
Under review as submission to TMLR

Online Control-Informed Learning

Anonymous authors
Paper under double-blind review

Abstract

This paper proposes an Online Control-Informed Learning (OCIL) framework, which synthe-
sizes the well-established control theories to solve a broad class of learning and control tasks
in real time. This novel integration effectively handles practical issues in machine learning
such as noisy measurement data, online learning, and data efficiency. By considering any
robot as a tunable optimal control system, we propose an online parameter estimator based
on extended Kalman filter (EKF) to incrementally tune the system in real time, enabling
it to complete designated learning or control tasks. The proposed method also improves
robustness in learning by effectively managing noise in the data. Theoretical analysis is
provided to demonstrate the convergence and regret of OCIL. Three learning modes of OCIL,
i.e. Online Imitation Learning, Online System Identification, and Policy Tuning On-the-fly,
are investigated via experiments, which validate their effectiveness.

1 Introduction

Informed Machine Learning (IML) (Von Rueden et al., 2021) represents an emerging approach integrating
prior knowledge into the machine learning (ML) process. While classic classification tasks in unsupervised,
semi-supervised, or supervised ML primarily focus on extracting patterns from labeled or unlabeled data
(LeCun et al., 2015), IML leverages prior knowledge such as physical laws, expert knowledge, or existing
models to uncover underlying connections within data (Karniadakis et al., 2021). This integration enables
models to produce more reliable predictions with enhanced interpretability, particularly in scenarios where
data is scarce, noisy, or complex. This approach is especially advantageous in the domains where theoretical
understanding is well-established and thus can guide ML. One notable example of IML is physics-informed
machine learning (Karniadakis et al., 2021), which proves particularly valuable in solving partial differential
equations for computational fluid dynamics.

Control-informed learning (CIL) is a subset of IML tailored for system control, autonomy, and robotics. This
approach merges standard control theory, especially the established optimal control principles, with ML
techniques to enhance the functionality of autonomous systems. This integration is beneficial for robotic
applications, where optimal control systems typically govern robots. By incorporating prior knowledge about
the system, such as dynamic models, control laws, and optimization strategies, into the learning process, CIL
reduces the required training data, accelerates deployment, and enhances safety and efficiency by ensuring
adherence to established control theories (Jin et al., 2020; 2021b).

Online control-informed learning (OCIL) represents a subset of CIL that continually updates its model as new
data streams. This is beneficial for robotic applications, where the environment can change unpredictably.
One advantage of online methods is their ability to learn and adapt on the fly. Unlike offline methods, which
require a static dataset for training, online learning algorithms adjust their parameters or models in response
to new information without training from scratch. This continual learning capability allows autonomous
systems to improve their policies in real time. Additionally, OCIL can handle dynamic environments by
continually updating its parameters. This feature is critical in applications such as autonomous driving,
where adapting to new scenarios quickly is crucial for safety and performance. This concept intersects with
many ML methods such as transfer learning (Pan & Yang, 2009), continual learning (Aljundi et al., 2019),
and learning on-the-fly (Ornik et al., 2019).

1

Under review as submission to TMLR

1.1 Related Work

The proposed OCIL framework includes three modes for three sets of classic problems in both ML and system
control communities. Hence, the following literature review presents some representative methods from both
perspectives, for all three modes.

Online System Identification To identify a nonlinear system with possibly noisy measurement in an
online fashion, Markov-decision-process-based methods are widely used, such as linear regression (Haruno
et al., 2001), observation-transition modeling (Finn et al., 2016), latent-space modeling (Watter et al., 2015),
(deep) neural networks (Fragkiadaki et al., 2015), Gaussian processes (Deisenroth & Rasmussen, 2011), and
transition graphs (Zhang et al., 2018). Despite their widespread use, these methods often must balance data
efficiency against prediction accuracy. To improve both metrics, physics-informed learning approaches Raissi
et al. (2019); Saemundsson et al. (2020); Lutter et al. (2019); Zhong et al. (2019) incorporate physical laws
into learning models. Recently, there has been an emerging trend to interpret (deep) neural networks through
the lens of dynamical systems, leading to the development of several new algorithms (Chen et al., 2018; Han
& E, 2016; Li et al., 2018; Li & Hao, 2018; Han et al., 2019; Zhang et al., 2019; Benning et al., 2019; Liu &
Markowich, 2020). Koopman operator theory offers a method to lift states to an infinite-dimensional linear
observable space (Mauroy et al., 2020; Williams et al., 2015). The recent deep Koopman representation
(DKR) utilizes neural networks (NNs) to represent the observables that are difficult to formulate by hand
without expertise in a particular dynamical system (Liang et al., 2023; Hao et al., 2023). This paper proposes
an online learning framework to estimate system dynamics in real time as noisy measurement data continually
comes in. We aim to incorporate inductive knowledge from optimal control theory to enhance both run-time
computational efficiency, robustness against m measurement noise, and prediction accuracy.

Online Imitation Learning Online imitation and objective learning are typically referred to as inverse
reinforcement learning (IRL) in the ML community and online inverse optimal control (IOC) in the system
control community. IRL aims to deduce a control objective function with observed optimal demonstrations.
The objective function is generally represented as a weighted sum of features (Abbeel & Ng, 2004; Ziebart
et al., 2008; Ratliff et al., 2006). Approaches to find these unknown weights include feature matching
(Abbeel & Ng, 2004), maximum entropy (Ziebart et al., 2008), and maximum margin (Ratliff et al., 2006).
These IRL methods update the learned objective estimate within a defined feature space, exploiting the
linearity of feature weights. As for learning nonlinear parameter mapping of objective functions, prior and
system-dependent knowledge is required to further extend the methods above. On the other hand, with
system dynamics, IOC aims for efficient learning approaches (Keshavarz et al., 2011; Mombaur et al., 2010;
Liang et al., 2022; 2023; Jin et al., 2019; 2021a; Jin & Mou, 2021). For instance, some methods (Keshavarz
et al., 2011; Liang et al., 2022; 2023; Jin et al., 2019; 2021a; Jin & Mou, 2021) directly calculate unknown
weights by minimizing the violation of optimality conditions by the observed demonstration data, which
avoid solving optimal control problems repetitively. This paper presents an online framework to facilitate
learning objective functions online as noisy demonstration data continually streams in. By synthesizing the
online state estimation techniques in control theory, the proposed method can recover the object function in
real time while ensuring robustness against noise.

Tuning Policy On-the-fly Tuning policy on the fly is typically referred to as transfer learning and tuning
optimal control (OC) systems in ML and control communities, respectively. Transfer learning exploits the
generalization of existing knowledge such that it can be transferred across different domains (Taylor &
Stone, 2009). Recently, transfer learning has been investigated in the reinforcement learning (RL) community
because the knowledge gained in one task may improve learning performance in a related but different task.
Such a concept of transfer learning may speed up the learning process in RL (Taylor & Stone, 2009). If the
knowledge transfers from a domain of experts to a target domain, imitation learning (Ho & Ermon, 2016; Wu
et al., 2019; Oh et al., 2018), behavior cloning (Torabi et al., 2018; Sasaki & Yamashina, 2021), or learning
from demonstrations (Schaal, 1996; Kim et al., 2013; Jin et al., 2022a) can also be viewed as transfer learning.
Knowledge from a source domain can also be represented by an action probability distribution of an expert
policy (Czarnecki et al., 2019) or even directional corrections from expert (Jin et al., 2022b). In the control
community, tuning OC systems initially refers to neighboring extremal optimal control (NEOC) (Bryson,
1975; Ghaemi et al., 2009). Recently, Jin et al. (2020) proposes a framework to tune an OC system based on
differentiating Pontryagin’s Maximum Principle. Tuning an OC system by either NEOC or differentiating

2

Under review as submission to TMLR

Pontryagin’s Principle requires the knowledge of an entire optimal trajectory. However, for online tasks,
the knowledge of the entire optimal trajectory is unavailable at run-time until the end. The proposed
online learning framework in this paper includes a specific mode for model-based control tasks, where some
information is unavailable until the current time.

1.2 Contributions

This paper introduces an online learning framework called Online Control-Informed Learning (OCIL). This
framework is designed to be data efficient for various learning and control tasks while providing robustness
against noisy data. In this paper, we consider a robot as an OC system, which is parameterized by tunable
parameters within different components of the system, including dynamics, policy, and objective function.
By tuning the OC system in real time, the proposed OCIL tackles three learning tasks in robotics, namely
Online Imitation Learning, Online System Identification, and Policy Tuning On-the-fly. The proposed OCIL
consists of two main components, both of which are inspired by control theory. Specifically, the framework
first proposes an online parameter estimator based on the classic online state estimation techniques in control
theory. The estimator continually updates the parameter estimates in real time as new data becomes available,
aiming to minimize a cumulative loss defined for a specific task. To do so, the gradient information for the
loss with respect to the tunable parameter is required. Therefore, OCIL employs a gradient generator (GG)
based on Pontryagin Differential Programming in optimal control theory to calculate the exact gradient.

Notations. ∥·∥ denotes the Euclidean norm. Given a matrix A ∈ Rn×m, let A′ denotes its transpose. For
positive integers n and m, let In be the n × n identity matrix; 0n ∈ Rn denotes a vector with all value
0; 0n×m denotes a n × m matrix with all value 0. Let col{v1, . . . , va} denote a column stack of elements
v1, . . . , va, which may be scalars, vectors or matrices, i.e. col{v1, . . . , va} ≜ [v′

1 . . . v′
a].

2 Problem Formulation

Consider the following class of optimal control (OC) systems Σ(θ):

system dynamics: xt+1 = f(xt, ut, θ), with x0 given,

objective to be minimized: J(θ) =
∑T −1

t=0 c(xt, ut, θ) + h(xT , θ),
(1)

where t = 0, 1, 2, · · · , T is the time index with T being the final time; xt ∈ Rn and ut ∈ Rm denote the system
state and control input, respectively; θ ∈ Rp denotes a tunable parameter; f : Rn × Rm × Rp → Rn denotes
a twice-differentiable time-invariant system dynamics; c : Rn × Rm × Rp 7→ R and h : Rn × Rp 7→ R denote
running cost the final cost, respectively, both of which are assumed to be twice-differentiable. For a choice of
θ, the trajectory of optimal control system (1) can be determined by solving the optimal control problem:

{x0:T (θ), u0:T −1(θ)} ∈ arg min
x0:T

u0:T −1

J(θ)

subject to xt+1 = f(xt, ut, θ), ∀t with given x0.

(2)

where x0:T (θ) ≜ col {x0(θ), · · · , xT (θ)} and u0:T −1(θ) ≜ col {u0(θ), · · · , uT −1(θ)} denote the states and
inputs trajectory given parameter θ, respectively. For notation simplicity, we define the trajectory of the
optimal control system as ξ(θ) ≜ col{x0:T (θ), u0:T −1(θ)} ∈ R(T +1)n+T m. Since our goal is to develop an
online update rule, we introduce the iteration index k, where θk ∈ Rp represents the tunable parameter at
iteration k. However, since the parameter is updated at each time t in an online algorithm, k is equivalent
to t, leading to θk ≡ θt ∈ Rp. At each time t, given a slice of trajectory ξ(θt) at time t, denoted as
ξt(θt) ≜ col{xt(θt), ut(θt)} ∈ Rn+m. There is also information Ot ∈ Rr, which is used to evaluate ξt(θt)
and remains inaccessible until time t. The information Ot could represent the desired state, control input,
or reference measured output. Examples of Ot will be provided at the end of this section. We assume that
the information Ot is subject to Gaussian measurement noise, denoted as vt ∼ N (0r, Rt), where Rt ∈ Rr×r

represents the covariance matrix of the noise. In other words, at each time step t, the information received
can be noisy and expressed as Ot = O∗

t + vt, where O∗
t represents the true but unknown information.

3

Under review as submission to TMLR

The problem of interest is to develop an online method to update θ at every time t, such that its trajectory
ξ(θ) from (2) minimizes a task-specific cumulative loss L(ξ(θ)):

min
θ

L(ξ(θ)) subject to ξ(θ) is in 2. (3)

To define L(ξ(θ)), we consider a predefined differentiable stage loss function l(ξt(θ), Ot) : Rn+m × Rr → Rr.
Then, the performance of the entire trajectory can be evaluated by the cumulative loss:

L(ξ(θ)) =
∑T

t=0∥l(ξt(θ), Ot)∥2. (4)

To achieve a specific learning or control task, one needs to design a specific stage loss function l(ξt(θ), Ot)
and select the most suitable information Ot. Below, we will present several examples to illustrate how this
can be done. It is worth noting that in different applications, adjustments to the configuration of system
Σ(θ) are required according to the task.

Online SysID: For a SysID problem, the goal is to identify the dynamics model of a physical system from
the state-input trajectory ξo = {xo

0:T , u0:T −1}, where the superscript o denotes the observed trajectory. The
trajectory is often generated by persistent excitation of the system without considering any control objectives
(Keesman, 2011). Therefore, we can set J(θ) = 0:

Σ(θ) :
dynamics: xt+1 = f(xt, ut, θ), with x0 given,

objective: J(θ) = 0.
(5)

To identify the model dynamics, namely finding the θ in the dynamics f(xt, ut, θ), one could design the
stage loss function to represent the discrepancy between the observed trajectory and the trajectory produced
by θ, i.e. l(ξt(θ), ξo

t) = ξo
t − ξt(θ), where ξo

t is a slice of ξo at time t. In the SysID mode, the information Ot

received at time t is a slice of the trajectory of a physical system ξo
t .

Online Imitation Learning: The objective function and the model dynamics are parameterized by
an unknown θ. The OC system follows (1). Suppose one can observe the measurement of the optimal
demonstration y∗

t at each time t, where yt = g(xt(θ), ut(θ)) is a known differentiable mapping from the
state and input to a measured output. Then, the stage loss function can be designed as l(ξt(θ), y∗

t) =
y∗

t − g(xt(θ), ut(θ)). In this case, the information Ot received at time t is the measurement of the optimal
demonstration y∗

t . The optimal demonstration can vary between being continuous or sparse, depending on
practical application scenarios.

Tuning Policy On-the-fly: For a specific system, we want to obtain a feedback controller such that the
trajectory minimizes certain task loss. We consider a feedback controller which is parameterized by θ, i.e.
ut = µ(xt, θ). Then the OC system is written as follows:

Σ(θ) :
dynamics: xt+1 = f(xt, µ(xt, θ)), with x0 given,

objective: J =
∑T −1

t=0 c(xt, µ(xt, θ)) + h(xT).
(6)

Then we can introduce any loss function to be minimized, which represents a specific tuning objective or
specification, such as stabilizing the system on a particular point or tracking a desired trajectory.

3 Main Results

The proposed OCIL consists of two main components, both of which are inspired by control theory. Specifically,
OCIL first proposes an online parameter estimator based on the extended Kalman filter (EKF). Going forward,
we will show the challenge of obtaining the Kalman gain. To tackle this challenge, the gradient information
for the loss with respect to the tunable parameter is required. Therefore, OCIL employs a gradient generator
(GG) based on Pontryagin Differential Programming to calculate the exact gradient. Then the proposed
OCIL framework will be introduced and supported with theoretical analysis.

4

Under review as submission to TMLR

3.1 Online Parameter Estimator

To minimize the cumulative task loss L(ξ(θ)) with information Ot, which is unavailable until time t, the
optimization problem that needs to be solved in real time is:

min
θ

∑T
t=0∥l(ξt(θ), Ot)∥2 subject to ξ(θ) is in 2. (7)

The optimization problem (7) is essentially a least squares problem, although under constraints. One of the
most famous methods to solve the least squares problems incrementally is the EKF (Bertsekas, 1996). The
EKF was proposed to incrementally estimate the state of a system using measured output available at each
time step. In our problem setting, instead of estimating the state of a system, our goal is to estimate the
parameter θ by utilizing the information Ot that is available at each time t. Therefore, by considering the
tunable parameter θ as the state to be estimated, its corresponding system can be written as:

dynamics: θt+1 = θt + wt, measurement: l(ξt(θt), Ot) + vt ≡ 0s (8)

where wt ∼ N (0p, Qt) is the process noise which is assumed to be multivariate Gaussian noise. Qt ∈ Rp×p

is the covariance matrices of the process noise. In our experiments, we omit process noise since we are
estimating a static parameter rather than the states of a dynamic system. Process noise usually accounts for
dynamic uncertainty in such systems, which does not apply to our scenario. Nevertheless, we include the
process noise here to support the convergence analysis. The measurement equation in (8) indicates that the
stage loss with optimal θ is assumed to be zero. The θ estimate via EKF can be done as follows:

θ̂−
t := θ̂t−1, P −

t := Pt−1 + Qt−1 (9a)
Kt := P −

t L′
t(LtP

−
t L′

t + Rt)−1, Pt := (Ip − KtLt)P −
t , θ̂t := θ̂−

t + Kt(0s − l(∗)), (9b)

where l(∗) ≜ l(ξt(θ̂−
t), Ot); Lt ≜

dl(ξt(θ), Ot)
dθ

|θ=θ̂−
t

∈ Rr×p; (9a) predicts the dynamics; (9b) updates the

parameter estimate. Here, θ̂ ∈ Rp is the estimation of parameter θ, the superscript − means the term is not
yet updated by measurement residual; Pt ∈ Rp×p is a positive-definite matrix that denotes the covariance of
the estimate; Kt ∈ Rp×r denotes the Kalman gain. Throughout the estimation process, all of the terms are
known except Lt. It is challenging to obtain this term as the stage loss l(ξt(θ), Ot) is not an explicit function
of θ. In the next subsection, we will present a gradient generator which computes the exact value for Lt.

3.2 Gradient Generator

In this section, for brevity, the stage loss l(ξt(θ), Ot) is written as l(ξt(θ)) since the gradient is not related to
Ot. Additionally, for the remainder of the paper, to maintain brevity, the notation |θ=θ̂−

t
will be omitted for

all the partial derivatives that involve θ. To obtain the gradient dl(ξt(θ))
dθ

, one can employ the chain rule by
definition,

dl(ξt(θ))
dθ

= ∂l(ξt(θ))
∂ξt(θ)

∂ξt(θ)
∂θ

, (10)

where ∂l(ξt(θ))
∂ξt(θ) is known since the stage loss is pre-designed. The challenge that remains is to find the

partial derivative ∂ξt(θ)
∂θ

, i.e. an analytical relation between trajectory ξt and the tunable parameter θ. To

tackle this challenge, the gradient generator in Jin et al. (2020) is used to obtain the exact value of ∂ξt(θ)
∂θ

.

Given the OC system (2), one can obtain the Hamiltonian equation

Ht = c(xt, ut, θ) + f(xt, ut, θ)′λt+1 (11)

for all t = 0, · · · , T − 1, where λt ∈ Rn denotes the Lagrangian multiplier associated with the equality
constraint of model dynamics. With the definition of ξ(θ), one has ∂ξ(θ)

∂θ
= col{∂x0:T (θ)

∂θ
,∂u0:T −1(θ)

∂θ
}. By

5

Under review as submission to TMLR

defining

Xt ≜
∂xt(θ)

∂θ
∈ Rn×p, Ut ≜

∂ut(θ)
∂θ

∈ Rm×p, (12)

one can utilize the following lemma from Jin et al. (2020) to obtain the partial derivatives ∂ξt(θ)
∂θ

:

Lemma 1. Jin et al. (2020) By defining the Jacobian and Hessian matrices related to ξ(θ):

Ft = ∂f

∂xt
, Gt = ∂f

∂ut
, Et = ∂f

∂θ
, Hxx

t = ∂2Ht

∂xt∂xt
, Hxu

t = ∂2Ht

∂xt∂ut
= (Hux

t)′,

Huu
t = ∂2Ht

∂ut∂ut
, Hxθ

t = ∂2Ht

∂xt∂θ
, Huθ

t = ∂2Ht

∂ut∂θ
, Hxx

T = ∂2h

∂xT ∂xT
, Hxθ

T = ∂2h

∂xT ∂θ
,

(13)

if Huu
t is invertible for all t = 0, · · · , T − 1, define the following recursions

Vt = Ct + A′
t(I + Vt+1Bt)−1Vt+1At,

Wt = A′
t(I + Vt+1Bt)−1(Wt+1 + Vt+1Mt) + Nt,

(14)

with VT = Hxx
T and WT = Hxθ

T . Here, At = Ft − Gt(Huu
t)−1Hux

t , Bt = Gt(Huu
t)−1G′

t, Mt = Et −
Gt(Huu

t)′Huθ
t , Ct = Hxx

t − Hxu
t (Huu

t)−1Hux
t , Nt = Hxθ

t − Hxu
t (Huu

t)′Huθ
t are all known given (13).

Then, the partial derivative ∂ξ(θ)
∂θ

can be obtained by recursively solving the following equations from t = 0 to
T − 1 with X0(θ) = 0:

Ut = −(Huu
t)-1(Hux

t Xt + Huθ
t + G′

t(I + Vt+1Bt)-1(Vt+1AtXt + Vt+1Mt + Wt+1)),
Xt+1 = FtXt + GtUt + Et.

(15)

The terms in (13) are based on the trajectory ξ(θ) and the associated Lagrangian multiplier λ0:T −1. According
to the discrete-time Pontryagin Maximum Principle (Jin et al., 2020), the trajectory of the Lagrangian
multiplier can be obtained by

λT = ∂h

∂xT
, λt ≜

∂Ht

∂xt
= ∂c

∂xt
+ ∂h

∂xt
λt+1, for t = T − 1, · · · , 1. (16)

3.3 OCIL Framework

With the online parameter estimator and the gradient generator, we propose the Online Control-Informed
Learning framework in Fig. 1. The framework is summarized in Algorithm 2.

As shown in Fig. 1, at each time step, the predefined OC system Σ(θ) generates a system trajectory ξ(θ) by
performing optimal control with given x0 and θ. The trajectory ξ(θ) is then fed into the stage loss function
l(ξt(θ), Ot) and the gradient generator. Along with the information Ot obtained at time t, the stage loss

function generates ∂l(ξt(θ), Ot)
∂ξt(θ) , while ∂ξt(θ)

∂θ
is generated by the gradient generator in Algorithm 1. The

chain rule is then performed to obtain the Jacobian matrix Lt, which is then passed into the online parameter
estimator for the estimation of θ.

Figure 1: Framework of Online Control-Informed Learning.

6

Under review as submission to TMLR

Algorithm 1: Gradient Generator (GG)
Input: Trajectory ξ(θ) from Σ(θ)

1 Compute the coefficient matrices in (13) ;
2 Set VT = Hxx

T and WT = Hxθ
T ;

3 for t← T to 0 by ∆t do
4 Update Vt and Wt using (14)

5 Set X0(θ) = 0;
6 for t← 0 to T by ∆t do
7 Update Xt(θ) and Ut(θ) using (15)

Output: ∂ξ(θ)
∂θ

= {X0:T (θ), U0:T −1(θ)}

Algorithm 2: Online Control-Informed Learning
System and Stage Loss: Σ(θ) and l(ξt(θ), Ot)
Initialize: θ0, P0

1 for t = t0, t1, · · · do
2 Obtain new information Ot;
3 Solve ξ(θt) from current OC system Σ(θt);

4 Obtain ∂ξt(θt)
∂θt

with GG in Algorithm 1;

5 Obtain ∂l(ξt(θt), Ot)
∂ξt(θt)

from l(ξt(θt), Ot);

6 Obtain Lt via the chain rule (10);
7 Update θt using the estimator (9);

3.4 Convergence Analysis

This subsection presents the convergence analysis of the online parameter estimator. The analysis employs a
candidate Lyapunov function and introduces how the covariance matrices Qt and Rt affect the convergence of
the cumulative loss L(ξ(θ)). In this section, for brevity, the stage loss l(ξt(θ), Ot) is written as l(θ). Suppose
for a specific task, there is an unknown true parameter θt, where θt = θt−1 for all t, and L(ξ(θt)) = 0. Then,
we define the estimation error as θ̃t = θt − θ̂t . Furthermore, we define

Measurement error: et = l(θt) − l(θ̂−
t)

Prediction error: θ̃−
t = θt − θ̂−

t .
(17)

To perform the convergence analysis, a candidate Lyapunov function is employed:

Vt = θ̃′
tP

−1
t θ̃t. (18)

The goal here is to determine conditions for which the candidate Lyapunov function {Vt}t=1,2,... is a decreasing
sequence, i.e. Vt+1 − Vt ≤ 0, ∀t. For rigorous analysis of the candidate Lyapunov function, as proposed in
Boutayeb et al. (1997), unknown diagonal matrices αt ∈ Rr×r and βt ∈ Rp×p are introduced to model the
measurement and prediction error defined in (17):

αtet = Ltθ̃
−
t , θ̃−

t = βtθ̃t−1. (19)

To ensure convergence of the proposed estimator, the following assumptions need to be made.

Assumption 1. The derivative Lt =dl(θ)
dθ

is of full rank for every θ.

Remark 1. The discrete-time dynamical system (8) satisfies the observability rank condition, i.e., for every

θ, rank(col{dl(θ)
dθ

, dl(θ)
dθ

Ip, · · · ,
dl(θ)

dθ
Ip−1

p }) = p (Song & Grizzle, 1992). That means if Assumption 1 is
satisfied for every θ, the system (8) is observable for every θ. The observability condition assures that Pt is a
bounded matrix from above and below (Song & Grizzle, 1992; Boutayeb & Aubry, 1999).

As common in the EKF analysis, we adopt the following assumption:
Assumption 2. Lt is a uniformly bounded matrix.

We have the following lemma to show how the covariance matrices Qt and Rt affect the convergence of the
tunable parameter. The proof can be found in Appendix A.
Lemma 2. Let Assumptions 1 and 2 hold. If the matrices Rt and Qt satisfy the following inequalities:

(αt − Is)2 ≤ Rt(LtP
−
t L′

t + Rt)−1, (20)

β′
t(Pt + Qt)−1βt − P −1

t ≤ 0, (21)
Then the proposed estimator (9), when used as an observer for the system (8), ensures local asymptotic
convergence, i.e. limt→∞ θ̃t = 0.

7

Under review as submission to TMLR

Remark 2. Lemma 2 provides sufficient conditions for the convergence of θ̂. As the diagonal matrices
αt and βt are unknown, one can design the matrices Qt and Rt to satisfy inequalities (20) and (21). For
example, one can set the matrix Qt to be sufficiently large so that (21) is satisfied, which means the parameter
estimator can tolerate arbitrary large initial state estimation error, i.e. large βt. It is worth to note that as
long as (20) and (21) are satisfied, θ̂t converges to θt and consequently αt and βt become identity matrix. In
the case when there is no noise, i.e. Qt = 0p×p and Rt = 0s×s, αt and βt can only be identity matrices to
satisfy the inequalities (20) and (21), indicating the convergence of θ̂t to θt.
Remark 3. Equation (20) and (21) indicate one of the limitations of the estimator, which is the selection of
initial guess. If the initial guess of θ results in α0 and β0 that does not satisfy (20) and (21), the value of the
Lyapunov function (18) becomes larger, which leads to even larger αt and βt, causing the estimation to fail.

We have the following main theorem show how the covariance matrix Rt and Qt affect the convergence of
cumulative loss L(ξ(θt)) by utilizing the inequalities introduced in Lemma 2. The proof can be found in
Appendix B.
Theorem 1. Let Assumptions 1 and 2 hold. If Rt and Qt satisfy the following inequalities:

(αt − Is)2 ≤ Rt(LtP
−
t L′

t + Rt)−1, β′
t(Pt + Qt)−1βt − P −1

t ≤ 0, (22)

then finding θ with the proposed estimator (9) employing the gradient generator in (14)-(15) ensures local
asymptotic convergence of the cumulative loss L in (3) to 0 , i.e. limt→∞ L(ξ(θt)) = 0.

To evaluate the effectiveness of online algorithms, the regret analysis is often adopted (Li et al., 2021;
Zinkevich, 2003; Hazan et al., 2007). In our case, the regret at time T is defined as:

RegretT =
∑T

t=1(∥l(θ̂t)∥2−∥l(θt)∥2), (23)

which represents the accumulative performance discrepancy between θ̂t and θt. Assume ∥l(θ)∥2 is convex
with respect to θ. As Lemma 2 states, the sufficient conditions (20) and (21) are satisfied for all t, then θ̂t

will converge to θt asymptotically. Furthermore, according to (19), et will converge to zero, which indicates
that ∥l(θ̂t)∥2 will converge to ∥l(θt)∥2 asymptotically. Therefore, we can say that the regret in (23) will
converge to a bounded value as t goes to infinity. Please refer to C in Appendix for details.

4 Applications to Different Online Learning Modes and Experiments

This section demonstrates the capability of the proposed OCIL framework with its three modes by three
applications, Online Imitation Learning, Online System Identification, and Learning Policy on-the-fly. This
section includes a performance comparison with some state-of-the-art frameworks for three environments
that are summarized in Table 1. For every environment, the unknown parameter is static, which means
Qt = 0p×p. The covariance matrix of measurement noise is set to be Rt = 10−8 for OCIL, and Rt = 0 for
other methods as they fail to complete the tasks with measurement noise. To highlight the flexibility of OCIL,
each experiment includes two phases: 1) online phase, where OCIL keeps learning the unknown parameter
while new data comes in before the final time T ; 2) offline phase, where OCIL keeps learning the parameter
given the learned parameter at time T and the entire trajectory obtained from time t = 0 to time T . For
each environment and task, a terminal time T ∈ Z is defined to represent a desired time duration where the
system shall finish the task.

To unify the data visualization of both online and offline phases, the horizontal axis represents the number
of data points, where a vertical red line corresponds to the final time T , i.e. the end of the online phase.
The number of data points reflects the number of iterations multiplied by the total number of time steps for
each iteration. The solid blue curves indicate the online portion of OCIL, whereas the dashed blue curves
indicate the offline portion. For every environment and every method, 5 trials are performed given random
initial conditions due to the high computational cost for other methods. The computational performance and
analysis for OCIL are shown in Section 5 of the Appendix.

Online Imitation Learning. The control objective is parameterized as a weighted distance to the goal. Set
the stage loss of imitation learning l(ξt(θ), y∗

t) = y∗
t − g(xt(θ), ut(θ)). Four existing methods are used for

8

Under review as submission to TMLR

Table 1: Experiment Environments

Systems Dynamics parameter θdyn Objective parameter θobj

Cartpole cart mass, pole mass and length
c(x, u) = θobj∥x − xg∥2+∥u∥2

h(x) = θobj∥x − xg∥26-DoF Quadrotor mass, wing length, inertia matrix
6-DoF Rocket mass, rocket length, inertia matrix

comparisons: (i) inverse KKT (Englert et al., 2017) (ii) neural policy cloning (Bojarski et al., 2016) and (iii)
PDP (Jin et al., 2020). These methods don’t handle measurement noise well because of their limitations, so
we performed the experiments without including measurement noise for these methods. Fig. 2a-2c summarize
the comparison result, where OCIL converges faster and obtains lower loss than the other offline methods, in
both online and offline phases. The initial loss for each method is different because the learning representation
(parameterization) is different. Thus, it is hard to guarantee that an initial neural network has the same loss
as another initial parameter vector. Nevertheless, the initial representation of each method is adjusted such
that OCIL does not take advantage of good initialization. Fig. 2a-2c validate the effectiveness of OCIL’s
both online and offline performance, even with measurement noise.

(a) Cartpole (b) Quadrotor (c) Rocket

Figure 2: Imitation loss v.s. number of data points

Online System Identification The stage loss is set to be l(ξt(θ), ξo
t) = ξo

t − ξt(θ). Three other methods
are used for comparison: (i) Pytorch Adam solver, (ii) DMDc and (iii) PDP. No measurement noise are
injected into observed data for existing methods due to their inherent limitations. Fig. 3a-3c summarize the
result, where OCIL outperforms PDP for faster convergence and lower loss, in both online and offline phases.
Different than Online Imitation Learning, OCIL does not decrease its SysID loss significantly at first because
the number of data points is not sufficient for online learning. Once the number of data points becomes
sufficient, the SysID loss starts decreasing significantly. This phenomenon can also be observed in the other
methods, but their critical number of data points is significantly larger than OCIL’s. In Fig. 3d-3f, OCIL and
other methods are applied to learn the neural dynamics using the same observed trajectory. It can be seen
that OCIL outperforms other methods for lower loss. Fig. 4 demonstrates the capability of OCIL dealing
with neural dynamics that has different size of NN.

Policy Tuning On-the-fly. The parameterized OC system in 6 is used here, where the policy is in a
state-feedback form and parameterized by the tunable parameter θ. The stage loss is set to be l(ξt(θ), ξ∗

t) =
ξ∗

t − ξt(θ). where ξ∗
t is the trajectory that needs to be tracked. Other methods are used for comparison (i)

iLQR (ii) GPS, and (iii) PDP. No measurement noise is included for existing methods due to their limitations.
Fig. 5a-5c summarize the result, where the loss and its variation of OCIL converge very quickly. The buffers
in Fig. 5a-5f indicate 3 times of standard deviation. Fig. 5d-5f presents the online phase of OCIL given 1000
random trials, which further validates the effectiveness and robustness of OCIL given measurement noise.

In general, OCIL from all figures does not have a smooth loss trajectory as the other offline methods. This is
because at the online phase, an optimal gain matrix Kt from (9a) is computed to update θ, whereas the
other methods either use a constant or iteration-dependent step size. The optimal gain is conceptually similar

9

Under review as submission to TMLR

(a) Cartpole (b) Quadrotor (c) Rocket

(d) Cartpole (neural dynamics) (e) Quadrotor (neural dynamics) (f) Rocket (neural dynamics)

Figure 3: SysID loss v.s. number of data points

(a) Cartpole (b) Quadrotor (c) Rocket

Figure 4: SysID Loss v.s. number of data points with different size of neural dynamics

to searching an optimal step size in the line-search optimization algorithms. Thus, it is observed that the loss
variation, as represented by blue buffers, is relatively high initially but starts decreasing significantly as new
data comes in because Kt is continually updated. In contrast, the loss variation barely changes for the other
offline methods after some data points.

5 Real-time Computational Performance

The experiments with OCIL were performed on a desktop with one Intel Core i7-8700k CPU with 8GB RAM.
No GPU was used. The experiments with other methods were performed on a desktop with one AMD Ryzen
9 5900X CPU, one Nvidia Geforce RTX 4070ti, and 32 GB RAM. A more powerful PC was selected for the
other methods because of their high computational cost. As noted at the beginning of Section 4, only 5 trials
were conducted due to the computational expense.

10

Under review as submission to TMLR

(a) Cartpole (b) Quadrotor (c) Rocket

(d) Cartpole (online phase) (e) Quadrotor (online phase) (f) Rocket (online phase)

Figure 5: Policy Tuning Loss v.s. number of data points. Buffers represent loss variation under 3σ with
random initial conditions.

To demonstrate that the computational performance of OCIL is enough to be used in an online fashion,
we recorded the computational time for OCIL in different modes for 100 trials. Table 3 summarizes the
OCIL’s computational performance for the system identification task for three environments, where OCIL
Time indicates the computational time of running OCIL at each time t, i.e. the iteration within the for-loop
of Algorithm 2; GG Time indicates the computational time of running gradient generator (GG) at each
time t, i.e. Algorithm 1; Estimator Time indicates the computational time of updating θ̂, i.e. Line 7 of
Algorithm 2; ∆ indicates the time step of each environment, i.e., the time duration between two consecutive
data measurements or the maximum allowed time duration of online algorithms to perform computation;
Percentage indicates the percentage of the average OCIL time with respect to ∆. The header of Table 4
and Table 2 are the same. Roughly speaking, OCIL time = GG time + Estimator time + Optimal Control
computation time.

Table 3 illustrates that OCIL can estimate the dynamical system with neural network representation in real
time, within the system frequency of getting new data. Table 4 illustrates that OCIL can tune the neural
policy in real time. As indicated in Line 2 of Algorithm 2, the most computationally heavy part is solving
optimal control trajectory in real time, instead of GG and the parameter estimator. As demonstrated at the
beginning of this section, OCIL does not require huge computational resources, such as GPU. Therefore, this
paper believes that OCIL has the capability to run in an online fashion.

Table 2: Computational Performance for Online Imitation Learning

Env. OCIL Time [ms] GG Time [ms] Estimator Time [ms] ∆ [ms] Percentage
Cartpole 62.10 ± 6.63 7.47 ± 0.25 0.031 ± 0.0023 100 62.10 %

Quadrotor 81.70 ± 2.51 21.72 ± 0.84 0.058 ± 0.039 100 81.70 %
Rocket 72.25 ± 13.91 19.77 ± 6.26 0.060 ± 0.012 100 72.25%

11

Under review as submission to TMLR

Table 3: Computational Performance for SysID with Neural System

Env. OCIL Time [ms] GG Time [ms] Estimator Time [ms] ∆ [ms] Percentage
Cartpole 17.18 ± 5.15 6.05 ± 2.59 1.93 ± 0.85 50 34.36 %

Quadrotor 35.53 ± 8.98 12.18 ± 4.77 16.18 ± 6.11 100 35.53 %
Rocket 29.54 ± 8.29 11.25 ± 4.67 12.89 ± 5.29 200 14.77 %

Table 4: Computational Performance for Policy Tuning with Neural Policy

Env. OCIL Time [ms] GG Time [ms] Estimator Time [ms] ∆ [ms] Percentage
Cartpole 16.41 ± 5.35 7.72 ± 3.07 3.96 ± 1.91 50 32.82 %

Quadrotor 62.67 ± 9.51 30.86 ± 2.25 22.47 ± 8.33 100 62.67 %
Rocket 59.02 ± 7.25 33.99 ± 2.98 12.94 ± 5.62 100 59.02 %

6 Limitations.

This section discusses the major limitations of the proposed framework from three perspectives.

Local convergence: Since OCIL is based on first-order gradient, it can only achieve local minima for
general non-convex optimization problems in (3). Furthermore, the general problem in (3) belongs to a
bi-level optimization framework. Under certain assumptions such as convexity and smoothness on models
(e.g., dynamics model, policy, loss function, and control objective function), global convergence of the bi-level
optimization can be established. However, this paper believes that such conditions are too restrictive in the
context of dynamical control systems. Therefore, this paper believes that the local convergence analysis based
on general nonlinear optimization is enough.

Parameterization matters for global convergence: When performing experiments, we find that how
models are parameterized matters for good convergence performance. For example, in online SysID mode,
we observe that using a neural network dynamics (in Fig. 3d-3f) is more likely to get trapped in local
minima than using the true dynamics with unknown parameters (in Fig. 3a-3c)). In general, more complex
parameterization will bring extreme non-convexity to the optimization problem, making the algorithm more
easily trapped in local minima. Determining the parameterization of an object to be learned requires prior or
expert knowledge, which is common in ML.

Initialization matters: As OCIL borrows how optimal gain updates from EKF, they share the same
drawback that convergence depends on the selection of initialization. As shown in Remark 3, a bad initial
guess might cause the estimator to diverge according to Lemma 2. Therefore, if a relatively good initial guess
is hard to retrieve, one might need to use other methods to cold start OCIL.

7 Conclusions

This paper proposes Online Control-Informed Learning (OCIL), an online learning method tailored for
diverse learning tasks. By considering an optimal control system tunable through a tunable parameter, OCIL
effectively addresses tasks such as online imitation learning, online system identification, and tuning policy
on-the-fly. By designing a stage loss specific to each task and treating the tunable parameter as a state
of a new system, we employ the online parameter estimator to estimate the parameter in real-time and
minimize loss at each time step. Theoretical analysis establishes the convergence conditions for OCIL, while
experiments on various environments, tasks, and existing methods are done to validate its data efficiency,
versatility, and robustness against measurement noise.

12

Under review as submission to TMLR

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In International

Conference on Machine Learning, pp. 1–8, 2004.

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–11263, 2019.

Martin Benning, Elena Celledoni, Matthias J Ehrhardt, Brynjulf Owren, and Carola-Bibiane Schönlieb. Deep
learning as optimal control problems: models and numerical methods. arXiv preprint arXiv:1904.05657,
2019.

Dimitri P. Bertsekas. Incremental least squares methods and the extended kalman filter. SIAM Journal on
Optimization, 6(3):807–822, 1996. doi: 10.1137/S1052623494268522.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

M. Boutayeb and D. Aubry. A strong tracking extended kalman observer for nonlinear discrete-time systems.
IEEE Transactions on Automatic Control, 44(8):1550–1556, 1999. doi: 10.1109/9.780419.

M. Boutayeb, H. Rafaralahy, and M. Darouach. Convergence analysis of the extended kalman filter used as
an observer for nonlinear deterministic discrete-time systems. IEEE Transactions on Automatic Control,
42(4):581–586, 1997. doi: 10.1109/9.566674.

Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. CRC Press, 1975.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, pp. 6571–6583, 2018.

Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz Swirszcz, and Max
Jaderberg. Distilling policy distillation. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 1331–1340. PMLR, 2019.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 465–472, 2011.

Peter Englert, Ngo Anh Vien, and Marc Toussaint. Inverse kkt: Learning cost functions of manipulation
tasks from demonstrations. The International Journal of Robotics Research, 36(13-14):1474–1488, 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in Neural Information Processing Systems, pp. 64–72, 2016.

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent network models for human
dynamics. In IEEE International Conference on Computer Vision, pp. 4346–4354, 2015.

Reza Ghaemi, Jing Sun, and Ilya V Kolmanovsky. Neighboring extremal solution for nonlinear discrete-time
optimal control problems with state inequality constraints. IEEE Transactions on Automatic Control, 54
(11):2674–2679, 2009.

Jiequn Han and Weinan E. Deep learning approximation for stochastic control problems. Deep Reinforcement
Learning Workshop, Advances in Neural Information Processing Systems, 2016.

Jiequn Han, Qianxiao Li, et al. A mean-field optimal control formulation of deep learning. Research in the
Mathematical Sciences, 6(1):1–41, 2019.

Wenjian Hao, Paulo C Heredia, Bowen Huang, Zehui Lu, Zihao Liang, and Shaoshuai Mou. Policy learning
based on deep koopman representation. arXiv preprint arXiv:2305.15188, 2023.

13

Under review as submission to TMLR

Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato. Mosaic model for sensorimotor learning and
control. Neural Computation, 13(10):2201–2220, 2001.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2):169–192, 2007.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in Neural Information
Processing Systems, 29, 2016.

Wanxin Jin and Shaoshuai Mou. Distributed inverse optimal control. Automatica, 129:109658, 2021. ISSN
0005-1098. doi: https://doi.org/10.1016/j.automatica.2021.109658. URL https://www.sciencedirect.
com/science/article/pii/S0005109821001783.

Wanxin Jin, Dana Kulić, Jonathan Feng-Shun Lin, Shaoshuai Mou, and Sandra Hirche. Inverse optimal
control for multiphase cost functions. IEEE Transactions on Robotics, 35(6):1387–1398, 2019.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Pontryagin differentiable programming:
An end-to-end learning and control framework. Advances in Neural Information Processing Systems, 33:
7979–7992, 2020.

Wanxin Jin, Dana Kulić, Shaoshuai Mou, and Sandra Hirche. Inverse optimal control from incomplete
trajectory observations. The International Journal of Robotics Research, 40(6-7):848–865, 2021a.

Wanxin Jin, Shaoshuai Mou, and George J Pappas. Safe pontryagin differentiable programming. Advances in
Neural Information Processing Systems, 34:16034–16050, 2021b.

Wanxin Jin, Todd D Murphey, Dana Kulić, Neta Ezer, and Shaoshuai Mou. Learning from sparse demonstra-
tions. IEEE Transactions on Robotics, 39(1):645–664, 2022a.

Wanxin Jin, Todd D Murphey, Zehui Lu, and Shaoshuai Mou. Learning from human directional corrections.
IEEE Transactions on Robotics, 39(1):625–644, 2022b.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Karel J Keesman. System identification: an introduction. Springer Science & Business Media, 2011.

Arezou Keshavarz, Yang Wang, and Stephen Boyd. Imputing a convex objective function. In IEEE
International Symposium on Intelligent Control, pp. 613–619, 2011.

Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from limited
demonstrations. Advances in Neural Information Processing Systems, 26, 2013.

Jack B Kuipers. Quaternions and rotation sequences, volume 66. Princeton University Press, 1999.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy search under unknown
dynamics. In Advances in Neural Information Processing Systems, pp. 1071–1079, 2014.

Qianxiao Li and Shuji Hao. An optimal control approach to deep learning and applications to discrete-weight
neural networks. arXiv preprint arXiv:1803.01299, 2018.

Qianxiao Li, Long Chen, Cheng Tai, and E Weinan. Maximum principle based algorithms for deep learning.
Journal of Machine Learning Research, 18(165):1–29, 2018.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological movement
systems. In International Conference on Informatics in Control, Automation and Robotics, pp. 222–229,
2004.

14

https://www.sciencedirect.com/science/article/pii/S0005109821001783
https://www.sciencedirect.com/science/article/pii/S0005109821001783

Under review as submission to TMLR

Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching costs: Fast
algorithms and the fundamental limit. IEEE Transactions on Automatic Control, 66(10):4761–4768, 2021.
doi: 10.1109/TAC.2020.3040249.

Zihao Liang, Wanxin Jin, and Shaoshuai Mou. An iterative method for inverse optimal control. In 2022 13th
Asian Control Conference (ASCC), pp. 959–964, 2022. doi: 10.23919/ASCC56756.2022.9828009.

Zihao Liang, Wenjian Hao, and Shaoshuai Mou. A data-driven approach for inverse optimal control. In 2023
62nd IEEE Conference on Decision and Control (CDC), pp. 3632–3637, 2023. doi: 10.1109/CDC49753.
2023.10383220.

Hailiang Liu and Peter Markowich. Selection dynamics for deep neural networks. Journal of Differential
Equations, 269(12):11540–11574, 2020.

Michael Lutter, Christian Ritter, and Jan Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. arXiv preprint arXiv:1907.04490, 2019.

Alexandre Mauroy, Y Susuki, and Igor Mezić. Koopman operator in systems and control. Springer, 2020.

Katja Mombaur, Anh Truong, and Jean-Paul Laumond. From human to humanoid locomotion—an inverse
optimal control approach. Autonomous Robots, 28(3):369–383, 2010.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International Conference
on Machine Learning, pp. 3878–3887. PMLR, 2018.

Melkior Ornik, Steven Carr, Arie Israel, and Ufuk Topcu. Control-oriented learning on the fly. IEEE
Transactions on Automatic Control, 65(11):4800–4807, 2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, 2009.

Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with control. SIAM
Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In International
Conference on Machine Learning, pp. 729–736, 2006.

Steindor Saemundsson, Alexander Terenin, Katja Hofmann, and Marc Deisenroth. Variational integrator
networks for physically structured embeddings. In International Conference on Artificial Intelligence and
Statistics, pp. 3078–3087, 2020.

Fumihiro Sasaki and Ryota Yamashina. Behavioral cloning from noisy demonstrations. In International
Conference on Learning Representations, 2021.

Stefan Schaal. Learning from demonstration. Advances in Neural Information Processing Systems, 9, 1996.

Yongkyu Song and Jessy W. Grizzle. The extended kalman filter as a local asymptotic observer for
nonlinear discrete-time systems. In 1992 American Control Conference, pp. 3365–3369, 1992. doi:
10.23919/ACC.1992.4792775.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal
of Machine Learning Research, 10(7), 2009.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

15

Under review as submission to TMLR

Laura Von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach, Raoul Heese,
Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, et al. Informed machine learning–a
taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge
and Data Engineering, 35(1):614–633, 2021.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A locally
linear latent dynamics model for control from raw images. In Advances in Neural Information Processing
Systems, pp. 2746–2754, 2015.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of
the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):
1307–1346, 2015.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imitation
learning from imperfect demonstration. In International Conference on Machine Learning, pp. 6818–6827.
PMLR, 2019.

Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Composable planning with
attributes. In International Conference on Machine Learning, pp. 5842–5851, 2018.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate once:
Painless adversarial training using maximal principle. arXiv preprint arXiv:1905.00877, 2019.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning hamiltonian
dynamics with control. arXiv preprint arXiv:1909.12077, 2019.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse reinforcement
learning. In AAAI Conference on Artificial Intelligence, pp. 1433–1438, 2008.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings
of the 20th International Conference on Machine Learning (ICML-03), pp. 928–936, 2003.

16

Under review as submission to TMLR

Appendix

A Proof of Lemma 2

Since the matrices Pt and Lt are bounded according to Assumption 1 and 2, from (9b), one will have:

Kt = PtL
′
tR

−1
t (24)

= P −
t L′

t(LtP
−
t L′

t + Rt)−1. (25)

Then, by taking the inverse of (24) and (25), one will get:

P −1
t = (P −

t)−1 + L′
tR

−1
t Lt. (26)

Substituting (24) into (9b) and subtracting both sides from θt, one will have:

θ̃t = θ̃−
t − PtL

′
tR

−1
t et. (27)

Then, plug (27) into the Lyapunov function (18):

Vt = θ̃′
tP

−1
t θ̃t (28)

= (θ̃−
t − PtL

′
tR

−1
t et)′P −1

t (θ̃−
t − PtL

′
tR

−1
t et) (29)

= (θ̃−
t)′P −1

t θ̃−
t − (θ̃−

t)′L′
tR

−1
t et − e′

tR
−1
t Ltθ̃

−
t + e′

tR
−1
t LtPtL

′
tR

−1
t et (30)

Next, we plug (26) into (30):

Vt = (θ̃−
t)′((P −

t)−1 + L′
tR

−1
t Lt)θ̃−

t − (θ̃−
t)′L′

tR
−1
t et − e′

tR
−1
t Ltθ̃

−
t + e′

tR
−1
t LtPtL

′
tR

−1
t et (31)

= V −
t + (θ̃−

t)′L′
tR

−1
t Ltθ̃

−
t − (θ̃−

t)′L′
tR

−1
t et − e′

tR
−1
t Ltθ̃

−
t + e′

tR
−1
t LtPtL

′
tR

−1
t et, (32)

where

V −
t = (θ̃−

t)′(P −
t)−1θ̃−

t (33)
= (θ̃t−1)′β′

t(Pt−1 + Qt−1)−1βtθ̃t−1. (34)

Using (19), (32) becomes:

Vt = V −
t + (θ̃−

t)′L′
tR

−1
t Ltθ̃

−
t − (θ̃−

t)′L′
tR

−1
t et − e′

tR
−1
t Ltθ̃

−
t + e′

tR
−1
t LtPtL

′
tR

−1
t et (35)

= V −
t + e′

tαtR
−1
t αtet − e′

tαtR
−1
t et − e′

tR
−1
t αtet + e′

tR
−1
t LtPtL

′
tR

−1
t et (36)

= V −
t + e′

t(αtR
−1
t αt − αtR

−1
t − R−1

t αt + R−1
t LtPtL

′
tR

−1
t)et. (37)

To ensure that the Lyapunov function {Vt}t=1,2,... is a decreasing sequence, Vt − Vt−1 ≤ 0.

Vt−Vt−1 (38)
= e′

t(αtR
−1
t αt − αtR

−1
t − R−1

t αt + R−1
t LtPtL

′
tR

−1
t)et (39)

+ (θ̃t−1)′(β′
t(Pt−1 + Qt−1)−1βt − P −1

t−1)θ̃t−1 ≤ 0. (40)

Therefore, to ensure the Lyapunov function is a decreasing sequence,

αtR
−1
t αt − αtR

−1
t − R−1

t αt + R−1
t LtPtL

′
tR

−1
t ≤ 0, (41)

and
β′

t(Pt−1 + Qt−1)−1βt − P −1
t−1 ≤ 0. (42)

With some manipulations:

(αt − Is)R−1
t (αt − Is) − R−1

t + R−1
t LtPtL

′
tR

−1
t ≤ 0, (43)

(αt − Is)R−1
t (αt − Is) − R−1

t (Is − LtP
−
t L′

t(LtP
−
t L′

t + Rt)−1) ≤ 0. (44)

17

Under review as submission to TMLR

By letting Is = (LtP
−
t L′

t + Rt)(LtP
−
t L′

t + Rt)−1, we have

(αt − Is)R−1
t (αt − Is) − (LtP

−
t L′

t + Rt)−1 ≤ 0. (45)

Since αt and Rt are diagonal matrices, we will have

R−1
t (αt − Is)2 − (LtP

−
t L′

t + Rt)−1 ≤ 0, (46)

which at the end yields:
(αt − Is)2 ≤ Rt(LtP

−
t L′

t + Rt)−1, (47)
therefore the proof is completed.

B Proof of Theorem 1

This proof is straightforward once Lemma 2 is provided. Consider the assumptions 1 and 2 are met, according
to Lemma 2, with the exact gradient generated by the gradient generator in (14)-(15), limt→∞ θ̃t = 0. As
the estimated θ̂ converges to the true θ, where the true parameter gives zero cumulative loss, the cumulative
loss L(ξ(θ̂)) goes to 0.

C Scratch for Regret Analysis

In the regret analysis for online optimization algorithms Zinkevich (2003); Hazan et al. (2007), the regret
rate is often determined by the step size used for their gradient descent, which is typically a constant or
an iteration-dependent value. Such step size can make the sequence of regret over time a Cauchy sequence.
Consequently, one can induce that the accumulative regret is bounded.

As for the proposed OCIL framework, as mentioned at the end of Section 4, the optimal gain matrix Kt is
updated every time t as new data comes in. Then given the proposed estimate update (9b), Kt updates
the parameter estimate θ̂t by minimizing the loss function. Therefore, the combination Kt(0 − l(ξt(θ̂−

t))
is conceptually similar to the product of the gradient and optimal step size, where the optimal step is size
calculated by line search algorithms in the context of optimization. This statement is also verified by our
experiments in Section 4.

To sum up, if 20 and 21 are satisfied for all t, l(θ̂−
t) diminishes as time increases, which indicates that the

accumulative regret will converge to a bounded value.

D Experiment Details

D.1 System/Environment Setups

Cartpole. We consider the following continuous dynamics of the cartpole


ṗ
p̈

θ̇

θ̈

 =


ṗ

(F + mplθ̇2 sin(θ)
mt

) − mplθ̈ cos(θ)
mt

θ̇

g sin(θ)−cos(θ)(F + mpl
˙

θ2 sin(θ)
mt

)

l(4
3 − mp cos(θ)2

mt
)

 , (48)

where p ∈ R is the horizontal displacement of the cart; θ ∈ R is the pole angle; F ∈ R denotes the horizontal
force applied to the cart which is between −1 and +1; l ∈ R is the length of the pole; mp, mt ∈ R are the
masses of the pole and total cartpole, respectively. By defining the states and control inputs of the cartpole

x ≜
[
p ṗ θ θ̇

]′ and u ≜ F (49)

respectively.

18

Under review as submission to TMLR

Quadrotor UAV. We consider a quadrotor UAV with the following dynamics

ṗI = vI ,

mv̇I = mgI + FI ,

q̇B/I = 1
2Ω(ωB)qB/I ,

JBω̇B = MB − ω × JBωB .

(50)

Here, the subscription B and I denote a quantity is expressed in the body frame and inertial (world) frame,
respectively; m and JB ∈ R3×3 are the mass and moment of inertia with respect to body frame of the UAV,
respectively. g is the gravitational constant (g = 10kg/m2), gI = [0, 0, g]′. p ∈ R3 and v ∈ R3 are the position
and velocity vector of the UAV; ωB ∈ R3 is the angular velocity vector of the UAV; qB/I ∈ R4 is the unit
quaternion Kuipers (1999) that describes the attitude of UAV with respect to the inertial frame; Ω(ωB) is
defined as:

Ω(ωB) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 , (51)

MB ∈ R3 is the torque applied to the UAV; FI ∈ R3 is the force vector applied to the UAV center of mass.
The total force magnitude f = ∥FI∥∈ R (along z-axis of the body frame) and torque MB = [Mx, My, Mz]′
are generated by thrust from four rotating propellers [T1, T2, T3, T4]′, their relationship can be expressed as:


f

Mx

My

Mz

 =


1 1 1 1
0 −lw/2 0 lw/2

−lw/2 0 lw/2 0
c −c c −c




T1
T2
T3
T4

 , (52)

where lw is the wing length of the UAV and c is a fixed constant. The state and input vectors of the UAV
are defined as:

x ≜
[
p′ v′ q′ ω′]′ ∈ R13,

u ≜
[
T1 T2 T3 T4

]′ ∈ R4.
(53)

Rocket. The rocket is treated as a rigid body subject to constant gravitational acceleration, gI ∈ R3, and
neglect aerodynamic forces. The vehicle is assumed to actuate a single gimbaled rocket engine to generate a
thrust vector within a feasible range of magnitudes and gimbal angles. We assume that at the landing phase,
the depletion of fuel is insignificant. Therefore, we omit the dynamics of rocket mass. The rocket has the
following dynamics:

ṗI = vI ,

v̇I = 1
m

CI/BTB + gI ,

q̇B/I = 1
2Ω(ωB)qB/I ,

JBω̇B = MB − [ωB×]JBωB.

(54)

Here, the subscription B and I denote a quantity is expressed in the body frame and inertial (world) frame,
respectively; m and JB ∈ R3×3 are the mass and moment of inertia with respect to body frame of the rocket,
respectively. p ∈ R3 and v ∈ R3 are the position and velocity vector of the rocket; ωB ∈ R3 is the angular
velocity vector of the rocket; qB/I = [q0, q1, q2, q3] is the unit quaternion that describes the attitude of rocket
with respect to the inertial frame; TB ∈ R3 is the commanded thrust vector; MB ∈ R3 is the torque applied
to the rocket; CB/I is the direction cosine matrix that encodes the attitude transformation from body frame
to inertia frame and related to qB/I by the following relationship:

19

Under review as submission to TMLR

CB/I =

1 − 2(q2
2 + q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) 1 − 2(q2

1 + q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) 1 − 2(q2
1 + q2

1)

 ,

The inverse transformation is denoted as CI/B = CT
B/I ;

The skew-symmetric matrices [ωB×] and Ω(ωB) are defined as follow:

[ωB×] ≜

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , Ω(ωB) ≜


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 ,

The state and input vectors of the rocket are defined as:

x =
[
p′

I v′
I q′

B/I ω′
B

]′
∈ R13,

u = TB =
[
Tx Ty Tz

]′ ∈ R3,
(55)

Discretization Discretization is done by the following discrete-time form

xt+1 ≈ xt + ∆ · g(xt, ut) ≜ f(xt, ut), (56)

where ∆ is the discretization interval.

D.2 Online Imitation Learning

Data acquisition. The dataset of expert demonstrations is generated by solving an optimal control system
with the true dynamics and control objective parameter θ∗ = {θdyn, θobj} given. We generate a number of
five trajectories, where different trajectories have different initial conditions x0 and time horizons T .

PDP. We employed the PDP in Jin et al. (2020) to solve this problem. The learning rate is set to be
η = 10−4. Five trials were run given random initial θ0.

Inverse KKT method. We choose the inverse KKT method Englert et al. (2017) for comparison because
it is suitable for learning objective functions for high-dimensional continuous-space systems. We adapt
the inverse KKT method, and define the KKT loss as the norm-2 violation of the KKT condition by the
demonstration data:

min
θ,λ1:T

(∥∥∥∥ ∂L

∂x0:T
(x∗

0:T , u∗
0:T −1)

∥∥∥∥2
+
∥∥∥∥ ∂L

∂u0:T −1
(x∗

0:T , u∗
0:T −1)

∥∥∥∥2
)

.

Neural policy cloning. For the neural policy cloning, we directly learn a neural network policy u = µ(x, θ)
from the dataset using supervised learning, that is

min
θ

T −1∑
t=0

∥u∗
t − µ(x∗

t , θ)∥2 (57)

D.3 Online System Identification

Data acquisition. In the system identification experiment, we collect a total number of five trajectories
from systems with dynamics known, wherein different trajectories ξo = {xo

0:T , u0:T −1} have different initial
conditions x0 and horizons T (T ranges from 10 to 20 depending on different environment and task), with
random inputs u0:T −1 drawn from uniform distribution.

20

Under review as submission to TMLR

PDP. We employed the PDP in Jin et al. (2020) to solve this problem. The learning rate is set to be
η = 10−4. Five trials were run given random initial θ0. For the neural objective function case, the learning
rate is set to be η = 10−5.

Pytorch Adam We use Pytorch Adam to learn a neural network f(x, u, θ) to represent the system dynamics,
where the input of the network is state and control vectors, and output is the state of next step. We train
the neural network by minimizing the following residual

min
θ

T −1∑
t=0

∥xo
t+1 − f(xo

t , ut, θ)∥2. (58)

DMDc. The DMDc method Proctor et al. (2016) is a method that based on Koopman theory to reprsent
a nonlinear dynamics with linear dynamics of observables. Observables are basis functions of states. The
observable space has much higher dimension compared to state space. The estimation of the dynamics is
achieved by the following optimization:

min
A,B

T −1∑
t=0

∥xo
t+1 − Axo

t − But∥2. (59)

Learning a neural dynamics. We consider the dynamics of each system (cartpole, quadrotor and rocket)
are represented by a fully-connected feed-forward neural network f̂(xt, ut, θ). The neural network has a layer
structure of (n + m)-2(n + m)-n with tanh activation functions, i.e., there is an input layer with (n + m)
neurons equal to the dimension of state, one hidden layer with 2(n + m) neurons and one output layer with n
neurons. The ξo = {xo

0:T , u0:T −1} obtained previously are used in stage loss. We conducted five trials for
each method with different initial θ.

D.4 Policy Tuning On-the-fly

Neural State Feedback Policy. In this application, we learn a the parameter of a neural state feedback
policy by minimizing given control objective functions. Specifically, we use a fully-connected feed-forward
neural network which has a layer structure of 3n-3n-m with tanh activation functions, i.e., there is an input
layer with 3n neurons equal to the dimension of state, one hidden layer with 3n neurons and one output layer
with m neurons. The policy parameter θ is the neural network parameter. For comparison, we apply the
guided policy search (GPS) method Levine & Abbeel (2014) and iLQR Li & Todorov (2004) to solve the
same problem.

PDP. We employed the PDP in Jin et al. (2020) to solve this problem. The learning rate is set to be η = 10−4

or = 10−6. Five trials were ran given random initial θ0. For the neural objective function case, the learning
rate is set to be η = 10−5.

21

	Introduction
	Related Work
	Contributions

	Problem Formulation
	Main Results
	Online Parameter Estimator
	Gradient Generator
	OCIL Framework
	Convergence Analysis

	Applications to Different Online Learning Modes and Experiments
	Real-time Computational Performance
	Limitations.
	Conclusions
	Proof of Lemma 2
	Proof of Theorem 1
	Scratch for Regret Analysis
	Experiment Details
	System/Environment Setups
	Online Imitation Learning
	Online System Identification
	Policy Tuning On-the-fly

