GRADIENT STORM: STRONGER BACKDOOR ATTACKS THROUGH EXPANDED PARAMETER SPACE COVERAGE

Anonymous authors

Paper under double-blind review

ABSTRACT

Targeted data poisoning poses a critical adversarial threat to machine learning systems by enabling attackers to manipulate training data to induce specific, harmful misclassifications. Among these threats, backdoor attacks are particularly pernicious, embedding hidden triggers in the data that lead models to misclassify only those inputs containing the trigger, while maintaining high accuracy on benign samples. In this paper, we propose Gradient Storm, a novel technique that facilitates the simultaneous execution of multiple backdoor attacks, while necessitating only minimal modification to the training dataset. Our contributions are twofold: First, we introduce a method for designing adversarial poisons in modular components, each tailored based on a distinct region of the model's parameter space. Second, we present a framework for conducting multi-trigger attacks, where each trigger causes misclassification from a specific source class to a distinct target class. We evaluate the efficacy of Gradient Storm across multiple convolutional neural network architectures and two benchmark datasets, demonstrating its robustness against eight different poisoning defense mechanisms. Additionally, we show that poisons crafted for one model can be effectively transferred to other models, demonstrating that our attack remains effective even in black-box settings.

027 028 029

031

004

006

008 009

010 011

012

013

014

015

016

017

018

019

020

021

024

025

026

1 INTRODUCTION

Deep Neural Networks (DNNs) have been successfully employed in various fields, including com-033 puter vision, speech recognition, and natural language processing (e.g., Redmon & Farhadi (2018); 034 Baevski et al. (2020); Brown et al. (2020)). Despite their high performance, training or fine-tuning these networks often requires task-specific datasets and significant processing power, which may 035 not always be accessible to all users. As a consequence, users may rely on third-party providers for obtaining the necessary resources. This dependency introduces a risk where adversaries could em-037 bed malicious samples into the datasets, leading to models that exhibit unintended behaviors, such as misclassification. These attacks are known as *data poisoning*, as described by Muñoz-González et al. (2017). Backdoor attacks, introduced by Gu et al. (2019), represent a specific form of data 040 poisoning designed to embed a trigger within the model during the training phase. The resulting 041 model behaves normally on benign inputs but misclassifies any image containing the trigger as the 042 target class during inference. A notable demonstration by Liu et al. (2018b) in a driving simulator 043 environment showed how a roadside billboard used as a trigger could cause an autonomous driving 044 system to fail, resulting in accidents.

045 Early methods to incorporate triggers into models involved patching source class images with trig-046 gers and re-labeling them with a target class label (Gu et al. (2019); Chen et al. (2017)), making 047 them easily identifiable by human observers. To visually hide triggers, Barni et al. (2019) added an 048 invisible sinusoidal signal to target class images, causing the model to associate the signal with that class. Zhong et al. (2020) increased the stealthiness of attacks by adding imperceptible changes to a small portion of the training data, resulting in clean-label attacks where images appear to match 051 their labels. Saha et al. (2020) extended this approach to transfer learning scenarios by injecting poisoned samples into the fine-tuning dataset. Ning et al. (2021) proposed disguising poisoned im-052 ages as noisy ones, further complicating their detection in the training data. Inspired by gradient matching techniques from Geiping et al. (2020), Souri et al. (2022) introduced the Sleeper Agent

attack, which embeds triggers during neural network training from scratch in a black-box setting, where the attacker is unaware of the model architecture and training routine.

Despite extensive research dedicated to embedding a single trigger within models, the exploration of multi-trigger backdoor attacks in image classification remains limited, encompassing efforts that focus on methods to generate input-specific triggers (Nguyen & Tran (2020); Doan et al. (2022)) as well as those utilizing multiple static triggers (Xue et al. (2024); Gong et al. (2021)). This study introduces Gradient Storm, an enhanced version of the Sleeper Agent attack (Souri et al. (2022)), which is capable of injecting multiple backdoor triggers into neural networks simultaneously during the training phase. Our main contributions are:

- Stronger Noisy Gradients: We strengthen the Sleeper Agent attack introduced by Souri et al. (2022) through dividing the optimization process into multiple rounds each corresponding to a different region of the parameter space.
- Multiple Triggers, Targets, and Attack Types: Our attack poisons a victim model with backdoors of different kinds, each activated by its own trigger, and corresponding to a unique source and target pair.

This paper is organized as follows. Section 2 discusses related work on backdoor attacks and defenses. Section 3 describes our attack scheme in detail. Section 4 presents the experimental results demonstrating the effectiveness of our proposed method. Finally, Section 5 concludes our work.

2 RELATED WORK

064

065

066

067

068

069 070

071

072

073 074

075

Data poisoning attacks initially aimed at reducing the classification performance of traditional machine learning models, such as Support Vector Machines (SVM) (Biggio et al. (2012)). Unlike these indiscriminate attacks, targeted attacks focus on altering model outputs for specific test instances (Mozaffari-Kermani et al. (2014); Nelson et al. (2008)). Subsequent works have introduced cleanlabel poisons, which appear visually normal, to minimize the likelihood of detection (Shafahi et al. (2018)). In the context of targeted clean-label attacks, poisons have been specifically designed to manipulate models in both transfer learning (Zhu et al. (2019); Aghakhani et al. (2021)) and fromscratch training scenarios (Huang et al. (2020); Jagielski et al. (2021); Geiping et al. (2020)).

084 Backdoor attacks are a targeted data poisoning approach, designed to bind a static pattern (known 085 as the *trigger*) to a target class in classification tasks. Researchers initially considered the trigger to be another image blended with (Chen et al. (2017)) or patched to (Gu et al. (2019); Wenger et al. 087 (2021)) the original one. Subsequent studies explored the use of less conspicuous triggers to activate 880 the backdoor, including weak sinusoidal signals (Barni et al. (2019)), reflections (Liu et al. (2020)), a warping effect (Nguyen & Tran (2021)), or a color space shift for all pixels (Jiang et al. (2023)). 089 Research has also been directed towards increasing the variety of triggers. Gong et al. (2021), drawing on the mathematical formulation of the multi-trigger attack by Ji et al. (2018), have developed 091 a method utilizing multiple triggers, each designed to activate specific neurons in outsourced cloud 092 environments. Furthermore, researchers have proposed an alternative type of attack involving generative networks capable of producing triggers dynamically for any given input, thereby causing it 094 to be classified into any desired class (Nguyen & Tran (2020); Doan et al. (2022)). These meth-095 ods result in a lack of control over the trigger and potentially significant computational expense for 096 designing the triggers. Recently, Xue et al. (2024) employed DCT Steganography to embed a text 097 trigger in the channels of an RGB image. Researchers have also investigated multi-trigger backdoor 098 attacks in the context of graph neural networks (Wang et al. (2024); Xu & Picek (2023)), neural code models (Li et al. (2023)), and deep image compression networks (Yu et al. (2023)). 099

100 To counter backdoor attacks, the most elementary defense mechanism involves identifying and ex-101 cluding poisoned data from the training dataset, often requiring prior knowledge of the proportion of 102 poisoned samples. For instance, Chen et al. (2019) proposed clustering samples to identify poisoned 103 clusters, while Tran et al. (2018) used singular value decomposition to define outliers in the feature 104 space. Researchers have also developed methods to remediate backdoored models, such as pruning 105 neurons with abnormal activations and fine-tuning (Liu et al. (2018a)), reconstructing and mitigating triggers (Wang et al. (2019)), and using knowledge distillation to focus on original features (Li et al. 106 (2021b)). Additionally, Wu & Wang (2021) utilized clean data to reveal trigger patterns and prune 107 related neurons, and Zeng et al. (2022) formulated backdoor removal as a minimax problem solved

through unlearning. Robust training algorithms are another approach to mitigating backdoor attacks. Li et al. (2021a) increased the loss of misleading samples to prevent backdoor learning, while Hong et al. (2020) used differentially private SGD, and Borgnia et al. (2021) suggested data augmentations preserving differential privacy. Liu et al. (2022) added noise to training data to perturb examples without performance degradation, and Gao et al. (2023) developed an adaptive data-splitting method. These approaches are generally effective but often assume access to clean data or control over the entire training process, conditions that may not always be feasible.

- 116 3 METHOD
- 117

115

118 Following the threat model introduced by Gu et al. (2019), we consider an *attacker* who supplies a 119 victim with poisoned data for the purpose of training a model from scratch. Given that the victim 120 may have the ability to inspect the data for anomalies with the assistance of expert analysts, it is 121 crucial for the attacker to ensure that the data does not appear to be conspicuously manipulated. Therefore, inspired by Souri et al. (2022), we assume that the attacker is restricted to making minor 122 perturbations to a limited subset of the data. Although Souri et al. (2022) utilized these perturba-123 tions to embed a single trigger in the resulting model for activating the attack later, we extend their 124 approach to embed multiple triggers. This extension allows for the potential activation of various 125 types of attacks during inference. Building on the assumptions in Souri et al. (2022), we assume that 126 the attacker does not have knowledge of the architecture of the final model or the learning algorithm 127 employed. Consequently, we design the poisons using a surrogate model. In Section 4.3, we demon-128 strate that these poisons can effectively embed a backdoor in models with different architectures.

3.1 PROBLEM STATEMENT

132 Consider a surrogate model F with parameters θ and a loss function \mathcal{L} . We address the optimization 133 of perturbations $\Delta_1, \Delta_2, \ldots, \Delta_N$ to be added to the training dataset $D = \{(x_i, y_i)\}_{i=1}^N$. In this 134 context, we are dealing with a multi-class classification problem, where each data point (x_i, y_i) 135 comprises a feature vector $x_i \in \mathbb{R}^d$ and a corresponding label $y_i \in \{1, 2, \ldots, C\}$. The objective is 136 to solve the following optimization problem:

137

129 130

131

138 139

140

141 142 143

144 145 $\min_{\Delta \in L} \sum_{i} \mathbb{E}_{(x,y) \sim \mathcal{D}_{i}} \left[\sum_{j} \sum_{k=1}^{n(i,j)} \mathcal{L} \left(F(\tau_{ij}^{k}(x); \theta(\Delta)), y_{j} \right) \right]$ subject to $\theta(\delta) \in \arg \min_{\theta} \sum_{(x_{l}, y_{l}) \in D} \mathcal{L} \left(F(x_{l} + \Delta_{l}; \theta), y_{l} \right),$

where Δ_l denotes the *l*-th row of Δ and

$$L = \left\{ \Delta \in \mathbb{R}^{N \times d} \mid \|\Delta_p\|_{\infty} \le \epsilon \quad \forall p \in \{1, 2, \dots, N\}, \ \delta_i = 0 \quad \forall i > B \right\}$$

sets the limits on the magnitudes of perturbations, while indicating that only *B* images may be perturbed. The attacker may consider n(i, j) triggers each causing an image belonging to a source class *i* to be identified as an image of a target class *j*, where $n(i, j) \ge 0$ for all values of $i, j \in$ {1,2,...,*C*}. The function τ_{ij}^k applies the *k*-th trigger, causing that effect on an input image *x* derived from the distribution of the source class \mathcal{D}_i . Note that for each pair of distinct triples (i, j, k)and (i', j', k'), the functions τ_{ij}^k and $\tau_{i'j'}^{k'}$ may correspond to completely different types of triggers, such as a blended trigger and a patched one.

- 153
- 154 3.2 GRADIENT STORM

The problem posed in eq. 1 constitutes a bilevel optimization problem, as the perturbations Δ that minimize the upper-level objective are contingent upon the model parameters θ , which are themselves determined by the minimization of the loss on the perturbed training data (the lowerlevel objective). To solve this challenging problem, following Souri et al. (2022), we employ the gradient matching technique, which has also been empirically validated as effective across multiple areas, including zero-shot learning (Sariyildiz & Cinbis (2019)), dataset condensation (Zhao et al. (2020)), domain generalization (Shi et al. (2021); Wang et al. (2023)), and condensing graphs (Jin et al. (2022)). It involves aligning the training gradients with a specified objective. Prior to employing this methodology, we decompose the upper-level objective with respect to the source class *i*, target class *j*, and each trigger applier function τ_{ij}^k where $k \in \{1, 2, ..., n(i, j)\}$. This decomposition is based on the attacker's goal of causing images from the source class to be misclassified as belonging to the target class upon the application of the trigger applier function. Fixing the triple (i, j, k) results in the following objective:

$$\mathcal{L}_{adv}(i,j,k) = \mathbb{E}_{(x,y)\sim\mathcal{D}_i}\left[\mathcal{L}\left(F(\tau_{ij}^k(x);\theta), y_j\right)\right],\tag{2}$$

which is analogous to the adversarial objective examined by Souri et al. (2022), specifically for the case involving a single trigger to transition from one source class to a unique target class. Minimizing this objective requires θ to be known. Since we have not optimized the perturbations yet, we consider Δ to be a matrix of all zeros at the beginning and train F on clean training data to obtain the initial θ . Then we can estimate $\mathcal{L}_{adv}(i, j, k)$ over \mathcal{P} training samples $\{(x_u, y_i)\}_{u=1}^{\mathcal{P}} \subset D$ belonging to the source class *i*:

$$\hat{\mathcal{L}}_{adv}(i,j,k) \stackrel{\text{def}}{=} \frac{1}{\mathcal{P}} \sum_{l=1}^{\mathcal{P}} \mathcal{L}(F(\tau_{ij}^k(x_u);\theta), y_j)$$
(3)

Similar to eq. 3, it is possible to estimate the gradient of the adversarial loss with respect to the model parameters θ :

$$\hat{\nabla}_{\theta} \mathcal{L}_{adv}(i, j, k) \stackrel{\text{def}}{=} \frac{1}{\mathcal{P}} \sum_{l=1}^{\mathcal{P}} \nabla_{\theta} \left(\mathcal{L}(F(\tau_{ij}^{k}(x_{u}); \theta), y_{j})) \right)$$
(4)

If concerns about human inspection and the stealthiness of the attack were disregarded, we would directly inject $\{(\tau_{ij}^k(x_u), y_j)\}_{u=1}^{\mathcal{P}}$ into the training data. It could be argued that, assuming the user employs a gradient descent-based approach to train the model, the impact of this injection would be 185 186 analogous to utilizing the gradient estimate in eq. 4 to update the model parameters θ . However, 187 since this approach is not feasible, we instead introduce minimal perturbations to a subset of training 188 samples belonging to the target class j. Assuming we are permitted to perturb at most B_{ij}^k such 189 samples to implement the attack corresponding to the triple (i, j, k), we distribute these perturbations 190 across multiple sets of model parameters $\theta_1, \theta_2, \ldots, \theta_R$. This is achieved by iteratively designing 191 $\lfloor \frac{B_{ij}^k}{R} \rfloor$ perturbations and retraining the model using the perturbed training data. Consequently, the perturbations are dispersed over a wider region of the parameter space compared to the scenario 192 193 where all perturbations are designed according to a single set of parameters θ . 194

Each step of this process involves taking $q \stackrel{\text{def}}{=} \lfloor \frac{B_{ij}^k}{R} \rfloor$ training samples $\{(x_v, y_j)\}_{v=1}^q$ belonging to the target class j and adding perturbations to them such that their training gradient approximates the one given in eq. 4. This gradient could be again estimated as:

201 202 203

204

205 206

207 208

167 168

175 176 177

181 182 183

$$\hat{\nabla}_{\theta} \mathcal{L}_{train}(q, j) \stackrel{\text{def}}{=} \frac{1}{q} \sum_{v=1}^{q} \nabla_{\theta} \left(\mathcal{L}(F(x_v + \Delta_v; \theta), y_j) \right)$$
(5)

While fixing all other parameters, we design perturbations $\{\Delta_v\}_{v=1}^q$ to align $\nabla_{\theta} \mathcal{L}_{adv}(i, j, k)$ with $\hat{\nabla}_{\theta} \mathcal{L}_{train}(q, j)$ through minimizing a similarity loss \mathcal{A} defined as follows:

$$\mathcal{A}(\Delta,\theta,i,j,k) \stackrel{\text{def}}{=} 1 - \frac{\nabla_{\theta} \mathcal{L}_{adv}(i,j,k) \cdot \nabla_{\theta} \mathcal{L}_{train}(q,j)}{||\hat{\nabla}_{\theta} \mathcal{L}_{adv}(i,j,k)|| \cdot ||\hat{\nabla}_{\theta} \mathcal{L}_{train}(q,j)||}$$
(6)

We consider all pairs of source and target classes (i, j) for which there is at least one trigger, i.e., n(i, j) > 0, and repeat the process described above for each triple in the set $\{(i, j, k)\}_{k=1}^{n(i,j)}$. We repeat the whole procedure of optimizing the matrix $\Delta \in \mathbb{R}^{N \times d}$ from the scratch S times. Additionally, we use validation data consisting of unseen images that have been modified by trigger applier functions. At the end of each cycle, we calculate the percentage of these images that are classified according to the attackers' intentions, known as the attack success rate. We then select the Δ value corresponding to the highest cumulative attack success rate. Algorithm 1 and Figure 1 summarize our poison crafting approach.

Figure 1: Overview of a poisoning cycle in Gradient Storm: The process initiates with the training of a model on a clean dataset D. Subsequently, multiple attacks are sequentially executed, each designed to introduce distinct triggers into the final model, such as a sinusoidal signal, a patched image, or a blended patch. These attacks specifically target and perturb the training images of particular classes (e.g., "Keep Left", "Ahead Only", "Turn Right") across R rounds. After each attack, the perturbed dataset is employed to retrain the model, which is then subjected to the next attack in the sequence.

Req	uire: Training data $D = \{(x_i, y_i)\}_{i=1}^N$, Validation data with embedded triggers V, Number of triggers $p(i, j)$ for each point of source and target indices $(i, j) \in \{1, 2,, C\}^2$. Trigger applied
,	Higgers $n(i, j)$ for each pair of source and target indices $(i, j) \in \{1, 2, \dots, C\}$, frigger applier
1 (functions $\{\tau_{ij}^{\kappa}\}_{k=1}^{(c,j)}$ and poison budgets $\{B_{ij}^{\kappa}\}_{k=1}^{(c,j)}$ for each (i, j) -pair where $n(i, j) > 0$, Optimization cycles S. Cycle rounds R. Gradient Matching threshold T
1: '	Train a surrogate neural network $F(\cdot; \theta)$ on training data D
2:	$D_o \leftarrow A$ copy of the original training dataset D
3: f	for $s = 1, 2, \dots, S$ optimization cycles do
4:	$ASR_{cycle}(s) = 0$ (total ASR of the cycle)
5:	for $(i, j) \in \{1, 2, \dots, C\}^2$ do
6:	if $n(i,j) > 0$ then
7:	for $k \in \{1,2,\ldots,n(i,j)\}$ do
8:	for $r = 1, 2, \ldots, R$ cycle rounds do
9:	$a \leftarrow \frac{B_{ij}^k}{2} $
10:	$\mathcal{I} \leftarrow \text{Indices of } q \text{ samples with label } y_i \text{ from } D \text{ with highest gradient norm}$
1	that are not previously chosen in this cycle
11:	Randomly initialize perturbations $\Delta = {\{\Delta_p\}_{p \in \mathcal{I}}}$
12:	Compute the value of $\mathcal{A}(\Delta, \theta, i, j, k)$ and iteratively update Δ using the
	Adam optimizer until $\mathcal{A}(\Delta, \theta, i, j, k)$ is less than T
13:	$D \leftarrow \{(x_l, y_l)\}_{l \notin \mathcal{I}} \cup \{(x_h + \Delta_h, y_j)\}_{h \in \mathcal{I}}$
14:	Retrain F on the poisoned training dataset D
15:	Update $ASR_{cycle}(s)$
16:	end for
17:	end for
18:	end if
19:	end for
20:	$D_s \leftarrow A \text{ copy of } D$
21: 0	end for Determ D for the extincipation much a basing the best tetal ASD ASD (a)
22: 1	Return D_s for the optimization cycle s naving the best total ASR ASR _{cycle} (s)

4 EVALUATION

In this section, the effectiveness of our proposed attack is empirically evaluated using the CIFAR-10 (Krizhevsky et al. (2009)) and GTSRB (Stallkamp et al. (2011)) datasets as benchmarks. The Adversarial Robustness Toolbox (Nicolae et al. (2018)) serves as the foundation for our implementations. We use the patches introduced by Saha et al. (2020) as triggers, depicted in Figure 2. While training

all models, we use the same augmentations used by Souri et al. (2022). All experiments were conducted using a single NVIDIA TITAN RTX GPU to ensure consistent computational performance.
For additional insights into the performance of different configurations, refer to the ablation study
included in Appendix A.

Figure 2: Patches used as triggers in our experiments, originally from Saha et al. (2020).

4.1 COMPARISON TO OTHER ATTACKS

287 We conduct a comparative analysis of the proposed Gradient Storm (GS) attack against several state-288 of-the-art backdoor attacks, including Blended (Chen et al. (2017)), Label-Consistent (LC) (Turner 289 et al. (2019)), Refool (Liu et al. (2020)), Hidden Trigger Backdoor Attack (HTBA) (Saha et al. 290 (2020)), and Sleeper Agent (SA) (Souri et al. (2022)). In all implementations, the ℓ_{∞} norm of the 291 perturbations is constrained to a maximum of 16/255. ResNet18 (He et al. (2016)) is utilized as the 292 target model across all attack scenarios, with an 8×8 RGB image serving as the trigger. All models 293 are trained for 80 epochs using the Stochastic Gradient Descent (SGD) optimizer with a momentum 294 of 0.9, a weight decay of 5e-4, and an initial learning rate of 0.01. The batch size is set to 128, and all images are normalized to the range [0,1] before being standardized by subtracting the dataset 295 mean and dividing by the standard deviation. 296

To ensure a fair comparison, ResNet18 is also employed as the surrogate model for both the SA and GS attacks. In the GS attack, we set S = 4 and R = 2, optimizing the poisons with T = 0.006, followed by model retraining. For the SA attack, we distribute the optimization process evenly across four retraining periods.

301 The HTBA attack, originally designed for transfer learning scenarios that require a fixed feature 302 extractor, necessitates a distinct approach. The network is initially trained on clean data for 80 303 epochs. Poisons are subsequently generated based on the feature space representations extracted 304 from the trained network. These poisons are then substituted for their benign counterparts in the 305 original dataset, which is subsequently used to train a new model from scratch. The effectiveness 306 of these poisons is evaluated in this from-scratch training scenario. To ensure fairness in the Refool 307 attack, which requires a candidate reflection set, we utilize the same RGB image alongside three rotated versions at angles of 90, 180, and 270 degrees. 308

- We present the experimental results using the following two metrics:
 - Benign Accuracy (BA): The classification accuracy of the model on clean, unseen data during the inference stage.
 - Attack Success Rate (ASR): The percentage of inputs containing the trigger, also unseen during training, that are successfully misclassified into the target class as intended by the attack.

The results of this comparative analysis are presented in Tables 1 and 2. For all experiments, the source and target classes were selected randomly.

319

311

312

313

314

315

316

278 279

281

283 284 285

286

4.2 RESISTANCE TO POISONING DEFENSES321

In this section, we assess the effectiveness of various defense mechanisms, including general data
 poisoning defenses and those specifically designed to counter backdoor attacks, as applied to our method. The subsequent paragraphs provide a concise overview of each defense strategy.

329

337

338 339

Attack	Blended	LC	Refool	HTBA	SA	GS (Ours)
BA (Poisoned Model) (%)	90.17	90.01	90.29	89.7	90.02	90.06
ASR (Poisoned Model) (%)	91.5	2.3	2.93	81.46	89.73	99.76

Table 1: Comparing Gradient Storm with other Backdoor Attacks on CIFAR10. All attacks were performed with a poisoning budget of 500 samples.

Attack	Blended	LC	Refool	HTBA	SA	GS (Ours)
BA (Poisoned Model) (%)	93.44	92.23	94.35	92.19	93.38	94.36
ASR (Poisoned Model) (%)	38.67	1.41	20.36	69.29	58.19	84.25

Table 2: Comparing Gradient Storm with other Backdoor Attacks on GTSRB. All attacks were performed with a poisoning budget of 250 samples.

Spectral Signatures: Proposed by Tran et al. (2018), this method involves initially training a neural network on poisoned data to extract a learned representation for each input within each class. Singular Value Decomposition (SVD) is then performed on the representations of each class to compute an outlier score for each sample. The network is subsequently retrained after removing outliers, and this process is repeated over multiple iterations. The final model, which is expected to be free of backdoors, is then returned.

Activation Clustering: Chen et al. (2019) observed that while backdoor and target samples are classified identically by the poisoned network, the underlying reasons for this classification differ. Building on this observation, they clustered the learned representations of samples within each class and found that, for the target class of backdoor attacks, activations tend to separate into two clusters of approximately equal size. They then conducted cluster analysis to identify the poisoned cluster, which was subsequently removed from the training process.

352 DeepKNN: Peri et al. (2020) proposed a method that involves analyzing the nearest neighbors of
 ach sample in the feature space and removing those for which the model assigns a label that differs
 from the majority of their neighbors. This approach has been empirically tested against targeted
 clean-label data poisoning attacks.

Gradient Shaping: Hong et al. (2020) observed that gradients computed in the presence of poisoned data exhibit significantly higher ℓ_2 norms and orientations that diverge substantially from those of clean gradients. To address this, they employed Differentially Private SGD (DPSGD) to constrain gradient magnitudes and reduce discrepancies in their orientations during model training.

Anti-Backdoor Learning (ABL): Li et al. (2021a) empirically identified a critical vulnerability in backdoor attacks: models tend to learn backdoored data significantly faster than clean data, with stronger attacks resulting in even more rapid convergence on the backdoored data. Leveraging this observation, they developed a method to isolate poisoned examples in the early stages of training and subsequently disrupt the correlation between backdoor examples and the target class in later training stages.

DP-InstaHide: Building on the work of Zhang et al. (2018), who introduced MixUp as a powerful data augmentation technique, Borgnia et al. (2021) demonstrated that combining these augmentations with random additive noise can effectively neutralize poisoning attacks with minimal accuracy trade-off. Additionally, they provided a theoretical proof that, under certain assumptions, their method satisfies differential privacy.

Implicit Backdoor Adversarial Unlearning (I-BAU): Assuming access to a small set of clean data,
 Zeng et al. (2022) proposed an iterative algorithm to sanitize a poisoned model by formulating and
 solving a minimax problem between the defender and the attacker. Additionally, they conducted a
 theoretical analysis of the algorithm's convergence and demonstrated that the robustness achieved
 through this approach extends to unseen test data.

377 Model Orthogonalization (MOTH): Tao et al. (2022) defined the L^p norm of the smallest backdoor pattern that induces misclassification of images from a source class as those of a target class, referring to this norm as the distance between the two classes. Their objective was to train an or thogonal classifier in which every pair of classes is maximally distant, a process they termed *model orthogonalization*.

We use the CIFAR-10 dataset and ResNet18 as the target model, employing the same hyperparameters as in Section 4.1, and apply defense strategies to the poisoned models from that section. Table presents the results of applying these defense strategies to our proposed poison crafting method.

Defense	ASR (%)	BA (%)
Spectral Signatures	88.17	89.7
Activation Clustering	73.23	83.34
DeepKNN	97.97	87.62
Gradient Shaping	8.9	66.87
ABL	2.1	53.65
DP-InstaHide	6.47	67.26
I-BAU	39.93	90.67
MOTH	36.03	92.08

Table 3: The effectiveness of defense methods against the Gradient Storm attack

4.3 TRANSFERABILITY OF GRADIENT STORM

In this section, we examine the transferability of poisoned examples by assessing whether backdoors
 designed for a particular model can be successfully embedded in other models. Utilizing ResNet18
 as a surrogate model and CIFAR10 as the training dataset, we evaluate the effectiveness of these
 poisons on several well-known architectures. All models are trained following the same procedure
 outlined in Section 4.1. The results are presented in Table 4.

Model	ASR (%)	BA (%)
ResNet18 (Surrogate)	99.60	90.15
ResNet20	97.06	84.08
ResNet34	99.8	90.53
MobileNetV2	95.9	89.54
VGG11	98.6	87.78
VGG16	98.4	89.5

Table 4: Evaluation of the transferability of poisoned examples on CIFAR10 by testing backdoors crafted for ResNet18 across various well-known architectures.

4.4 MULTI-TARGET AND MULTI-TRIGGER SETTING

In this section, we empirically demonstrate that our method allows an adversary to execute multiple concurrent attacks, each characterized by a distinct source-target pair and trigger, while preserving the effectiveness of all attacks. In all experiments, ResNet18 is utilized as both the surrogate model and the target model, with CIFAR10 serving as the training dataset. In this series of experiments, we investigate different types of triggers. The simplest trigger type is a patch, which involves superim-posing a small image onto a larger input image. The second type, known as a blended patch trigger, is formed by smoothly merging a small image with the larger input, blending the patch into the origi-nal content to reduce visual detectability. Inspired by Barni et al. (2019), we also consider sinusoidal signals as triggers, with horizontal signals defined by $v(i,j) = \Delta \sin(2\pi j f/m), 1 \le j \le m$ for row-wise oscillations, and vertical signals by $v(i, j) = \Delta \sin(2\pi i f/l), 1 \le i \le l$ for column-wise oscillations, at a given frequency f. In our experiments, we consider $\Delta = 0.1$ and f = 5. We present results for scenarios involving two and three simultaneous attacks. The outcomes for the two-attack scenario are detailed in Table 5, while the results for the three-attack scenario are shown in Table 6.

Attack-1	Attack-2	BA (%)	ASR (%)	ASR-1 (%)	ASR-2 (%)
$Bird \to Deer$	Automobile \rightarrow Ship	90.10	06.2	05.2	07.2
(Horizontal Sinusoidal)	(Patch 0)	69.19	90.2	93.2	97.2
Airplane \rightarrow Automobile	$\text{Deer} \rightarrow \text{Horse}$	00.2	02.05	026	02.2
(Blend - Patch 0)	(Patch 1)	90.2	92.95	92.0	93.5
Airplane \rightarrow Bird	$Truck \rightarrow Airplane$	80.25	00.2	00.7	08.0
(Patch 5)	(Patch 8)	89.23	99.5	99.7	98.9
$\text{Dog} \rightarrow \text{Frog}$	$\text{Deer} \rightarrow \text{Cat}$	00.16	01.7	06.6	06 0
(Blend - Patch 3)	(Blend - Patch 9)	90.10	91.7	90.0	00.0
$Cat \rightarrow Ship$	Horse \rightarrow Dog	00.04	02 55	06.4	00.7
(Vertical Sinusoidal)	(Horizontal Sinusoidal)	88.94	93.33	90.4	90.7

Table 5: Evaluation of the two-attack scenario using ResNet18 as the model and the CIFAR10 dataset. The first two columns list the source and target classes (source \rightarrow target), with the specific trigger used to activate the backdoor shown in parentheses below each entry. The next two columns present the overall Benign Accuracy (BA) and Attack Success Rate (ASR), while the last two columns display the attack success rates for each individual attack.

Attack-2	Attack-3	BA (%)	ASR (%)	ASR-1 (%)	ASR-2 (%)	ASR-3 (%)
Frog \rightarrow Truck (Patch 5)	$\begin{array}{c} \text{Deer} \rightarrow \text{Dog} \\ \text{(Patch 7)} \end{array}$	89.28	97.57	99.9	92.8	100.0
Frog \rightarrow Bird (Blend - Patch 6)	Airplane \rightarrow Truck (Blend - Patch 0)	90.61	97.47	97.9	99.4	95.1
Horse \rightarrow Frog (Blend - Patch 2)	$\begin{array}{l} \text{Truck} \rightarrow \text{Dog} \\ \text{(Horizontal Sinusoidal)} \end{array}$	89.12	91.93	100.0	93.7	82.1
$Cat \rightarrow Dog$ (Vertical Sinusoidal)	$\begin{array}{l} \text{Truck} \rightarrow \text{Ship} \\ \text{(Horizontal Sinusoidal)} \end{array}$	89.41	90.13	99.9	78.8	91.7
$\begin{array}{c} \text{Airplane} \rightarrow \text{Frog} \\ (\text{Patch 4}) \end{array}$	$\begin{array}{c} \text{Bird} \rightarrow \text{Deer} \\ (\text{Patch 9}) \end{array}$	90.15	93.2	98.4	89.1	92.1
	$\begin{array}{c} \textbf{Attack-2} \\ \hline Frog \rightarrow Truck \\ (Patch 5) \\ Frog \rightarrow Bird \\ (Blend - Patch 6) \\ Horse \rightarrow Frog \\ (Blend - Patch 2) \\ Cat \rightarrow Dog \\ (Vertical Sinusoidal) \\ Airplane \rightarrow Frog \\ (Patch 4) \end{array}$	$\begin{tabular}{ c c c c c } \hline Attack-2 & Attack-3 \\ \hline Frog \rightarrow Truck & Deer \rightarrow Dog (Patch 5) & (Patch 7) \\ Frog \rightarrow Bird & Airplane \rightarrow Truck (Blend - Patch 6) & (Blend - Patch 0) \\ Horse \rightarrow Frog & Truck \rightarrow Dog & (Blend - Patch 2) & (Horizontal Sinusoidal) \\ Cat \rightarrow Dog & Truck \rightarrow Ship & (Vertical Sinusoidal) & (Horizontal Sinusoidal) \\ Airplane \rightarrow Frog & Bird \rightarrow Deer & (Patch 4) & (Patch 9) & (Patch 9) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline Attack-2 & Attack-3 & BA (\%) \\ \hline Frog \rightarrow Truck & Deer \rightarrow Dog & 9.28 \\ $(Patch 5) & $(Patch 7)$ & 9.28 \\ \hline Frog \rightarrow Bird & Airplane \rightarrow Truck & 90.61 \\ $(Blend - Patch 6) & $(Blend - Patch 0)$ & 0.61 \\ \hline Horse \rightarrow Frog & Truck \rightarrow Dog & 89.12 \\ \hline Cat \rightarrow Dog & Truck \rightarrow Ship & 0.24 \\ \hline Cat \rightarrow Dog & Truck \rightarrow Ship & 89.41 \\ \hline Airplane \rightarrow Frog & $Bird \rightarrow Deer & 90.15 \\ \hline Patch 4) & $(Patch 9)$ & 90.15 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 6: Evaluation of the three-attack scenario using ResNet18 as the model and the CIFAR10 dataset. The first three columns display the source and target classes (source \rightarrow target), with the specific triggers used to activate the backdoors indicated in parentheses below each entry. The following two columns report the overall Benign Accuracy (BA) and Attack Success Rate (ASR), while the final three columns present the success rates for each individual attack.

5 CONCLUSION

In this study, we introduced Gradient Storm, a powerful and innovative method for executing mul-tiple backdoor attacks in machine learning models with minimal data manipulation. Our approach demonstrates significant advancements in the design of adversarial poisons, allowing for precise control over specific regions of the parameter space and enabling the successful execution of multitrigger attacks. Through comprehensive evaluation across two convolutional neural network archi-tectures and two benchmark datasets, Gradient Storm has proven to be highly effective, achieving an attack success rate exceeding 90% in both single-trigger and multi-trigger scenarios. Additionally, the method shows strong resilience against a range of poisoning defense mechanisms, underscor-ing its potential impact on the security and trustworthiness of AI systems. These findings highlight the need for continued research into more robust defense strategies to counteract such sophisticated adversarial threats.

References

Hojjat Aghakhani, Dongyu Meng, Yu-Xiang Wang, Christopher Kruegel, and Giovanni Vigna.
Bullseye polytope: A scalable clean-label poisoning attack with improved transferability. In 2021 IEEE European symposium on security and privacy (EuroS&P), pp. 159–178. IEEE, 2021.

- Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame work for self-supervised learning of speech representations. Advances in neural information processing systems, 33:12449–12460, 2020.

486 487 488	Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set corruption without label poisoning. In 2019 IEEE International Conference on Image Processing (ICIP), pp. 101–105. IEEE, 2019.
489 490 491 492	Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. In <i>Proceedings of the 29th International Coference on International Conference on Machine Learning</i> , pp. 1467–1474, 2012.
493 494 495 496	Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam Fowl, Arjun Gupta, Amin Ghiasi, Furong Huang, Micah Goldblum, and Tom Goldstein. Dp-instahide: Provably defusing poisoning and backdoor attacks with differentially private data augmentations. <i>arXiv preprint arXiv:2103.02079</i> , 2021.
497 498 499 500	Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. <i>Advances in neural information processing systems</i> , 33:1877–1901, 2020.
501 502 503 504	Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by activation clustering. In <i>Workshop on Artificial Intelligence Safety</i> . CEUR-WS, 2019.
505 506 507	Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning. <i>arXiv preprint arXiv:1712.05526</i> , 2017.
508 509	Khoa D Doan, Yingjie Lao, and Ping Li. Marksman backdoor: Backdoor attacks with arbitrary target class. <i>Advances in Neural Information Processing Systems</i> , 35:38260–38273, 2022.
510 511 512 513	Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor defense via adaptively splitting poisoned dataset. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 4005–4014, 2023.
514 515 516	Jonas Geiping, Liam Fowl, W Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and Tom Goldstein. Witches' brew: Industrial scale data poisoning via gradient matching. <i>arXiv</i> preprint arXiv:2009.02276, 2020.
517 518 519 520	Xueluan Gong, Yanjiao Chen, Qian Wang, Huayang Huang, Lingshuo Meng, Chao Shen, and Qian Zhang. Defense-resistant backdoor attacks against deep neural networks in outsourced cloud environment. <i>IEEE Journal on Selected Areas in Communications</i> , 39(8):2617–2631, 2021.
521 522	Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring attacks on deep neural networks. <i>IEEE Access</i> , 7:47230–47244, 2019.
524 525 526	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog- nition. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 770–778, 2016.
527 528 529 530	Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş, and Nicolas Papernot. On the effectiveness of mitigating data poisoning attacks with gradient shaping. <i>arXiv preprint arXiv:2002.11497</i> , 2020.
531 532 533	W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Prac- tical general-purpose clean-label data poisoning. <i>Advances in Neural Information Processing</i> <i>Systems</i> , 33:12080–12091, 2020.
534 535 536 537	Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina Oprea. Subpopulation data poisoning attacks. In <i>Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security</i> , pp. 3104–3122, 2021.
538 539	Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. Model-reuse attacks on deep learning systems. In <i>Proceedings of the 2018 ACM SIGSAC conference on computer and communications security</i> , pp. 349–363, 2018.

568

569

570

585

- Wenbo Jiang, Hongwei Li, Guowen Xu, and Tianwei Zhang. Color backdoor: A robust poisoning attack in color space. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8133–8142, 2023.
- Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
 Condensing graphs via one-step gradient matching. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 720–730, 2022.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 2009.
- Yanzhou Li, Shangqing Liu, Kangjie Chen, Xiaofei Xie, Tianwei Zhang, and Yang Liu. Multi-target
 backdoor attacks for code pre-trained models. In *The 61st Annual Meeting Of The Association For Computational Linguistics*, 2023.
- Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning: Training clean models on poisoned data. *Advances in Neural Information Processing Systems*, 34:14900–14912, 2021a.
- Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention dis tillation: Erasing backdoor triggers from deep neural networks. In *9th International Conference on Learning Representations, ICLR 2021*, 2021b.
- Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against back-dooring attacks on deep neural networks. In *International symposium on research in attacks, intrusions, and defenses*, pp. 273–294. Springer, 2018a.
- Tian Yu Liu, Yu Yang, and Baharan Mirzasoleiman. Friendly noise against adversarial noise: a pow erful defense against data poisoning attack. *Advances in Neural Information Processing Systems*, 35:11947–11959, 2022.
 - Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and X. Zhang. Trojaning attack on neural networks. In *Network and Distributed System Security Symposium*, 2018b. URL https://api.semanticscholar.org/CorpusID:31806516.
- Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor attack on deep neural networks. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16*, pp. 182–199. Springer, 2020.
- Mehran Mozaffari-Kermani, Susmita Sur-Kolay, Anand Raghunathan, and Niraj K Jha. Systematic poisoning attacks on and defenses for machine learning in healthcare. *IEEE journal of biomedical and health informatics*, 19(6):1893–1905, 2014.
- Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient optimization. In *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 27–38, 2017.
- Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubinstein, Udam Saini, Charles Sutton, J Doug Tygar, and Kai Xia. Exploiting machine learning to subvert your spam filter. *LEET*, 8(1-9):16–17, 2008.
 - Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. *Advances in Neural Information Processing Systems*, 33:3454–3464, 2020.
- Tuan Anh Nguyen and Anh Tuan Tran. Wanet imperceptible warping-based backdoor attack. In International Conference on Learning Representations, 2021. URL https://openreview. net/forum?id=eEn8KTtJOx.
- Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wis tuba, Valentina Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, et al. Adversarial
 robustness toolbox v1. 0.0. *arXiv preprint arXiv:1807.01069*, 2018.

603

604

611

628

629

630

639

- Rui Ning, Jiang Li, Chunsheng Xin, and Hongyi Wu. Invisible poison: A blackbox clean label back door attack to deep neural networks. In *IEEE INFOCOM 2021-IEEE Conference on Computer Communications*, pp. 1–10. IEEE, 2021.
- Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, and
 John P Dickerson. Deep k-nn defense against clean-label data poisoning attacks. In *Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16*, pp. 55–70. Springer, 2020.
 - Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. *arXiv preprint arXiv:1804.02767*, 2018.
- Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 11957– 11965, 2020.
- Mert Bulent Sariyildiz and Ramazan Gokberk Cinbis. Gradient matching generative networks for zero-shot learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2168–2178, 2019.
- Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
 Advances in neural information processing systems, 31, 2018.
- Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel Synnaeve. Gradient matching for domain generalization. *arXiv preprint arXiv:2104.09937*, 2021.
- Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, and Tom Goldstein. Sleeper agent:
 Scalable hidden trigger backdoors for neural networks trained from scratch. *Advances in Neural Information Processing Systems*, 35:19165–19178, 2022.
- Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign recognition benchmark: a multi-class classification competition. In *The 2011 international joint conference on neural networks*, pp. 1453–1460. IEEE, 2011.
- Guanhong Tao, Yingqi Liu, Guangyu Shen, Qiuling Xu, Shengwei An, Zhuo Zhang, and Xiangyu
 Zhang. Model orthogonalization: Class distance hardening in neural networks for better security.
 In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1372–1389. IEEE, 2022.
 - Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. *Advances in neural information processing systems*, 31, 2018.
- Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks.
 arXiv preprint arXiv:1912.02771, 2019.
- Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
 Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 *IEEE symposium on security and privacy (SP)*, pp. 707–723. IEEE, 2019.
- Kaiyang Wang, Huaxin Deng, Yijia Xu, Zhonglin Liu, and Yong Fang. Multi-target label backdoor
 attacks on graph neural networks. *Pattern Recognition*, 152:110449, 2024.
- Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching
 for domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3769–3778, 2023.
- Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao, Haitao Zheng, and Ben Y
 Zhao. Backdoor attacks against deep learning systems in the physical world. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6206–6215, 2021.
- 647 Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. Advances in Neural Information Processing Systems, 34:16913–16925, 2021.

- Jing Xu and Stjepan Picek. Poster: Multi-target & multi-trigger backdoor attacks on graph neural networks. In *Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communica-tions Security*, pp. 3570–3572, 2023.
- Mingfu Xue, Shifeng Ni, Yinghao Wu, Yushu Zhang, and Weiqiang Liu. Imperceptible and multi channel backdoor attack. *Applied Intelligence*, 54(1):1099–1116, 2024.
 - Yi Yu, Yufei Wang, Wenhan Yang, Shijian Lu, Yap-Peng Tan, and Alex C Kot. Backdoor attacks against deep image compression via adaptive frequency trigger. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12250–12259, 2023.
 - Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of backdoors via implicit hypergradient. In *International Conference on Learning Representations*, 2022.
 - Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In *International Conference on Learning Representations*, 2018.
 - Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. *arXiv preprint arXiv:2006.05929*, 2020.
 - Haoti Zhong, Cong Liao, Anna Cinzia Squicciarini, Sencun Zhu, and David Miller. Backdoor embedding in convolutional neural network models via invisible perturbation. In *Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy*, pp. 97–108, 2020.
- 671 Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein.
 672 Transferable clean-label poisoning attacks on deep neural nets. In *International conference on machine learning*, pp. 7614–7623. PMLR, 2019.

A APPENDIX

In this section, we conduct a series of experiments to evaluate the significance and contribution of each component of our algorithm. All experiments are carried out using the ResNet18 model as both the surrogate and target, with the CIFAR10 dataset serving as the training data. The results are averaged across various random selections of source and target classes.

A.1 PATCH SIZE

We evaluate the influence of trigger size on attack success rate by experimenting with various sizes for both patch and blend triggers. All experiments are performed using the ResNet18 model as both the surrogate and target. In this section, poisons are generated for a single cycle and round. The results of these experiments are presented in Table 7.

Trigger Type	Size	BA	ASR
Patch	2×2	90.96	0.3
Blend	2×2	91.5	0.1
Patch	4×4	90.09	11.1
Blend	4×4	89.46	2.0
Patch	8×8	88.52	73.2
Blend	8×8	89.91	49.9
Patch	16×16	90.53	95.8
Blend	16×16	90.73	94.1

Table 7: Evaluation of the impact of trigger size on attack success rate. The table compares the success rates for various sizes of patch and blend triggers.

702 A.2 POISON CRAFTING THRESHOLD

This section presents experimental results that illustrate how selecting an appropriate threshold influences the optimization objective in adversarial poison crafting. Figure 3 illustrates the threshold values used to terminate the poison crafting optimization process, along with the corresponding attack success rates achieved using the generated poisons.

Figure 3: Threshold values and corresponding attack success rates for terminating the poison crafting optimization process.