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ABSTRACT

Random Feature Model (RFM) with a nonlinear activation function is instrumen-
tal in understanding training and generalization performance in high-dimensional
learning. While existing research has established an asymptotic equivalence in
performance between the RFM and noisy linear models under isotropic data as-
sumptions, empirical observations indicate that the RFM frequently surpasses lin-
ear models in practical applications. To address this gap, we ask, “When and how
does the RFM outperform linear models?” In practice, inputs often have addi-
tional structures that significantly influence learning. Therefore, we explore the
RFM under anisotropic input data characterized by spiked covariance in the pro-
portional asymptotic limit, where dimensions diverge jointly while maintaining
finite ratios. Our analysis reveals that a high correlation between inputs and la-
bels is a critical factor enabling the RFM to outperform linear models. Moreover,
we show that the RFM performs equivalent to noisy polynomial models, where
the polynomial degree depends on the strength of the correlation between inputs
and labels. Our numerical simulations validate these theoretical insights, confirm-
ing the performance-wise superiority of RFM in scenarios characterized by strong
input-label correlation.

1 INTRODUCTION

Random Feature Model (RFM) (Rahimi & Recht, 2007) has received significant attention in recent
years due to its compelling theoretical properties and its connections to neural networks. In this
work, we focus on a typical supervised learning framework utilizing the RFM, expressed as

ωTσ(Fx), (1)

where x ∈ Rn is an input vector, F ∈ Rk×n is called the random feature matrix, σ : R → R
is an activation function, and ω ∈ Rk is a vector of learnable parameters. The feature matrix F
is randomly sampled and remains fixed, allowing the RFM to be interpreted as a two-layer neural
network with fixed weights in the first layer. The learning process involves optimizing the following
objective function based on a set of training samples {(xi, yi)}mi=1

ω̂σ := argmin
ω∈Rk

1

m

m∑
i=1

(yi − ωTσ(Fxi))
2 + λ||ω||22, (2)

where λ ∈ R+ is a regularization constant. While the RFM can be studied under various loss
functions, we concentrate on squared loss for simplicity in our theoretical development. The training
error of the RFM with activation function σ is defined as

Tσ :=
1

m

m∑
i=1

(yi − ω̂T
σ σ(Fxi))

2 + λ||ω̂σ||22. (3)

Similarly, one can measure the performance of a trained RFM via the generalization error defined as

Gσ := E
(x,y)

(y − ω̂T
σ σ(Fx))

2. (4)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We study the training and generalization errors of RFM (1) in the “proportional asymptotic limit,”
where the number of training samples m, the input dimension n, and the number of intermediate
features k jointly diverge: m,n, k → ∞ with n/m, n/k ∈ (0,∞). Under an isotropic data assump-
tion, the RFM has been shown to perform equivalent to the following noisy linear model (Montanari
et al., 2019; Gerace et al., 2020; Goldt et al., 2022; Mei & Montanari, 2022; Hu & Lu, 2023):

ωT (µ01+ µ1Fx+ µ∗z), (5)

where 1 is an all-one vector, z ∼ N (0, Ik), and µ0, µ1, µ∗ are constants depending on the activation
function σ as µ0 = E[σ(z)], µ1 = E[zσ(z)], and µ∗ =

√
E[σ(z)2]− µ2

1 − µ2
0 where z ∼ N (0, 1).

The noisy linear model enables the performance characterization of the RFM (Dhifallah & Lu,
2020). It is also useful for studying double-descent phenomenon (Belkin et al., 2019; Geiger et al.,
2020) with regards to loss functions (Mei & Montanari, 2022), activation functions (Wang & Bento,
2022; Demir & Doğan, 2023), and regularization constant (Nakkiran et al., 2021). However, such
a noisy linear model falls short in explaining the empirical performance of the RFM on real-world
data (Ghorbani et al., 2020). This motivates us to investigate the following question:

“Under which conditions does the random feature model outperform linear models?”

The equivalence of the RFM to the noisy linear model is closely tied to the isotropic data assumption,
i.e., x ∼ N (0, In). However, in practice, inputs often exhibit additional structures (Facco et al.,
2017). To address this limitation, we consider spiked covariance data model (Johnstone, 2001; Baik
et al., 2005)

x ∼ N (0, In + θγγT ), y := σ∗

(
ξTx√
1 + θα2

)
, (6)

which introduces anisotropic characteristics due to the structured covariance of x. Here, γ ∈ Rn

serves as a fixed but unknown “spike signal” with ||γ||2 = 1, ξ ∈ Rn represents a fixed but unknown
“label signal” also normalized to one, i.e., ||ξ||2 = 1. The parameter θ, termed “spike magnitude”
scales with the dimension as θ ≍ nβ where β ∈ [0, 1/2), and σ∗ : R → R is a nonlinear target
function. Note that the input of the target function σ∗ is scaled to have unit variance. Additionally,
we define the alignment parameter α := γT ξ, which governs the input-label correlation.

Under the spiked data model, we first establish a “universality” theorem indicating that the RFM
exhibits equivalent performance across two different activation functions if the first two statistical
moments of (σ(Fx), y) are consistent for both activations. Leveraging this theorem, we extend our
analysis to demonstrate that high-order polynomial models perform equivalent to the RFM beyond
traditional linear frameworks (5). Notably, we show that the equivalence to the noisy linear model
still holds provided that at least one of the following is sufficiently small: (i) the cosine similarity
between the rows of F and the γ, (ii) the spike magnitude θ, and (iii) the alignment parameter α. A
precise characterization of these conditions will be detailed in Section 4. Moreover, we introduce a
new equivalence between the RFM and noisy polynomial models, generalizing previous results on
noisy linear models (5). Finally, this framework allows us to compare different activation functions
within the context of spiked data, highlighting how nonlinearity can enhance learning performance
beyond linear models.

Overall, our contributions are as follows:

1. We show the conditions under which the RFM outperforms linear models under anisotropic
data settings, which indicates a key role played by the input-label correlation in data.

2. We establish a theorem that shows high-order polynomial models perform equivalent to the
RFM under spiked covariance data assumption.

3. We relax the isotropic data assumption previously utilized by Hu & Lu (2023) for the
“universality of random features,” which may be of particular interest on its own.

By addressing these aspects, our work not only clarifies when and how RFMs can excel in the
spiked covariance model setting but also enriches the theoretical understanding of their performance
relative to linear models.
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2 RELATED WORK

The RFM has emerged as a vital tool in the realm of machine learning, initially introduced as a
randomized approximation to kernel methods (Rahimi & Recht, 2007). Its significance has grown in
parallel with the development of neural networks, particularly in how both the RFM and the Neural
Tangent Kernel (NTK) offer distinct linear approximations of two-layer neural networks (Ghorbani
et al., 2021). While empirical evidence shows that neural networks often outperform both the RFM
and NTK (Ghorbani et al., 2020), analyzing the RFM provides critical insights into the behavior of
nonlinear models, serving as a bridge toward understanding more complex architectures.

A substantial body of research has focused on the equivalence between the RFM and noisy lin-
ear models with regards to their performances (Montanari et al., 2019; Gerace et al., 2020; Goldt
et al., 2020; 2022; Dhifallah & Lu, 2020; Mei & Montanari, 2022). For instance, Hu & Lu (2023)
demonstrated this equivalence in terms of training and generalization performance using Linde-
berg’s method. Additionally, Montanari & Saeed (2022) showed that nonlinear features could be
substituted with equivalent Gaussian features in empirical risk minimization settings. However,
these studies mainly examined the RFM under isotropic data assumptions, which limits their appli-
cability to real-world scenarios characterized by more complex data structures. Our work extends
these findings by investigating the RFM under anisotropic data conditions, thereby addressing a sig-
nificant gap in the literature. Recent works have indicated that equivalent Gaussian features may
not consistently provide equivalent training and generalization errors for nonlinear models (Gerace
et al., 2022; Pesce et al., 2023). This discrepancy has led researchers to explore alternative feature
representations, including Gaussian mixtures (Dandi et al., 2023b). However, our study diverges
from this line of inquiry by concentrating on identifying equivalent activation functions rather than
seeking alternatives to Gaussian features.

In light of the RFM’s limitations in surpassing linear models, recent research has turned to neural
networks trained with one gradient step as a potential solution to bridge this performance gap (Ba
et al., 2022; Damian et al., 2022). Studies by Ba et al. (2023) and Mousavi-Hosseini et al. (2023)
have explored one-step gradient descent techniques in relation to sample complexity under spiked
covariance data assumption. Furthermore, Moniri et al. (2023) explored neural networks trained
with one gradient step in an isotropic data setting and showed that the update can be characterized
by the appearance of a spike in the spectrum of the feature matrix. Dandi et al. (2023a); Cui et al.
(2024) studied the one-step gradient descent with a higher learning rate in comparison to Moniri
et al. (2023). Ba et al. (2022); Moniri et al. (2023); Dandi et al. (2023a); Cui et al. (2024) also stated
Gaussian equivalence results in terms of training and generalization errors when studying the one
gradient step technique under isotropic Gaussian data. Note that although the aforementioned works
considered feature learning in two-layer neural networks, feature learning for three-layer neural
networks is shown to have better sample complexities than the two-layer case (Nichani et al., 2023;
Wang et al., 2024). While these works primarily focus on surpassing the performance of linear
models through feature learning in neural networks, our research aims to clarify when and how the
RFM can outperform linear models without relying on feature learning.

Additionally, there is an ongoing exploration into deep random features that integrate multiple
layers of random projections interleaved with nonlinearities (Schröder et al., 2023; Bosch et al.,
2023). Research by Zavatone-Veth & Pehlevan (2023) has also examined deep random features
with anisotropic weight matrices using statistical physics techniques. Moreover, studies have inves-
tigated the RFM under polynomial scaling limits where k, n,m → ∞ while maintaining specific
ratios between these parameters, i.e., k/nc1 ,m/kc2 ∈ (0,∞) for some constants c1, c2 > 0 (Hu
et al., 2024), further providing equivalence results for the RFM under the polynomial scaling limit.

3 PRELIMINARIES

Notations We denote vectors and matrices using bold letters, with lowercase letters representing
vectors and uppercase letters representing matrices. Scalars are indicated by non-bold letters. The
notation ||x||2 refers to the Euclidean norm of the vector x while ||F|| denotes to spectral norm
of the matrix F. We use the term polylog k to represent any polylogarithmic function of k. The
symbol P→ indicates convergence in probability. We employ big-O notation, denoted O(.), and
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small-o notation, represented as o(.) with respect to the parameters k, n,m. These notations are

h(k) = O(g(k)) ⇔ lim sup
k→∞

h(k)

g(k)
< ∞, (7)

h(k) = o(g(k)) ⇔ lim
k→∞

h(k)

g(k)
= 0. (8)

It is important to note that h(k) = o(1/polylog k) implies that limk→∞ h(k) polylog k = 0 for
all polylogarithmic functions. We also use the notation θ ≍ nβ to indicate that there exists some
constants C1, C2 > 0 such that C1n

β ≤ θ ≤ C2n
β . Finally, we denote the i-th Hadamard power of

a vector x as x◦i.

Assumptions We establish our results based on the following assumptions.

(A.1) The spike and label signal vectors γ, ξ ∈ Rn are deterministic and ||γ||2 = ||ξ||2 = 1.

(A.2) x ∼ N (0, In + θγγT ) for spike magnitude θ ≍ nβ where β ∈ [0, 1/2).

(A.3) y := σ∗

(
ξTx√
1+θα2

)
where σ∗ : R → R is a function satisfying |σ∗(x)| < C(1 + |x|K) for

all x ∈ R and some constants C > 0, K ∈ Z+.

(A.4) The number of training samples m, dimension of input vector n and number of intermediate
features k jointly diverge: m,n, k → ∞ with n/m, n/k ∈ (0,∞).

(A.5) F := [f1, f2, . . . , fk]
T where fi ∼ N (0, 1

n+θ In). Note that the covariance of fi is selected
such that Ex,fi [(f

T
i x)2] = 1.

(A.6) The activation function σ : R → R is an odd function satisfying |σ(x)| < C(1 + |x|K) for
all x ∈ R and some constants C > 0, K ∈ Z+.

Discussion of Assumptions The assumptions outlined in (A.1)-(A.3) establish the foundational
framework for our data model and setup. Specifically, (A.1) describes the general characteristics of
the spike and label signals, while (A.2) introduces the spike magnitude θ. Although there may be
potential to extend the range of θ in future work, our current proofs necessitate that β < 1/2. This
restriction is crucial for ensuring that the mathematical properties we derive remain valid within the
specified limits. In (A.3), we scale the input of the target function σ∗ to get unit variance. This
scaling not only simplifies our proofs but also aligns with standard practices in theoretical analysis.
Assumption (A.4) specifies the proportional asymptotic limit, which is a critical aspect of our study.
By requiring that the dimensions jointly diverge while maintaining finite ratios, we can effectively
analyze the behavior of the RFM in high-dimensional settings. In (A.5), we detail the distribution
of the feature matrix F, emphasizing that the 1/(n+ θ) scaling is vital for our results to hold. This
specific scaling ensures that the covariance structure of F is appropriately calibrated with respect
to both the input data and the spike magnitude, facilitating accurate performance characterization.
Assumption (A.6) pertains to the properties of the activation function σ, which warrants further
elaboration. Previous research by Hu & Lu (2023) established a performance-wise equivalence be-
tween the RFM and noisy linear models under isotropic data conditions, relying on the premise that
σ is an odd function with bounded first, second, and third derivatives. In our case, (A.6) implies the
derivatives of σ(x) bounded by polylog k if |x| ≤ polylog k, which happens with high probability
for x ∼ N (0, 1). Finally, it is noteworthy that while ReLU (9) does not conform to the odd func-
tion assumption stipulated in (A.6), empirical evidence suggests that our findings remain valid even
when using ReLU as an activation function.

Activation Functions for Numerical Results In our numerical simulations, we employ three
widely used activation functions: ReLU (Rectified Linear Unit), tanh (hyperbolic tangent), and
Softplus. The mathematical definitions of these activation functions are as follows:

σReLU (x) := max(0, x), σtanh(x) :=
e2x − 1

e2x + 1
, σSoftplus := log(1 + ex). (9)

4
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4 MAIN RESULTS

In this section, we describe our main theoretical results, significantly enhancing the understanding
of RFM under structured data conditions. In Section 4.1, we introduce a new “universality” theorem
that establishes the performance-wise equivalence of the RFM when utilizing two distinct activa-
tion functions, σ and σ̂. This theorem asserts that if the first two statistical moments of the pairs
(σ(Fx), y) and (σ̂(Fx), y) are matched, the training and generalization performance of the RFM
will remain equivalent across both functions. Building on this foundation, Section 4.2 explores
the scenario where σ̂ is represented as a finite-degree Hermite expansion of σ, demonstrating that
the RFM retains equivalent performance regardless of the chosen activation function. Notably, we
reveal that the degree of this expansion is intricately tied to the input-label correlation, offering in-
sights into how data structure influences model performance. In Section 4.3, we establish conditions
for the equivalence between the RFM and a noisy linear model, providing a crucial corollary to our
earlier findings. When these conditions are not satisfied, we identify that a high-order polynomial
model serves as an equivalent to the RFM, a topic further elaborated in Section 4.4.

4.1 UNIVERSALITY OF RANDOM FEATURES UNDER SPIKED DATA

Here, we extend the universality laws established by Hu & Lu (2023) for RFM to encompass spiked
covariance data. The concept of “universality of random features” implies that one can replace
σ(Fx) in the problem with an equivalent Gaussian vector, as articulated in equation (5), without
compromising the training and generalization performance of the model. While Hu & Lu (2023)
demonstrated this result under mild assumptions regarding the feature matrix F, the nonlinearity σ,
and the loss function, their findings were constrained by an isotropic data assumption. To address
these limitations, we propose a new universality theorem tailored for scenarios involving spiked
covariance data, as outlined in equation (6).
Theorem 1. Let σ(x), σ̂(x) be two activation functions satisfying (A.6). Suppose that assumptions
(A.1)-(A.6) given in Section 3 hold. If∥∥∥∥Ex [σ(Fx)σ(Fx)T ]− E

x
[σ̂(Fx)σ̂(Fx)T ]

∥∥∥∥ = o (1/polylog k) , (10)∥∥∥∥ E
(x,y)

[σ(Fx)y]− E
(x,y)

[σ̂(Fx)y]

∥∥∥∥ = o (1/polylog k) , (11)

are satisfied, then

(i) the training error Tσ of the RFM with activation σ, and the training error Tσ̂ of the RFM
with activation σ̂, both converge in probability to the same value eT ≥ 0,

(ii) the corresponding generalization errors Gσ and Gσ̂ also converge in probability to the same
value eG ≥ 0 under additional assumptions (A.7) and (A.8) provided in Appendix A.

Proof. We provide a proof in Appendix A.

Proof Approach We follow the proof technique used by Hu & Lu (2023). First, we define a
perturbed training objective that includes additional terms related to the generalization error. Then,
we bound the expected difference in the perturbed training objective resulting from replacing σ(Fxi)
with σ̂(Fxi) for each training sample xi, following the principles of Lindeberg’s method (Lindeberg,
1922; Korada & Montanari, 2011).

A key advancement of our work is encapsulated in Theorem 1, which establishes the equivalence of
the RFM across two different activation functions. This result is notably more general than previous
findings that focused solely on the equivalence of specific models. Specifically, Theorem 1 asserts
that substituting the activation function σ with σ̂ does not impact the training and generalization
performance of the RFM, provided that conditions (10) and (11) are satisfied. In the subsequent
sections, we will leverage this theorem to identify models that are equivalent to the RFM and outline
the conditions necessary for these equivalences to hold, thereby broadening the applicability of our
findings in various contexts.

5
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4.2 NOISY POLYNOMIAL MODELS EQUIVALENT TO THE RANDOM FEATURE MODEL

Now, we consider generalizing the equivalent noisy linear model to equivalent high-order polyno-
mial models by utilizing Theorem 1. To achieve this, we leverage Hermite polynomials (O’Donnell,
2014, Chapter 11.2). For i ∈ Z+, i-th Hermite polynomial is defined as

Hi(x) := (−1)iex
2/2 di

dxi
e−x2/2 (12)

for any x ∈ R. There are two important properties of Hermite polynomials. First, they are orthogo-
nal with respect to Gaussian measure, so Ez∼N (0,1)[Hi(z)Hj(z)] = 0 for i ̸= j. Second, they form
an orthogonal basis of the Hilbert space of functions σ : R → R satisfying Ez∼N (0,1)[σ(z)

2] < ∞.
This means that the function σ(x) can be expressed as an infinite sum of Hermite polynomials as

σ(x) =

∞∑
i=0

1

i!
µiHi(x), with µi := E

z∼N (0,1)
[Hi(z)σ(z)]. (13)

This sum is also known as “Hermite expansion” and µi is called i-th Hermite coefficient. Since
we are working with Gaussian random variables, Hermite expansion simplifies the analysis. In-
deed, we can construct a performance-wise equivalent activation function using the Hermite expan-
sion. Specifically, the following theorem states that the RFM with activation function σ(x) performs
equivalent to the RFM with σ̂l(x), which is a finite-degree Hermite expansion with additional noise.
Theorem 2. Let σ be any activation function satisfying (A.6). Define another activation function

σ̂l(x) :=

 l−1∑
j=0

1

j!
µjHj(x)

+ µ∗
l z with z ∼ N (0, 1), (14)

where µj := Ez∼N (0,1)[Hj(z)σ(z)] and µ∗
l :=

√
Ez∼N (0,1)[σ(z)2]−

∑l−1
j=0 µ

2
j/(j!).

Suppose that assumptions (A.1)-(A.6) given in Section 3 hold. If

η := max
1≤i≤k

∣∣∣∣ (ξ + θαγ)T fi√
1 + θα2

∣∣∣∣ ≤ C

n1/l
, for some C > 0 and some l ∈ Z+, (15)

is satisfied, then

(i) the training error Tσ of the RFM with activation σ, and the training error Tσ̂l
of the RFM

with activation σ̂l, both converge in probability to the same value eT ≥ 0,

(ii) the corresponding generalization errors Gσ and Gσ̂l
also converge in probability to the

same value eG ≥ 0 under additional assumptions (A.7) and (A.8) provided in Appendix A.

Proof. In Appendix C, we show∥∥∥∥Ex [σ(Fx)σ(Fx)T ]− (µ2
1F(In + θγγT )FT + µ2

∗Ik)

∥∥∥∥ = o (1/polylog k) , (16)

for any σ satisfying (A.6), µ1 = E[zσ(z)] and µ∗ =
√
E[σ(z)2]− µ2

1 with z ∼ N (0, 1). By
definition, we have E[zσ(z)] = E[zσ̂l(z)]. One can easily show E[σ(z)2] = E[σ̂l(z)

2]. Therefore,
(16) holds for σ and σ̂l with same µ1 and µ∗ values. Using (16) and triangle inequality, we get∥∥∥∥Ex [σ(Fx)σ(Fx)T ]− E

x
[σ̂l(Fx)σ̂l(Fx)

T ]

∥∥∥∥ = o (1/polylog k) . (17)

Similarly, in Appendix D, we prove∥∥∥∥ E
(x,y)

[σ(Fx)y]− E
(x,y)

[σ̂l(Fx)y]

∥∥∥∥ = o (1/polylog k) , (18)

when |η| = O(n−1/l) for some l ∈ Z+ and all i ∈ {1, . . . , k}. Finally, using Theorem 1 with (17)
and (18), we reach the statement of the theorem.
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(a) Percentage difference between the
generalization errors of the RFM and the

noisy linear model (5). The red line is
predicted by Corollary 3.

(b) Generalization errors of the RFM
and the corresponding noisy linear

model (5) for α = O(1/
√
n)

(misaligned) and θ = n1/2.

Figure 1: When does the noisy linear model (5) performs equivalent to the RFM under spiked data?
Left: the boundary of the equivalence with respect to spike magnitude θ and alignment α (controlling
the input-label correlation). Right: an example case where the equivalence holds. For both of these
figures, we use σ∗ = σReLU , λ = 10−2, n = 400 and m = 500. The average of 50 Monte Carlo
runs (numerical simulations) is plotted.

Theorem 2 specifies a finite-degree polynomial function (14) that is equivalent to any given activa-
tion function σ(x). Furthermore, the degree of the polynomial is related to η defined in (15). It is
important to note that η is related to the input-label correlation, which can be decomposed as

E[(x− E[x])(y − E[y])] = µ̃1
ξ + θαγ√
1 + θα2

+
∑
j>1

µ̃j E
x
[xHj(ξ

Tx)], (19)

where µ̃j := Ez∼N (0,1)[σ∗(z)Hj(z)] denotes j-th Hermite coefficient of σ∗. Here, η depends on
(ξ + θαγ)/

√
1 + θα2, which is the first term in the decomposition of the input-label correlation

(19). Additionally, a higher value of ∥ξ + θαγ∥/
√
1 + θα2 implies a greater value of η for any F

sampled independent of γ and ξ.

In the following sections, we will first examine the case where the equivalent activation function in
equation (14) is linear, effectively reducing the model to the noisy linear model described in equation
(5). Subsequently, we will focus on the more general case where the equivalent activation function
is represented as a high-order polynomial.

4.3 CONDITION OF THE EQUIVALENCE TO THE NOISY LINEAR MODEL

In this section, we explore the “linear regime” of the RFM and delineate the conditions under which
it aligns with the noisy linear model in the context of spiked data. Specifically, we examine the
substitution of the activation function σ(x) with σ̂1(x) := (µ0 + µ1x + µ∗z) for z ∼ N (0, 1).
This transformation effectively simplifies the model to that of a noisy linear model, as described in
equation (5). The conditions necessary for establishing equivalence between the noisy linear model
and the RFM are articulated in the following corollary, which emerges directly from Theorem 2.

Corollary 3. The noisy linear model (5) performs equivalent to the RFM with activation σ in terms
of training and generalization errors if η = O(n−1/2) in (15).

Figure 1a vividly illustrates the disparity in generalization errors between the RFM and the noisy
linear model across various degrees of alignment α and different values of spike magnitude θ. The
red line delineates the boundary of equivalence, as established by Corollary 3. Given that fi is
sampled independently of γ and ξ , we observe that both |γT fi| and |ξT fi| scale as O(n−1/2).
Consequently, the expression |θα/

√
1 + θα2| = O(1) leads to the conclusion that η = O(n−1/2),

which fulfills the condition outlined in Corollary 3.

As an illustrative example, we examine a misaligned scenario where α := ξTγ = O(n−1/2). This
condition is likely to occur when both γ and ξ are independently and identically sampled from
N (0, In) and are scaled such that ||γ||2 = ||ξ||2 = 1. Under these circumstances, we find that
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(a) σ∗ = σReLU (b) σ∗ = σtanh

Figure 2: Equivalence to the noisy polynomial model (20) when the noisy linear model (5) is not
enough. Generalization errors of the RFM, the noisy linear model, and the noisy polynomial model
for θ = n1/2 and α = 1 (aligned). λ = 10−3, n = 400 and m = 500. An average of 50 Monte
Carlo runs is shown.

η = O(n−1/2) with high probability for values of θ that scale as θ ≍ nβ , where β ∈ [0, 1/2).
Therefore, the RFM demonstrates performance equivalence to the noisy linear model with high
probability in this context. Figure 1b visually represents this relationship, showcasing the training
and generalization errors of both the RFM and the noisy linear model. Notably, the results indicate
that this performance-wise equivalence is maintained across different activation functions.

4.4 BEYOND THE NOISY LINEAR MODEL: HIGH-ORDER POLYNOMIAL MODELS

In this section, we explore the performance-wise equivalence of the RFM to the noisy polynomial
model beyond the linear regime. Specifically, we focus on the model represented by

ωT σ̂l(Fx), (20)

for l > 2, where σ̂l is the equivalent polynomial function defined in (14).

If the condition in Corollary 3 does not hold, the equivalence between the RFM and the noisy lin-
ear model is no longer applicable. In this case, Theorem 2 provides high-order polynomial models
(20) equivalent to the RFM. Thus, we delve into the “nonlinear regime” of the RFM under spiked
data conditions. While much of the existing theoretical literature has concentrated on the linear
regime of the RFM, Theorem 2 suggests that the nonlinear components of random features become
increasingly significant when the spike signal γ and label signal ξ are aligned, indicating a strong
input-label correlation. This relationship is illustrated in Figure 2, which demonstrates that the gen-
eralization errors of the RFM closely match those of the equivalent polynomial model in the aligned
case (α := γT ξ = 1). Notably, although the equivalence between the RFM and the noisy linear
model may not hold due to violated conditions for linear equivalence, it is essential to recognize that
such equivalence can still be achieved depending on the choice of activation function σ and label
function σ∗. This nuanced understanding is further characterized in the following remark.
Remark 4. When we assume that η = O(n−1/4), this allows the equivalent activation function to
be represented as a third-degree polynomial. Let µ0, µ1, µ2, µ3 and µ̃0, µ̃1, µ̃2, µ̃3 denote the first
four Hermite coefficients (13) of the functions σ and σ∗, respectively. In this case, we can express
E[σ̂l(f

T
i x)y] =

∑3
j=0

1
j!µj µ̃jη

j
i due to (112). This formulation reveals that the noisy polynomial

model represented in (20) simplifies to a second-degree model if the product µ3µ̃3 = 0. Further-
more, it reduces to the noisy linear model described in (5) under the conditions that both µ2µ̃2 = 0
and µ3µ̃3 = 0. These relationships highlight how specific properties of the Hermite coefficients
dictate the behavior of the model, illustrating the nuanced interplay between activation functions
and their corresponding polynomial representations.

The implications of Remark 4 are vividly illustrated in Figure 2. In 2a, we observe that the noisy
linear model suffices for the tanh activation function in terms of equivalence, while a high-order
polynomial model is necessary for the ReLU activation, given that σ∗ is ReLU. Conversely, 2b
showcases the same simulation with σ∗ as tanh, demonstrating that a noisy polynomial model is
essential to achieve equivalence to the RFM for tanh activation, whereas the noisy linear model
remains adequate for ReLU activation. This distinction arises from the specific properties of the
Hermite coefficients: for tanh, we have µ2 = 0 and µ3 ̸= 0, while for ReLU, µ2 ̸= 0 and µ3 = 0.
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(a) impact of number of samples
(α = 1 and θ = n1/2)

(b) impact of alignment
(m = 500 and θ = n1/2)

(c) impact of θ ≍ nβ

(m = 500 and α = 1)

Figure 3: Comparison of activation functions - generalization errors of the RFM with different
nonlinearities (linear, polynomial, Softplus, ReLU) with respect to number of samples (on the left),
alignment (on the center), and spike magnitude θ ≍ nβ (on the right). Here, n = 400, k = 500,
λ = 10−2, and σ∗ = σReLU . We limit the degree of the equivalent polynomial model (14) to a
maximum of l = 4 for numerical stability. We plot the average of 50 Monte Carlo runs.

Together, Theorem 2, Remark 4, and Figure 2 underscore the critical influence of the label generation
process on the study of equivalent models.

5 NONLINEARITY IN RFM BENEFITS HIGH INPUT-LABEL CORRELATION

In this section, we conduct a comparative analysis of the RFM employing various activation func-
tions, focusing specifically on their generalization performance. To establish a benchmark, we first
consider the following “optimal” linear activation function for the RFM:

σlinear(x) = a0 + a1x, (21)

where a0, a1 ∈ R are coefficients determined numerically to minimize the generalization error. This
“optimal” linear activation serves as a critical reference point for understanding the conditions under
which the RFM surpasses traditional linear models in performance.

According to Theorem 2, the RFM with any activation function that meets our assumptions performs
equivalently to a noisy polynomial model. Notably, we find that η = O(n−1/4) in (15) holds with
high probability when β < 1/2 for θ ≍ nβ and F is sampled independently of γ and ξ. Therefore, in
this context, we can define the following third-degree polynomial as an optimal activation function:

σpolynomial(x) = b0 + b1x+
1

2
b2(x

2 − 1) +
1

6
b3(x

3 − 3x) + b4z, (22)

where z ∼ N (0, 1) and the coefficients b0, b1, b2, b3, b4 ∈ R are determined numerically to mini-
mize the generalization error, akin to the approach taken for the optimal linear activation in (21).

We proceed to compare the generalization performance of the RFM across various activation func-
tions: linear (21), polynomial (22), ReLU (9), and Softplus (9). Figure 3a presents this comparison
in relation to the number of training samples. Notably, the generalization error of the RFM aligns
closely with that of the equivalent polynomial model, as predicted by Theorem 2. Additionally,
we observe the double-descent phenomenon (Belkin et al., 2019; Geiger et al., 2020), characterized
by an initial decrease in generalization error, followed by an increase, and then a second decrease
as the number of samples (or features) increases, particularly for the ReLU and Softplus activation
functions. In contrast, this phenomenon is absent for the linear (21) and polynomial (22) activation
functions, as their coefficients are numerically optimized. Similar findings have been documented
under isotropic data conditions (Wang & Bento, 2022; Demir & Doğan, 2023). Interestingly, the
RFM with linear activation outperforms both ReLU and Softplus in the mid-range of k/m due to
the double-descent behavior exhibited by those two functions. However, throughout the entire range
of k/m, the polynomial RFM consistently demonstrates lower generalization error than its counter-
parts, highlighting its superior performance and robustness across different scenarios.

Next, we investigate the impact of alignment, defined as α := γT ξ controlling the input-label corre-
lation, on the generalization performance of the RFM across the aforementioned activation functions
in Figure 3b. In the misaligned scenario (α ≤ 0.3), we observe relatively high generalization errors,
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(a) Original Inputs (b) Inputs with Gaussian Noise

Figure 4: CIFAR-10 classification (airplane vs. automobile) - Impact of input-label correlation.
Input-label correlation is controlled by flipping the true labels. Here, the highest value of the corre-
lation norm corresponds to the case with true labels, while the smallest value corresponds to random
labels, and the rest is interpolation in between. l = 5, λ = 10−1, k = n = 3072, and m = 4000.
An average of 50 Monte Carlo runs is shown. Experimental details are explained in Appendix G.

with the errors for both linear and polynomial activation functions closely aligned. Specifically, for
the range 0.3 < α ≤ 0.6, we note a gradual separation in the generalization errors of the linear
and polynomial functions. In cases of high alignment (α > 0.6), the polynomial RFM distinctly
outperforms the linear RFM, achieving significantly lower generalization errors. This observation
corroborates our theoretical predictions that a strong input-label correlation—facilitated by high
values of α —enables the RFM to outperform linear models.

In Figure 3c, we examine the influence of the spike magnitude scale, denoted as θ, on the general-
ization errors of the RFM across the previously discussed activation functions. Notably, we observe
that generalization errors for all activation functions decline as the scale of the spike magnitude in-
creases. In the low spike magnitude regime (β < 0.4), both the RFM with linear and polynomial
activation functions yield similar generalization errors, which remain lower than those of the RFM
utilizing ReLU and Softplus activations. As we transition into the high spike magnitude regime
(β ≥ 0.4), the polynomial RFM consistently outperforms the linear RFM, aligning with our ex-
pectations. Although our analysis is confined to β < 0.5, we find that the generalization errors for
ReLU and Softplus continue to align with those of their equivalent noisy polynomial models, even at
higher values of β. Importantly, our findings indicate that RFM with nonlinear activation functions
surpasses the optimal linear model in scenarios characterized by high spike magnitudes.

To illustrate how our results translate to real-world datasets, we study the effect of input-label cor-
relation on the CIFAR-10 dataset Krizhevsky et al. (2009). Figure 4a illustrates our experimental
results in this case. We observe that the noisy polynomial model performs equivalent to the RFM
while the equivalence of the RFM to the linear model depends on factors like input-label correlation,
input covariance, and activation function. To isolate the impact of the input-label correlation, we add
standard Gaussian noise to the data such that the linear model performs equivalent to the RFM for
the case of weak input-label correlation. For this case, Figure 4b shows our results when the input
has additional Gaussian noise. We see that the generalization errors of the RFM and the linear model
are gradually separated as the input-label correlation is increased, confirming our insights.

6 CONCLUSION

In conclusion, this study explored the random feature model within the context of spiked covariance
data, establishing a significant “universality” theorem that underpins our findings. We demonstrated
that a strong correlation between inputs and labels is essential for the RFM to surpass linear models
in generalization performance. Additionally, we established that the RFM achieves performance
equivalent to noisy polynomial models, with the polynomial degree influenced by the magnitude of
the input-label correlation. Our numerical simulations corroborated these theoretical findings, high-
lighting the RFM’s superior effectiveness in environments with strong input-label correlation. This
work highlights the critical role of data modeling in understanding and enhancing model perfor-
mance. Moving forward, we believe that extending the data model presents a promising avenue for
future research, allowing for deeper exploration of complex relationships and further optimization
of high-dimensional learning strategies.
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A PROOF OF UNIVERSALITY OF RANDOM FEATURES FOR THE SPIKED DATA

Here, we provide a proof of Theorem 1 by adapting the proof used by Hu & Lu (2023). For a
given set of training samples {(xi, yi)}mi=1, let R := [r1, r2, . . . , rm]T where ri := σ(Fxi) for all
i ∈ {1, 2, . . . ,m}. For a given R, we then introduce the following perturbed optimization related to
the original problem:

ΦR(τ1, τ2) := inf
ω∈Rk

{
m∑
i=1

(
ωT ri − yi

)2
+Q(ω)

}
, (23)

where Q(ω) := mλ||ω||22 + τ1kω
TΣxω + τ2kω

TΣxy with Σx := E(x,y)[σ(Fx)σ(Fx)
T ] and

Σxy := E(x,y) [σ(Fx)y]. Here, Q(ω) is a function of τ1, τ2 (in addition to ω) but we do not
include them in the notation for simplicity. Note that ΦR(0, 0)/m is equal to the training error (Tσ)
of the original problem (3). The additional terms in Q(ω) are related to the generalization error
and we discuss them later. Since we are interested in two different functions σ and σ̂, we define
A := [a1,a2, . . . ,am]T and B := [b1,b2, . . . ,bm]T where ai := σ(Fxi) and bi := σ̂(Fxi) for
all i ∈ {1, 2, . . . ,m}. Then, the training error Tσ for the RFM with activation σ, and the training
error Tσ̂ for the case of activation σ̂ converge in probability to the same value eT ≥ 0 if the following
holds

ΦA(0, 0)

m

P→ eT and
ΦB(0, 0)

m

P→ eT . (24)

Since ΦR(0, 0)/m = (k/m)(ΦR(0, 0)/k) and (k/m) ∈ (0,∞) by assumption (A.4), we focus on
ΦR(0, 0)/k for the rest of the proof in order to write the bounds in terms of k only.

Now, we describe how we handle the generalization error. We introduce τ1kω
TΣxω + τ2kω

TΣxy

into Q(ω) to be used in the calculation of the generalization error. Before describing the relationship
between the additional terms and the generalization error, we need the following two additional
assumptions for the study of generalization error.

Additional Assumptions for Generalization Error

(A.7) There exists τ∗ = O(1/
√
k) and s ∈ (0,∞) such that Q(ω)/m is s-strongly convex for

all τ1, τ2 ∈ (−τ∗, τ∗).

(A.8) There exists a limiting function q∗(τ1, τ2) such that ΦR(τ1, τ2)/k
P→ q∗(τ1, τ2) for all

τ1, τ2 ∈ (−τ∗, τ∗). Furthermore, the partial derivatives of q∗(τ1, τ2) exist at τ1 = τ2 = 0,
denoted as ∂

∂τ1
q∗(0, 0) = ρ∗ and ∂

∂τ2
q∗(0, 0) = π∗.

Assumption (A.7) is required to keep the perturbed objective (23) convex and bound the norm of
optimal ω of (23). Based on the assumption (A.8), the generalization error of the RFM with σ can
be specified as follows Gσ

P→ ρ∗ − 2π∗ + Ey[y
2]. Furthermore, Lemma 10 in Appendix E states

that the generalization error Gσ for the RFM with activation σ and the generalization error Gσ̂ for
the case of activation σ̂ converge in probability to the same value eG ≥ 0 if the following holds

ΦA(τ1, τ2)

k

P→ ϕ and
ΦB(τ1, τ2)

k

P→ ϕ, (25)

for any ϕ ∈ R and any τ1, τ2 ∈ (−τ∗, τ∗). The rest of this appendix shows that (25) holds, which
then implies the statement of Theorem 1. To show the convergence in probability (25), we take
advantage of a test function φ(x). Specifically, Lemma 11 in Appendix E states that (25) holds if∣∣∣∣Eφ

(
1

k
ΦA

)
− Eφ

(
1

k
ΦB

)∣∣∣∣ ≤ max {||φ||∞, ||φ′||∞, ||φ′′||∞}κk, (26)
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for some κk = o(1) and every bounded test function φ(x) which has bounded first two derivatives.
From now on, we use ΦR to denote ΦR(τ1, τ2). We can continue as follows∣∣∣∣Eφ(1

k
ΦA

)
− Eφ

(
1

k
ΦB

)∣∣∣∣ ≤ E
∣∣∣∣E\F

[
φ

(
1

k
ΦA

)]
− E\F

[
φ

(
1

k
ΦB

)]∣∣∣∣ ,
= E

[∣∣∣∣E\F

[
φ

(
1

k
ΦA

)]
− E\F

[
φ

(
1

k
ΦB

)]∣∣∣∣ (1A(F ) + 1Ac(F ))

]
,

≤ sup
F∈A

∣∣∣∣E\F

[
φ

(
1

k
ΦA

)]
− E\F

[
φ

(
1

k
ΦB

)]∣∣∣∣+ 2∥φ∥∞P (Ac) ,

(27)

where E\F [·] denotes the conditional expectation for a fixed feature matrix F and 1A(F ) is a
indicator function (1 if F ∈ A). We refer to A as the admissible set of feature matrices defined
in Appendix B. We also have P (Ac) = o(1), proof of which is also given in Appendix B. Now, we
need to show

sup
F∈A

∣∣∣∣E\Fφ

(
1

k
ΦA

)
− E\Fφ

(
1

k
ΦB

)∣∣∣∣ ≤ max {∥φ′∥∞ , ∥φ′′∥∞}κk, (28)

for some κk = o(1). To find a useful bound for (28), we interpolate the path from ΦA to ΦB

following Lindeberg’s method (Lindeberg, 1922; Korada & Montanari, 2011)

Φt := min
ω∈Rk

{
t∑

i=1

(
ωTbi − yi

)2
+

m∑
i=t+1

(
ωTai − yi

)2
+Q(ω)

}
, (29)

ω̂t := argmin
ω∈Rk

{
t∑

i=1

(
ωTbi − yi

)2
+

m∑
i=t+1

(
ωTai − yi

)2
+Q(ω)

}
, (30)

for 0 ≤ t ≤ m. Then,∣∣∣∣E\Fφ

(
1

k
ΦA

)
− E\Fφ

(
1

k
ΦB

)∣∣∣∣ ≤ m∑
t=1

∣∣∣∣E\Fφ

(
1

k
Φt

)
− E\Fφ

(
1

k
Φt−1

)∣∣∣∣ , (31)

due to triangle inequality. Therefore, we focus on showing the following∣∣∣∣E\Fφ

(
1

k
Φt

)
− E\Fφ

(
1

k
Φt−1

)∣∣∣∣ ≤ max {∥φ′∥∞ , ∥φ′′∥∞} κk

k
, (32)

since k/m ∈ (0,∞). Here, Φt and Φt−1 can be seen as perturbations of a common “leave-one-out”
problem defined as

Φ\t := min
ω∈Rk

{
t−1∑
i=1

(
ωTbi − yi

)2
+

m∑
i=t+1

(
ωTai − yi

)2
+Q(ω)

}
, (33)

ω̂\t := argmin
ω∈Rk

{
t−1∑
i=1

(
ωTbi − yi

)2
+

m∑
i=t+1

(
ωTai − yi

)2
+Q(ω)

}
. (34)

Note that t-th sample is left out in the definition of Φ\t and ω\t. Since Φt ≈ Φ\t, we apply Taylor’s
expansion around Φ\t

φ

(
1

k
Φt

)
= φ

(
1

k
Φ\t

)
+

1

k
φ′
(
1

k
Φ\t

)(
Φt − Φ\t

)
+

1

2k2
φ′′(ζ)

(
Φt − Φ\t

)2
, (35)

where ζ is some value that lies between 1
kΦt and 1

kΦ\t. Similarly, applying Taylor’s expansion to
φ (Φt−1) around Φ\t, and then subtracting it from the last equation, we get∣∣∣∣∣E\F

[
φ

(
1

k
Φt

)]
− E\F

[
φ

(
1

k
Φt−1

)] ∣∣∣∣∣
≤

∥φ′(x)∥∞
k

E\F |Et (Φt − Φt−1)|+
∥φ′′(x)∥∞

2k

(
E\F

(
Φt − Φ\t

)2
+ E\F

(
Φt−1 − Φ\t

)2)
k

,

(36)
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where Et denotes the conditional expectation over the random vectors {at, bt} associated with the
t-th training sample, while {ai, bi}i ̸=t and F are fixed.

To bound the terms on the right side of (36), we first define a surrogate optimization problem:

Ψt(r) := Φ\t + min
ω∈Rk

{
1

2

(
ω − ω̂\t

)T
H\t

(
ω − ω̂\t

)
+
(
ωT r− yt

)2}
, (37)

where

H\t :=2

t−1∑
i=1

bib
T
i + 2

m∑
i=t+1

aia
T
i +∇2Q

(
ω̂\t
)

(38)

is the the Hessian matrix of the objective function Φ\t evaluated at ω̂\t. Due to Lemma 12 in
Appendix E, we have Φt−1 = Ψt(at) and Φt = Ψt(bt), which makes Ψt(r) particularly interesting.
We continue by simplifying Ψt(r) as follows:

Ψt(r) : = Φ\t + min
ω∈Rk

{
1

2

(
ω − ω̂\t

)T
H\t

(
ω − ω̂\t

)
+
(
ωT r− yt

)2}
, (39)

= Φ\t +min
τ

min
rT (ω−ω̂\t)=τ

{
1

2

(
ω − ω̂\t

)T
H\t

(
ω − ω̂\t

)
+
(
ω̂T

\tr+ τ − yt

)2}
, (40)

= Φ\t +min
τ

{
τ2

2νt(r)
+
(
ω̂T

\tr+ τ − yt

)2}
, with νt(r) := rTH−1

\t r, (41)

= Φ\t +

(
ω̂T

\tr− yt

)2
2νt(r) + 1

, (42)

≤ Φ\t +
(
ω̂T

\tr− yt

)2
, (43)

where the inequality in the last line is achieved by using τ = 0 in (41) while the rest of the steps are
trivial. Next, the following is due to Lemma 13 in Appendix E

max
{
E\F

(
Ψt (bt)− Φ\t

)2
,E\F

(
Ψt (at)− Φ\t

)2} ≤ k1−ϵ polylog k, (44)

which holds uniformly over F ∈ A and t ∈ {1, 2, . . . ,m} for some ϵ > 0 satisfying θ2 ≤ n1−ϵ.
Then, we can reach

1

k
E\F

(
Φt − Φ\t

)2
=

1

k
E\F

(
Ψt (bt)− Φ\t

)2
= o(1), (45)

and similarly,

1

k
E\F

(
Φt−1 − Φ\t

)2
=

1

k
E\F

(
Ψt (at)− Φ\t

)2
= o(1). (46)

Next, by Lemma 12 and equation (41), we have

E\F |Ek (Φt − Φt−1)| = E\F |Et [Ψt (bt)−Ψt (at)]| , (47)

= E\F

∣∣∣∣∣∣∣Et


(
ω̂T

\tbt − yt

)2
2νt(bt) + 1

−

(
ω̂T

\tat − yt

)2
2νt(at) + 1


∣∣∣∣∣∣∣ , (48)

≤ 1

2ν̄t + 1
E\F

∣∣∣∣Et

[(
ω̂T

\tbt − yt

)2
−
(
ω̂T

\tat − yt

)2]∣∣∣∣+∆t(at) + ∆t(bt), (49)

where ν̄t := Et νt(at) and ∆t(r) is defined as

∆t(r) := E\F

∣∣∣∣Et

(
1

2νt(r) + 1
− 1

2ν̄t + 1

)(
ω̂T

\tr− yt

)2∣∣∣∣ , (50)
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for which the following is expected to hold

max {∆t(at),∆t(bt)} = o(1), (51)

due to the concentration of νt(at) and νt(bt) around ν̄t (Lemma 17) and the fact that 1
2ν̄t+1 ≤ C

for some C > 0 by (43). Next, we bound the remaining term in (49) as

E\F

∣∣∣∣Et

[(
ω̂T

\tbt − yt

)2]
− Et

[(
ω̂T

\tat − yt

)2]∣∣∣∣ , (52)

= E\F

∣∣∣∣ω̂T
\t

(
E
t
[btb

T
t ]− E

t
[ata

T
t ]

)
ω̂\t − 2ω̂T

\t

(
E
t
[btyt]− E

t
[atyt]

)∣∣∣∣ (53)

(a)

≤ E\F

∣∣∣∣ω̂T
\t

(
E
t
[btb

T
t ]− E

t
[ata

T
t ]

)
ω̂\t

∣∣∣∣+ 2E\F

∣∣∣∣ω̂T
\t

(
E
t
[btyt]− E

t
[atyt]

)∣∣∣∣ (54)

(b)

≤ E\F
∥∥ω̂\t

∥∥2 E\F

∥∥∥∥Et [btb
T
t ]− E

t
[ata

T
t ]

∥∥∥∥+ 2E\F
∥∥ω̂\t

∥∥E\F

∥∥∥∥Et [btyt]− E
t
[atyt]

∥∥∥∥ (55)

(c)
= o(1), (56)

where we use triangle inequality to reach (a). Then, we apply Cauchy-Schwarz inequality in order
to reach (b). In the last step, we use a bound on E\F

∥∥ω̂\t
∥∥l (Lemma 18) with the equivalence of

covariance matrices (10) and the equivalence of cross-covariance vectors (11) to reach (c). We can
use (56) and (51) to bound the right-hand side of (49). Then, (45)-(49) together with (36) imply
(32). Finally, (31)-(32) imply (28) and consequently (26), which completes our proof.

B ADMISSIBLE SET OF FEATURE MATRICES

A feature matrix F = [f1, f2, . . . , fk]
T is called admissible (F ∈ A) if it satisfies

max
1≤i,j≤k

∣∣fTi fj + θγT fjf
T
i γ − δij

∣∣ ≤ polylog k√
k

, (57)

∥F(In + (
√
1 + θ − 1)γγT )∥ ≤

√
θ polylog k, (58)

where δij denote the Kronecker delta. Note that (57) (see Lemma 5) and (58) (see Lemma 6) hold

with high probability for fi ∼ N
(
0, 1

n+θ In

)
which is sampled independent of γ, ξ and fj for i ̸= j.

Lemma 5. Under assumptions (A.1)-(A.6), the following holds with high probability

max
1≤i<j≤k

∣∣fTi fj + θγT fjf
T
i γ
∣∣ ≤ polylog k√

k
, (59)

max
1≤i≤k

∣∣∥fi∥2 + θ(γT fi)
2 − 1

∣∣ ≤ polylog k√
k

. (60)

Proof. We first apply triangle equality to reach∣∣fTi fj + θγT fjf
T
i γ
∣∣ ≤ |fTi fj |+ θ|γT fjf

T
i γ|, (61)∣∣∥fi∥2 + θ(γT fi)

2 − 1
∣∣ ≤ ∣∣∣∣∥fi∥2 − n

n+ θ

∣∣∣∣+ θ

∣∣∣∣(γT fi)
2 − 1

n+ θ

∣∣∣∣ . (62)

Next, we find probability bounds for each of the terms on the right-hand side of (61) and (62). Let’s
start with |fTi fj |. Remember that fi ∼ N

(
0, 1

n+θ In

)
. Then, for any l ∈ {1, . . . , n}, fi,l and

fj,l are sub-Gaussian random variables with sub-Gaussian norm bounded by C√
n+θ

for some C > 0

(Vershynin, 2018, Example 2.5.8). Therefore, fi,lfj,l is a sub-exponential random variable with sub-
exponential norm bounded by C2

n+θ (Vershynin, 2018, Lemma 2.7.7). Since fTi fj =
∑n

l=1 fi,lfj,l,
we can apply Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.2)

P
(
|fTi fj | ≥ ϵ

)
≤ 2e

−cmin
(

ϵ2

K2n
, ϵ
K

)
, (63)
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where K = C2/(n + θ) is the sub-exponential norm bound and c > 0 is a constant. We set
ϵ = (log k)2/

√
k and apply union bound so that we get

P
(

max
1≤i<j≤k

|fTi fj | ≥
(logk)2√

k

)
≤ c1e

−(log k)2/c2 , (64)

for some c1, c2 > 0. Note that we use n/k ∈ (0,∞) and θ ≤
√
n to write n and θ in terms of k.

Also, we may reach the following inequality using the analogous steps:

P
(
max
1≤i≤k

∣∣∣∣∥fi∥2 − n

n+ θ

∣∣∣∣ ≥ (logk)2√
k

)
≤ c1e

−(log k)2/c2 , (65)

for some c1, c2 > 0. Note that n/(n+ θ) appears in the equation since E[∥fi∥2] = n/(n+ θ). Now,
we focus on |γT fjf

T
i γ|. First, note that (fTi γ) ∼ N (0, 1/(n+ θ)) since γ is a deterministic vector

with ∥γ∥ = 1. Therefore, (fTi γ) and (fTj γ) are sub-Gaussian random variables with sub-Gaussian
norm bounded by C√

n+θ
for some C > 0 (Vershynin, 2018, Example 2.5.8) so (γT fjf

T
i γ) is a sub-

exponential random variable with sub-exponential norm bounded by C2

n+θ (Vershynin, 2018, Lemma
2.7.7). Thus, we have sub-exponential tail bound (Vershynin, 2018, Proposition 2.7.1) as follows

P
(
|γT fjf

T
i γ| ≥ ϵ

)
≤ 2e−Cϵ(n+θ), (66)

for some C > 0. Setting ϵ = (log k)2/k, we reach

P
(

max
1≤i<j≤k

|γT fjf
T
i γ| ≥ (logk)2

k

)
≤ 2e−C(log k)2 , (67)

for some C > 0. Following the analogous steps, we also get

P
(
max
1≤i≤k

∣∣∣∣(fTi γ)2 − 1

n+ θ

∣∣∣∣ ≥ (logk)2

k

)
≤ 2e−C(log k)2 , (68)

for some C > 0 since E[(fTi γ)2] = 1/(n+ θ). Using the found probability bounds for each of the
terms on the right-hand side of (61) and (62), we complete the proof.

Lemma 6. Under assumptions (A.1)-(A.6), the following hold with high probability
∥F(In + θγγT )FT ∥ ≤ θ polylog k. (69)

Proof. Using the triangle inequality, we get
∥F(In + θγγT )FT ∥ ≤ ∥FFT ∥+ θ∥FγγTFT ∥. (70)

First, we focus on ∥FFT ∥ = ∥F∥2. Here, we can take advantage of a well-known result on the
spectral norm of Gaussian random matrices (Vershynin, 2018, Corollary 7.3.3):

P

(
∥F∥ ≥

√
n

n+ θ
+

√
k

n+ θ
+ ϵ

)
≤ 2e−c(n+θ)ϵ2 , (71)

P

(
∥F∥ ≥

√
n

n+ θ
+ 2

√
k

n+ θ

)
≤ 2e−ck (72)

for any ϵ > 0 and some c > 0. This result indicates ∥FFT ∥ ≤ polylog k with high probability.
Next, we work on ∥FγγTFT ∥. Since (FγγTFT )i,j = fTi γγT fj , we may use the related results
(67) - (68) from the proof of Lemma 5. Specifically, we have the following inequality with high
probability

max
1≤i,j≤k

∣∣∣∣γT fjf
T
i γ − δij

n+ θ

∣∣∣∣ ≤ polylog k

k
, (73)

max
1≤i,j≤k

∣∣γT fjf
T
i γ
∣∣ ≤ polylog k

k
, (74)

where δij denote the Kronecker delta function and. we use 1/(n + θ) < C/k for some C > 0 in
reaching the last line. It follows that the following holds with high probability

∥FγγTFT ∥ ≤ ∥FγγTFT ∥F =

√√√√ k∑
i=1

k∑
j=1

(fTi γγT fj)2 ≤ polylog k. (75)

Using (70), we combine the results and reach the statement of the lemma.
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C EQUIVALENCE OF COVARIANCE MATRICES

Here, we show that (10) holds for any activation function σ satisfying assumption (A.6) and a second
activation function defined as σ̂(x) := µ1x + µ∗z where z ∼ N (0, 1). Note that trivially we have
Ex[σ̂(Fx)σ̂(Fx)

T ] = µ2
1F(In+θγγTFT )+µ2

∗Ik. The following lemma specifies the equivalence
of covariance matrices for the activation functions σ and σ̂.
Lemma 7. Under assumptions (A.1)-(A.6) given in Section 3, the following holds∥∥∥Ex[σ(Fx)σ(Fx)

T ]− (µ2
1F̂F̂

T + µ2
∗Ik)

∥∥∥ = o (1/polylog k) , (76)

where F̂ := F(In + (
√
1 + θ − 1)γγT ).

Proof. (Hu & Lu, 2023, Lemma 5) showed ∥Eg[σ(Fg)σ(Fg)
T ] − (µ2

1FF
T + µ2

∗Ik)∥ =
o (1/polylog k) under g ∼ N (0, In) and some other assumptions on F matrix and activa-
tion function σ. Here, we adapt their proof to our case. First, note that we can consider
σ(F̂g) instead of σ(Fx) since σ(F̂g) is equal (in distribution) to σ(Fx). Now, our goal is
to show ∥Eg[σ(F̂g)σ(F̂g)

T ] − (µ2
1F̂F̂

T + µ2
∗Ik)∥ = o (1/polylog k). The (i, j)-th entry of

Eg[σ(F̂g)σ(F̂x)
T ] is E

[
σ
(
f̂Ti g

)
σ
(
f̂Tj g

)]
. Since (f̂Ti g, f̂Tj g) are jointly Gaussian, we can

rewrite their joint distribution as that of
(
zi, ρijzi +

√
1− ρijρjizj

)
, where zi ∼ N (0, ∥f̂i∥2),

zj ∼ N (0, ∥f̂j∥2) are two independent Gaussian variables and ρij := f̂Ti f̂j/∥f̂i∥2. Then, for i ̸= j,
we have,

E
[
σ
(
f̂Ti g

)
σ
(
f̂Tj g

)]
= E

[
σ (zi)σ

(
ρijzi +

√
1− ρijρjizj

)]
, (77)

(a)
= E[σ (zi)σ

(√
1− ρijρjizj

)
] + ρijE

[
σ (zi) ziσ

′ (√1− ρijρjizj
)]

+
1

2
ρ2ijE

[
σ (zi) z

2
i σ

′′ (√1− ρijρjizj
)]

+
1

6
ρ3ijE

[
σ (zi) z

3
i σ

′′′ (ζij)
]
, (78)

(b)
= f̂Ti f̂jEσ′ (zi)Eσ′ (√1− ρijρjizj

)
+

1

6
ρ3ijE

[
σ (zi) z

3
i σ

′′′ (ζij)
]
, (79)

(c)
= f̂Ti f̂jEσ′ (zi)Eσ′ (zj) +Rij , (80)

where ζij is some point between
√

1− ρijρjizj and ρijzi+
√

1− ρijρjizj . Here, we apply Taylor’s
series expansion of σ(ρijzi +

√
1− ρijρjizj) around

√
1− ρijρjizj to reach (a). Then, we use the

independence between zi and zj , and the following identities: Eσ(zi) = E[σ(zi)z2i ] = 0 (due to σ

being an odd function) and E[σ(zi)zi] = ∥f̂i∥2E[σ′(zi)] (by Stein’s lemma). To reach (c), we define
the remainder term Rij as

Rij = f̂Ti f̂jEσ′ (zi)
(
Eσ′ (√1− ρijρjizj

)
− Eσ′ (zj)

)
+

1

6
ρ3ijE

[
σ (zi) z

3
i σ

′′′ (ζij)
]
. (81)

For i = j, we define Rii = 0. Then, we can verify the following decomposition using (80):

E[σ(F̂g)σ(F̂g)T ] = (µ1Ik +D1) F̂F̂
T (µ1Ik +D1) + µ2

∗Ik +D2 +D3 +R (82)
where we define D1,D2,D3 to be diagonal matrices as follows: D1 := diag (Eσ′ (zi) − µ1),
D2 = diag (µ2

1 − ∥f̂i∥2(Eσ′(zi))
2), and D3 = diag (Eσ2(zi)− µ2

1 − µ2
∗).

Then, we have∥∥∥E[σ(Fx)σ(Fx)T ]− (µ2
1F̂F̂

T + µ2
∗Ik)

∥∥∥ ≤ (2µ1+ ∥D1∥) ∥F̂∥2 ∥D1∥+ ∥D2∥+ ∥D3∥+ ∥R∥ ,

(83)

≤ ∥F̂∥2 polylogk√
k

, (84)

= o (1/polylog k) , (85)
where Lemma 8 is used for the bounds of ∥D1∥ , ∥D2∥ , ∥D3∥ and ∥R∥. To reach the conclusion,
we then take advantage of ∥F̂∥2 ≤ k1/2−ϵ/2 polylog k (for some ϵ > 0 satisfying θ ≤ n1/2−ϵ/2),
which is due to (58).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma 8. Suppose the setting in Lemma 7 and the definitions in its proof. Then,

max {∥D1∥, ∥D2∥, ∥D3∥, ∥R∥} ≤ polylog k√
k

. (86)

Proof. Before bounding the terms, we define a truncated version of the activation function σ as

σϵ(x) :=

{
σ(x), if |x| < ϵ,

0, otherwise,
(87)

for ϵ = 2logk, which is useful due to Lemma 19. Furthermore, σϵ(x), its finite powers and its
derivatives are bounded due to assumption (A.6). First, we focus on D1

∥D1∥ ≤ max
i

E|σ′ (zi)− µ1| (88)

≤ max
i

Ez∼N (0,1)|σ′(∥f̂i∥z)− σ′(z)| (89)

≤ max
i

Ez∼N (0,1)|σ′
ϵ(∥f̂i∥z)− σ′

ϵ(z)|+
polylog k

klogk
(90)

≤ (∥σ′′
ϵ (x)∥∞ E[|z|])max

i

∣∣∣∥f̂i∥ − 1
∣∣∣+ polylog k

klogk
(91)

≤ (∥σ′′
ϵ (x)∥∞ E[|z|])max

i

∣∣∣∥f̂i∥2 − 1
∣∣∣+ polylog k

klogk
(92)

≤ polylog k√
k

, (93)

where we use Lemma 19 to get (90) and while the last line is due to (57) (Lemma 5) and bounded
second derivative of σϵ. Similarly, one can show ∥D2∥ ≤ polylog k/

√
k. Next, we study ∥D3∥ as

∥D3∥ ≤ max
i

|Eσ2 (zi)− µ2
1 − µ2

∗| (94)

= max
i

Ez∼N (0,1)|σ2(∥f̂i∥z)− σ2(z)| (95)

= max
i

Ez∼N (0,1)|σ2
ϵ (∥f̂i∥z)− σ2

ϵ (z)|+
polylog k

klogk
(96)

≤ polylog kmax
i

∣∣∣∥f̂i∥ − 1
∣∣∣+ polylog k

klogk
(97)

≤ polylog kmax
i

∣∣∣∥f̂i∥2 − 1
∣∣∣+ polylog k

klogk
(98)

≤ polylog k√
k

, (99)

where we use the bounded derivative of σ2
ϵ to reach (97) while the rest is similar to the bounding of

∥D1∥. Lastly, to bound ∥R∥, one can first easily show that

max
1≤i,j≤k

|Rij | ≤
polylog k

k
√
k

. (100)

using (57) (Lemma 5) and the definition of Rij in (81). Then, we have

∥R∥ ≤ ∥R∥F =

 k∑
i=1

k∑
j=1

R2
ij

1/2

≤ polylog k√
k

, (101)

which concludes our proof.

D EQUIVALENCE OF CROSS-COVARIANCE VECTORS

Here, we are interested in the cross-covariance E[σ(Fx)y]. The following lemma specifies the
equivalence of the cross-covariance vectors for activation function σ and its finite-degree Hermite
expansion σ̂l.
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Lemma 9. Suppose assumptions (A.1)-(A.6). Let ηi := E
[
(fix)(ξ

Tx)√
1+θα2

]
=

fTi ξ+θαfTi γ√
1+θα2

. Assume that

η := max
1≤i≤k

|ηi| ≤
C

n1/l
, for some C > 0 and some l ∈ Z+. (102)

Then, the following holds∥∥∥∥ E
(x,y)

[σ(Fx)y]− E
(x,y)

[σ̂l(Fx)y]

∥∥∥∥ = o (1/polylog k) , (103)

for σ̂l(x) defined in (14).

Proof. Let x ∼ N (0, Ik + θγγT ). By assumption (A.3), we have

E
(x,y)

[σ(Fx)y] = E
x

[
σ(Fx)σ∗

(
ξTx√
1 + θα2

)]
= E

g

[
σ
(
F̂g
)
σ∗

(
ξ̂Tg

)]
, (104)

where g ∼ N (0, In), F̂ := F(In + (
√
1 + θ − 1)γγT ) and ξ̂ := (In+(

√
1+θ−1)γγT )ξ√
1+θα2

. Before

dealing with the functions σ and σ∗, we consider the joint distribution of (f̂Ti g, ξ̂Tg), which is
jointly Gaussian

(f̂Ti g, ξ̂Tg) ∼ N
(
0,

[
∥f̂i∥2 ηi
ηi 1

])
, (105)

Indeed, we can write an equivalent of (f̂Ti g, ξ̂Tg) as follows

(ηiz +

√
∥f̂i∥2 − η2i zi, z), (106)

where zi, z
i.i.d∼ N (0, 1). This decomposition will be useful since we split correlated part ηiz and

uncorrelated part
√
∥f̂i∥2 − η2i zi. Now, we use Hermite expansions of σ and σ∗

σ(x) =

∞∑
j=0

1

j!
µjHj(x), and σ∗(x) =

∞∑
j=0

1

j!
µ̃jHj(x), (107)

where we define Hj(z) to be the probabilist’s j-th Hermite polynomial, µj :=
Ez∼N (0,1)[Hj(z)σ(z)] and µ̃j := Ez∼N (0,1)[Hj(z)σ∗(z)]. Then, we have

E
(x,y)

[
σ(fTi x)y

]
= E

g

[
σ(f̂Ti g)σ∗(ξ̂

Tg)
]
, (108)

= E
zi,z

[
σ

(
ηiz +

√
∥f̂i∥2 − η2i zi

)
σ∗(z)

]
(109)

= E
zi,z

 ∞∑
j=0

1

j!
µjHj

(
ηiz +

√
∥f̂i∥2 − η2i zi

) ∞∑
j=0

1

j!
µ̃jHj(z)

 , (110)

(a)
=

∞∑
j=0

1

(j!)2
µj µ̃j E

zi,z

[
Hj

(
ηiz +

√
∥f̂i∥2 − η2i zi

)
Hj(z)

]
(111)

(b)
=

∞∑
j=0

1

j!
µj µ̃jη

j
i (112)

(c)
=

 l−1∑
j=0

1

j!
µj µ̃jη

j
i

+Ri, (113)

(d)
= E

x,y

[
σ̂l(f

T
i x)y

]
+Ri, (114)
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where Ri :=
∑∞

j=l
1
j!µj µ̃jη

j
i to reach (c). To reach (a)-(b), we use the orthogonality of Hermite

polynomials (Lemma 20). Finally, we get (d) by the definition of σ̂l. For |Ri|, we derive an upper
bound as follows

|Ri| =

∣∣∣∣∣∣
∞∑
j=l

1

j!
µj µ̃jη

j
i

∣∣∣∣∣∣ , (115)

(a)

≤
∞∑
j=l

1

j!
|µjµ̃j ||ηji |, (116)

(b)

≤ C

k
, (117)

for some C > 0. The triangle inequality is used to reach (a) while we get (b) using |ηli| = O(1/k)
(by the assumption of the lemma). Finally, we have∥∥∥∥ E

(x,y)
[σ(Fx)y]− E

(x,y)
[σ̂l(Fx)y]

∥∥∥∥ ≤

√√√√ k∑
i=1

∣∣E[σ(fTi x)y]− E[σ̂l(fTi x)y]
∣∣2 =

√√√√ k∑
i=1

R2
i ≤ C√

k
,

(118)

which completes the proof.

E AUXILIARY RESULTS FOR THE PROOFS

In this section, we provide auxiliary results that are used in the proofs given in the previous sections.
Lemma 10. Suppose assumptions (A.1)-(A.6) in Section 3 and additional assumptions (A.7)-(A.8)
in Appendix A. Then,

Gσ
P→ eG if and only if Gσ̂

P→ eG , (119)

if the following holds,

ΦA(τ1, τ2)

k

P→ ϕ if and only if
ΦB(τ1, τ2)

k

P→ ϕ, (120)

where ΦR(τ1, τ2) is the perturbed problem defined in (23). Furthermore, A := [a1,a2, . . . ,am]T

and B := [b1,b2, . . . ,bm]T where ai := σ(Fxi) and bi := σ̂(Fxi) for all i ∈ {1, 2, . . . ,m}.

Proof. We start by writing Gσ as follows

Gσ : = E
(x,y)

(y − ω̂T
σ σ(Fx))

2, (121)

= E[y2]− 2ω̂T
σ E[σ(Fx)y] + ω̂T

σ E[σ(Fx)σ(Fx)T ]ω̂σ, (122)

= E[y2]− 2ω̂T
σΣxy + ω̂T

σΣxω̂σ, (123)

= E[y2]− 2πA + ρA, (124)

where we define πA := ω̂T
0 Σxy and ρA := ω̂T

0 Σxω̂0 in the last step. Note that ω̂σ = ω̂0 and
ω̂σ̂ = ω̂m by definition (30). Similarly, we can arrive at Gσ̂ = E[y2]− 2πB + ρB +R for activation
function σ̂ where πB := ω̂T

mΣxy and ρB := ω̂T
mΣxω̂m. Furthermore, we define R as the remainder

term as follows

R := ω̂T
m

(
E[σ̂(Fx)σ̂(Fx)T ]− Σx

)
ω̂m − 2ω̂T

m (E[σ̂(Fx)y]− Σxy) , (125)

which can be bounded as

E\F |R| ≤ E\F

(
∥ω̂m∥2

)∥∥E[σ̂(Fx)σ̂(Fx)T ]− Σx

∥∥+ 2E\F (∥ω̂m∥) ∥E[σ̂(Fx)y]− Σxy∥ ,
(126)

= o(1), (127)
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where we use a bound on E\F [∥ω̂m∥l] (Lemma 18) with the equivalence of covariance matrices
(10) and the equivalence of cross-covariance vectors (11) to reach the last line. Now, to prove (119),
we need to show ρA

P→ ρ∗ = ∂
∂τ1

q∗(0, 0) while ρB
P→ ρ∗ and πA

P→ π∗ = ∂
∂τ2

q∗(0, 0) while

πB
P→ π∗. We show ρA

P→ ρ∗ in the following while the rest can be shown analogously. First,
observe that, for any τ1, τ2 ∈ (−τ∗, τ∗),

ΦA(τ1, τ2) ≤ ΦA(0, 0) + τ1kω̂
T
0 Σxω̂0 + τ2kω̂

T
0 Σxy, (128)

which we arrive at by using the definition of the perturbed optimization (23). Then, for any τ ∈
(0, τ∗),

ΦA(τ, 0)− ΦA(0, 0)

kτ
≤ ρA ≤ ΦA(−τ, 0)− ΦA(0, 0)

−kτ
. (129)

For a fixed ϵ > 0, there exists δ > 0 such that∣∣∣∣q∗(δ, 0)− q∗(0, 0)

δ
− ρ∗

∣∣∣∣ ≤ ϵ/3, (130)

due to assumption (A.8) in Appendix A. Focusing on the inequality on the left in (129), we get:

P(ρA − ρ∗ < −ϵ) ≤ P
(
ΦA(δ, 0)− ΦA(0, 0)

kδ
− ρ∗ < −ϵ

)
, (131)

≤ P(|ΦA(δ, 0)/k − q∗(δ, 0)| > δϵ/3) + P(|ΦA(0, 0)/k − q∗(0, 0)| > δϵ/3),
(132)

= 0, (133)

where we use (130) in the middle line and ΦA(τ1, τ2)/k
P→ q∗(τ1, τ2) is used in the last line.

Applying the same steps to the inequality on the right in (129), we arrive at P(ρA − ρ∗ > ϵ) = 0.
Therefore, we conclude that ρA

P→ ρ∗. Using the same reasoning that we used to show ρA
P→ ρ∗,

we may also show ρB
P→ ρ∗, πA

P→ π∗, and πB
P→ π∗ but we omit them here. Since we have

ρA
P→ ρ∗, ρB

P→ ρ∗, πA
P→ π∗, and πB

P→ π∗, we reach (119) by using (124).

Lemma 11. Suppose the setting in Appendix A. Then, for any ϕ ∈ R,

ΦA(τ1, τ2)

k

P→ ϕ if and only if
ΦB(τ1, τ2)

k

P→ ϕ, (134)

if the following holds:∣∣∣∣Eφ

(
1

k
ΦA

)
− Eφ

(
1

k
ΦB

)∣∣∣∣ ≤ max {||φ||∞, ||φ′||∞, ||φ′′||∞}κk, (135)

for some κk = o(1) and every bounded test function φ(x) which has bounded first two derivatives.

Proof. The proof is adapted from Section II-D in (Hu & Lu, 2023). We need to select an appropriate
test function to start the proof. For any fixed ϵ > 0 and ϕ, let

φϵ(x) := 1|x|≥3ϵ/2 ∗ ζϵ/2(x− ϕ), (136)

where ∗ denotes the convolution operation and ζϵ(x) := ϵ−1ζ(x/ϵ) is a scaled mollifier. We define
a standard mollifier as:

ζ(x) :=

{
ce−1/(1−x2), if |x| < 1,

0, otherwise,
(137)

for some constant c ensuring
∫
R ζ(x)dx = 1. We may easily verify that ||φ′

ϵ(x)||∞ < C/ϵ and
||φ′′

ϵ (x)||∞ < C/ϵ2 for some constant C. Furthermore,

1|x−ϕ|≥2ϵ ≤ φϵ(x) ≤ 1|x−ϕ|≥ϵ. (138)

Let x = ΦA/k in (138) and take the expectation:

P(|ΦA/k − ϕ| ≥ 2ϵ) ≤ E[φϵ(ΦA/k)]. (139)
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Similarly, let x = ΦB/k in (138) and take the expectation:

E[φϵ(ΦB/k)] ≤ P(|ΦB/k − ϕ| ≥ ϵ). (140)

Using (135) together with the last two equations, we arrive at

P(|ΦA/k − ϕ| ≥ 2ϵ) ≤ P(|ΦB/k − ϕ| ≥ ϵ) + max
{
C,C/ϵ, C/ϵ2

}
κk, (141)

which leads to
P(|ΦA/k − ϕ| ≥ 2ϵ) ≤ P(|ΦB/k − ϕ| ≥ ϵ) +

Cκk

ϵ2
, (142)

for ϵ ∈ (0, 1) satisfying κk/ϵ
2 = o(1). Applying the same steps after switching A with B, we get

P(|ΦB/k − ϕ| ≥ 2ϵ) ≤ P(|ΦA/k − ϕ| ≥ ϵ) +
Cκk

ϵ2
. (143)

Combining the last two results and letting ϵ → 0+ with κk/ϵ
2 = o(1), we reach (134).

Lemma 12. Suppose the definitions in Appendix A. Then, the following holds:

Φt−1 = Ψt(at), and Φt = Ψt(bt). (144)

Proof. We apply Taylor expansion to Φt−1 around Φ\t:

Φt−1 = Φ\t + min
ω∈Rk

{
(ω − ω̂\t)

Td\t +
1

2

(
ω − ω̂\t

)T
H\t

(
ω − ω̂\t

)
+
(
ωTat − yt

)2}
,

(145)

where d\t and H\t are respectively gradient vector and Hession matrix of Φ\t evaluated at ω̂\t.
Note that we do not need higher order terms since Φ\t only involves quadratic terms, which means
higher order terms are equal to 0. Furthermore, the gradient vector d\t is equal to 0 due to the
first-order optimality condition in (34). This leads us to:

Φt−1 = Φ\t + min
ω∈Rk

{
1

2

(
ω − ω̂\t

)T
H\t

(
ω − ω̂\t

)
+
(
ωTat − yt

)2}
= Ψt(at). (146)

Similarly, one can show Φt = Ψt(bt) using the same reasoning, which is omitted here.

Lemma 13. Suppose the definitions in Appendix A. Then, the following holds:

max
{
E\F

(
Ψt (bt)− Φ\t

)2
,E\F

(
Ψt (at)− Φ\t

)2} ≤ polylog k. (147)

Proof. Let rt = at or rt = bt. Then,

E\F
(
Ψt (rt)− Φ\t

)2 ≤ E\F

(
ω̂T

\trt − yt

)4
, (148)

≤
√
E\F

(∣∣∣ω̂T
\trt

∣∣∣+ 1
)8

polylog k, (149)

≤ Q
(
∥ω̂\t∥

)
∥F̂∥4 polylog k, (150)

≤ k1−ϵ polylog k (151)

where Q(x) is some finite-degree polynomial, F̂ := F(In + (
√
1 + θ − 1)γγT ) and some ϵ > 0

satisfying θ2 ≤ n1−ϵ. We use (43) in the first step. Then, we reach the second line using Lemma 14.
In the third step, we use Lemma 15. Finally, we use (58) and Lemma 18 to conclude the proof.

Lemma 14. Suppose the definitions in Appendix A. Then, the following holds:

E\F

(
ω̂T

\tr− yt

)2l
≤
√
E\F

(∣∣∣ω̂T
\tr
∣∣∣+ 1

)4l
polylog k, (152)

for l ∈ Z+.
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Proof. Let yt := σ∗(st) where st :=
ξTxt√
1+θα2

. Then, for any x ∈ R,

(x− yt)
2 ≤ |x|2 + 2|x||yt|+ |yt|2, (153)

≤ |x|2 + 2|x|C
(
|st|K + 1

)
+ C2

(
|st|K + 1

)2
, (154)

≤ Ĉ(|x|+ 1)2
(
|st|K + 1

)2
, (155)

for some C, Ĉ > 0. To reach the second line, we use |yt| ≤ C
(
|st|K + 1

)
due to assumption (A.3).

Using this result, we get:

E\F

(
ω̂T

\tr− yt

)2l
≤ ĈlE\F

[(∣∣∣ω̂T
\tr
∣∣∣+ 1

)2l (
|st|K + 1

)2l]
, (156)

≤ Ĉl

√
E\F

(∣∣∣ω̂T
\tr
∣∣∣+ 1

)4l√
E\F

(
|st|K + 1

)4l
. (157)

st ∼ N (0, 1) so P(|st| > ϵ) ≤ 2e−ϵ2/2 (Vershynin, 2018, Eq. (2.10)). Therefore, we can reach
(152) by using moment bounds for |st| from Lemma 16.

Lemma 15. Suppose assumptions (A.1)-(A.6). Let a := σ(Fx). Furthermore, let F̂ := F(In +
(
√
1 + θ − 1)γγT ). Then, there exist some c, C > 0 such that the following holds

P\F
(∣∣ωTa

∣∣ ≥ ϵ
)
≤ 2e

−ϵ2

c∥ω∥2∥F̂∥2 polylog k , (158)

E\F

(∣∣ωTa
∣∣l) ≤ (l!)

(
C∥ω∥2∥F̂∥2 polylog k

)l/2
, (159)

for any l ∈ Z+, any fixed ω ∈ Rk and ϵ ≥ 0.

Proof. Let g ∼ N (0, Ik). One can verify that the function f(g) := ωTa = ωTσ(F̂g) is
(∥σ′∥∞∥ω∥∥F̂∥)-Lipschitz continuous. Furthermore, E\F

(
ωTa

)
= 0 due to σ(x) being an odd

function. Furthermore, σ′(z) ≤ polylog k with high probability for z ∼ N (0, Ĉ) with all Ĉ > 0,
which allows us to continue with ∥σ′∥∞ ≤ polylog k by using a truncation argument (similar to
Lemma 19). Therefore, we can reach (158)-(159) using Lemma 16.

Lemma 16 (Concentration of Lipschitz Functions - (Hu & Lu, 2023, Theorem 3)). Consider g ∼
N (0, Ik). Then, for any κ-Lipschitz function f : Rk → R and ϵ ≥ 0,

P(|f(g)− E[f(g)]| ≥ ϵ) ≤ 2e−ϵ2/(4κ2). (160)

Furthermore, let x be a random variable. If x satisfying P(|x| > v) ≤ ce−Cv for some C, c > 0,

E
[
|x|l
]
≤ clC−l

∫ ∞

0

e−vvl−1dv = c(l!)C−l for any l ∈ Z+. (161)

Similarly, if x satisfying P(|x| > v) ≤ ce−Cv2

for some C, c > 0,

E
[
|x|l
]
≤ 2c(l!)C−l/2 for any l ∈ Z+. (162)

Proof. See (Talagrand, 2010, Theorem 1.3.4).

Lemma 17. Suppose the definitions in Appendix A. Let ϵ > 0 be a constant satisfying θ ≤ n1/2−ϵ/2.
For rt = at or rt = bt, we have

P(|νt(rt)− E
t
[νt(rt)]| > δ) ≤ ce−Ckϵδ2/polylog k, (163)

for some c, C > 0. Furthermore,

E
t
[|νt(rt)− E

t
[νt(rt)]|l] ≤ 2c(l!)(Ckϵ/polylog k)−l/2, (164)

for some c, C > 0 and any l ∈ Z+. Finally,∣∣∣∣Et νt(at)− E
t
[νt(bt)]

∣∣∣∣ = o(1/ polylog k). (165)
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Proof. Consider

νt(rt) = rTt H
−1
\t rt =

rTt H̄
−1
\t rt

k
, (166)

where H̄\t is defined as follows to take the 1/k scaling out

H̄\t :=
2

k

t−1∑
i=1

bib
T
i +

2

k

m∑
i=t+1

aia
T
i +

1

k
∇2Q

(
ω̂\t
)
. (167)

Then, using s-strong convexity of Q(ω)/m due to assumption (A.7), we have H̄\t ⪰ (m/k)sIk,
which lead to ∥H̄−1

\t ∥ ≤ (k/m)(1/s). Furthermore, we can rewrite ai = σ(Fxi) equivalently as

σ(F̂g) for F̂ := F(In+(
√
1 + θ−1)γγT ) and g ∼ N (0, In). We have ∥F̂∥ ≤ k1/4−ϵ/4 polylog k

(for some ϵ > 0 satisfying θ ≤ n1/2−ϵ/2), which is due to (58). We also have ∥σ′∥∞ ≤ polylog k
by using a truncation argument (similar to Lemma 19) as mentioned in the proof of Lemma 15.
Then, we use (Louart et al., 2018, Lemma 1) with the bounds for ∥F̂∥ and ∥H̄−1

\t ∥ to reach (163).
Finally, (164) can be obtained using Lemma 16. To show (165), we proceed as∣∣∣∣Et νt(at)− E

t
[νt(bt)]

∣∣∣∣ = 1

k

∣∣∣∣Et [aTt H̄−1
\t at

]
− E

t

[
bT
t H̄

−1
\t bt

]∣∣∣∣ , (168)

=
1

k

∣∣∣∣Tr
(
H̄−1

\t

(
E
t

[
ata

T
t

]
− E

t

[
btb

T
t

]))∣∣∣∣ , (169)

= o(1/ polylog k), (170)

where Tr denotes the trace while we use ∥H̄−1
\t ∥ ≤ (k/m)(1/s) and (10) to reach the last line.

Lemma 18. Suppose the definitions in Appendix A. Then, the following holds:

E\F∥ω̂t∥l ≤ polylog k, (171)

E\F∥ω̂\t∥l ≤ polylog k, (172)

for any l ∈ Z+ and any t ∈ {0, . . . ,m}.

Proof. We show (171) here while (172) can be proved similarly. Let ri := bi for i ∈ {1, . . . , k} and
ri := ai for t ∈ {k+ 1, . . . ,m}. Furthermore, let Q(ω) := mλ||ω||22 + τ1kω

TΣxω + τ2kω
TΣxy .

Then,

1

m
Q(ω̂t) ≤

1

m

m∑
i=1

(
ω̂T

t ri)− yi
)2

+
1

m
Q(ω̂t) ≤

1

m

m∑
i=1

y2i +
1

m
Q(0), (173)

since ω̂t is the optimal solution defined in (30). Furthermore, Q(ω)/m is s-strongly convex by
assumption (A.7) in Appendix A. Using this fact, we reach

1

m
Q(ω̂t) ≥

1

m
Q(0) +

1

m
∇Q(0)T ω̂t + (s/2)∥ω̂t∥2, (174)

≥ 1

m
Q(0)− 1

m
∥∇Q(0)∥∥ω̂t∥+ (s/2)∥ω̂t∥2. (175)

We may then combine the found lower and upper bounds for Q(ω̂t)

(s/2)∥ω̂t∥2 −
1

m
∥∇Q(0)∥∥ω̂t∥ ≤ 1

m

m∑
i=1

y2i , (176)

which leads to

∥ω̂t∥ ≤
∥∇Q(0)∥/m+

√
∥∇Q(0)∥2/m2 + 2(s/m)

∑m
i=1 y

2
i

s
, (177)

≤
2∥∇Q(0)∥/m+

√
2(s/m)

∑m
i=1 y

2
i

s
, (178)

≤

(
1

m

m∑
i=1

y2i

)1/2

polylog k, (179)
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where we use ∥∇Q(0)∥/m = |τ2|(k/m)∥Σxy∥ ≤ polylog k since we have (k/m) ∈ (0,∞) by
assumption (A.4) in Section 3, τ2 = O(1/

√
k) by assumption (A.7) in Appendix A and one can

easily show ∥Σxy∥ ≤
√
k polylog k using (112). Then, we consider l-th power of ∥ω̂t∥ as

∥ω̂t∥l ≤

(
1

m

m∑
i=1

y2i

)l/2

polylog k. (180)

Let yi := σ∗(si) where si := ξTxi√
1+θα2

. Using |yi| ≤ C
(
|si|K + 1

)
due to assumption (A.3), we get

E\F∥ω̂t∥l ≤ E\F

(
1

m

m∑
i=1

(
|si|K + 1

)2)l/2

polylog k. (181)

Finally, si ∼ N (0, 1) so we reach (171) by using moment bounds for |si| from Lemma 16. Similarly,
(172) can shown using analogous steps.

Lemma 19. Let f : R → R be a function satisfying |f(x)| ≤ C(1 + |x|K) for all x ∈ R and some
constants C > 0,K ∈ Z+. Furthermore, define a truncated version of f as

fϵ(x) :=

{
f(x), if |x| < ϵ,

0, otherwise,
(182)

for ϵ > 0. If ϵ = 2logk, the following holds for any constant a > 0 and z ∼ N (0, 1),

Ez|f(az)− fϵ(az)| =
polylog k

klogk
. (183)

Proof. We start by using 1 = 1|z|<ϵ + 1|z|≥ϵ as follows

Ez|f(az)− fϵ(az)| ≤ Ez[|f(az)− fϵ(az)|(1|z|<ϵ + 1|z|≥ϵ)], (184)

= Ez[|f(az)− fϵ(az)|1|z|≥ϵ], (185)

= Ez[|f(az)|1|z|≥ϵ] (186)
(a)

≤
√
Ez[f(az)2]

√
Ez[(1|z|≥ϵ)2], (187)

=
√
Ez[f(az)2]

√
P(|z| ≥ ϵ), (188)

(b)

≤ C
√
Ez[(a2Kz2K + 2aK |z|K + 1)]

√
2e−ϵ2/2, (189)

(c)

≤ polylog k

elog2(k)
=

polylog k

klogk
, (190)

where we use Cauchy–Schwarz inequality to reach (a) while (b) is due to |f(x)| ≤ C(1+ |x|K) and
P(|z| > ϵ) ≤ 2e−ϵ2/2 (Vershynin, 2018, Eq. (2.10)). Finally, we reach (c) by using moment bounds
for |z| from Lemma 16.

Lemma 20. Let Hi(x) be the probabilist’s i-th Hermite polynomial and z1, z2
i.i.d∼ N (0, 1). Then,

for any ρ ∈ [0, 1] and any c ≥ |ρ|,

Ez1,z2 [Hi(ρz1 +
√

c2 − ρ2z2)Hj(z1)] = (i!)ρiδi,j , (191)

where δij is Kronecker delta function.

Proof. Let a = (ρ/c)z1 +
√

1− ρ2/c2z2 and b = z1. Observe that (a, b) is jointly Gaussian with
E[a2] = E[b2] = 1 and E[ab] = (ρ/c). Furthermore, let p(a, b) be the joint probability density
function of (a, b) while p(a) and p(b) denoting the individual probability density functions. Using
Mehler’s formula (Kibble, 1945; Mehler, 1866), we get

p(a, b) = p(a)p(b)

∞∑
l=0

(ρ/c)l

l!
Hl(a)Hl(b). (192)
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Then, it follows
Ez1,z2 [Hi(ρz1 +

√
c2 − ρ2z2)Hj(z1)] (193)

= Ea,b[Hi(ca)Hj(b)], (194)

=

∫ ∞

−∞

∫ ∞

−∞
Hi(ca)Hj(b)p(a, b)dadb, (195)

=

∫ ∞

−∞

∫ ∞

−∞
Hi(ca)Hj(b)p(a)p(b)

∞∑
l=0

(ρ/c)l

l!
Hl(a)Hl(b)dadb, (196)

=

∞∑
l=0

(ρ/c)l

l!

∫ ∞

−∞
Hi(ca)Hl(a)p(a)da

∫ ∞

−∞
Hj(b)Hl(b)p(b)db, (197)

=

∞∑
l=0

(ρ/c)l

l!
E
a
[Hi(ca)Hl(a)]E

b
[Hj(b)Hl(b)], (198)

=

∞∑
l=0

(ρ/c)l

l!
(i!)(j!)(ci)δi,lδj,l, (199)

= (i!)ρiδij , (200)
where we use Lemma 21 to reach the line before the last one.

Lemma 21. Let Hi(x) be the probabilist’s i-th Hermite polynomial. Also, let z ∼ N (0, 1). Then,
for any c ∈ R,

E[Hi(cz)Hj(z)] = (i!)(ci)δij . (201)

Proof. It is known that E[Hi(z)Hj(z)] = (i!)δij (O’Donnell, 2014, Chapter 11.2). Here, we extend
it to our case. For i ̸= j, E[Hi(cz)Hj(z)] = 0 by orthogonality. Let al be the coefficient of xl in
Hi(x). Then, we have

E[Hi(cz)Hi(z)] =

i∑
l=0

cl E[alzlHi(z)], (202)

(a)
= ci E[alziHi(z)], (203)
(b)
= ci E[Hi(z)Hi(z)], (204)
(c)
= (i!)(ci), (205)

where we use E[zlHi(z)] = δlj due to orthogonality to reach (a) and (b) while (c) is because of
E[Hi(z)Hi(z)] = (i!). Combining i = j and i ̸= j cases, we get (201).

F PLOTS FOR TRAINING ERRORS

For the sake of completeness, here, we provide the supplementary training error plots corresponding
to the setting of Figure 1b and Figure 2 in Section 4.

Figure 5: Training errors for the misaligned case (the setting in Figure 1b)
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(a) σ∗ = σReLU (b) σ∗ = σtanh

Figure 6: Training errors for the aligned case (the setting in Figure 2).

(a) Original Inputs (b) Inputs with Gaussian Noise

Figure 7: Training errors for CIFAR-10 experiments (the setting in Figure 4).

G DETAILS FOR CIFAR-10 EXPERIMENTS

In our experiments, we focus on binary classification between airplanes and automobiles using the
CIFAR-10 dataset (Krizhevsky et al., 2009) to demonstrate how our findings translate to real-world
applications. We randomly select 2,000 samples from each class for training, while a separate set
of 2,500 samples (distinct from the training set) is used to calculate the test (generalization) error.
To prepare the input samples, we normalize the pixel values to achieve zero mean and unit variance
for each color channel (R, G, B). Specifically, the pixel values are first scaled to the range [0, 1]
by dividing by 255, followed by subtracting channel-wise means and dividing by their respective
standard deviations. The images are then flattened into vectors for input into the model.

For the feature matrix F, we sample entries independently from a normal distribution
N (0, 1/Tr(E[xxT ])), ensuring that E[(fTi x)2] = 1 for all i, where fi denotes the i-th row of F.

Our results are presented in two scenarios: first with the original normalized inputs (Figure 4a),
and second after adding standard Gaussian noise (variance of one for each feature) to create a more
isotropic covariance structure (Figure 4b). This addition of noise allows us to assess the performance
equivalence between the linear model and RFM under conditions of weak input-label correlation.

For labels, we use {−1, 1} for the first class and the second class, respectively. To control input-label
correlation, we introduce a label flipping mechanism with probability p, where p = 0 corresponds
to true labels (maximum correlation) and p = 0.5 represents random labels (minimum correlation).
By varying p within the range [0, 0.5], we interpolate between these two extremes and analyze how
this affects model performance. The training errors for these experiments are illustrated in Figure 7.
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