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ABSTRACT

Autoregressive (AR) models have made significant strides in image generation, de-
livering quality comparable to diffusion-based methods. However, their sequential
inference process incurs high computational costs, hindering efficiency and scal-
ability. Although speculative decoding has proven effective in accelerating Large
Language Models (LLMs), its adaptation to visual AR models, especially for im-
proved generation with dynamic draft trees, remains largely unexplored. In this
work, we identify a key obstacle in applying speculative decoding to visual AR
models: inconsistent acceptance rates across draft trees due to varying prediction
difficulties in different image regions. To address this, we introduce Adjacency-
Adaptive Dynamical Draft Trees, dubbed as PEANUT, which dynamically adjust
draft tree depth and width by leveraging adjacent token states and prior accep-
tance rates. PEANUT optimizes tree construction using spatial token relation-
ships, achieving more stable acceleration and higher acceptance rates. Evaluations
on text-to-image generation show that PEANUT dramatically outperforms meth-
ods with draft tree-like EAGLE-2 in inference efficiency while preserving lossless
image quality, and can also be combined with techniques such as LANTERN that
relax sampling criteria.

1 INTRODUCTION

Autoregressive (AR) models (Sun et al., 2024; Liu et al., 2024; Tian et al., 2024) have made remark-
able strides in image generation, achieving image quality that rivals or surpasses diffusion-based
methods. Recent advances, such as Anole (Chern et al., 2024) and Lumina-mGPT (Liu et al., 2024),
have further advanced AR models by scaling with massive multimodal data. Despite the signifi-
cant potential of visual autoregressive (AR) models, a key challenge is their high computational cost
during inference, stemming from the token-by-token generation process typical of AR architectures.

A typical approach for accelerating AR models is speculative decoding (Chen et al., 2023; Leviathan
et al., 2023), which is an advanced inference acceleration technique designed to improve the decod-
ing efficiency of large language models (LLMs) without compromising output quality. It operates by
rapidly generating multiple draft tokens using a lightweight draft model and subsequently verifying
them with the larger, more accurate target model. By speculatively precomputing several tokens and
validating them in parallel batches, speculative decoding significantly reduces the number of sequen-
tial forward passes required. Recent methods like SpecInfer (Miao et al., 2024), Medusa (Cai et al.,
2024), and EAGLE-2 (Li et al., 2024) adopt tree-based draft token structures, offering a larger search
space than traditional linear-chain approaches. While speculative decoding has advanced LLMs, its
application to visual AR models remains underexplored. To the best of our knowledge, only a few
studies, such as SJD (Teng et al., 2025) and LANTERN (Jang et al., 2025), have studied speculative
decoding in visual AR models. Specifically, SJD adopts a chain structure for draft tokens, gener-
ating only one draft token per position in the token sequence, which limits efficiency. LANTERN
improves upon this by employing a tree structure that generates multiple draft tokens per position.
However, this approach is lossy, as it relaxes speculative decoding and consequently compromises
generation quality. Despite these advances, the development of a lossless and more efficient draft
structure tailored for visual AR models remains an open challenge.

We observe a phenomenon during image speculative decoding generation where draft tokens tend
to flock together in specific regions of the image. These uneven distributions result in significant
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disparities in acceptance rates across different positions within the generation image. Consequently,
as Figure 1 illustrates, it leads to inefficient utilization of the draft tree, resulting in a slowdown
of the speculative decoding process in visual AR models. Specifically, we identify a key problem,
namely the imbalance building draft tree, which significantly impedes the effective application of
speculative decoding to visual AR models.

Figure 1: The draft model faces two situa-
tions in different image regions. The image
token depth matrix tracks the depth of the
draft tree at which each image token resides.
In this matrix, brighter areas signify deeper
locations of the image tokens within the draft
tree. For complex regions, the acceptance
length is lower than the height of the draft
tree, making unused layers wasteful and re-
ducing the acceleration rate. A shallow draft
tree is appropriate. For simple regions, the
potential acceptance length exceeds the draft
tree height, so building a deeper tree can in-
crease the acceptance length and boost the ac-
celeration rate.

In contrast to the speculative decoding employed in ex-
isting Visual AR models, the token initialization strategy
within the SJD (Teng et al., 2025) focuses on the rela-
tionships between image adjective tokens. Similarly, the
concept of latent proximity permitting token interchange-
ability, as described in LANTERN (Jang et al., 2025), ad-
dresses the probabilistic associations among these image
adjective tokens. Analogously, this paper investigates the
similar associations that exist among the draft trees gener-
ated by such image adjective tokens.

To address the above issues, we propose a solution of
building draft trees dubbed as PEANUT that makes use of
the varying difficulty in sampling from different positions
of the image to dynamically adjust the depth and top-k of
the draft tree, thereby enhancing the acceptance rate and
acceptance length. Specifically, we utilize the similarity
between depth and probability positions of adjacent draft
tokens in the draft tree to more accurately initialize the cur-
rent draft tree. Then, based on the state of the previous
draft trees, we adjust the expected depth and width (top-k)
of draft trees through appropriate corrections. Thus, we
select the depth and top-k of the draft tree more precisely
to achieve a higher utilization rate of the draft tree.

Our approach achieves speed-up rate raising in the specu-
lative decoding of the token sequence, which is equipped
with the characteristics of image tokens, according to our
text-conditional experiments on MSCOCO2017 (Lin et al., 2015) and parti-prompts (Yu et al., 2022).

To summarize, our key contributions are as follows:

• Observation of the bottleneck in efficient visual speculative decoding: We conduct ex-
tensive experiments and find that the imbalance in acceptance ratios across different image
regions in the current draft tree constitutes the primary bottleneck in applying draft tree
speculative decoding to visual AR models.

• Novel method for dynamically building draft tree: We design a dynamically building
draft tree method, adapting the adjacent states of tokens dubbed as PEANUT. PEANUT
first initializes the draft tree based on horizontally adjacent draft trees, and subsequently
adjusts it according to the states of the adjacent draft trees, leading to a higher draft tree
utilization rate without sacrificing image generation performance.

2 RELATED WORK

Visual Autoregressive Models: Autoregressive (AR) models have gained prominence in image gen-
eration, delivering quality rivaling diffusion models (Saharia et al., 2022) through sequential token
prediction. Unlike diffusion models, visual AR models tokenize images into discrete sequences and
process them with transformer architectures, the same to large language models (LLMs). Existing
works like LlamaGen (Sun et al., 2024), Anole (Chern et al., 2024), and Lumina-mGPT (Liu et al.,
2024) excel in text-conditional image generation, using quantized autoencoders to convert images
into token sequences for transformer-based sampling.

Speculative Decoding: The core idea of speculative decoding (Chen et al., 2023; Leviathan et al.,
2023; Chen et al., 2024) is to first draft and then verify: quickly generate a potentially correct draft
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and then check which tokens in the draft can be accepted. This method first applies to large language
models with AR structure. The initial draft form is the chain structure (Santilli et al., 2023; Zhao
et al., 2024; Kou et al., 2024). And then SpecInfer (Miao et al., 2024) introduces a draft form with
tree structure, which represents draft tree. The draft tree is equipped with two parameters, top-k
k̂ and depth d̂, where k̂ represents the number of each child node in the draft tree and d̂ represents
the depth of the draft tree. The draft form with tree structure (Miao et al., 2024; Cai et al., 2024; Li
et al., 2024; Zhang et al., 2024) has flourished. From MEDUSA (Cai et al., 2024) to EAGLE-2 (Li
et al., 2024), unleashing the potential of the tree structure draft tree, these methods greatly increase
the speed-up ratio.

One of the few works related to speculative decoding of image token sequences is speculative decod-
ing for Multi-LLM (Gagrani et al., 2024), which provides a simple yet efficient approach to applying
speculative decoding in Multi-LLMs. With the introduction of Speculative Jacobi Decoding (Teng
et al., 2025), speculative decoding has been extended to visual autoregressive (AR) models. Although
the GSD (So et al., 2025) method, based on SJD, has modified its sampling paradigm, the structure
of its draft token remains a chain structure. However, the draft tokens in these methods follow a chain
structure rather than a tree structure. Existing draft tree methods like LANTERN (Jang et al., 2025)
employ a lossy tree-structured drafting approach with relaxation of speculative decoding.

3 PRELIMINARIES AND MOTIVATION

We first introduce the necessary notation. Then, we describe the motivations for PEANUT, highlight-
ing the challenges and solutions for optimizing inference efficiency while maintaining the quality of
conditional generation.

3.1 NOTATION

Drawing from LLMs, we adapt speculative decoding for image generation. An image is tokenized
into a sequence S = (s1, s2, . . . , sT ) via a quantized autoencoder, where a lightweight encoder and
quantizer produce discrete tokens st ∈ {1, . . . ,K} (codebook size K), and a decoder reconstructs
Î from S. The target model L, an autoregressive transformer, generates S conditioned on a prompt
ρ (e.g., text or label). We define p(st|s1:t−1, ρ) = L(st|s1:t−1, ρ) as the sampling result of the
conditional generation function (CFG) (Ho & Salimans, 2021) for the target model. A smaller draft
model R generates q(st|s1:t−1, ρ) approximates the output of L. In speculative decoding in visual
AR models, given a prefix s1:t−1 and ρ, R proposes a draft sequence ŝt+1:t+L of length L, which
L verifies in parallel. Among them, L represents the total number of tokens in the draft tree. We
define ŝans(t) as the ancestor sequence to node ŝt based on the tree mask, which means ŝans(t) is the
sequence from root to ŝt. The acceptance probability is:

rt+j = min

(
1,

p
(
ŝt+j |s1:t, ŝans(t+j), ρ

)
q
(
ŝt+j |s1:t, ŝans(t+j), ρ

)) , j = 1, . . . , L (1)

where both p(ŝt+j | s1:t−1, ŝans(t+j), ρ) and q(ŝt+j | s1:t−1, ŝans(t+j), ρ) are computed using CFG.

To further optimize drafting, we integrate a dynamic draft tree Tdraft, based on EAGLE-2, having
depth d̂ and width k̂. Each node v of the draft tree represents a token sv with confidence cv =
q(sv|s1:t−1, sanc(v), ρ). The tree expands by selecting the top-kd nodes at depth d based on path
confidence Pv =

∏
u∈Path(root,v) cu, where Path(root, v) is the sequence from root to v. For each

selected node at position (d, k), R generates kd+1 child nodes at depth d + 1, positioned at (d +

1, 1), . . . , (d+ 1, kd+1), sampling from q(·|s1:t−1, sanc(v), ρ), with kd+1 < k̂. The sequence is then
reranked and verified with L.

3.2 MOTIVATION

Speculative decoding has demonstrated significant success in accelerating autoregressive (AR) mod-
els for text generation (Chen et al., 2023; Leviathan et al., 2023). Recent advancements, such as those
employing draft tree structure (Miao et al., 2024; Cai et al., 2024; Li et al., 2024), have expanded the
search space for draft tokens. Notably, EAGLE-2 (Li et al., 2024) introduces a dynamic candidates
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Figure 2: (a) Left: Frequency of acceptance lengths during speculative decoding with Tdraft (d̂ = 5,
k̂ = 10) over 100 image generations using Anole at T = 0 and T = 1. (b) Right: Frequency of the
top-k positions of accepted draft tokens, where ‘Top-k Location’ denotes the minimum kd required
forR to include the correct token in the draft phase for acceptance by L.

token tree, Tdraft, with configurable depth d̂ and width k̂, enabling manual adjustment of the token
search scale. This flexibility positions EAGLE-2 as a promising approach for accelerating visual AR
models (L), which generate token sequences S conditioned on a prompt ρ.

However, applying EAGLE-2 to visual AR models reveals inefficiencies stemming from the expan-
sive search scale of Tdraft. To investigate this, we analyze the frequency of acceptance lengths during
speculative decoding with L and a draft model R. Figure 2(a) illustrates the distribution of accep-
tance lengths over 100 image generation trials, using a draft tree configured with d̂ = 7 and k̂ = 10,
under temperature settings T = 0 and T = 1. At T = 1, the acceptance lengths exhibit significant
variance, indicating that a static d̂ leads to inefficiencies. For instance, when the acceptance length
τ is 3, constructing a tree of depth 7 wastes computational resources on four unnecessary layers.
Conversely, reducing d̂ to 3 caps τ at 3, limiting the potential acceleration in regions whereR could
predict longer sequences. This trade-off complicates the selection of an optimal d̂ for visual AR
speculative decoding, a phenomenon also noted in prior works such as SJD (Teng et al., 2025) and
LANTERN (Jang et al., 2025), which highlight local similarities in token generation.

We identify a critical challenge: imbalance in acceptance rates of draft trees. During speculative
decoding of the token sequence S, the acceptance length τ varies across positions due to differences
in prediction difficulty for R. This variability, depicted in Figure 2(a), suggests that a fixed-depth
Tdraft either overextends in regions of low τ , reducing the acceptance rate α = τ/d̂, or underextends
in regions of high τ , constraining the expected ratio E[ τ

Tdraft
].

Based on the above observations, we propose a potential solution: regions with simpler textures (e.g.,
low-frequency backgrounds) in the generated image exhibit higher τ values, asR can predict tokens
more accurately, and when visual error tolerance is high, the distribution discrepancy between the
draft model and target model is smaller. In contrast, complex texture regions (e.g., high-frequency
details like fur) show lower τ values due to reduced visual error tolerance, resulting in significant dis-
tribution divergence between q(·|s1:t−1, ρ) and p(·|s1:t−1, ρ). This behavior is closely related to the
spatial coherence of images—adjacent tokens demonstrate strong correlations in acceptance lengths,
reflecting local consistency in generation difficulty. Leveraging this property, we can dynamically
adjust the structure of the draft tree by analyzing the acceptance rates of neighboring regions.

Additionally, Figure 2(b) reveals variability in the top-k positions of accepted tokens within
q(·|s1:t−1, ρ). In complex regions, the position of draft tokens’ probabilities may rank lower in
R’s distribution compared to L, occasionally falling outside the top-k range (kd > k̂), leading to
rejection. This discrepancy underscores the need for adaptive k̂ alongside d̂.

Motivated by these findings, we propose PEANUT, an algorithm that dynamically adjusts the depth
d̂ and width k̂ of Tdraft during the expansion phase of speculative decoding. By tailoring the tree
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Figure 3: Comparison of the process of building draft tree EAGLE-2 and PEANUT. Nodes in the
same layer share the same position index. PEANUT can construct a more appropriate draft tree with
the right depth and width based on the positions of the nodes in the previous layer and the status of
the draft tree.

structure to the local prediction difficulty, PEANUT aims to maximize E[ τ
Tdraft

] while minimizing
unnecessary computation.

4 PEANUT: ADJACENCY-ADAPTIVE DYNAMICAL DRAFT TREES

To address the challenge of uneven acceptance rates across draft trees at various positions, stemming
from inconsistent acceptance lengths, we introduce Adjacency-Adaptive Dynamical Draft Trees,
dubbed PEANUT. As shown in Figure 3, this approach dynamically builds a draft tree by adapt-
ing to the acceptance rate state of adjacent tokens in visual auto-regressive models. Let d̂ be the
depth of the draft tree and k̂ be the width (the top-k value) of the draft tree. PEANUT constructs
the draft tree through two phases: initialization and adaptation. First, the depth d̃ and width k̃ of the
current draft tree are initialized according to the established strategy. Second, it revises these two
values according to the acceptance rate of the previous draft trees, which reflects the current level of
prediction difficulty. Details are described below.

4.1 ADJACENT INITIALIZATION

We introduce Adjacent Initialization, which addresses the initialization of the depth d̃ and top-k k̃
for a new draft tree associated with the image token s(i,j). Let (i, j) denote the position of the token
to be predicted within a two-dimensional grid representing the encoded image. Three strategies that
leverage adjacency to initialize d̃ and k̃ are provided as follows:

• Horizontal Repeat (Repeat Left Adjacent Draft Tree): Set d̃ = di,j−1 and k̃ = ki,j−1,
using the draft tree attributes of s(i,j−1).

• Vertical Repeat (Repeat Above Adjacent Draft Tree): Set d̃ = di−1,j and k̃ = ki−1,j ,
based on s(i−1,j).

• Random Initialization: Sample d̃ ∼ U(dmin, dmax) and k̃ ∼ U(kmin, kmax).

These three strategies build on experimental findings from SJD (Teng et al., 2025), which reveal that
tokens positioned next to each other horizontally or vertically exhibit similar probabilities during
image generation. Building on this insight, the Horizontal Repeat and Vertical Repeat strategies were
developed. Meanwhile, the Random strategy was crafted for images where the correlation between
adjacent tokens is comparatively weak. These simple yet effective approaches adapt d̃ and k̃ to the
spatial context of s(i,j).

4.2 BISECTIONAL DYNAMIC ADAPTATION

After obtaining the initial draft tree, we design Bisectional Dynamic Adaptation to adjust the depth
and width of the draft tree. As shown in Figure 4, we categorize the input draft tree into two statuses.
Let β be the positive threshold, which determines the positive or negative status.
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Positive status
� ≥ �

Negative status
� <�
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Depth  ↑
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Depth  ↑
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Previous Draft Tree

Current Draft Tree

Current Draft Tree

Verify

Verify
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Input tokens Candidate draft tokens Chosen draft tokens

Figure 4: The adapting phase main process. According to the positive threshold β, the previous draft
tree is classified as either a positive or a negative state. The width of the draft tree is decided by the
setting of top-k. If it is from a complex texture to a simple texture, PEANUT’s draft trees will turn
deeper and narrower, which will remove unnecessary expansions. On the contrary, it will turn into a
shorter and wider tree so that the current draft tree can more easily find the correct target tokens.

In the positive status, the acceptance rate α exceeds the threshold β, meaning that all tokens in each
layer of the draft tree are fully utilized. In this scenario, the capability of the draft model is maximized
from the perspective of depth, allowing it to construct deeper structures while relying less on top-k
sampling.

In the negative status, the acceptance rate α is less than the threshold β, indicating that some tokens
in certain layers are not utilized, thus limiting the effectiveness of the draft model. Consequently,
the draft tree should be shallower, and a larger top-k should be used to increase the likelihood of
predicting the correct token.

Therefore, the adjusted values of the depth d̂ and the width k̂ are computed as:

d̂ =

{
d̃+ ld, α ≥ β,

d̃− ld, α < β.
k̂ =

{
k̃ − lk, α ≥ β,

k̃ + lk, α < β,
(2)

where ld and lk are the adjustment steps for the depth and width, respectively.

Using a shallower draft tree with a larger top-k expands the larger search scope for per layer. A
shallower draft tree effectively drafts tokens in areas with simple textures. Conversely, when using a
deeper draft tree, reducing the top-k can minimize the space and time costs associated with building
the draft tree. Accurately predicting the positions of child nodes containing the accepted tokens
enhances the efficiency of building draft trees, thereby increasing the generation speedup.

According to EAGLE-2 (Li et al., 2024), the time costs CT and the space peak costs CS of building
dynamic draft trees are calculated as:

CT = TS · d̂+ TN ·N, (3)

CS = k̂2 · (d̂− 1) + k̂, (4)

where N is the total number of tokens, TS denotes the time of inference of draft model, and TN

denotes the time of building tree mask.

Considering the worst-case time complexity when the current token remains in the negative state and
cannot return to the positive state. Meanwhile, if the negative state suddenly transitions back to the
positive state, the top-k value may become excessively large. Therefore, to prevent excessive CT and
CS , we impose the constraints dmin < d̂ < dmax and kmin < k̂ < kmax to limit the depth and
width of the draft tree. Additionally, we only restrict the top-k when d̃± ld > 1, as in this case, the
top-k does not increase proportionally to the square of the difference.
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Table 1: The evaluation on the validation set of MSCOCO2017. Speedup ratio is denoted by SR,
the mean acceptance length by τ , the mean draft tree depth by d̄, and the temperature by T .

T=0 T=1
Method Acceleration Image Quality Acceleration Image Quality

SR (↑) τ (↑) d̄ HPSv2 (↑) CLIP Score (↑) SR (↑) τ (↑) d̄ HPSv2 (↑) CLIP Score (↑)
Anole (Chern et al., 2024) 1.00× 1.00 1.00 0.2309 0.3086 1.00× 1.00 1.00 0.2360 0.3042
EAGLE-2 (Li et al., 2024) 1.62× 2.91 5.00 0.2338 0.3078 0.76× 1.11 5.00 0.2361 0.3047
LANTERN (Jang et al., 2025) 3.03× 4.25 5.00 0.2188 0.2955 1.38× 2.00 5.00 0.2303 0.3005
PEANUT 2.21× 3.40 3.86 0.2331 0.3081 1.06× 1.10 2.09 0.2367 0.3047
PEANUT+LANTERN 3.13× 4.86 5.15 0.2191 0.2965 1.53× 1.87 2.10 0.2331 0.3016

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets: For the text-conditional image generation, we conduct experiments on the acceleration
effect on parti-prompts (Yu et al., 2022) and MS-COCO2017 (Lin et al., 2015). We utilize random
100 captions sampling from the MS-COCO2017 validation captions to evaluate the actual speedup.
The same experimental setting is also conducted for Parti-Prompts.

Evaluation Metrics: PEANUT is a lightweight acceleration method that neither fine-tunes the tar-
get visual AR Models’ weights during training nor relaxes the acceptance conditions during decod-
ing. Thus, the generation results remain unchanged in image quality as a result of the framework
of EAGLE-2 (Li et al., 2024). To measure the acceleration performance, we adopt the following
metrics:

• Speedup Ratio (SR): The actual test speedup ratio relative to vanilla visual auto-regressive
decoding.

• Acceptance Length (τ ): The average number of tokens generated per drafting-verification
cycle, indicating the number of tokens accepted by the target visual AR Model decoding
from the draft model.

• Mean Draft Trees Depth (d̄): The average depth of draft trees per drafting-verification
cycle, indicating the depth of draft trees by the draft model.

Implementation Details: We set all generation latent size to 576 and classifier-free guidance score
to 4.0. To ensure consistency and comparability with EAGLE-2, we set temperature T ∈ {0.0, 1.0}.
To validate our method PEANUT, for Anole’s draft model, we set β = 1 ld = 1, and lk = 3, where
the depth and top-k of draft trees are limited in (0, 10) and (3, 14). We evaluate our approach on
two different models, which are LlamaGen (Sun et al., 2024) and Anole (Chern et al., 2024). For
LlamaGen’s draft model, we set β = 1, ld = 1 and lk = 10, where the depth and top-k of draft trees
are limited in (0, 10) and (3, 40). We evaluate each method in both the greedy decoding setting with
T = 0 and the speculative decoding with T = 1. More algorithm details about greedy decoding and
speculative decoding show in Appendix A, and more training details show in Appendix C.2.

Training Implementation: Our training implementation is based on the open source repository
of EAGLE-2. To train the text-condition draft model, we randomly sample 200k text-image pairs in
LAION-COCO (Kang et al., 2023) dataset for Anole’s draft model, which is used to train LlamaGen-
XL(stage I) (Kang et al., 2023) target model. For Anole’s draft model, we directly utilize the draft
models that are already available in the LANTERN (Jang et al., 2025) project. Since LlamaGen (Sun
et al., 2024) uses classifier-free guidance (Ho & Salimans, 2021) to generate images, we randomly
dropped 10% conditional embedding during training, consistent with target model training.

5.2 RESULTS OF ACCELERATED IMAGE GENERATION

Table 1 demonstrates that PEANUT achieves substantial acceleration compared to other meth-
ods in Anole. At a temperature of 0, PEANUT achieved a speedup ratio of 2.21 on
MSCOCO2017, while PEANUT+LANTERN achieves a speedup ratio of 3.13. At a temperature of
1, PEANUT+LANTERN also obtain speedup ratios of 1.53. Among them, PEANUT+LANTERN
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Table 2: The evaluation on the validation set of parti-prompts. Speedup ratio is denoted by SR, the
mean acceptance length by τ , the mean draft tree depth by d̄, and the temperature by T .

T=0 T=1
Method Acceleration Image Quality Acceleration Image Quality

SR (↑) τ (↑) d̄ HPSv2 (↑) CLIP Score (↑) SR (↑) τ (↑) d̄ HPSv2 (↑) CLIP Score (↑)
Anole (Chern et al., 2024) 1.00× 1.00 1.00 0.2100 0.2731 1.00× 1.00 1.00 0.2360 0.3089
EAGLE-2 (Li et al., 2024) 1.98× 3.57 5.00 0.2113 0.2744 0.80× 1.26 5.00 0.2360 0.3084
LANTERN (Jang et al., 2025) 2.82× 4.46 5.00 0.2036 0.2663 1.90× 2.08 5.00 0.2279 0.3029
PEANUT 2.24× 2.79 3.43 0.2109 0.2741 1.57× 1.17 2.16 0.2370 0.3104
PEANUT+LANTERN 3.05× 3.97 4.31 0.2041 0.2664 2.20× 1.78 2.70 0.2304 0.3046

Figure 5: Qualitative samples generated by Anole using PEANUT and standard autoregressive de-
coding are showcased. From top to bottom, the images correspond to outputs from standard autore-
gressive decoding, PEANUT (with parameters ld = 1, lk = 3, d̂ = (0, 10), k̂ = (3, 14)), and
PEANUT+LANTERN (with δ = 0.4, k = 1000).

refers to PEANUT employing LANTERN’s relaxed sampling for image generation. Furthermore, it
can be observed that although the acceptance length τ of our method is not always the largest, its
average d̄ is smaller than that of other methods. This is precisely the result of PEANUT dynamically
constructing the draft tree based on image characteristics, which saves time in building the draft tree.

Table 2 further highlights the performance of PEANUT and PEANUT+LANTERN, focusing on the
efficiency of the draft tree construction. Although the acceptance length τ of our method is not always
the largest, its average d̄ is smaller than that of other methods. This efficiency stems from PEANUT’s
ability to dynamically construct the draft tree based on image characteristics, which reduces the
time required for building the draft tree, thereby contributing to the observed acceleration in image
generation.

We evaluate the generated results using various image metrics. CLIP Score (Hessel et al., 2021) and
HPSv2 (Wu et al., 2023) measure the alignment quality between images and text. It can be observed
that, under the same sampling methods (i.e., EAGLE-2’s lossless sampling and LANTERN’s relaxed
sampling), PEANUT does not compromise the original sampling distribution. Figure 5 shows some
images and the corresponding prompt words. In addition, we conducted measurements of other
image metrics, such as FID, IS, and Aesthetic. Further details can be found in Appendix C.
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5.3 ABLATIONS AND ANALYSIS

Figure 6: The influence of different initialization
strategies of draft trees on the mean acceptance
length τ , mean draft trees depth d̄ and speedup
ratio SR.

Table 3: Different calculation methods of base
values’ calculation results on ImageNet with
Temperature=1. L represents LlamaGen GPT-
L, and XL stands for LlamaGen GPT-XL.

Model Method SR τ d̄

TokenFlock 1.32× 2.79 3.60
L (d̃=1) 1.27× 2.64 3.23

775M (k̃=25) 1.33× 2.84 3.63
(d̃=1, k̃=25) 1.27× 2.63 3.21
PEANUT 1.32× 2.85 3.87

TokenFlock 1.36× 2.52 3.35
XL (d̃=1) 1.32× 2.42 3.12

775M (k̃=25) 1.36× 2.55 3.37
(d̃=1, k̃=25) 1.32× 2.41 3.09
PEANUT 1.39× 2.53 3.51

Impact of Initialization Strategy of Draft Trees: We evaluate three distinct draft tree initialization
strategies. As Figure 6 shows, the results demonstrate that the “Horizontal Repeat” strategy achieves
a significantly higher speedup ratio. As illustrated in the left sub-figure of the accompanying Figure 6,
the random strategy, with its random sampling approach, produced an excessively high d̄, causing
the acceleration effect to degrade.

Conversely, the “Vertical Repeat” strategy yields an initialization that is less precise than that of the
“Horizontal Repeat” strategy. This discrepancy can be attributed to the properties of the AR model:
image tokens adjacent in the horizontal direction share more similar contextual information com-
pared to those in the vertical direction, resulting in greater similarity in their acceptance lengths.
Consequently, PEANUT ultimately adopts the “Horizontal Repeat” strategy as its initialization ap-
proach.

Impact of Calculation Methods of Initial Values: In addition to the calculation methods of d̃
and k̃, Table 3 demonstrates several alternative approaches. Initially, we explore the incorporation
of adjacent tokens in the position of the image patch following image token decoding, a method we
designate as TokenF lock. The details of TokenF lock show in Appendix C.2. Subsequently, we
investigate the impact of fixing specific parameters within PEANUT, namely d̃ and k̃, to validate
the rationale behind the base value calculation method. In the table, (d̃ = 1) and (d̃ = 1, k̃ = 25)
respectively represent the peanut method using specific fixed tree-building attributes. Our findings
reveal that when either d̃ or k̃ is held constant, the acceleration ratio exhibits a certain degree of
fluctuation. This fluctuation is particularly pronounced in the acceptance length, especially when d̃
is fixed.

6 CONCLUSION AND LIMITATIONS

In this paper, we tackle the challenge of improving inference efficiency in visual autoregressive (AR)
models. We identify a critical limitation of existing speculative decoding approaches when applied
to visual AR models: the imbalance in draft tree acceptance rates caused by varying prediction diffi-
culties across image regions. To address this, we propose PEANUT, an adjacency-adaptive method
that dynamically adjusts draft tree depth and top-k based on the states of adjacent tokens and prior ac-
ceptance rates. Experimental results on text-conditional generation tasks demonstrate that PEANUT
dramatically outperforms baselines in inference speed while maintaining generation quality. How-
ever, one limitation of our approach lies in the fact that the module of bisectional dynamic adaptation
is ineffective in cases where the generated images have essentially the same acceptance lengths. In
the future, we will design visual feature-oriented adaptation modules to further enhance efficiency.

9
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ETHICS STATEMENT

Image editing models may contain biases or occasionally produce sensitive or offensive outputs. Our
models are presented strictly for academic and scientific research purposes. Any generated content
does not reflect the personal views of the authors. Our work remains guided by a commitment to
advancing AI technologies in ways that uphold ethical standards and resonate with societal values.

REPRODUCIBILITY STATEMENT

For algorithms, we put the key parts in Appendix A. For datasets, we use open source datasets de-
scribed in Sec. 5.1. To further ensure the reproducibility of our work, we commit to publicly releas-
ing the complete source code and detailed experimental configuration files associated with this study
upon acceptance of the paper for publication at ICLR 2026. The release will be hosted on a public
code repository (e.g., GitHub) with clear documentation to guide replication of our key results.

LARGE LANGUAGE MODELS USAGE STATEMENT

We used Large Language Models (LLMs) as auxiliary tools during the preparation of this manuscript.
In particular, LLMs were employed to polish the language, improve grammar, and enhance the read-
ability of the text. All conceptual ideas, technical contributions, analyses, and conclusions presented
in this work are entirely our own and were developed independently of LLM assistance. The models
were not used to generate novel scientific content, perform data analysis, or contribute to the design
of experiments. We have carefully verified all statements and ensured that the final version of the
manuscript accurately reflects our intended meaning and contributions.
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APPENDIX

A ALGORITHM DETAILS

A.1 GREEDY SAMPLING AND SPECULATIVE DECODING ON VISUAL AR MODEL

Algorithm 1 Greedy Sampling for Token Generation
Require: Target model T , initial context x1:i−1, maximum length Tmax
Ensure: Generated sequence x1:T

1: t← i ▷ Start from the current position
2: while t ≤ Tmax and xt ̸= EOS do
3: p(· | x1:t−1)← T (· | x1:t−1) ▷ Get token distribution
4: xt ← arg maxx p(x | x1:t−1) ▷ Greedy selection
5: t← t+ 1
6: end while
7: return x1:t−1

Algorithm 2 Speculative decoding for Token Generation
Require: Target model T , draft model S , initial context x1:i−1, draft length L, maximum length

Tmax
Ensure: Generated sequence x1:T

1: t← i ▷ Start from the current position
2: while t ≤ Tmax do
3: Draft Phase:
4: Initialize draft sequence x̂t:t+L−1 ← []
5: for j ← 0 to L− 1 do
6: Compute draft distribution: r(·|x1:t−1, x̂t:t+j−1) = S(·|x1:t−1, x̂t:t+j−1)
7: Sample draft token: x̂t+j ∼ r(·|x1:t−1, x̂t:t+j−1)
8: Append x̂t+j to x̂t:t+L−1

9: end for
10: Verification Phase:
11: Compute target probabilities: q(·|x1:t−1, x̂t:t+j−1) for j = 1 to L
12: Initialize accepted sequence a← []
13: for j ← 1 to L do
14: Compute acceptance probability: αj ← min

(
1,

q(x̂t+j−1|x1:t−1,x̂t:t+j−2)
r(x̂t+j−1|x1:t−1,x̂t:t+j−2)

)
15: if random number u ∼ Uniform(0, 1) < αj then
16: Accept x̂t+j−1 and append to a
17: else
18: Compute adjusted distribution: padj(·) ∝ max (0, q(·|x1:t−1, a)− r(·|x1:t−1, a))
19: Sample correction: xt+|a| ∼ padj(·)
20: Append xt+|a| to a
21: Break ▷ Stop verifying further draft tokens
22: end if
23: end for
24: Append a to x1:t−1

25: t← t+ |a|
26: if xt = EOS then
27: Break
28: end if
29: end while
30: return x1:t−1

Greedy sampling is a straightforward method for generating sequences. At each step, it selects the
token with the highest probability according to the target model and continues until a stopping con-
dition is met. The specific detail is shown in Algorithm 1.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Speculative decoding speeds up token generation by using a smaller, faster draft model to propose
multiple tokens at once. These draft tokens are then verified in parallel by the target model, reducing
the number of times the target model needs to be called. The specific detail is shown in Algorithm 2.

B APPLICATION OF EAGLE’S DRAFT MODEL TO CLASSIFIER-FREE GUIDANCE

In this section, we outline the adaptation of EAGLE’s draft model, originally designed for feature-
level autoregressive prediction, to enhance image generation within the Classifier-Free Guidance
(CFG) framework using LlamaGen as the target model. This approach leverages speculative decod-
ing to accelerate inference while preserving conditional fidelity. We detail the embedding and feature
representations, the draft model’s prediction process, and the CFG-augmented speculative decoding
mechanism, with the full workflow illustrated in Figure 7.

(a) Draft Model without classifier-free guidance

(b) Draft Model with classifier-free guidance

Figure 7: Illustration of classifier-free guidance draft trees and draft trees without classifier-free
guidance on the framework of EAGLE. Flowchart of EAGLE’s draft model application to CFG in
image generation, illustrating the dual-path feature prediction, and CFG integration.

B.1 TOKEN EMBEDDINGS AND FEATURE REPRESENTATIONS.

Consider an image tokenized into a sequence S = (s1, s2, . . . , sT ) , where st ∈ {1, . . . ,K} is a
discrete codebook index. The target model, LlamaGen (L), autoregressively processes this sequence,
conditioned on a prompt ρ (e.g., class label or text). Token embeddings are defined as:

• et = Lembedding(st), mapping st to its embedding independently of ρ.

The prompt ρ is embedded differently based on its type:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Class-Conditional Generation: For a class label ρ, eρ1 = Lprompt(ρ) is a single learnable
vector used as a prefilling token, driving the generation of s1, s2, . . . , sT .

• Text-Conditional Generation: For a text prompt ρ of length n, eρ1:n = Lprompt(ρ) is
a sequence encoded by a pre-trained text encoder (e.g., FLAN-T5 XL) and projected
(e.g., via MLP) to align with the transformer’s input space, guiding st sampling from
L(st|s1:t−1, e

ρ
1:n).

These embeddings are processed by L’s decoder (decoder-only structure) to yield:

• Conditional feature: f c
t−1 = Ldecoder(e1:t−1, e

ρ
1:n),

• Unconditional feature: fu
t−1 = Ldecoder(e1:t−1, e

uρ
1:n), where euρ1:n is a sequence of null em-

beddings matching ρ’s length.

The draft modelR, inspired by EAGLE-2, predicts the next feature f̂t, leveraging prior features and
tokens to reduce uncertainty.

B.2 DRAFT MODEL PREDICTION WITH CFG INTEGRATION.

The draft model R predicts features for conditional and unconditional paths to support CFG. For
position t, intermediate tensors are computed via a fully connected (FC) layer with conditional logic:

• When t = 1: ηc1 = FC(e1, fρ
n),

• When t > 1: ηct = FC(et, f c
t−1),

where fρ
n is the last prompt-derived feature from eρ1:n (e.g., fρ

n = Ldecoder(e
ρ
1:n) at initialization).

Similarly, unconditional tensors follow an analogous structure (omitted for brevity). Prompt-related
intermediate features are defined recursively for n > 1:

• ηρn = FC(eρn, f
ρ
n−1),

• ηuρn = FC(euρn , fuρ
n−1),

where fρ
n−1 and fuρ

n−1 are prior prompt features (e.g., from earlier Ldecoder outputs), initialized ap-
propriately at n = 1. The predicted features are:

• Conditional prediction: f̂ c
t = Rdecoder(η

c
1:t, η

ρ
2:n, e

ρ
1),

• Unconditional prediction: f̂u
t = Rdecoder(η

u
t , η

uρ
2:n, e

uρ
1 ),

where ηc1:t is the sequence of conditional tensors up to t, ηρ2:n aggregates prompt features from eρ2:n,
and eρ1 anchors the initial context; ηut , ηuρ2:n, and euρ1 mirror this for the unconditional case. The AR
model head TAR head then yields:

• Conditional distribution:
q(st+1|s1:t, ρ) = softmax(TAR head(f̂

c
t )),

• Unconditional distribution:
q(st+1|s1:t, ∅) = softmax(TAR head(f̂

u
t )).

A draft token ŝt+1 is sampled from q(st+1|s1:t, ρ), forming the speculative sequence ŝt:t+m−1.

B.3 IMAGE TOKENIZATION: ENCODING AND DECODING

The process of encoding an image into tokens and decoding tokens back into an image is central to the
auto-regressive framework. This is achieved using a quantized autoencoder architecture consisting
of an encoder, a quantizer, and a decoder.

1. Encoding: The encoder E : RH×W×3 → Rh×w×D maps the image x to a feature map
f = E(x), where D is the feature dimension. The quantizer then maps each feature vector
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f (i,j) ∈ RD to the nearest codebook vector z(i,j) ∈ Z, with the index denoted as t(i,j).
Formally,

t(i,j) = arg min
k∈{1,...,K}

∥f (i,j) − zk∥22,

where zk is the k-th vector in the codebook Z, and ∥ · ∥2 denotes the Euclidean norm.
2. Decoding: The decoder D : Rh×w×C → RH×W×3 reconstructs the image x̂ from the

quantized feature map z, where z(i,j) = zt(i,j) is retrieved from the codebook using the
index t(i,j). The reconstructed image is given by:

x̂ = D(z).

C MORE EXPERIMENTS AND SETTING

C.1 MORE EXPERIMENTS

Table 4: The evaluation on the validation set of MSCOCO2017. Speedup ratio is denoted by SR,
the mean acceptance length by τ , the mean draft tree depth by d̄, and the temperature by 1.0.

Method Acceleration Image Quality
SR (↑) τ (↑) d̄ CLIP Score (↓) HPSv2 (↑) IS (↑) Aesthetic (↑) FID (↓)

Anole (Chern et al., 2024) 1.00× 1.00 1.00 0.3042 0.2360 30.25 5.93282 20.52
EAGLE-2 (Li et al., 2024) 0.76× 1.11 5.00 0.3047 0.2361 29.87 5.93804 20.45
LANTERN (Jang et al., 2025) 1.38× 2.00 5.00 0.3005 0.2303 27.30 5.81699 23.65
PEANUT 1.06× 1.10 2.09 0.3047 0.2367 29.54 5.92874 22.20
PEANUT+LANTERN 1.53× 1.87 2.10 0.3016 0.2331 28.25 5.86109 22.36

Table 5: The evaluation on the validation set of parti-prompts. Speedup ratio is denoted by SR, the
mean acceptance length by τ , the mean draft tree depth by d̄, and the temperature by 1.0.

Method Acceleration Image Quality
SR (↑) τ (↑) d̄ CLIP Score (↓) HPSv2 (↑) IS (↑) Aesthetic (↑)

Anole (Chern et al., 2024) 1.00× 1.00 1.00 0.3089 0.2360 22.44 5.77940
EAGLE-2 (Li et al., 2024) 0.80× 1.26 5.00 0.3084 0.2360 21.66 5.78878
LANTERN (Jang et al., 2025) 1.90× 2.08 5.00 0.3029 0.2279 19.49 5.65854
PEANUT 1.57× 1.17 2.16 0.3104 0.2370 22.34 5.80798
PEANUT+LANTERN 2.20× 1.78 2.70 0.3046 0.2304 19.94 5.71881

Table 4 illustrates that PEANUT achieves significant acceleration compared to other methods in
Anole for image generation. Specifically, it presents a comparison of different methods, highlighting
PEANUT’s acceleration ratio of 1.06 on the MSCOCO dataset. When integrated with LANTERN’s
relaxed sampling, PEANUT further improves, achieving an acceleration ratio of 1.53.

Table 5 similarly demonstrates PEANUT’s superior performance on the Parti-Prompts dataset. The
comparison of acceleration and quality results shows that PEANUT attains an acceleration ratio of
1.57. With the incorporation of LANTERN’s relaxed sampling, this ratio increases to 2.20, under-
scoring PEANUT’s enhanced efficiency in image generation.

We evaluate the generated results using various image metrics. CLIP Score and HPSv2 measure
the alignment quality between images and text. IS (Inception Score) is a metric for assessing the
diversity and quality of generated images, Aesthetic evaluates the aesthetic quality of images, while
FID (Fréchet Inception Distance) (Heusel et al., 2017) measures the similarity between generated and
real images. Since the Parti-Prompts dataset lacks real images, Table 5 does not provide FID results.
It can be observed that, under the same sampling methods (i.e., EAGLE-2’s lossless sampling and
LANTERN’s relaxed sampling), PEANUT does not compromise the original sampling distribution.

C.2 TOKENFLOCK

It utilizes a distinct search range defined as follows: The position of a past image token s(xj ,yj) is
denoted by (xj, yj), and the current predicted position is (xi, yi). We can derive a set Ω containing
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positions that fall within the δ-range of the current token as Ω = {tj |
√

(xi − xj)2 + (yi − yj)2 ≤
δ, j < i} where the hyper-parameter δ is used to select the top δ most adjacent tokens. We calcu-
late the initial depth d̃ by d̃ =

∑
tj∈Ω dj · norm

(
δ−(yi−yj)+1

δ

)
and initial k̃ by k̃ =

∑
tj∈Ω kj ·

norm
(

δ−(yi−yj)+1
δ

)
where norm(·) represents a normalization function.
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