-MAE consistently
outperforms both single-view and multi-view baselines across all setups. Importantly, single-view
control agents trained upon multi-view representations from MV-MAE achieve superior performance
to other approaches, demonstrating the importance of data diversity. The result shows the mean and
standard deviation averaged over 24 runs. We provide the learning curve for all tasks in Appendix F.

• Time Contrastive Network (TCN; Sermanet et al. 2018): TCN learns visual representations
through contrastive learning that utilizes observations from simultaneous viewpoints as positive
and frames from the same view but taken from different times as negative. We consider TCN
as a baseline to evaluate our approach against the approach that enforces view-invariance via
contrastive loss requiring a complex scheme for sampling positive-negative pairs.

• MWM + MV-MAE (Ours): We build our approach upon MWM by learning a world model on
top of frozen representations from MV-MAE. This differs from MWM in that we train the video
autoencoder with view-masking to learn cross-view information from multi-view data.

4.2 QUANTITATIVE RESULTS

Multi-view control with front and wrist cameras. We first evaluate the effectiveness of our
multi-view representation learning scheme in a multi-view visual control setup, where the agent
operates on both front and wrist cameras. For all baselines, we extract features from each viewpoint
and use concatenated features as inputs to the agent. For our approach, we use generic representations
from a single multi-view encoder as inputs. In Figure 5, we first observe that MWM + MV-MAE
and MWM + MSN outperform MWM, which shows the importance of multi-view representation
learning. However, we find that TCN significantly fails to solve most of the tasks. This shows the
critical drawback of TCN, which suffers from mode collapse when negative samples are too similar
(e.g., wrist camera observations look similar after grasping the objects in our case). We also find
that MWM + MV-MAE outperforms both multi-view baselines, demonstrating that masked view
reconstruction can effectively leverage multi-view data for representation learning compared to other
approaches that enforce view-invariance despite its simplicity.

Single-view control. We also report the performance of single-view visual control agents in Figure 5.
For single-view control experiments, we learn visual representations using multi-view data consisting
of front and wrist camera observations and train the RL agent that operates on either front or wrist
camera. Interestingly, we find MWM + MV-MAE significantly outperforms MWM in both setups,
which shows that multi-view representation learning can also be effective when we only have access
to single-view data for behavior learning. This result suggests that our approach can be useful for
practical scenarios where we can utilize additional third-person cameras during training, but the robot
should operate on a single wrist camera at deployment time.

Three camera experiments. One limitation of multi-view baselines is that it is difficult to scale up
them into a setup with more than two cameras because they learn representations by matching the
representation of two views. Meanwhile, our approach is naturally applicable to a setup with more
than two cameras because our approach simply reconstructs multi-view data from all cameras. To
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Figure 6: Learning curves of single-view visual control agents that operate on the front camera for
solving six visual manipulation tasks from RLBench (James et al., 2020) as measured on the success
rate. Front + Wrist and Front + Left + Right in legends denote the combination of cameras used
for multi-view representation learning. The solid line and shaded regions represent the mean and
standard deviations, respectively, across four runs.

empirically demonstrate this, we report the performance of MV-MAE with three cameras, i.e., front
camera, left shoulder camera, and right shoulder camera (see Appendix E for examples of camera
observations). We consider this setup motivated by the usage of multiple third-person cameras in prior
works (Akkaya et al., 2019; Akinola et al., 2020). Figure 6 shows the performance of representation
learning with the three cameras, where we find that MV-MAE with the three cameras outperforms
MV-MAE with front and wrist cameras. This shows that the model can capture fine-grained details
from three third-person cameras without using the wrist camera, which provides a closer look at
the objects. However, we find that several RLBench tasks are still very challenging to solve only
using the front camera for behavior learning, e.g., success rates of single-view control agents on
Pick and Lift are very low, which necessitates follow-up works on representation learning for visual
control. Given these results, a large-scale investigation into the effect of camera configurations on
representation learning for visual control could be an interesting future direction.

4.3 ABLATION STUDY AND ANALYSIS

Effect of view-masking. To investigate the effect of the proposed view-masking scheme, we
report the performance with and without view-masking in Figure 7(a). We find that utilizing the
view-masking strategy for training the video autoencoder achieves significantly better performance
than uniform-masking, which supports that view-masking encourages the autoencoder to learn
representations capturing useful cross-view information. On the other hand, we observe that view-
masking can be harmful when training the image autoencoder unlike training the video autoencoder.
This is because masked view reconstruction could be a challenging task for the image autoencoder
and thus prevent the model from learning useful representations, as we mentioned in Section 3.1.

Effect of video autoencoding. In Figure 7(a), we also investigate the effect of video autoencoding
by reporting the performance of MV-MAE with and without video autoencoding. We find that
performance significantly degrades without video autoencoding, which demonstrates that enabling
the model to have access to unmasked frames of the same view is indeed crucial for representation
learning with masked view reconstruction. However, we find that training the video autoencoder
is not effective without the view-masking scheme, achieving even worse performance than training
the image autoencoder. This shows that the model can learn to exploit additional information from
multiple frames for solving reconstruction tasks, making it difficult to learn useful representations.
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Figure 7: Learning curves of single-view visual control agents operating on the front camera for
solving three manipulation tasks from RLBench (James et al., 2020), investigating the effect of (a)
view masking and video autoencoding and (b) masking ratio. (c) We report the performance of
MV-MAE trained with four cameras (i.e., front, wrist, left shoulder, and right shoulder) and varying
number of masked views (i.e., 0, 1, 2, and 3). The solid line and shaded regions represent the mean
and stratified bootstrap confidence interval across 12 runs.

Masking ratio. In Figure 7(b), we find that performance of MV-MAE keeps increasing with a
higher masking ratio, achieving the best performance with an extremely high masking ratio of 95%.
We hypothesize this is because spatial information redundancy (He et al., 2021) is more significant in
camera observations from visual manipulation tasks than natural images. This also aligns with the
observation of prior works (Feichtenhofer et al., 2022; Tong et al., 2022) where the high masking
ratio of 90% has shown to be effective for videos with more information redundancy.

Number of masked views. In Figure 7(c), we further investigate how the proposed view-masking
scheme works with the different number of masked views. Specifically, we report the performance of
MV-MAE with four cameras (i.e., front, wrist, left shoulder, right shoulder) and varying number of
masked views. We observe that masking more views leads to better performance, outperforming a
uniform-masking baseline. This shows that the proposed view-masking can prevent the model from
exploiting information redundancy and effectively encourage multi-view representation learning.

5 DISCUSSION

We have presented Multi-View Masked Autoencoder (MV-MAE), a simple and scalable framework
for multi-view representation learning with multiple cameras. Our experimental results demonstrate
that multi-view representation learning can significantly outperform both single-view and multi-view
representation learning baselines by a large margin on challenging visual manipulation tasks from
RLBench (James et al., 2020). These results suggest that data diversity from multiple viewpoints can
play a key role in representation learning for visual control. We believe that our work can be useful
for various robot learning scenarios with multiple cameras, by providing a framework that can work
with different number of cameras for representation learning and behavior learning phases. We hope
our work facilitates future research on leveraging multiple cameras for representation learning.

Limitation and future directions. One limitation of our approach is that the compute cost of
MV-MAE increases quadratically as the number of viewpoints increases. While we find it possible
to train a relatively large model thanks to the extremely high masking ratio, it would be interesting
to incorporate a more scalable architecture (Jaegle et al., 2021). As we mentioned in Section 4.2,
it would also be interesting to consider a large-scale investigation into the effect of diverse camera
configurations on representation learning, by conducting pre-training on large-scale robotics datasets
consisting of multi-view data (Dasari et al., 2019). Moreover, by combining the idea of MV-MAE
and multimodal MAE (Geng et al., 2022), training an RL agent that can operate on any modality or
viewpoints is a direction we would like to pursue in future works. Finally, we are keen to evaluate the
effectiveness of multi-view representation learning with MV-MAE on real robots.
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REPRODUCIBILITY STATEMENT

We provide the implementation details of our approach and baselines in Section 4, Appendix A,
and Appendix C. We also provide our source code to reproduce main results in Appendix C.

ETHICS STATEMENT

Learning visual control agents operating on easily accessible cameras can be helpful for various
applications, such as factory automation, autonomous driving, and training collaborative robots.
However, there could be a scenario where the robot is misused by malicious users, e.g., attackers
might inject rewards that teach undesirable behaviors which could be harmful to society. To prevent
such abuses, it is important to develop algorithms with an eye towards safety as well as performance.
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A BASELINES

A.1 MASKED WORLD MODELS

Masked world models (MWM; Seo et al. 2022a) is a visual model-based RL method that iterates the
representation learning phase and the behavior learning phase. In the representation learning phase,
MWM learns visual representation by reconstructing pixels given masked convolutional features.
In the behavior learning phase, policy, along with the world model, is learned on top of frozen
representation. We explain the details of each phase as follows.

Representation learning. For representation learning, MWM trains an autoencoder by (i) recon-
structing an image with masked convolutional features and (ii) predicting a reward. MWM processes
raw input image using a convolution stem, which is convolutional layers followed by a flatten layer.
Then, MWM randomly masks convolutional features, and feeds visible features into the ViT encoder.
The outputs from the ViT encoder, along with (learnable) mask tokens, are fed into the ViT decoder,
which reconstructs the raw image. For the auxiliary reward prediction, one additional learnable mask
token is concatenated into the inputs of the ViT decoder, and the corresponding output representation
followed by a linear output head is used to predict the reward.

Behavior learning. Once visual representation is learned, MWM trains an RL agent by actor-critic
learning scheme using the imaginary latent states from the world model. For the world model, MWM
uses a variant of Recurrent State Space Model (RSSM; Hafner et al. 2019). Formally, for a visual
task formulated as a partially observable Markov decision process (Sutton & Barto, 2018), which is
defined as a tuple (O,A, p, r, γ), O is the observation space, A is the action space, p(ot|o<t, a<t)
is the transition dynamics, r is the reward function that maps previous observations and actions to
a reward rt = r(o≤t, a≤t) and γ ∈ [0, 1) is the discount factor. Let zt be an output from the ViT
encoder for a current observation ot. The RSSM consists of the following learnable components:

Representation model: st ∼ qθ(st|st−1, at−1, zt)

Transition model: ŝt ∼ pθ(ŝt|st−1, at−1)

Visual representation decoder: ẑt ∼ pθ(ẑt|st)
Reward predictor: r̂t ∼ pθ(r̂t|st),

(1)

The representation model extracts model state st from previous model state st−1, previous action at−1,
and zt. The transition model predicts future state ŝt without access to zt. The visual representation
model reconstructs zt to provide learning signal. All model parameters θ are jointly trained to
minimize the negative variational lower bound (Kingma & Welling, 2014). For behavior learning,
MWM predicts latent future states and train a stochastic actor and a deterministic critic to maximize
the imagined returns (Hafner et al., 2021). We refer to Seo et al. (2022a) for more details.

A.2 MWM + MASKED SIAMESE NETWORK

MWM + masked siamese network (MSN; Assran et al. 2022) is a baseline that learns visual informa-
tion via reconstruction with masked convolutional features, but also cross-view information from
different viewpoints. Specifically, we extract the representations of one viewpoint from the encoder,
and also the representations of another viewpoint from the target momentum encoder. We first use
the representations of the encoder as inputs to the ViT decoder that reconstructs raw pixels. And then
compute the representation matching loss that minimizes the distance between two representations.
We maintain a target encoder that is updated via an exponential moving average of the (anchor)
encoder parameters with a target decay rate of 0.999. For a given (anchor) frame, we regard the
corresponding frame from another viewpoint as a target frame. For obtaining representations from
each viewpoint, we conduct average pooling on token embeddings from the last layer of the encoder.
While original MSN utilizes learnable prototypes for obtaining representations, we find it extremely
unstable in our setup. So we adopt the simple approach of Grill et al. (2020) that minimizes the
distance between L2 normalized representations. We note that this is still called MSN because
the main idea of matching the representation of masked viewpoint representations with unmasked
viewpoint target representations.
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A.3 TIME CONTRASTIVE NETWORK

Time contrastive network (TCN; Sermanet et al. 2018) is a contrastive approach that learns view-
invariant representations by attracting the representations of simultaneous viewpoints but making the
representations from the same viewpoints be far located. For a given (anchor) frame in one viewpoint,
we sample a positive and negative frame as follows. For the positive frame, we use the frame that
has the same timestep as the given anchor frame but from another viewpoint. For the negative frame,
we choose a frame that is a temporally faraway frame from the same viewpoint. Specifically, we
sample a random frame among frames that are at least 30 timesteps away from the anchor frame.
After building a triplet of anchor, positive, and negative frame, we train the encoder model with triplet
loss (Schroff et al., 2015), which is formulated as follows:

LTCN = max(∥f(oa)− f(op)∥22 − ∥f(oa)− f(on)∥22 + α, 0), (2)

where oa, op, and on are anchor, positive, and negative frames, respectively, f(·) refers class embed-
dings from the last layer of ViT encoder and α is margin, which is set to 2. In the control phase, we
freeze the encoder and use average pooled token embeddings as an input for the RL agent.

B PSEUDOCODE FOR MULTI-VIEW MASKED AUTOENCODER

We consider a camera observation ovt where t ∈ {1, ..., T} denotes a video timestep and v ∈
{1, ..., V } denotes a camera viewpoint. For clarity, we let T = {1, ..., T} and V = {1, ..., V }. We
let Lactor and Lcritic be the actor and critic loss of MWM (Seo et al., 2022a).

Algorithm 1 Multi-View Masked Autoencoders for Visual Control

1: Initialize replay buffer B ← ∅ and parameters of autoencoder ϕ, actor ψ, critic ξ
2: for each environment step i do
3: // MULTI-VIEW REPRESENTATION LEARNING
4: Sample minibatch {ovt } ∼ B
5: for each video timestep t do
6: Get convolutional features zv,convt = fconvϕ (ovt ) for v ∈ V
7: Sample {zv,convt }v∈Ωt

∼ ViewMask({zv,convt }v∈V), where Ωt is a set of unmasked views
8: end for
9: Collect unmasked viewpoints Ω =

⋃T
t=1 Ωt

10: Get reconstructions {ôvt }v∈V = fdecoderϕ (fencoderϕ ({zv,convt }v∈Ω)) for t ∈ T
11: Update ϕ by minimizing

∑T
t=1

∑V
v=1 ∥ovt − ovt ∥2

12: // ACTOR CRITIC LEARNING
13: Sample minibatch {(o11, ..., oV1 , a, r)} ∼ B
14: Get convolutional features {zv,conv1 }v∈V
15: if single-view control with vs then
16: Get single-view representation h = fencoderθ ({zvs,conv1 })
17: else
18: Get multi-view representation h = fencoderθ ({zv,conv1 }v∈V)
19: end if
20: Update ψ and ξ by minimizing Lactor and Lcritic with {(h, a, r)}

21: // COLLECT TRANSITIONS
22: Get convolutional features {zv,conv1,i }v∈V from a current observation {ov1,i}v∈V
23: if single-view control with vs then
24: Get single-view representation hi = fencoderθ ({zvs,conv1,i })
25: else
26: Get multi-view representation hi = fencoderθ ({zv,conv1,i }v∈V)
27: end if
28: Sample action ai ∼ factorψ (hi) and collect reward ri from environment
29: Store sample to replay buffer B ← B ∪ {(o11,i, ..., oV1,i, ai, ri)}
30: end for

15



Under review as a conference paper at ICLR 2023

C IMPLEMENTATION DETAILS

Source code. Source code for reproducing our experimental results is available at:

https://anonymous.4open.science/r/iclr2023_mvmae

RLBench details. For RLBench experiments, we designed dense rewards for six manipulation
tasks used in our experiments. For simple tasks (i.e., Take Lid Off Saucepan, Pick Up Cup, Take
Umbrella Out of Umbrella Stand), we design the reward to be the sum of the distance between a
gripper and a target object. For more complex tasks that require more long-term behavior (i.e., Pick
and Lift, Phone On Base, Put Rubbish in Bin), we first construct some checkpoints where the robot
should reach. Then we define the reward to be the sum of the distance between the gripper and the
nearest next checkpoint. For disabling rotation, we use a path planner with identity quaternion to
force the robot to be in an upright position. Unlike prior approaches that use the path planner (James
& Davison, 2022; James et al., 2022; James & Abbeel, 2022a;b) to specify absolute (x, y, z) position,
we train the RL agent to output relative change in (x, y, z) position. This is available by using the
action mode EndEffectorPoseViaPlanning(absolute mode=False) in the RLBench.
For more details, we refer readers to the source code we have attached.

Architecture and optimization details. Our architecture is based on the publicly available source
code of Seo et al. (2022a), which is implemented with tfimm2 library. For our method and all
baselines, we use the same architecture consisting of 8-layer ViT encoder and 6-layer ViT decoder.
For each view and time step, we introduce additional 1D learnable parameters that have the same
embedding size as transformer blocks. We add these parameters to 2D fixed sin-cos embeddings and
add them to features. We note that these parameters are shared across the same times and the same
views. For optimization, we use Adam optimizer (Kingma & Ba, 2015) with the learning rate of
3e − 4, the weight decay of 1e − 6, and the batch size of 1024. For training MV-MAE, we apply
warm-up learning rate scheduling over initial 2500 gradient steps from learning rate of 0. We take 1
gradient step per every 2 environment steps. We follow the training schemes and details of Seo et al.
(2022a) regarding the architecture, unless otherwise specified.

Computation. We use 8 CPU cores (Intel Xeon Gold 6226R @ 3.9GHZ) and 1 GPU (NVIDIA
GeForce RTX 3090) for our experiments. We find that there is no significant difference between
all methods with regard to wall time for experiments because there is a severe bottleneck from the
rendering speed of the RLBench simulator. Running experiments over 150k environment steps takes
approximately 18 hours for all methods.

2https://github.com/martinsbruveris/tensorflow-image-models
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Hyperparameters. We report the hyperparameters used in our experiments in Table 1.

Table 1: Hyperparameters used in our experiments. Unless otherwise specified, we use the same
hyperparameters used in MWM (Seo et al., 2022a).

Hyperparameter Value
Representation learning

Image observation 96× 96× 3
Image normalization Mean: (0.485, 0.456, 0.406), Std: (0.229, 0.224, 0.225)
Autoencoder batch size 1024
Autoencoder initialization steps 10000
Autoencoder warm-up steps 2500
Autoencoder learning rate 3 · 10−4

Autoencoder masking ratio 0.95 (multi-view), 0.9 (single-view)
Autoencoder ViT encoder size 8 layers, 4 heads, 256 units
Autoencoder ViT decoder size 6 layers, 4 heads, 256 units

Behavior learning (MWM)

Action repeat 1
Max episode length 150
Early episode termination True (when path planner fails)
Reward normalization True
World model batch size 50
World model sequence length 50
World model tradeoff (β) 1.0
World model tradeoff free-bits 0.1
World model ViT encoder size 2 layers, 4 heads, 128 units
World model ViT decoder size 2 layers, 4 heads, 128 units
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D TWO-CAMERA EXAMPLES

(a) Take Lid Off Saucepan (b) Pick Up Cup (c) Take Umbrella Out of Stand

(d) Pick and Lift (e) Phone On Base (f) Put Rubbish in Bin

Figure 8: Examples of multi-view data consisting front and wrist camera observations used in our
RLBench (James et al., 2020) experiments. Front camera observations provide a broad look at a robot
workspace, and wrist camera observations provide a closer look at target objects.

E THREE-CAMERA EXAMPLES

(a) Take Lid Off Saucepan (b) Pick Up Cup

(c) Take Umbrella Out of Stand (d) Pick and Lift

(e) Phone on Base (f) Put Rubbish in Bin

Figure 9: Examples of multi-view data consisting left shoulder, front, and right shoulder observations
used in our RLBench (James et al., 2020) experiments.
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F FULL MULTI-VIEW EXPERIMENTAL RESULTS

F.1 SINGLE-VIEW VISUAL CONTROL WITH FRONT CAMERA
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Figure 10: Learning curves of RL agents that operate on front camera observations for solving six
visual manipulation tasks from RLBench as measured on the success rate. The solid line and shaded
regions represent the mean and standard deviations, respectively, across four runs.

F.2 SINGLE-VIEW VISUAL CONTROL WITH WRIST CAMERA
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Figure 11: Learning curves of RL agents that operate on wrist camera observations for solving six
visual manipulation tasks from RLBench as measured on the success rate. The solid line and shaded
regions represent the mean and standard deviations, respectively, across four runs.
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F.3 MULTI-VIEW VISUAL CONTROL WITH FRONT AND WRIST CAMERA

0 5000 10000 15000 20000 25000 30000
Environment Steps

0

20

40

60

80

100
Su

cc
es

s 
R

at
e 

(%
)

Take Lid Off Saucepan

MWM w/ Concat
MWM + MSN
MWM + MV-MAE
TCN

0 5000 10000 15000 20000 25000 30000
Environment Steps

0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

)

Pick Up Cup

MWM w/ Concat
MWM + MSN
MWM + MV-MAE
TCN

0 25000 50000 75000 100000 125000 150000
Environment Steps

0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

)

Take Umbrella Out of Stand

MWM w/ Concat
MWM + MSN
MWM + MV-MAE
TCN

0 25000 50000 75000 100000 125000 150000
Environment Steps

0

10

20

30

40

50

60

70

80

90

Su
cc

es
s 

R
at

e 
(%

)

Pick and Lift

MWM w/ Concat
MWM + MSN
MWM + MV-MAE
TCN

0 25000 50000 75000 100000 125000 150000
Environment Steps

0

10

20

30

40

50

60

70

80

90

Su
cc

es
s 

R
at

e 
(%

)

Phone On Base

MWM w/ Concat
MWM + MSN
MWM + MV-MAE
TCN

0 25000 50000 75000 100000 125000 150000
Environment Steps

0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

)

Put Rubbish in Bin

MWM w/ Concat
MWM + MSN
MWM + MV-MAE
TCN

Figure 12: Learning curves of RL agents that operate on front and wrist camera observations for
solving six visual manipulation tasks from RLBench as measured on the success rate. The solid line
and shaded regions represent the mean and standard deviations, respectively, across four runs.

G ADDITIONAL EXPERIMENTS
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(a) Model size analysis
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(b) Meta-world experiments

Figure 13: (a) Learning curves of single-view visual control agents that operate on the front camera
for solving visual manipulation tasks from RLBench (James et al., 2020), investigating the effect of
model size. (b) Learning curves of single-view visual control agents that operate on the wrist camera
for solving visual manipulation tasks from Meta-world (Yu et al., 2020). The solid line and shaded
regions represent the mean and stratified bootstrap confidence interval across (a) 12 and (b) 20 runs.

Model size. In Figure 13(a), we investigate the effect of scaling up MV-MAE and find that training
larger model for visual representation learning with multi-view data improves sample-efficiency.
Further scaling up the model and pre-training MV-MAE on large real-world robotics dataset (Dasari
et al., 2019) containing multi-view data would be an interesting future work.

Meta-world experiments. In order to verify that our approach can also work for different bench-
mark tasks other than RLBench, we provide additional experimental results on five visual manipu-
lation tasks3 from Meta-world (Yu et al., 2020) benchmark. Specifically, we train the single-view

3We report the experimental results on Basketball, Shelf Place, Pick Out Of Hole, Pick Place, and Soccer.
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control agent operating on the wrist camera with multi-view representations learned using the front
and wrist cameras. For the front camera, we use the third-person camera viewpoint used in Seo
et al. (2022a). For the wrist camera, we use the wrist camera introduced in Hsu et al. (2022). For
training the MWM agent, we use the same hyperparameters used in Seo et al. (2022a), e.g., mask
ratio of 75%, image resolution of 64×64, and taking one gradient step per every five environment
steps. For training MV-MAE, we use 95% masking ratio which is the same ratio as used in RLBench
experiments. In Figure 13(b), we find that MWM + MV-MAE exhibits better sample-efficiency than
MWM, which again shows the benefit of multi-view representation learning. Moreover, we find that
baselines struggle to outperform the single-view baseline MWM, and TCN completely fails with
the wrist camera similar to the observation in RLBench experiments (see Figure 11). This again
demonstrates the wide applicability of our approach to diverse tasks with diverse type of cameras.

Embedding analysis. We also visually demonstrate how representations are learned differently for
MV-MAE and TCN that enforces view-invariance in Figure 14. Specifically, we train multi-view
agents using MV-MAE and TCN for solving Pick Up Cup task and extract the representations from
the front and wrist camera using the visual encoders. Then we visualize the representations using
t-SNE (Van der Maaten & Hinton, 2008). We observe that MV-MAE representations of the front
and wrist cameras are disentangled from each other, but one can see that representations from both
cameras have similar representation structure. This is because we encourage the model to learn
cross-view information while also learn the information within each viewpoint simultaneously. On
the other hand, front and wrist camera representations from TCN are entangled, which shows how
qualitatively MV-MAE and TCN learn different representations.

Front
Wrist

(a) MV-MAE representations

Front
Wrist

(b) TCN representations

Figure 14: t-SNE (Van der Maaten & Hinton, 2008) visualization of representations extracted from
front and wrist camera observations from (a) MV-MAE and (b) TCN.
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