

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST INFERENCE OF VISUAL AUTOREGRESSIVE MODEL WITH ADJACENCY-ADAPTIVE DYNAMICAL DRAFT TREES

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive (AR) models have made significant strides in image generation, delivering quality comparable to diffusion-based methods. However, their sequential inference process incurs high computational costs, hindering efficiency and scalability. Although speculative decoding has proven effective in accelerating Large Language Models (LLMs), its adaptation to visual AR models, especially for improved generation with dynamic draft trees, remains largely unexplored. In this work, we identify a key obstacle in applying speculative decoding to visual AR models: inconsistent acceptance rates across draft trees due to varying prediction difficulties in different image regions. To address this, we introduce Adjacency-Adaptive Dynamical Draft Trees, dubbed as PEANUT, which dynamically adjust draft tree depth and width by leveraging adjacent token states and prior acceptance rates. PEANUT optimizes tree construction using spatial token relationships, achieving more stable acceleration and higher acceptance rates. Evaluations on text-to-image generation show that PEANUT dramatically outperforms methods with draft tree-like EAGLE-2 in inference efficiency while preserving lossless image quality, and can also be combined with techniques such as LANTERN that relax sampling criteria.

1 INTRODUCTION

Autoregressive (AR) models (Sun et al., 2024; Liu et al., 2024; Tian et al., 2024) have made remarkable strides in image generation, achieving image quality that rivals or surpasses diffusion-based methods. Recent advances, such as Anole (Chern et al., 2024) and Lumina-mGPT (Liu et al., 2024), have further advanced AR models by scaling with massive multimodal data. Despite the significant potential of visual autoregressive (AR) models, a key challenge is their high computational cost during inference, stemming from the token-by-token generation process typical of AR architectures.

A typical approach for accelerating AR models is speculative decoding (Chen et al., 2023; Leviathan et al., 2023), which is an advanced inference acceleration technique designed to improve the decoding efficiency of large language models (LLMs) without compromising output quality. It operates by rapidly generating multiple draft tokens using a lightweight draft model and subsequently verifying them with the larger, more accurate target model. By speculatively precomputing several tokens and validating them in parallel batches, speculative decoding significantly reduces the number of sequential forward passes required. Recent methods like SpecInfer (Miao et al., 2024), Medusa (Cai et al., 2024), and EAGLE-2 (Li et al., 2024) adopt tree-based draft token structures, offering a larger search space than traditional linear-chain approaches. While speculative decoding has advanced LLMs, its application to visual AR models remains underexplored. To the best of our knowledge, only a few studies, such as SJD (Teng et al., 2025) and LANTERN (Jang et al., 2025), have studied speculative decoding in visual AR models. Specifically, SJD adopts a chain structure for draft tokens, generating only one draft token per position in the token sequence, which limits efficiency. LANTERN improves upon this by employing a tree structure that generates multiple draft tokens per position. However, this approach is lossy, as it relaxes speculative decoding and consequently compromises generation quality. Despite these advances, the development of a lossless and more efficient draft structure tailored for visual AR models remains an open challenge.

We observe a phenomenon during image speculative decoding generation where draft tokens tend to flock together in specific regions of the image. These uneven distributions result in significant

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 disparities in acceptance rates across different positions within the generation image. Consequently, as Figure 1 illustrates, it leads to inefficient utilization of the draft tree, resulting in a slowdown of the speculative decoding process in visual AR models. Specifically, we identify a key problem, namely the **imbalance building draft tree**, which significantly impedes the effective application of speculative decoding to visual AR models.

In contrast to the speculative decoding employed in existing Visual AR models, the token initialization strategy within the SJD (Teng et al., 2025) focuses on the relationships between image adjective tokens. Similarly, the concept of latent proximity permitting token interchangeability, as described in LANTERN (Jang et al., 2025), addresses the probabilistic associations among these image adjective tokens. Analogously, this paper investigates the similar associations that exist among the draft trees generated by such image adjective tokens.

To address the above issues, we propose a solution of building draft trees dubbed as PEANUT that makes use of the varying difficulty in sampling from different positions of the image to dynamically adjust the depth and top-k of the draft tree, thereby enhancing the acceptance rate and acceptance length. Specifically, we utilize the similarity between depth and probability positions of adjacent draft tokens in the draft tree to more accurately initialize the current draft tree. Then, based on the state of the previous draft trees, we adjust the expected depth and width (top-k) of draft trees through appropriate corrections. Thus, we select the depth and top-k of the draft tree more precisely to achieve a higher utilization rate of the draft tree.

Our approach achieves speed-up rate raising in the speculative decoding of the token sequence, which is equipped with the characteristics of image tokens, according to our text-conditional experiments on MSCOCO2017 (Lin et al., 2015) and parti-prompts (Yu et al., 2022).

To summarize, our key contributions are as follows:

- **Observation of the bottleneck in efficient visual speculative decoding:** We conduct extensive experiments and find that the imbalance in acceptance ratios across different image regions in the current draft tree constitutes the primary bottleneck in applying draft tree speculative decoding to visual AR models.
- **Novel method for dynamically building draft tree:** We design a dynamically building draft tree method, adapting the adjacent states of tokens dubbed as PEANUT. PEANUT first initializes the draft tree based on horizontally adjacent draft trees, and subsequently adjusts it according to the states of the adjacent draft trees, leading to a higher draft tree utilization rate without sacrificing image generation performance.

2 RELATED WORK

Visual Autoregressive Models: Autoregressive (AR) models have gained prominence in image generation, delivering quality rivaling diffusion models (Saharia et al., 2022) through sequential token prediction. Unlike diffusion models, visual AR models tokenize images into discrete sequences and process them with transformer architectures, the same to large language models (LLMs). Existing works like LlamaGen (Sun et al., 2024), Anole (Chern et al., 2024), and Lumina-mGPT (Liu et al., 2024) excel in text-conditional image generation, using quantized autoencoders to convert images into token sequences for transformer-based sampling.

Speculative Decoding: The core idea of speculative decoding (Chen et al., 2023; Leviathan et al., 2023; Chen et al., 2024) is to first draft and then verify: quickly generate a potentially correct draft

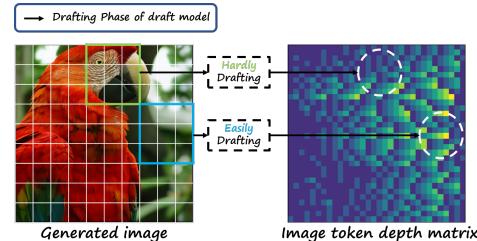


Figure 1: The draft model faces two situations in different image regions. The image token depth matrix tracks the depth of the draft tree at which each image token resides. In this matrix, brighter areas signify deeper locations of the image tokens within the draft tree. For complex regions, the acceptance length is lower than the height of the draft tree, making unused layers wasteful and reducing the acceleration rate. A shallow draft tree is appropriate. For simple regions, the potential acceptance length exceeds the draft tree height, so building a deeper tree can increase the acceptance length and boost the acceleration rate.

108 and then check which tokens in the draft can be accepted. This method first applies to large language
 109 models with AR structure. The initial draft form is the chain structure (Santilli et al., 2023; Zhao
 110 et al., 2024; Kou et al., 2024). And then SpecInfer (Miao et al., 2024) introduces a draft form with
 111 tree structure, which represents **draft tree**. The draft tree is equipped with two parameters, top-k
 112 \hat{k} and depth \hat{d} , where \hat{k} represents the number of each child node in the draft tree and \hat{d} represents
 113 the depth of the draft tree. The draft form with tree structure (Miao et al., 2024; Cai et al., 2024; Li
 114 et al., 2024; Zhang et al., 2024) has flourished. From MEDUSA (Cai et al., 2024) to EAGLE-2 (Li
 115 et al., 2024), unleashing the potential of the tree structure draft tree, these methods greatly increase
 116 the speed-up ratio.

117 One of the few works related to speculative decoding of image token sequences is speculative decoding
 118 for Multi-LLM (Gagrani et al., 2024), which provides a simple yet efficient approach to applying
 119 speculative decoding in Multi-LLMs. With the introduction of Speculative Jacobi Decoding (Teng
 120 et al., 2025), speculative decoding has been extended to visual autoregressive (AR) models. Although
 121 the GSD (So et al., 2025) method, based on SJD, has modified its sampling paradigm, the structure
 122 of its draft token remains a chain structure. However, the draft tokens in these methods follow a chain
 123 structure rather than a tree structure. Existing draft tree methods like LANTERN (Jang et al., 2025)
 124 employ a lossy tree-structured drafting approach with relaxation of speculative decoding.

3 PRELIMINARIES AND MOTIVATION

128 We first introduce the necessary notation. Then, we describe the motivations for PEANUT, highlighting
 129 the challenges and solutions for optimizing inference efficiency while maintaining the quality of
 130 conditional generation.

3.1 NOTATION

134 Drawing from LLMs, we adapt speculative decoding for image generation. An image is tokenized
 135 into a sequence $S = (s_1, s_2, \dots, s_T)$ via a quantized autoencoder, where a lightweight encoder and
 136 quantizer produce discrete tokens $s_t \in \{1, \dots, K\}$ (codebook size K), and a decoder reconstructs
 137 \hat{I} from S . The target model \mathcal{L} , an autoregressive transformer, generates S conditioned on a prompt
 138 ρ (e.g., text or label). We define $p(s_t | s_{1:t-1}, \rho) = \mathcal{L}(s_t | s_{1:t-1}, \rho)$ as the sampling result of the
 139 conditional generation function (CFG) (Ho & Salimans, 2021) for the target model. A smaller draft
 140 model \mathcal{R} generates $q(s_t | s_{1:t-1}, \rho)$ approximates the output of \mathcal{L} . In speculative decoding in visual
 141 AR models, given a prefix $s_{1:t-1}$ and ρ , \mathcal{R} proposes a draft sequence $\hat{s}_{t+1:t+L}$ of length L , which
 142 \mathcal{L} verifies in parallel. Among them, L represents the total number of tokens in the draft tree. We
 143 define $\hat{s}_{ans(t)}$ as the ancestor sequence to node \hat{s}_t based on the tree mask, which means $\hat{s}_{ans(t)}$ is the
 144 sequence from root to \hat{s}_t . The acceptance probability is:

$$r_{t+j} = \min \left(1, \frac{p(\hat{s}_{t+j} | s_{1:t}, \hat{s}_{ans(t+j)}, \rho)}{q(\hat{s}_{t+j} | s_{1:t}, \hat{s}_{ans(t+j)}, \rho)} \right), j = 1, \dots, L \quad (1)$$

145 where both $p(\hat{s}_{t+j} | s_{1:t-1}, \hat{s}_{ans(t+j)}, \rho)$ and $q(\hat{s}_{t+j} | s_{1:t-1}, \hat{s}_{ans(t+j)}, \rho)$ are computed using CFG.

146 To further optimize drafting, we integrate a dynamic draft tree $\mathcal{T}_{\text{draft}}$, based on EAGLE-2, having
 147 depth \hat{d} and width \hat{k} . Each node v of the draft tree represents a token s_v with confidence $c_v =$
 148 $q(s_v | s_{1:t-1}, s_{anc(v)}, \rho)$. The tree expands by selecting the top- k_d nodes at depth d based on path
 149 confidence $P_v = \prod_{u \in \text{Path}(\text{root}, v)} c_u$, where $\text{Path}(\text{root}, v)$ is the sequence from root to v . For each
 150 selected node at position (d, k) , \mathcal{R} generates k_{d+1} child nodes at depth $d+1$, positioned at $(d+1, 1), \dots, (d+1, k_{d+1})$, sampling from $q(\cdot | s_{1:t-1}, s_{anc(v)}, \rho)$, with $k_{d+1} < \hat{k}$. The sequence is then
 151 reranked and verified with \mathcal{L} .

3.2 MOTIVATION

152 Speculative decoding has demonstrated significant success in accelerating autoregressive (AR) models
 153 for text generation (Chen et al., 2023; Leviathan et al., 2023). Recent advancements, such as those
 154 employing draft tree structure (Miao et al., 2024; Cai et al., 2024; Li et al., 2024), have expanded the
 155 search space for draft tokens. Notably, EAGLE-2 (Li et al., 2024) introduces a dynamic candidates

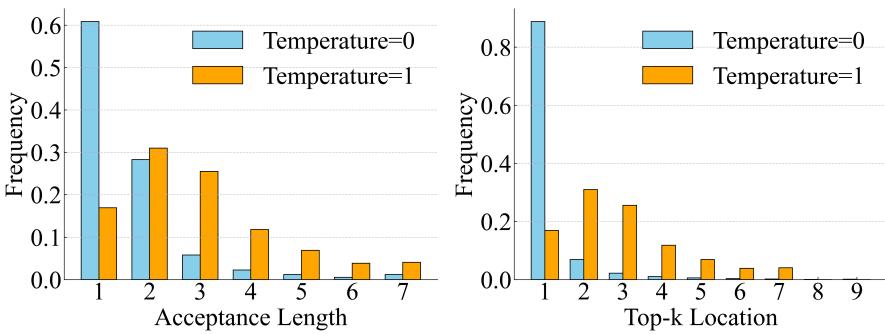


Figure 2: (a) **Left:** Frequency of acceptance lengths during speculative decoding with $\mathcal{T}_{\text{draft}}$ ($\hat{d} = 5$, $\hat{k} = 10$) over 100 image generations using Anole at $T = 0$ and $T = 1$. (b) **Right:** Frequency of the top- k positions of accepted draft tokens, where ‘Top- k Location’ denotes the minimum k_d required for \mathcal{R} to include the correct token in the draft phase for acceptance by \mathcal{L} .

token tree, $\mathcal{T}_{\text{draft}}$, with configurable depth \hat{d} and width \hat{k} , enabling manual adjustment of the token search scale. This flexibility positions EAGLE-2 as a promising approach for accelerating visual AR models (\mathcal{L}), which generate token sequences S conditioned on a prompt ρ .

However, applying EAGLE-2 to visual AR models reveals inefficiencies stemming from the expansive search scale of $\mathcal{T}_{\text{draft}}$. To investigate this, we analyze the frequency of acceptance lengths during speculative decoding with \mathcal{L} and a draft model \mathcal{R} . Figure 2(a) illustrates the distribution of acceptance lengths over 100 image generation trials, using a draft tree configured with $\hat{d} = 7$ and $\hat{k} = 10$, under temperature settings $T = 0$ and $T = 1$. At $T = 1$, the acceptance lengths exhibit significant variance, indicating that a static \hat{d} leads to inefficiencies. For instance, when the acceptance length τ is 3, constructing a tree of depth 7 wastes computational resources on four unnecessary layers. Conversely, reducing \hat{d} to 3 caps τ at 3, limiting the potential acceleration in regions where \mathcal{R} could predict longer sequences. This trade-off complicates the selection of an optimal \hat{d} for visual AR speculative decoding, a phenomenon also noted in prior works such as SJD (Teng et al., 2025) and LANTERN (Jang et al., 2025), which highlight local similarities in token generation.

We identify a critical challenge: **imbalance in acceptance rates of draft trees**. During speculative decoding of the token sequence S , the acceptance length τ varies across positions due to differences in prediction difficulty for \mathcal{R} . This variability, depicted in Figure 2(a), suggests that a fixed-depth $\mathcal{T}_{\text{draft}}$ either overextends in regions of low τ , reducing the acceptance rate $\alpha = \tau/\hat{d}$, or underextends in regions of high τ , constraining the expected ratio $\mathbb{E}[\frac{\tau}{\hat{d}}]$.

Based on the above observations, we propose a potential solution: regions with simpler textures (e.g., low-frequency backgrounds) in the generated image exhibit higher τ values, as \mathcal{R} can predict tokens more accurately, and when visual error tolerance is high, the distribution discrepancy between the draft model and target model is smaller. In contrast, complex texture regions (e.g., high-frequency details like fur) show lower τ values due to reduced visual error tolerance, resulting in significant distribution divergence between $q(\cdot|s_{1:t-1}, \rho)$ and $p(\cdot|s_{1:t-1}, \rho)$. This behavior is closely related to the spatial coherence of images—adjacent tokens demonstrate strong correlations in acceptance lengths, reflecting local consistency in generation difficulty. Leveraging this property, we can dynamically adjust the structure of the draft tree by analyzing the acceptance rates of neighboring regions.

Additionally, Figure 2(b) reveals variability in the top- k positions of accepted tokens within $q(\cdot|s_{1:t-1}, \rho)$. In complex regions, the position of draft tokens’ probabilities may rank lower in \mathcal{R} ’s distribution compared to \mathcal{L} , occasionally falling outside the top- k range ($k_d > \hat{k}$), leading to rejection. This discrepancy underscores the need for adaptive \hat{k} alongside \hat{d} .

Motivated by these findings, we propose PEANUT, an algorithm that dynamically adjusts the depth \hat{d} and width \hat{k} of $\mathcal{T}_{\text{draft}}$ during the expansion phase of speculative decoding. By tailoring the tree

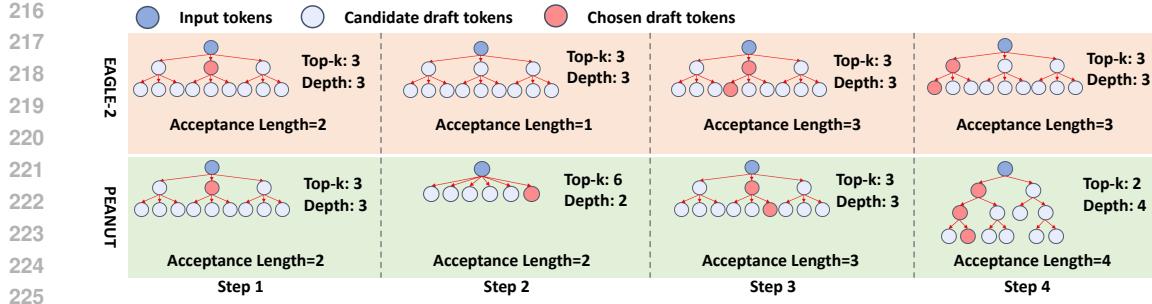


Figure 3: Comparison of the process of building draft tree EAGLE-2 and PEANUT. Nodes in the same layer share the same position index. PEANUT can construct a more appropriate draft tree with the right depth and width based on the positions of the nodes in the previous layer and the status of the draft tree.

structure to the local prediction difficulty, PEANUT aims to maximize $\mathbb{E}[\frac{\tau}{T_{\text{draft}}}]$ while minimizing unnecessary computation.

4 PEANUT: ADJACENCY-ADAPTIVE DYNAMICAL DRAFT TREES

To address the challenge of uneven acceptance rates across draft trees at various positions, stemming from inconsistent acceptance lengths, we introduce Adjacency-Adaptive Dynamical Draft Trees, dubbed PEANUT. As shown in Figure 3, this approach dynamically builds a draft tree by adapting to the acceptance rate state of adjacent tokens in visual auto-regressive models. Let \hat{d} be the depth of the draft tree and \hat{k} be the width (the top-k value) of the draft tree. PEANUT constructs the draft tree through two phases: initialization and adaptation. First, the depth \hat{d} and width \hat{k} of the current draft tree are initialized according to the established strategy. Second, it revises these two values according to the acceptance rate of the previous draft trees, which reflects the current level of prediction difficulty. Details are described below.

4.1 ADJACENT INITIALIZATION

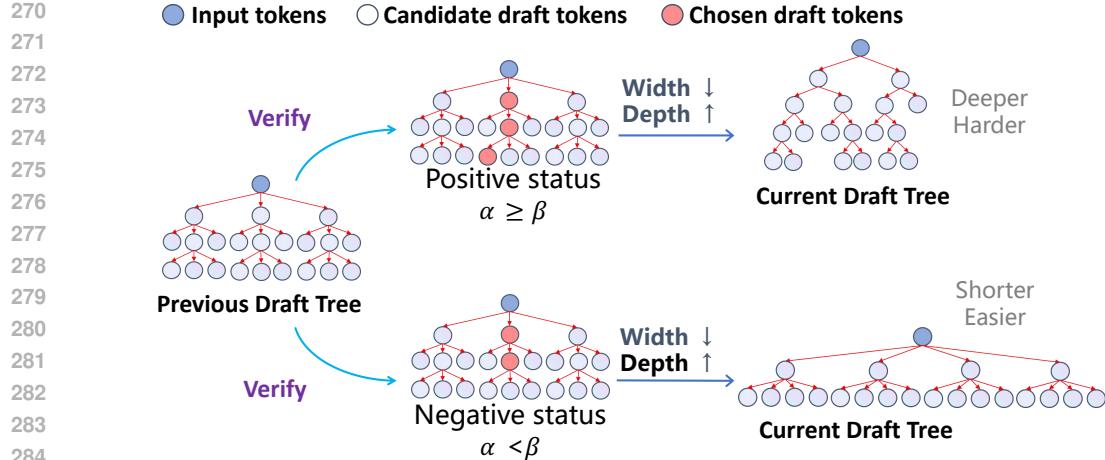
We introduce Adjacent Initialization, which addresses the initialization of the depth \hat{d} and top-k \hat{k} for a new draft tree associated with the image token $s^{(i,j)}$. Let (i, j) denote the position of the token to be predicted within a two-dimensional grid representing the encoded image. Three strategies that leverage adjacency to initialize \hat{d} and \hat{k} are provided as follows:

- **Horizontal Repeat (Repeat Left Adjacent Draft Tree):** Set $\hat{d} = d^{i,j-1}$ and $\hat{k} = k^{i,j-1}$, using the draft tree attributes of $s^{(i,j-1)}$.
- **Vertical Repeat (Repeat Above Adjacent Draft Tree):** Set $\hat{d} = d^{i-1,j}$ and $\hat{k} = k^{i-1,j}$, based on $s^{(i-1,j)}$.
- **Random Initialization:** Sample $\hat{d} \sim \mathcal{U}(d_{\min}, d_{\max})$ and $\hat{k} \sim \mathcal{U}(k_{\min}, k_{\max})$.

These three strategies build on experimental findings from SJD (Teng et al., 2025), which reveal that tokens positioned next to each other horizontally or vertically exhibit similar probabilities during image generation. Building on this insight, the Horizontal Repeat and Vertical Repeat strategies were developed. Meanwhile, the Random strategy was crafted for images where the correlation between adjacent tokens is comparatively weak. These simple yet effective approaches adapt \hat{d} and \hat{k} to the spatial context of $s^{(i,j)}$.

4.2 BISECTIONAL DYNAMIC ADAPTATION

After obtaining the initial draft tree, we design Bisectional Dynamic Adaptation to adjust the depth and width of the draft tree. As shown in Figure 4, we categorize the input draft tree into two statuses. Let β be the positive threshold, which determines the positive or negative status.



285
286 Figure 4: The adapting phase main process. According to the positive threshold β , the previous draft
287 tree is classified as either a positive or a negative state. The width of the draft tree is decided by the
288 setting of top-k. If it is from a complex texture to a simple texture, PEANUT’s draft trees will turn
289 deeper and narrower, which will remove unnecessary expansions. On the contrary, it will turn into a
290 shorter and wider tree so that the current draft tree can more easily find the correct target tokens.

291
292 In the positive status, the acceptance rate α exceeds the threshold β , meaning that all tokens in each
293 layer of the draft tree are fully utilized. In this scenario, the capability of the draft model is maximized
294 from the perspective of depth, allowing it to construct deeper structures while relying less on top-k
295 sampling.

296 In the negative status, the acceptance rate α is less than the threshold β , indicating that some tokens
297 in certain layers are not utilized, thus limiting the effectiveness of the draft model. Consequently,
298 the draft tree should be shallower, and a larger top-k should be used to increase the likelihood of
299 predicting the correct token.

300 Therefore, the adjusted values of the depth \hat{d} and the width \hat{k} are computed as:
301

$$302 \quad \hat{d} = \begin{cases} \tilde{d} + l_d, & \alpha \geq \beta, \\ \tilde{d} - l_d, & \alpha < \beta. \end{cases} \quad \hat{k} = \begin{cases} \tilde{k} - l_k, & \alpha \geq \beta, \\ \tilde{k} + l_k, & \alpha < \beta, \end{cases} \quad (2)$$

304 where l_d and l_k are the adjustment steps for the depth and width, respectively.

306 Using a shallower draft tree with a larger top-k expands the larger search scope for per layer. A
307 shallower draft tree effectively drafts tokens in areas with simple textures. Conversely, when using a
308 deeper draft tree, reducing the top-k can minimize the space and time costs associated with building
309 the draft tree. Accurately predicting the positions of child nodes containing the accepted tokens
310 enhances the efficiency of building draft trees, thereby increasing the generation speedup.

311 According to EAGLE-2 (Li et al., 2024), the time costs C_T and the space peak costs C_S of building
312 dynamic draft trees are calculated as:

$$313 \quad C_T = T_S \cdot \hat{d} + T_N \cdot N, \quad (3)$$

$$315 \quad C_S = \hat{k}^2 \cdot (\hat{d} - 1) + \hat{k}, \quad (4)$$

316 where N is the total number of tokens, T_S denotes the time of inference of draft model, and T_N
317 denotes the time of building tree mask.

319 Considering the worst-case time complexity when the current token remains in the negative state and
320 cannot return to the positive state. Meanwhile, if the negative state suddenly transitions back to the
321 positive state, the top-k value may become excessively large. Therefore, to prevent excessive C_T and
322 C_S , we impose the constraints $d_{min} < \hat{d} < d_{max}$ and $k_{min} < \hat{k} < k_{max}$ to limit the depth and
323 width of the draft tree. Additionally, we only restrict the top-k when $\tilde{d} \pm l_d > 1$, as in this case, the
324 top-k does not increase proportionally to the square of the difference.

324 Table 1: The evaluation on the validation set of MSCOCO2017. Speedup ratio is denoted by SR ,
 325 the mean acceptance length by τ , the mean draft tree depth by \bar{d} , and the temperature by T .
 326

Method	T=0						T=1				
	Acceleration			Image Quality			Acceleration			Image Quality	
	SR (\uparrow)	τ (\uparrow)	\bar{d}	HPSv2 (\uparrow)	CLIP Score (\uparrow)	SR (\uparrow)	τ (\uparrow)	\bar{d}	HPSv2 (\uparrow)	CLIP Score (\uparrow)	
Anole (Chern et al., 2024)	1.00 \times	1.00	1.00	0.2309	0.3086	1.00 \times	1.00	1.00	0.2360	0.3042	
EAGLE-2 (Li et al., 2024)	1.62 \times	2.91	5.00	0.2338	0.3078	0.76 \times	1.11	5.00	0.2361	0.3047	
LANTERN (Jang et al., 2025)	3.03 \times	4.25	5.00	0.2188	0.2955	1.38 \times	2.00	5.00	0.2303	0.3005	
PEANUT	2.21 \times	3.40	3.86	0.2331	0.3081	1.06 \times	1.10	2.09	0.2367	0.3047	
PEANUT+LANTERN	3.13 \times	4.86	5.15	0.2191	0.2965	1.53 \times	1.87	2.10	0.2331	0.3016	

334 5 EXPERIMENTS

335 5.1 EXPERIMENTAL SETTINGS

338 **Datasets:** For the text-conditional image generation, we conduct experiments on the acceleration
 339 effect on parti-prompts (Yu et al., 2022) and MS-COCO2017 (Lin et al., 2015). We utilize random
 340 100 captions sampling from the MS-COCO2017 validation captions to evaluate the actual speedup.
 341 The same experimental setting is also conducted for Parti-Prompts.

342 **Evaluation Metrics:** PEANUT is a lightweight acceleration method that neither fine-tunes the target
 343 visual AR Models’ weights during training nor relaxes the acceptance conditions during decoding.
 344 Thus, the generation results remain unchanged in image quality as a result of the framework
 345 of EAGLE-2 (Li et al., 2024). To measure the acceleration performance, we adopt the following
 346 metrics:

- 348 • **Speedup Ratio (SR):** The actual test speedup ratio relative to vanilla visual auto-regressive
 349 decoding.
- 350 • **Acceptance Length (τ):** The average number of tokens generated per drafting-verification
 351 cycle, indicating the number of tokens accepted by the target visual AR Model decoding
 352 from the draft model.
- 353 • **Mean Draft Trees Depth (\bar{d}):** The average depth of draft trees per drafting-verification
 354 cycle, indicating the depth of draft trees by the draft model.

356 **Implementation Details:** We set all generation latent size to 576 and classifier-free guidance score
 357 to 4.0. To ensure consistency and comparability with EAGLE-2, we set temperature $T \in \{0.0, 1.0\}$.
 358 To validate our method PEANUT, for Anole’s draft model, we set $\beta = 1$ $l_d = 1$, and $l_k = 3$, where
 359 the depth and top-k of draft trees are limited in (0, 10) and (3, 14). We evaluate our approach on
 360 two different models, which are LlamaGen (Sun et al., 2024) and Anole (Chern et al., 2024). For
 361 LlamaGen’s draft model, we set $\beta = 1$, $l_d = 1$ and $l_k = 10$, where the depth and top-k of draft trees
 362 are limited in (0, 10) and (3, 40). We evaluate each method in both the greedy decoding setting with
 363 $T = 0$ and the speculative decoding with $T = 1$. More algorithm details about greedy decoding and
 364 speculative decoding show in Appendix A, and more training details show in Appendix C.2.

365 **Training Implementation:** Our training implementation is based on the open source repository
 366 of EAGLE-2. To train the text-condition draft model, we randomly sample 200k text-image pairs in
 367 LAION-COCO (Kang et al., 2023) dataset for Anole’s draft model, which is used to train LlamaGen-
 368 XL(stage I) (Kang et al., 2023) target model. For Anole’s draft model, we directly utilize the draft
 369 models that are already available in the LANTERN (Jang et al., 2025) project. Since LlamaGen (Sun
 370 et al., 2024) uses classifier-free guidance (Ho & Salimans, 2021) to generate images, we randomly
 371 dropped 10% conditional embedding during training, consistent with target model training.

373 5.2 RESULTS OF ACCELERATED IMAGE GENERATION

375 Table 1 demonstrates that PEANUT achieves substantial acceleration compared to other meth-
 376 ods in Anole. At a temperature of 0, PEANUT achieved a speedup ratio of 2.21 on
 377 MSCOCO2017, while PEANUT+LANTERN achieves a speedup ratio of 3.13. At a temperature of
 1, PEANUT+LANTERN also obtain speedup ratios of 1.53. Among them, PEANUT+LANTERN

378 Table 2: The evaluation on the validation set of parti-prompts. Speedup ratio is denoted by SR , the
 379 mean acceptance length by τ , the mean draft tree depth by \bar{d} , and the temperature by T .

Method	T=0						T=1					
	Acceleration			Image Quality			Acceleration			Image Quality		
	SR (\uparrow)	τ (\uparrow)	\bar{d}	HPSv2 (\uparrow)	CLIP Score (\uparrow)	SR (\uparrow)	τ (\uparrow)	\bar{d}	HPSv2 (\uparrow)	CLIP Score (\uparrow)		
Anole (Chern et al., 2024)	1.00 \times	1.00	1.00	0.2100	0.2731	1.00 \times	1.00	1.00	0.2360	0.3089		
EAGLE-2 (Li et al., 2024)	1.98 \times	3.57	5.00	0.2113	0.2744	0.80 \times	1.26	5.00	0.2360	0.3084		
LANTERN (Jang et al., 2025)	2.82 \times	4.46	5.00	0.2036	0.2663	1.90 \times	2.08	5.00	0.2279	0.3029		
PEANUT	2.24 \times	2.79	3.43	0.2109	0.2741	1.57 \times	1.17	2.16	0.2370	0.3104		
PEANUT+LANTERN	3.05\times	3.97	4.31	0.2041	0.2664	2.20\times	1.78	2.70	0.2304	0.3046		

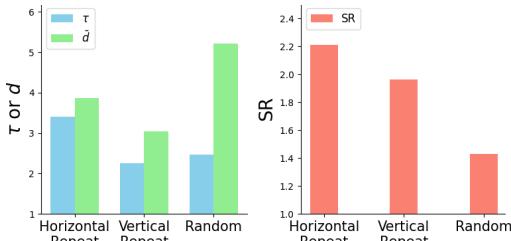
(a) "A white toilet sitting in a bathroom stall next to a TP dispenser."
 (b) "A little poodle puppy laying near a newspaper with a look of guilt."
 (c) "An adorable elephant walking through a grass covered forest."
 (d) "A serene alpine meadow in spring: A rocket launching into space, captured at the peak of its ascent: The rocket, sleek and powerful, is shown against a backdrop of a twilight sky. Flames and smoke trail behind it as it pierces through the atmosphere. The intense light from the engines illuminates the scene, creating a breathtaking contrast with the darkening sky."
 (e) "A blue Porsche 356 parked in front of a yellow brick wall."
 (f) "A black Honda motorcycle parked in front of a garage."

411 Figure 5: Qualitative samples generated by Anole using PEANUT and standard autoregressive de-
 412 coding are showcased. From top to bottom, the images correspond to outputs from standard autore-
 413 gressive decoding, PEANUT (with parameters $l_d = 1$, $l_k = 3$, $\hat{d} = (0, 10)$, $\hat{k} = (3, 14)$), and
 414 PEANUT+LANTERN (with $\delta = 0.4$, $k = 1000$).

415
 416
 417 refers to PEANUT employing LANTERN’s relaxed sampling for image generation. Furthermore, it
 418 can be observed that although the acceptance length τ of our method is not always the largest, its
 419 average \bar{d} is smaller than that of other methods. This is precisely the result of PEANUT dynami-
 420 cally constructing the draft tree based on image characteristics, which saves time in building the draft tree.

421 Table 2 further highlights the performance of PEANUT and PEANUT+LANTERN, focusing on the
 422 efficiency of the draft tree construction. Although the acceptance length τ of our method is not always
 423 the largest, its average \bar{d} is smaller than that of other methods. This efficiency stems from PEANUT’s
 424 ability to dynamically construct the draft tree based on image characteristics, which reduces the
 425 time required for building the draft tree, thereby contributing to the observed acceleration in image
 426 generation.

427 We evaluate the generated results using various image metrics. CLIP Score (Hessel et al., 2021) and
 428 HPSv2 (Wu et al., 2023) measure the alignment quality between images and text. It can be observed
 429 that, under the same sampling methods (i.e., EAGLE-2’s lossless sampling and LANTERN’s relaxed
 430 sampling), PEANUT does not compromise the original sampling distribution. Figure 5 shows some
 431 images and the corresponding prompt words. In addition, we conducted measurements of other
 image metrics, such as FID, IS, and Aesthetic. Further details can be found in Appendix C.

432 5.3 ABLATIONS AND ANALYSIS
433
434
435445 Figure 6: The influence of different initialization
446 strategies of draft trees on the mean acceptance length τ , mean draft trees depth \bar{d} and speedup
447 ratio SR.
448449
450
451 Table 3: Different calculation methods of base
452 values’ calculation results on ImageNet with
453 Temperature=1. L represents LlamaGen GPT-
454 L, and XL stands for LlamaGen GPT-XL.
455

Model	Method	SR	τ	\bar{d}
775M	TokenFlock	1.32 \times	2.79	3.60
	($\tilde{d}=1$)	1.27 \times	2.64	3.23
	($k=25$)	1.33 \times	2.84	3.63
	($\tilde{d}=1, k=25$)	1.27 \times	2.63	3.21
PEANUT	PEANUT	1.32 \times	2.85	3.87
	TokenFlock	1.36 \times	2.52	3.35
	($\tilde{d}=1$)	1.32 \times	2.42	3.12
	($k=25$)	1.36 \times	2.55	3.37
XL	($\tilde{d}=1, k=25$)	1.32 \times	2.41	3.09
	PEANUT	1.39 \times	2.53	3.51

456
457 **Impact of Initialization Strategy of Draft Trees:** We evaluate three distinct draft tree initialization
458 strategies. As Figure 6 shows, the results demonstrate that the “Horizontal Repeat” strategy achieves
459 a significantly higher speedup ratio. As illustrated in the left sub-figure of the accompanying Figure 6,
460 the random strategy, with its random sampling approach, produced an excessively high \bar{d} , causing
461 the acceleration effect to degrade.462 Conversely, the “Vertical Repeat” strategy yields an initialization that is less precise than that of the
463 “Horizontal Repeat” strategy. This discrepancy can be attributed to the properties of the AR model:
464 image tokens adjacent in the horizontal direction share more similar contextual information com-
465 pared to those in the vertical direction, resulting in greater similarity in their acceptance lengths.
466 Consequently, PEANUT ultimately adopts the “Horizontal Repeat” strategy as its initialization ap-
467 proach.468
469 **Impact of Calculation Methods of Initial Values:** In addition to the calculation methods of \bar{d}
470 and \tilde{k} , Table 3 demonstrates several alternative approaches. Initially, we explore the incorporation
471 of adjacent tokens in the position of the image patch following image token decoding, a method we
472 designate as *TokenFlock*. The details of *TokenFlock* show in Appendix C.2. Subsequently, we
473 investigate the impact of fixing specific parameters within PEANUT, namely \tilde{d} and \tilde{k} , to validate
474 the rationale behind the base value calculation method. In the table, $(\tilde{d} = 1)$ and $(\tilde{d} = 1, \tilde{k} = 25)$
475 respectively represent the peanut method using specific fixed tree-building attributes. Our findings
476 reveal that when either \tilde{d} or \tilde{k} is held constant, the acceleration ratio exhibits a certain degree of
477 fluctuation. This fluctuation is particularly pronounced in the acceptance length, especially when \tilde{d}
478 is fixed.479 6 CONCLUSION AND LIMITATIONS
480481 In this paper, we tackle the challenge of improving inference efficiency in visual autoregressive (AR)
482 models. We identify a critical limitation of existing speculative decoding approaches when applied
483 to visual AR models: the imbalance in draft tree acceptance rates caused by varying prediction diffi-
484 culties across image regions. To address this, we propose PEANUT, an adjacency-adaptive method
485 that dynamically adjusts draft tree depth and top-k based on the states of adjacent tokens and prior ac-
486 ceptance rates. Experimental results on text-conditional generation tasks demonstrate that PEANUT
487 dramatically outperforms baselines in inference speed while maintaining generation quality. How-
488 ever, one limitation of our approach lies in the fact that the module of bisectional dynamic adaptation
489 is ineffective in cases where the generated images have essentially the same acceptance lengths. In
490 the future, we will design visual feature-oriented adaptation modules to further enhance efficiency.

486 ETHICS STATEMENT
487488 Image editing models may contain biases or occasionally produce sensitive or offensive outputs. Our
489 models are presented strictly for academic and scientific research purposes. Any generated content
490 does not reflect the personal views of the authors. Our work remains guided by a commitment to
491 advancing AI technologies in ways that uphold ethical standards and resonate with societal values.
492493 REPRODUCIBILITY STATEMENT
494495 For algorithms, we put the key parts in Appendix A. For datasets, we use open source datasets de-
496 scribed in Sec. 5.1. To further ensure the reproducibility of our work, we commit to publicly releas-
497 ing the complete source code and detailed experimental configuration files associated with this study
498 upon acceptance of the paper for publication at ICLR 2026. The release will be hosted on a public
499 code repository (e.g., GitHub) with clear documentation to guide replication of our key results.
500501 LARGE LANGUAGE MODELS USAGE STATEMENT
502503 We used Large Language Models (LLMs) as auxiliary tools during the preparation of this manuscript.
504 In particular, LLMs were employed to polish the language, improve grammar, and enhance the read-
505 ability of the text. All conceptual ideas, technical contributions, analyses, and conclusions presented
506 in this work are entirely our own and were developed independently of LLM assistance. The models
507 were not used to generate novel scientific content, perform data analysis, or contribute to the design
508 of experiments. We have carefully verified all statements and ensured that the final version of the
509 manuscript accurately reflects our intended meaning and contributions.
510511 REFERENCES
512

513 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
514 Medusa: Simple llm inference acceleration framework with multiple decoding heads. In *International
515 Conference on Machine Learning*, pp. 5209–5235. JMLR.org, 2024.

516 Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
517 Jumper. Accelerating large language model decoding with speculative sampling. *arXiv preprint
518 arXiv:2302.01318*, 2023.

519 Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chen-Chuan Chang, and Jie Huang.
520 Cascade speculative drafting for even faster llm inference. In A. Globerson, L. Mackey, D. Bel-
521 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Pro-
522 cessing Systems*, volume 37, pp. 86226–86242. Curran Associates, Inc., 2024.

523 Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large
524 multimodal models for interleaved image-text generation, 2024. URL <https://arxiv.org/abs/2407.06135>.

525 Mukul Agrani, Raghav Goel, Wonseok Jeon, Junyoung Park, Mingu Lee, and Christopher Lott.
526 On speculative decoding for multimodal large language models. In *IEEE/CVF Conference on
527 Computer Vision and Pattern Recognition Workshops*, pp. 8285–8289, June 2024.

528 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
529 reference-free evaluation metric for image captioning. In Marie-Francine Moens, Xuanjing Huang,
530 Lucia Specia, and Scott Wen-tau Yih (eds.), *Conference on Empirical Methods in Natural Lan-
531 guage Processing*, pp. 7514–7528. Association for Computational Linguistics, 2021.

532 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
533 trained by a two time-scale update rule converge to a local nash equilibrium. In *International
534 Conference on Neural Information Processing Systems*, NIPS’17, pp. 6629–6640, Red Hook, NY,
535 USA, 2017. Curran Associates Inc. ISBN 9781510860964.

536 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS Workshop on Deep
537 Generative Models and Downstream Applications*, 2021.

540 Doohyuk Jang, Sihwan Park, June Yong Yang, Yeonsung Jung, Jihun Yun, Souvik Kundu, Sung-
 541 Yub Kim, and Eunho Yang. LANTERN: Accelerating visual autoregressive models with relaxed
 542 speculative decoding. In *International Conference on Learning Representations*, 2025.

543 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
 544 Park. Scaling up gans for text-to-image synthesis. In *IEEE/CVF Conference on Computer Vision
 545 and Pattern Recognition*, pp. 10124–10134, 2023. doi: 10.1109/CVPR52729.2023.00976.

546 Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Clms: consistency large language
 547 models. In *International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

548 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via specula-
 549 tive decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 550 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Ma-
 551 chine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 19274–19286.
 552 PMLR, 23–29 Jul 2023.

553 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of lan-
 554 guage models with dynamic draft trees. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
 555 (eds.), *Conference on Empirical Methods in Natural Language Processing*, pp. 7421–7432, Mi-
 556 ami, Florida, USA, November 2024. Association for Computational Linguistics.

557 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 558 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 559 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

560 Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin, Yu Qiao, Hongsheng Li, and Peng Gao.
 561 Lumina-mgpt: Illuminate flexible photorealistic text-to-image generation with multimodal gen-
 562 erative pretraining, 2024. URL <https://arxiv.org/abs/2408.02657>.

563 Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
 564 Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunyan Shi, Zhuoming Chen, Daiyaan
 565 Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serving
 566 with tree-based speculative inference and verification. In *ACM International Conference on Ar-
 567 chitectural Support for Programming Languages and Operating Systems*, pp. 932–949, New York,
 568 NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703867.

569 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 570 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J
 571 Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
 572 understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
 573 *Advances in Neural Information Processing Systems*, volume 35, pp. 36479–36494. Curran Asso-
 574 ciates, Inc., 2022.

575 Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo
 576 Marin, and Emanuele Rodola. Accelerating transformer inference for translation via parallel de-
 577 coding. In *Annual Meeting Of The Association For Computational Linguistics*, pp. 12336–12355,
 578 2023.

579 Junhyuk So, Juncheol Shin, Hyunho Kook, and Eunhyeok Park. Grouped speculative decoding for
 580 autoregressive image generation, 2025. URL <https://arxiv.org/abs/2508.07747>.

581 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 582 Autoregressive model beats diffusion: Llama for scalable image generation, 2024. URL <https://arxiv.org/abs/2406.06525>.

583 Yao Teng, Han Shi, Xian Liu, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, and Xihui Liu. Ac-
 584 celerating auto-regressive text-to-image generation with training-free speculative jacobi decoding.
 585 In *International Conference on Learning Representations*, 2025.

586 Keyu Tian, Yi Jiang, Zehuan Yuan, BINGYUE PENG, and Liwei Wang. Visual autoregressive
 587 modeling: Scalable image generation via next-scale prediction. In A. Globerson, L. Mackey,
 588 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 589 Processing Systems*, volume 37, pp. 84839–84865. Curran Associates, Inc., 2024.

594 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
595 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
596 synthesis, 2023. URL <https://arxiv.org/abs/2306.09341>.

597
598 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
599 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
600 Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
601 text-to-image generation, 2022.

602 Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
603 for speculative sampling, 2024. URL <https://arxiv.org/abs/2408.15766>.

604 Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference accel-
605 eration framework for large language model with lossless generation accuracy. In *ACM SIGKDD*
606 *Conference on Knowledge Discovery and Data Mining*, pp. 6344–6355. Association for Comput-
607 ing Machinery, 2024. ISBN 9798400704901.

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 APPENDIX

649

650 A ALGORITHM DETAILS

651

652 A.1 GREEDY SAMPLING AND SPECULATIVE DECODING ON VISUAL AR MODEL

653

654 **Algorithm 1** Greedy Sampling for Token Generation655 **Require:** Target model \mathcal{T} , initial context $x_{1:i-1}$, maximum length T_{\max} 656 **Ensure:** Generated sequence $x_{1:T}$

```

657   1:  $t \leftarrow i$                                      ▷ Start from the current position
658   2: while  $t \leq T_{\max}$  and  $x_t \neq \text{EOS}$  do
659   3:    $p(\cdot | x_{1:t-1}) \leftarrow \mathcal{T}(\cdot | x_{1:t-1})$           ▷ Get token distribution
660   4:    $x_t \leftarrow \arg \max_x p(x | x_{1:t-1})$                       ▷ Greedy selection
661   5:    $t \leftarrow t + 1$ 
662   6: end while
663   7: return  $x_{1:t-1}$ 
664

```

665

666 **Algorithm 2** Speculative decoding for Token Generation667 **Require:** Target model \mathcal{T} , draft model \mathcal{S} , initial context $x_{1:i-1}$, draft length L , maximum length T_{\max} 668 **Ensure:** Generated sequence $x_{1:T}$

```

669   1:  $t \leftarrow i$                                      ▷ Start from the current position
670   2: while  $t \leq T_{\max}$  do
671   3:   Draft Phase:
672   4:     Initialize draft sequence  $\hat{x}_{t:t+L-1} \leftarrow []$ 
673   5:     for  $j \leftarrow 0$  to  $L-1$  do
674   6:       Compute draft distribution:  $r(\cdot | x_{1:t-1}, \hat{x}_{t:t+j-1}) = \mathcal{S}(\cdot | x_{1:t-1}, \hat{x}_{t:t+j-1})$ 
675   7:       Sample draft token:  $\hat{x}_{t+j} \sim r(\cdot | x_{1:t-1}, \hat{x}_{t:t+j-1})$ 
676   8:       Append  $\hat{x}_{t+j}$  to  $\hat{x}_{t:t+L-1}$ 
677   9:     end for
678   10:    Verification Phase:
679   11:      Compute target probabilities:  $q(\cdot | x_{1:t-1}, \hat{x}_{t:t+j-1})$  for  $j = 1$  to  $L$ 
680   12:      Initialize accepted sequence  $a \leftarrow []$ 
681   13:      for  $j \leftarrow 1$  to  $L$  do
682   14:        Compute acceptance probability:  $\alpha_j \leftarrow \min \left( 1, \frac{q(\hat{x}_{t+j-1} | x_{1:t-1}, \hat{x}_{t:t+j-2})}{r(\hat{x}_{t+j-1} | x_{1:t-1}, \hat{x}_{t:t+j-2})} \right)$ 
683   15:        if random number  $u \sim \text{Uniform}(0, 1) < \alpha_j$  then
684   16:          Accept  $\hat{x}_{t+j-1}$  and append to  $a$ 
685   17:        else
686   18:          Compute adjusted distribution:  $p_{\text{adj}}(\cdot) \propto \max(0, q(\cdot | x_{1:t-1}, a) - r(\cdot | x_{1:t-1}, a))$ 
687   19:          Sample correction:  $x_{t+|a|} \sim p_{\text{adj}}(\cdot)$ 
688   20:          Append  $x_{t+|a|}$  to  $a$ 
689   21:          Break
690   22:        end if
691   23:      end for
692   24:      Append  $a$  to  $x_{1:t-1}$ 
693   25:       $t \leftarrow t + |a|$ 
694   26:      if  $x_t = \text{EOS}$  then
695   27:        Break
696   28:      end if
697   29:    end while
698   30: return  $x_{1:t-1}$ 

```

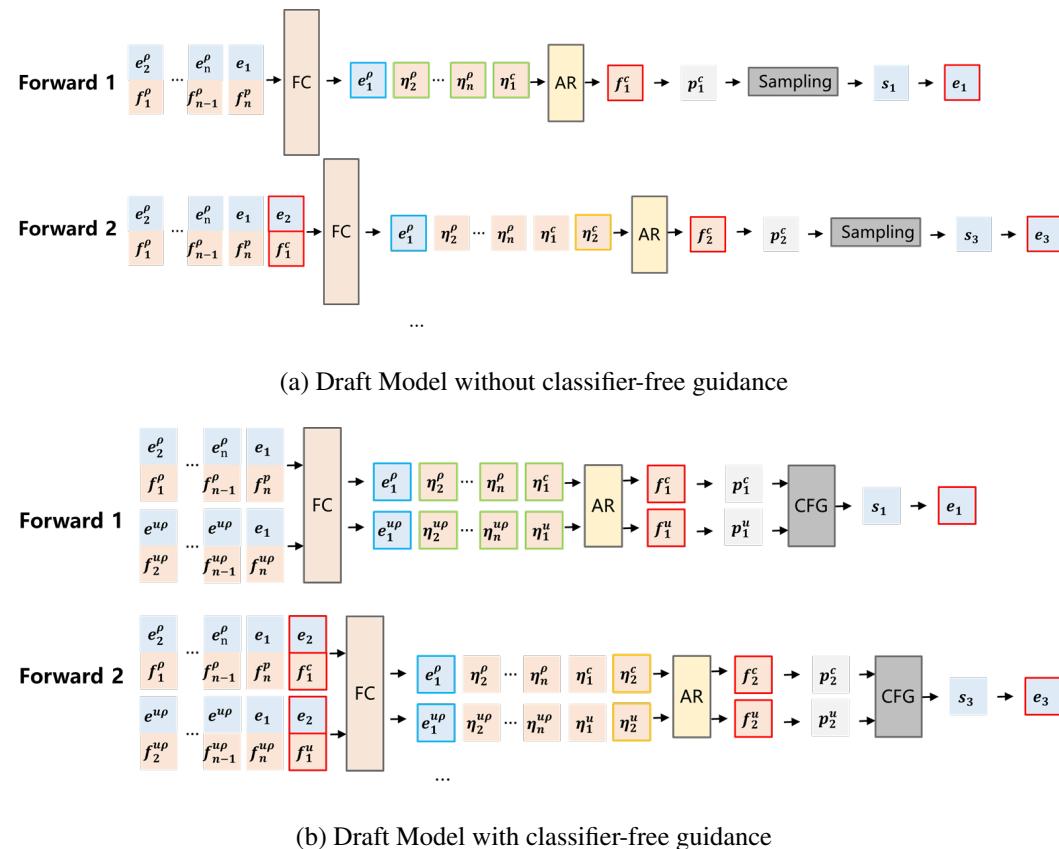
699

700 Greedy sampling is a straightforward method for generating sequences. At each step, it selects the
701 token with the highest probability according to the target model and continues until a stopping condition is met. The specific detail is shown in Algorithm 1.

702 Speculative decoding speeds up token generation by using a smaller, faster draft model to propose
 703 multiple tokens at once. These draft tokens are then verified in parallel by the target model, reducing
 704 the number of times the target model needs to be called. The specific detail is shown in Algorithm 2.
 705

706 B APPLICATION OF EAGLE’s DRAFT MODEL TO CLASSIFIER-FREE GUIDANCE

709 In this section, we outline the adaptation of EAGLE’s draft model, originally designed for feature-
 710 level autoregressive prediction, to enhance image generation within the Classifier-Free Guidance
 711 (CFG) framework using LlamaGen as the target model. This approach leverages speculative decoding
 712 to accelerate inference while preserving conditional fidelity. We detail the embedding and feature
 713 representations, the draft model’s prediction process, and the CFG-augmented speculative decoding
 714 mechanism, with the full workflow illustrated in Figure 7.



743 Figure 7: Illustration of classifier-free guidance draft trees and draft trees without classifier-free
 744 guidance on the framework of EAGLE. Flowchart of EAGLE’s draft model application to CFG in
 745 image generation, illustrating the dual-path feature prediction, and CFG integration.

748 B.1 TOKEN EMBEDDINGS AND FEATURE REPRESENTATIONS.

750 Consider an image tokenized into a sequence $S = (s_1, s_2, \dots, s_T)$, where $s_t \in \{1, \dots, K\}$ is a
 751 discrete codebook index. The target model, LlamaGen (\mathcal{L}), autoregressively processes this sequence,
 752 conditioned on a prompt ρ (e.g., class label or text). Token embeddings are defined as:

753

- 754 • $e_t = \mathcal{L}_{\text{embedding}}(s_t)$, mapping s_t to its embedding independently of ρ .

755

The prompt ρ is embedded differently based on its type:

- **Class-Conditional Generation:** For a class label ρ , $e_1^\rho = \mathcal{L}_{\text{prompt}}(\rho)$ is a single learnable vector used as a prefilling token, driving the generation of s_1, s_2, \dots, s_T .
- **Text-Conditional Generation:** For a text prompt ρ of length n , $e_{1:n}^\rho = \mathcal{L}_{\text{prompt}}(\rho)$ is a sequence encoded by a pre-trained text encoder (e.g., FLAN-T5 XL) and projected (e.g., via MLP) to align with the transformer’s input space, guiding s_t sampling from $\mathcal{L}(s_t|s_{1:t-1}, e_{1:n}^\rho)$.

These embeddings are processed by \mathcal{L} ’s decoder (decoder-only structure) to yield:

- Conditional feature: $f_{t-1}^c = \mathcal{L}_{\text{decoder}}(e_{1:t-1}, e_{1:n}^\rho)$,
- Unconditional feature: $f_{t-1}^u = \mathcal{L}_{\text{decoder}}(e_{1:t-1}, e_{1:n}^{u\rho})$, where $e_{1:n}^{u\rho}$ is a sequence of null embeddings matching ρ ’s length.

The draft model \mathcal{R} , inspired by EAGLE-2, predicts the next feature \hat{f}_t , leveraging prior features and tokens to reduce uncertainty.

B.2 DRAFT MODEL PREDICTION WITH CFG INTEGRATION.

The draft model \mathcal{R} predicts features for conditional and unconditional paths to support CFG. For position t , intermediate tensors are computed via a fully connected (FC) layer with conditional logic:

- When $t = 1$: $\eta_1^c = \text{FC}(e_1, f_n^\rho)$,
- When $t > 1$: $\eta_t^c = \text{FC}(e_t, f_{t-1}^c)$,

where f_n^ρ is the last prompt-derived feature from $e_{1:n}^\rho$ (e.g., $f_n^\rho = \mathcal{L}_{\text{decoder}}(e_{1:n}^\rho)$ at initialization). Similarly, unconditional tensors follow an analogous structure (omitted for brevity). Prompt-related intermediate features are defined recursively for $n > 1$:

- $\eta_n^\rho = \text{FC}(e_n^\rho, f_{n-1}^\rho)$,
- $\eta_n^{u\rho} = \text{FC}(e_n^{u\rho}, f_{n-1}^{u\rho})$,

where f_{n-1}^ρ and $f_{n-1}^{u\rho}$ are prior prompt features (e.g., from earlier $\mathcal{L}_{\text{decoder}}$ outputs), initialized appropriately at $n = 1$. The predicted features are:

- Conditional prediction: $\hat{f}_t^c = \mathcal{R}_{\text{decoder}}(\eta_{1:t}^c, \eta_{2:n}^\rho, e_1^\rho)$,
- Unconditional prediction: $\hat{f}_t^u = \mathcal{R}_{\text{decoder}}(\eta_t^u, \eta_{2:n}^{u\rho}, e_1^{u\rho})$,

where $\eta_{1:t}^c$ is the sequence of conditional tensors up to t , $\eta_{2:n}^\rho$ aggregates prompt features from $e_{2:n}^\rho$, and e_1^ρ anchors the initial context; η_t^u , $\eta_{2:n}^{u\rho}$, and $e_1^{u\rho}$ mirror this for the unconditional case. The AR model head $\mathcal{T}_{\text{AR head}}$ then yields:

- Conditional distribution:
 $q(s_{t+1}|s_{1:t}, \rho) = \text{softmax}(\mathcal{T}_{\text{AR head}}(\hat{f}_t^c))$,
- Unconditional distribution:
 $q(s_{t+1}|s_{1:t}, \emptyset) = \text{softmax}(\mathcal{T}_{\text{AR head}}(\hat{f}_t^u))$.

A draft token \hat{s}_{t+1} is sampled from $q(s_{t+1}|s_{1:t}, \rho)$, forming the speculative sequence $\hat{s}_{t:t+m-1}$.

B.3 IMAGE TOKENIZATION: ENCODING AND DECODING

The process of encoding an image into tokens and decoding tokens back into an image is central to the auto-regressive framework. This is achieved using a quantized autoencoder architecture consisting of an encoder, a quantizer, and a decoder.

1. **Encoding:** The encoder $E : \mathbb{R}^{H \times W \times 3} \rightarrow \mathbb{R}^{h \times w \times D}$ maps the image x to a feature map $f = E(x)$, where D is the feature dimension. The quantizer then maps each feature vector

810 $f^{(i,j)} \in \mathbb{R}^D$ to the nearest codebook vector $z^{(i,j)} \in Z$, with the index denoted as $t^{(i,j)}$.
 811 Formally,

812
$$t^{(i,j)} = \arg \min_{k \in \{1, \dots, K\}} \|f^{(i,j)} - z_k\|_2^2,$$

 813

814 where z_k is the k -th vector in the codebook Z , and $\|\cdot\|_2$ denotes the Euclidean norm.

815 2. **Decoding:** The decoder $D : \mathbb{R}^{h \times w \times C} \rightarrow \mathbb{R}^{H \times W \times 3}$ reconstructs the image \hat{x} from the
 816 quantized feature map z , where $z^{(i,j)} = z_{t^{(i,j)}}$ is retrieved from the codebook using the
 817 index $t^{(i,j)}$. The reconstructed image is given by:

818
$$\hat{x} = D(z).$$

 819

820 **C MORE EXPERIMENTS AND SETTING**

821 **C.1 MORE EXPERIMENTS**

822 Table 4: The evaluation on the validation set of MSCOCO2017. Speedup ratio is denoted by SR ,
 823 the mean acceptance length by τ , the mean draft tree depth by \bar{d} , and the temperature by 1.0.

824

Method	Acceleration			Image Quality			
	SR (\uparrow)	τ (\uparrow)	\bar{d}	CLIP Score (\downarrow)	HPSv2 (\uparrow)	IS (\uparrow)	Aesthetic (\uparrow)
Anole (Chern et al., 2024)	1.00 \times	1.00	1.00	0.3042	0.2360	30.25	5.93282
EAGLE-2 (Li et al., 2024)	0.76 \times	1.11	5.00	0.3047	0.2361	29.87	5.93804
LANTERN (Jang et al., 2025)	1.38 \times	2.00	5.00	0.3005	0.2303	27.30	5.81699
PEANUT	1.06 \times	1.10	2.09	0.3047	0.2367	29.54	5.92874
PEANUT+LANTERN	1.53\times	1.87	2.10	0.3016	0.2331	28.25	5.86109

834 Table 5: The evaluation on the validation set of parti-prompts. Speedup ratio is denoted by SR , the
 835 mean acceptance length by τ , the mean draft tree depth by \bar{d} , and the temperature by 1.0.

836

Method	Acceleration			Image Quality			
	SR (\uparrow)	τ (\uparrow)	\bar{d}	CLIP Score (\downarrow)	HPSv2 (\uparrow)	IS (\uparrow)	Aesthetic (\uparrow)
Anole (Chern et al., 2024)	1.00 \times	1.00	1.00	0.3089	0.2360	22.44	5.77940
EAGLE-2 (Li et al., 2024)	0.80 \times	1.26	5.00	0.3084	0.2360	21.66	5.78878
LANTERN (Jang et al., 2025)	1.90 \times	2.08	5.00	0.3029	0.2279	19.49	5.65854
PEANUT	1.57 \times	1.17	2.16	0.3104	0.2370	22.34	5.80798
PEANUT+LANTERN	2.20\times	1.78	2.70	0.3046	0.2304	19.94	5.71881

845 Table 4 illustrates that PEANUT achieves significant acceleration compared to other methods in
 846 Anole for image generation. Specifically, it presents a comparison of different methods, highlighting
 847 PEANUT’s acceleration ratio of 1.06 on the MSCOCO dataset. When integrated with LANTERN’s
 848 relaxed sampling, PEANUT further improves, achieving an acceleration ratio of 1.53.

849 Table 5 similarly demonstrates PEANUT’s superior performance on the Parti-Prompts dataset. The
 850 comparison of acceleration and quality results shows that PEANUT attains an acceleration ratio of
 851 1.57. With the incorporation of LANTERN’s relaxed sampling, this ratio increases to 2.20, under-
 852 scoring PEANUT’s enhanced efficiency in image generation.

853 We evaluate the generated results using various image metrics. CLIP Score and HPSv2 measure
 854 the alignment quality between images and text. IS (Inception Score) is a metric for assessing the
 855 diversity and quality of generated images, Aesthetic evaluates the aesthetic quality of images, while
 856 FID (Fréchet Inception Distance) (Heusel et al., 2017) measures the similarity between generated and
 857 real images. Since the Parti-Prompts dataset lacks real images, Table 5 does not provide FID results.
 858 It can be observed that, under the same sampling methods (i.e., EAGLE-2’s lossless sampling and
 859 LANTERN’s relaxed sampling), PEANUT does not compromise the original sampling distribution.

860 **C.2 TOKENFLOCK**

861 It utilizes a distinct search range defined as follows: The position of a past image token $s^{(x_j, y_j)}$ is
 862 denoted by $(\mathbf{x}_j, \mathbf{y}_j)$, and the current predicted position is $(\mathbf{x}_i, \mathbf{y}_i)$. We can derive a set Ω containing

864 positions that fall within the δ -range of the current token as $\Omega = \{t_j \mid \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \leq$
 865 $\delta, j < i\}$ where the hyper-parameter δ is used to select the top δ most adjacent tokens. We calcu-
 866 late the initial depth \tilde{d} by $\tilde{d} = \sum_{t_j \in \Omega} d_j \cdot \text{norm}\left(\frac{\delta - (y_i - y_j) + 1}{\delta}\right)$ and initial \tilde{k} by $\tilde{k} = \sum_{t_j \in \Omega} k_j \cdot$
 867 $\text{norm}\left(\frac{\delta - (y_i - y_j) + 1}{\delta}\right)$ where $\text{norm}(\cdot)$ represents a normalization function.
 868
 869

870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917